1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/slab.h>
15 #include "cpufreq_governor.h"
16 
17 /* Conservative governor macros */
18 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
19 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
20 #define DEF_FREQUENCY_STEP			(5)
21 #define DEF_SAMPLING_DOWN_FACTOR		(1)
22 #define MAX_SAMPLING_DOWN_FACTOR		(10)
23 
24 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25 
26 static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
27 					   struct cpufreq_policy *policy)
28 {
29 	unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
30 
31 	/* max freq cannot be less than 100. But who knows... */
32 	if (unlikely(freq_target == 0))
33 		freq_target = DEF_FREQUENCY_STEP;
34 
35 	return freq_target;
36 }
37 
38 /*
39  * Every sampling_rate, we check, if current idle time is less than 20%
40  * (default), then we try to increase frequency. Every sampling_rate *
41  * sampling_down_factor, we check, if current idle time is more than 80%
42  * (default), then we try to decrease frequency
43  *
44  * Any frequency increase takes it to the maximum frequency. Frequency reduction
45  * happens at minimum steps of 5% (default) of maximum frequency
46  */
47 static void cs_check_cpu(int cpu, unsigned int load)
48 {
49 	struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
50 	struct cpufreq_policy *policy = dbs_info->cdbs.policy_dbs->policy;
51 	struct policy_dbs_info *policy_dbs = policy->governor_data;
52 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
53 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
54 
55 	/*
56 	 * break out if we 'cannot' reduce the speed as the user might
57 	 * want freq_step to be zero
58 	 */
59 	if (cs_tuners->freq_step == 0)
60 		return;
61 
62 	/* Check for frequency increase */
63 	if (load > dbs_data->up_threshold) {
64 		dbs_info->down_skip = 0;
65 
66 		/* if we are already at full speed then break out early */
67 		if (dbs_info->requested_freq == policy->max)
68 			return;
69 
70 		dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
71 
72 		if (dbs_info->requested_freq > policy->max)
73 			dbs_info->requested_freq = policy->max;
74 
75 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
76 			CPUFREQ_RELATION_H);
77 		return;
78 	}
79 
80 	/* if sampling_down_factor is active break out early */
81 	if (++dbs_info->down_skip < dbs_data->sampling_down_factor)
82 		return;
83 	dbs_info->down_skip = 0;
84 
85 	/* Check for frequency decrease */
86 	if (load < cs_tuners->down_threshold) {
87 		unsigned int freq_target;
88 		/*
89 		 * if we cannot reduce the frequency anymore, break out early
90 		 */
91 		if (policy->cur == policy->min)
92 			return;
93 
94 		freq_target = get_freq_target(cs_tuners, policy);
95 		if (dbs_info->requested_freq > freq_target)
96 			dbs_info->requested_freq -= freq_target;
97 		else
98 			dbs_info->requested_freq = policy->min;
99 
100 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
101 				CPUFREQ_RELATION_L);
102 		return;
103 	}
104 }
105 
106 static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
107 {
108 	struct policy_dbs_info *policy_dbs = policy->governor_data;
109 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
110 
111 	dbs_check_cpu(policy);
112 	return delay_for_sampling_rate(dbs_data->sampling_rate);
113 }
114 
115 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
116 				void *data);
117 
118 static struct notifier_block cs_cpufreq_notifier_block = {
119 	.notifier_call = dbs_cpufreq_notifier,
120 };
121 
122 /************************** sysfs interface ************************/
123 static struct dbs_governor cs_dbs_gov;
124 
125 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
126 		const char *buf, size_t count)
127 {
128 	unsigned int input;
129 	int ret;
130 	ret = sscanf(buf, "%u", &input);
131 
132 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
133 		return -EINVAL;
134 
135 	dbs_data->sampling_down_factor = input;
136 	return count;
137 }
138 
139 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
140 		size_t count)
141 {
142 	unsigned int input;
143 	int ret;
144 	ret = sscanf(buf, "%u", &input);
145 
146 	if (ret != 1)
147 		return -EINVAL;
148 
149 	dbs_data->sampling_rate = max(input, dbs_data->min_sampling_rate);
150 	return count;
151 }
152 
153 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
154 		size_t count)
155 {
156 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
157 	unsigned int input;
158 	int ret;
159 	ret = sscanf(buf, "%u", &input);
160 
161 	if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
162 		return -EINVAL;
163 
164 	dbs_data->up_threshold = input;
165 	return count;
166 }
167 
168 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
169 		size_t count)
170 {
171 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
172 	unsigned int input;
173 	int ret;
174 	ret = sscanf(buf, "%u", &input);
175 
176 	/* cannot be lower than 11 otherwise freq will not fall */
177 	if (ret != 1 || input < 11 || input > 100 ||
178 			input >= dbs_data->up_threshold)
179 		return -EINVAL;
180 
181 	cs_tuners->down_threshold = input;
182 	return count;
183 }
184 
185 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
186 		const char *buf, size_t count)
187 {
188 	unsigned int input, j;
189 	int ret;
190 
191 	ret = sscanf(buf, "%u", &input);
192 	if (ret != 1)
193 		return -EINVAL;
194 
195 	if (input > 1)
196 		input = 1;
197 
198 	if (input == dbs_data->ignore_nice_load) /* nothing to do */
199 		return count;
200 
201 	dbs_data->ignore_nice_load = input;
202 
203 	/* we need to re-evaluate prev_cpu_idle */
204 	for_each_online_cpu(j) {
205 		struct cs_cpu_dbs_info_s *dbs_info;
206 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
207 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
208 					&dbs_info->cdbs.prev_cpu_wall, 0);
209 		if (dbs_data->ignore_nice_load)
210 			dbs_info->cdbs.prev_cpu_nice =
211 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
212 	}
213 	return count;
214 }
215 
216 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
217 		size_t count)
218 {
219 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
220 	unsigned int input;
221 	int ret;
222 	ret = sscanf(buf, "%u", &input);
223 
224 	if (ret != 1)
225 		return -EINVAL;
226 
227 	if (input > 100)
228 		input = 100;
229 
230 	/*
231 	 * no need to test here if freq_step is zero as the user might actually
232 	 * want this, they would be crazy though :)
233 	 */
234 	cs_tuners->freq_step = input;
235 	return count;
236 }
237 
238 show_store_one(cs, down_threshold);
239 show_store_one(cs, freq_step);
240 show_store_one_common(cs, sampling_rate);
241 show_store_one_common(cs, sampling_down_factor);
242 show_store_one_common(cs, up_threshold);
243 show_store_one_common(cs, ignore_nice_load);
244 show_one_common(cs, min_sampling_rate);
245 
246 gov_sys_pol_attr_rw(sampling_rate);
247 gov_sys_pol_attr_rw(sampling_down_factor);
248 gov_sys_pol_attr_rw(up_threshold);
249 gov_sys_pol_attr_rw(down_threshold);
250 gov_sys_pol_attr_rw(ignore_nice_load);
251 gov_sys_pol_attr_rw(freq_step);
252 gov_sys_pol_attr_ro(min_sampling_rate);
253 
254 static struct attribute *dbs_attributes_gov_sys[] = {
255 	&min_sampling_rate_gov_sys.attr,
256 	&sampling_rate_gov_sys.attr,
257 	&sampling_down_factor_gov_sys.attr,
258 	&up_threshold_gov_sys.attr,
259 	&down_threshold_gov_sys.attr,
260 	&ignore_nice_load_gov_sys.attr,
261 	&freq_step_gov_sys.attr,
262 	NULL
263 };
264 
265 static struct attribute_group cs_attr_group_gov_sys = {
266 	.attrs = dbs_attributes_gov_sys,
267 	.name = "conservative",
268 };
269 
270 static struct attribute *dbs_attributes_gov_pol[] = {
271 	&min_sampling_rate_gov_pol.attr,
272 	&sampling_rate_gov_pol.attr,
273 	&sampling_down_factor_gov_pol.attr,
274 	&up_threshold_gov_pol.attr,
275 	&down_threshold_gov_pol.attr,
276 	&ignore_nice_load_gov_pol.attr,
277 	&freq_step_gov_pol.attr,
278 	NULL
279 };
280 
281 static struct attribute_group cs_attr_group_gov_pol = {
282 	.attrs = dbs_attributes_gov_pol,
283 	.name = "conservative",
284 };
285 
286 /************************** sysfs end ************************/
287 
288 static int cs_init(struct dbs_data *dbs_data, bool notify)
289 {
290 	struct cs_dbs_tuners *tuners;
291 
292 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
293 	if (!tuners) {
294 		pr_err("%s: kzalloc failed\n", __func__);
295 		return -ENOMEM;
296 	}
297 
298 	tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
299 	tuners->freq_step = DEF_FREQUENCY_STEP;
300 	dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
301 	dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
302 	dbs_data->ignore_nice_load = 0;
303 
304 	dbs_data->tuners = tuners;
305 	dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
306 		jiffies_to_usecs(10);
307 
308 	if (notify)
309 		cpufreq_register_notifier(&cs_cpufreq_notifier_block,
310 					  CPUFREQ_TRANSITION_NOTIFIER);
311 
312 	return 0;
313 }
314 
315 static void cs_exit(struct dbs_data *dbs_data, bool notify)
316 {
317 	if (notify)
318 		cpufreq_unregister_notifier(&cs_cpufreq_notifier_block,
319 					    CPUFREQ_TRANSITION_NOTIFIER);
320 
321 	kfree(dbs_data->tuners);
322 }
323 
324 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
325 
326 static struct dbs_governor cs_dbs_gov = {
327 	.gov = {
328 		.name = "conservative",
329 		.governor = cpufreq_governor_dbs,
330 		.max_transition_latency = TRANSITION_LATENCY_LIMIT,
331 		.owner = THIS_MODULE,
332 	},
333 	.governor = GOV_CONSERVATIVE,
334 	.attr_group_gov_sys = &cs_attr_group_gov_sys,
335 	.attr_group_gov_pol = &cs_attr_group_gov_pol,
336 	.get_cpu_cdbs = get_cpu_cdbs,
337 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
338 	.gov_dbs_timer = cs_dbs_timer,
339 	.gov_check_cpu = cs_check_cpu,
340 	.init = cs_init,
341 	.exit = cs_exit,
342 };
343 
344 #define CPU_FREQ_GOV_CONSERVATIVE	(&cs_dbs_gov.gov)
345 
346 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
347 				void *data)
348 {
349 	struct cpufreq_freqs *freq = data;
350 	struct cs_cpu_dbs_info_s *dbs_info =
351 					&per_cpu(cs_cpu_dbs_info, freq->cpu);
352 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(freq->cpu);
353 
354 	if (!policy)
355 		return 0;
356 
357 	/* policy isn't governed by conservative governor */
358 	if (policy->governor != CPU_FREQ_GOV_CONSERVATIVE)
359 		return 0;
360 
361 	/*
362 	 * we only care if our internally tracked freq moves outside the 'valid'
363 	 * ranges of frequency available to us otherwise we do not change it
364 	*/
365 	if (dbs_info->requested_freq > policy->max
366 			|| dbs_info->requested_freq < policy->min)
367 		dbs_info->requested_freq = freq->new;
368 
369 	return 0;
370 }
371 
372 static int __init cpufreq_gov_dbs_init(void)
373 {
374 	return cpufreq_register_governor(CPU_FREQ_GOV_CONSERVATIVE);
375 }
376 
377 static void __exit cpufreq_gov_dbs_exit(void)
378 {
379 	cpufreq_unregister_governor(CPU_FREQ_GOV_CONSERVATIVE);
380 }
381 
382 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
383 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
384 		"Low Latency Frequency Transition capable processors "
385 		"optimised for use in a battery environment");
386 MODULE_LICENSE("GPL");
387 
388 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
389 struct cpufreq_governor *cpufreq_default_governor(void)
390 {
391 	return CPU_FREQ_GOV_CONSERVATIVE;
392 }
393 
394 fs_initcall(cpufreq_gov_dbs_init);
395 #else
396 module_init(cpufreq_gov_dbs_init);
397 #endif
398 module_exit(cpufreq_gov_dbs_exit);
399