1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright	(C) 2001 Russell King
7  *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22 
23 #include "cpufreq_governor.h"
24 
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27 	if (have_governor_per_policy())
28 		return dbs_data->cdata->attr_group_gov_pol;
29 	else
30 		return dbs_data->cdata->attr_group_gov_sys;
31 }
32 
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35 	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38 	struct cpufreq_policy *policy = cdbs->shared->policy;
39 	unsigned int sampling_rate;
40 	unsigned int max_load = 0;
41 	unsigned int ignore_nice;
42 	unsigned int j;
43 
44 	if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45 		struct od_cpu_dbs_info_s *od_dbs_info =
46 				dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47 
48 		/*
49 		 * Sometimes, the ondemand governor uses an additional
50 		 * multiplier to give long delays. So apply this multiplier to
51 		 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 		 * detection logic a bit conservative.
53 		 */
54 		sampling_rate = od_tuners->sampling_rate;
55 		sampling_rate *= od_dbs_info->rate_mult;
56 
57 		ignore_nice = od_tuners->ignore_nice_load;
58 	} else {
59 		sampling_rate = cs_tuners->sampling_rate;
60 		ignore_nice = cs_tuners->ignore_nice_load;
61 	}
62 
63 	/* Get Absolute Load */
64 	for_each_cpu(j, policy->cpus) {
65 		struct cpu_dbs_info *j_cdbs;
66 		u64 cur_wall_time, cur_idle_time;
67 		unsigned int idle_time, wall_time;
68 		unsigned int load;
69 		int io_busy = 0;
70 
71 		j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72 
73 		/*
74 		 * For the purpose of ondemand, waiting for disk IO is
75 		 * an indication that you're performance critical, and
76 		 * not that the system is actually idle. So do not add
77 		 * the iowait time to the cpu idle time.
78 		 */
79 		if (dbs_data->cdata->governor == GOV_ONDEMAND)
80 			io_busy = od_tuners->io_is_busy;
81 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82 
83 		wall_time = (unsigned int)
84 			(cur_wall_time - j_cdbs->prev_cpu_wall);
85 		j_cdbs->prev_cpu_wall = cur_wall_time;
86 
87 		if (cur_idle_time < j_cdbs->prev_cpu_idle)
88 			cur_idle_time = j_cdbs->prev_cpu_idle;
89 
90 		idle_time = (unsigned int)
91 			(cur_idle_time - j_cdbs->prev_cpu_idle);
92 		j_cdbs->prev_cpu_idle = cur_idle_time;
93 
94 		if (ignore_nice) {
95 			u64 cur_nice;
96 			unsigned long cur_nice_jiffies;
97 
98 			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
99 					 cdbs->prev_cpu_nice;
100 			/*
101 			 * Assumption: nice time between sampling periods will
102 			 * be less than 2^32 jiffies for 32 bit sys
103 			 */
104 			cur_nice_jiffies = (unsigned long)
105 					cputime64_to_jiffies64(cur_nice);
106 
107 			cdbs->prev_cpu_nice =
108 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
109 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
110 		}
111 
112 		if (unlikely(!wall_time || wall_time < idle_time))
113 			continue;
114 
115 		/*
116 		 * If the CPU had gone completely idle, and a task just woke up
117 		 * on this CPU now, it would be unfair to calculate 'load' the
118 		 * usual way for this elapsed time-window, because it will show
119 		 * near-zero load, irrespective of how CPU intensive that task
120 		 * actually is. This is undesirable for latency-sensitive bursty
121 		 * workloads.
122 		 *
123 		 * To avoid this, we reuse the 'load' from the previous
124 		 * time-window and give this task a chance to start with a
125 		 * reasonably high CPU frequency. (However, we shouldn't over-do
126 		 * this copy, lest we get stuck at a high load (high frequency)
127 		 * for too long, even when the current system load has actually
128 		 * dropped down. So we perform the copy only once, upon the
129 		 * first wake-up from idle.)
130 		 *
131 		 * Detecting this situation is easy: the governor's deferrable
132 		 * timer would not have fired during CPU-idle periods. Hence
133 		 * an unusually large 'wall_time' (as compared to the sampling
134 		 * rate) indicates this scenario.
135 		 *
136 		 * prev_load can be zero in two cases and we must recalculate it
137 		 * for both cases:
138 		 * - during long idle intervals
139 		 * - explicitly set to zero
140 		 */
141 		if (unlikely(wall_time > (2 * sampling_rate) &&
142 			     j_cdbs->prev_load)) {
143 			load = j_cdbs->prev_load;
144 
145 			/*
146 			 * Perform a destructive copy, to ensure that we copy
147 			 * the previous load only once, upon the first wake-up
148 			 * from idle.
149 			 */
150 			j_cdbs->prev_load = 0;
151 		} else {
152 			load = 100 * (wall_time - idle_time) / wall_time;
153 			j_cdbs->prev_load = load;
154 		}
155 
156 		if (load > max_load)
157 			max_load = load;
158 	}
159 
160 	dbs_data->cdata->gov_check_cpu(cpu, max_load);
161 }
162 EXPORT_SYMBOL_GPL(dbs_check_cpu);
163 
164 void gov_add_timers(struct cpufreq_policy *policy, unsigned int delay)
165 {
166 	struct dbs_data *dbs_data = policy->governor_data;
167 	struct cpu_dbs_info *cdbs;
168 	int cpu;
169 
170 	for_each_cpu(cpu, policy->cpus) {
171 		cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
172 		cdbs->timer.expires = jiffies + delay;
173 		add_timer_on(&cdbs->timer, cpu);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(gov_add_timers);
177 
178 static inline void gov_cancel_timers(struct cpufreq_policy *policy)
179 {
180 	struct dbs_data *dbs_data = policy->governor_data;
181 	struct cpu_dbs_info *cdbs;
182 	int i;
183 
184 	for_each_cpu(i, policy->cpus) {
185 		cdbs = dbs_data->cdata->get_cpu_cdbs(i);
186 		del_timer_sync(&cdbs->timer);
187 	}
188 }
189 
190 void gov_cancel_work(struct cpu_common_dbs_info *shared)
191 {
192 	/* Tell dbs_timer_handler() to skip queuing up work items. */
193 	atomic_inc(&shared->skip_work);
194 	/*
195 	 * If dbs_timer_handler() is already running, it may not notice the
196 	 * incremented skip_work, so wait for it to complete to prevent its work
197 	 * item from being queued up after the cancel_work_sync() below.
198 	 */
199 	gov_cancel_timers(shared->policy);
200 	/*
201 	 * In case dbs_timer_handler() managed to run and spawn a work item
202 	 * before the timers have been canceled, wait for that work item to
203 	 * complete and then cancel all of the timers set up by it.  If
204 	 * dbs_timer_handler() runs again at that point, it will see the
205 	 * positive value of skip_work and won't spawn any more work items.
206 	 */
207 	cancel_work_sync(&shared->work);
208 	gov_cancel_timers(shared->policy);
209 	atomic_set(&shared->skip_work, 0);
210 }
211 EXPORT_SYMBOL_GPL(gov_cancel_work);
212 
213 /* Will return if we need to evaluate cpu load again or not */
214 static bool need_load_eval(struct cpu_common_dbs_info *shared,
215 			   unsigned int sampling_rate)
216 {
217 	if (policy_is_shared(shared->policy)) {
218 		ktime_t time_now = ktime_get();
219 		s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
220 
221 		/* Do nothing if we recently have sampled */
222 		if (delta_us < (s64)(sampling_rate / 2))
223 			return false;
224 		else
225 			shared->time_stamp = time_now;
226 	}
227 
228 	return true;
229 }
230 
231 static void dbs_work_handler(struct work_struct *work)
232 {
233 	struct cpu_common_dbs_info *shared = container_of(work, struct
234 					cpu_common_dbs_info, work);
235 	struct cpufreq_policy *policy;
236 	struct dbs_data *dbs_data;
237 	unsigned int sampling_rate, delay;
238 	bool eval_load;
239 
240 	policy = shared->policy;
241 	dbs_data = policy->governor_data;
242 
243 	/* Kill all timers */
244 	gov_cancel_timers(policy);
245 
246 	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
247 		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
248 
249 		sampling_rate = cs_tuners->sampling_rate;
250 	} else {
251 		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
252 
253 		sampling_rate = od_tuners->sampling_rate;
254 	}
255 
256 	eval_load = need_load_eval(shared, sampling_rate);
257 
258 	/*
259 	 * Make sure cpufreq_governor_limits() isn't evaluating load in
260 	 * parallel.
261 	 */
262 	mutex_lock(&shared->timer_mutex);
263 	delay = dbs_data->cdata->gov_dbs_timer(policy, eval_load);
264 	mutex_unlock(&shared->timer_mutex);
265 
266 	atomic_dec(&shared->skip_work);
267 
268 	gov_add_timers(policy, delay);
269 }
270 
271 static void dbs_timer_handler(unsigned long data)
272 {
273 	struct cpu_dbs_info *cdbs = (struct cpu_dbs_info *)data;
274 	struct cpu_common_dbs_info *shared = cdbs->shared;
275 
276 	/*
277 	 * Timer handler may not be allowed to queue the work at the moment,
278 	 * because:
279 	 * - Another timer handler has done that
280 	 * - We are stopping the governor
281 	 * - Or we are updating the sampling rate of the ondemand governor
282 	 */
283 	if (atomic_inc_return(&shared->skip_work) > 1)
284 		atomic_dec(&shared->skip_work);
285 	else
286 		queue_work(system_wq, &shared->work);
287 }
288 
289 static void set_sampling_rate(struct dbs_data *dbs_data,
290 		unsigned int sampling_rate)
291 {
292 	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
293 		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
294 		cs_tuners->sampling_rate = sampling_rate;
295 	} else {
296 		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
297 		od_tuners->sampling_rate = sampling_rate;
298 	}
299 }
300 
301 static int alloc_common_dbs_info(struct cpufreq_policy *policy,
302 				 struct common_dbs_data *cdata)
303 {
304 	struct cpu_common_dbs_info *shared;
305 	int j;
306 
307 	/* Allocate memory for the common information for policy->cpus */
308 	shared = kzalloc(sizeof(*shared), GFP_KERNEL);
309 	if (!shared)
310 		return -ENOMEM;
311 
312 	/* Set shared for all CPUs, online+offline */
313 	for_each_cpu(j, policy->related_cpus)
314 		cdata->get_cpu_cdbs(j)->shared = shared;
315 
316 	mutex_init(&shared->timer_mutex);
317 	atomic_set(&shared->skip_work, 0);
318 	INIT_WORK(&shared->work, dbs_work_handler);
319 	return 0;
320 }
321 
322 static void free_common_dbs_info(struct cpufreq_policy *policy,
323 				 struct common_dbs_data *cdata)
324 {
325 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
326 	struct cpu_common_dbs_info *shared = cdbs->shared;
327 	int j;
328 
329 	mutex_destroy(&shared->timer_mutex);
330 
331 	for_each_cpu(j, policy->cpus)
332 		cdata->get_cpu_cdbs(j)->shared = NULL;
333 
334 	kfree(shared);
335 }
336 
337 static int cpufreq_governor_init(struct cpufreq_policy *policy,
338 				 struct dbs_data *dbs_data,
339 				 struct common_dbs_data *cdata)
340 {
341 	unsigned int latency;
342 	int ret;
343 
344 	/* State should be equivalent to EXIT */
345 	if (policy->governor_data)
346 		return -EBUSY;
347 
348 	if (dbs_data) {
349 		if (WARN_ON(have_governor_per_policy()))
350 			return -EINVAL;
351 
352 		ret = alloc_common_dbs_info(policy, cdata);
353 		if (ret)
354 			return ret;
355 
356 		dbs_data->usage_count++;
357 		policy->governor_data = dbs_data;
358 		return 0;
359 	}
360 
361 	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
362 	if (!dbs_data)
363 		return -ENOMEM;
364 
365 	ret = alloc_common_dbs_info(policy, cdata);
366 	if (ret)
367 		goto free_dbs_data;
368 
369 	dbs_data->cdata = cdata;
370 	dbs_data->usage_count = 1;
371 
372 	ret = cdata->init(dbs_data, !policy->governor->initialized);
373 	if (ret)
374 		goto free_common_dbs_info;
375 
376 	/* policy latency is in ns. Convert it to us first */
377 	latency = policy->cpuinfo.transition_latency / 1000;
378 	if (latency == 0)
379 		latency = 1;
380 
381 	/* Bring kernel and HW constraints together */
382 	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
383 					  MIN_LATENCY_MULTIPLIER * latency);
384 	set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
385 					latency * LATENCY_MULTIPLIER));
386 
387 	if (!have_governor_per_policy())
388 		cdata->gdbs_data = dbs_data;
389 
390 	policy->governor_data = dbs_data;
391 
392 	ret = sysfs_create_group(get_governor_parent_kobj(policy),
393 				 get_sysfs_attr(dbs_data));
394 	if (ret)
395 		goto reset_gdbs_data;
396 
397 	return 0;
398 
399 reset_gdbs_data:
400 	policy->governor_data = NULL;
401 
402 	if (!have_governor_per_policy())
403 		cdata->gdbs_data = NULL;
404 	cdata->exit(dbs_data, !policy->governor->initialized);
405 free_common_dbs_info:
406 	free_common_dbs_info(policy, cdata);
407 free_dbs_data:
408 	kfree(dbs_data);
409 	return ret;
410 }
411 
412 static int cpufreq_governor_exit(struct cpufreq_policy *policy,
413 				 struct dbs_data *dbs_data)
414 {
415 	struct common_dbs_data *cdata = dbs_data->cdata;
416 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
417 
418 	/* State should be equivalent to INIT */
419 	if (!cdbs->shared || cdbs->shared->policy)
420 		return -EBUSY;
421 
422 	if (!--dbs_data->usage_count) {
423 		sysfs_remove_group(get_governor_parent_kobj(policy),
424 				   get_sysfs_attr(dbs_data));
425 
426 		policy->governor_data = NULL;
427 
428 		if (!have_governor_per_policy())
429 			cdata->gdbs_data = NULL;
430 
431 		cdata->exit(dbs_data, policy->governor->initialized == 1);
432 		kfree(dbs_data);
433 	} else {
434 		policy->governor_data = NULL;
435 	}
436 
437 	free_common_dbs_info(policy, cdata);
438 	return 0;
439 }
440 
441 static int cpufreq_governor_start(struct cpufreq_policy *policy,
442 				  struct dbs_data *dbs_data)
443 {
444 	struct common_dbs_data *cdata = dbs_data->cdata;
445 	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
446 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
447 	struct cpu_common_dbs_info *shared = cdbs->shared;
448 	int io_busy = 0;
449 
450 	if (!policy->cur)
451 		return -EINVAL;
452 
453 	/* State should be equivalent to INIT */
454 	if (!shared || shared->policy)
455 		return -EBUSY;
456 
457 	if (cdata->governor == GOV_CONSERVATIVE) {
458 		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
459 
460 		sampling_rate = cs_tuners->sampling_rate;
461 		ignore_nice = cs_tuners->ignore_nice_load;
462 	} else {
463 		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
464 
465 		sampling_rate = od_tuners->sampling_rate;
466 		ignore_nice = od_tuners->ignore_nice_load;
467 		io_busy = od_tuners->io_is_busy;
468 	}
469 
470 	shared->policy = policy;
471 	shared->time_stamp = ktime_get();
472 
473 	for_each_cpu(j, policy->cpus) {
474 		struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
475 		unsigned int prev_load;
476 
477 		j_cdbs->prev_cpu_idle =
478 			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
479 
480 		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
481 					    j_cdbs->prev_cpu_idle);
482 		j_cdbs->prev_load = 100 * prev_load /
483 				    (unsigned int)j_cdbs->prev_cpu_wall;
484 
485 		if (ignore_nice)
486 			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
487 
488 		__setup_timer(&j_cdbs->timer, dbs_timer_handler,
489 			      (unsigned long)j_cdbs,
490 			      TIMER_DEFERRABLE | TIMER_IRQSAFE);
491 	}
492 
493 	if (cdata->governor == GOV_CONSERVATIVE) {
494 		struct cs_cpu_dbs_info_s *cs_dbs_info =
495 			cdata->get_cpu_dbs_info_s(cpu);
496 
497 		cs_dbs_info->down_skip = 0;
498 		cs_dbs_info->requested_freq = policy->cur;
499 	} else {
500 		struct od_ops *od_ops = cdata->gov_ops;
501 		struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
502 
503 		od_dbs_info->rate_mult = 1;
504 		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
505 		od_ops->powersave_bias_init_cpu(cpu);
506 	}
507 
508 	gov_add_timers(policy, delay_for_sampling_rate(sampling_rate));
509 	return 0;
510 }
511 
512 static int cpufreq_governor_stop(struct cpufreq_policy *policy,
513 				 struct dbs_data *dbs_data)
514 {
515 	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
516 	struct cpu_common_dbs_info *shared = cdbs->shared;
517 
518 	/* State should be equivalent to START */
519 	if (!shared || !shared->policy)
520 		return -EBUSY;
521 
522 	gov_cancel_work(shared);
523 	shared->policy = NULL;
524 
525 	return 0;
526 }
527 
528 static int cpufreq_governor_limits(struct cpufreq_policy *policy,
529 				   struct dbs_data *dbs_data)
530 {
531 	struct common_dbs_data *cdata = dbs_data->cdata;
532 	unsigned int cpu = policy->cpu;
533 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
534 
535 	/* State should be equivalent to START */
536 	if (!cdbs->shared || !cdbs->shared->policy)
537 		return -EBUSY;
538 
539 	mutex_lock(&cdbs->shared->timer_mutex);
540 	if (policy->max < cdbs->shared->policy->cur)
541 		__cpufreq_driver_target(cdbs->shared->policy, policy->max,
542 					CPUFREQ_RELATION_H);
543 	else if (policy->min > cdbs->shared->policy->cur)
544 		__cpufreq_driver_target(cdbs->shared->policy, policy->min,
545 					CPUFREQ_RELATION_L);
546 	dbs_check_cpu(dbs_data, cpu);
547 	mutex_unlock(&cdbs->shared->timer_mutex);
548 
549 	return 0;
550 }
551 
552 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
553 			 struct common_dbs_data *cdata, unsigned int event)
554 {
555 	struct dbs_data *dbs_data;
556 	int ret;
557 
558 	/* Lock governor to block concurrent initialization of governor */
559 	mutex_lock(&cdata->mutex);
560 
561 	if (have_governor_per_policy())
562 		dbs_data = policy->governor_data;
563 	else
564 		dbs_data = cdata->gdbs_data;
565 
566 	if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
567 		ret = -EINVAL;
568 		goto unlock;
569 	}
570 
571 	switch (event) {
572 	case CPUFREQ_GOV_POLICY_INIT:
573 		ret = cpufreq_governor_init(policy, dbs_data, cdata);
574 		break;
575 	case CPUFREQ_GOV_POLICY_EXIT:
576 		ret = cpufreq_governor_exit(policy, dbs_data);
577 		break;
578 	case CPUFREQ_GOV_START:
579 		ret = cpufreq_governor_start(policy, dbs_data);
580 		break;
581 	case CPUFREQ_GOV_STOP:
582 		ret = cpufreq_governor_stop(policy, dbs_data);
583 		break;
584 	case CPUFREQ_GOV_LIMITS:
585 		ret = cpufreq_governor_limits(policy, dbs_data);
586 		break;
587 	default:
588 		ret = -EINVAL;
589 	}
590 
591 unlock:
592 	mutex_unlock(&cdata->mutex);
593 
594 	return ret;
595 }
596 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
597