xref: /openbmc/linux/drivers/cpufreq/cpufreq_conservative.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36 
37 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
39 
40 /*
41  * The polling frequency of this governor depends on the capability of
42  * the processor. Default polling frequency is 1000 times the transition
43  * latency of the processor. The governor will work on any processor with
44  * transition latency <= 10mS, using appropriate sampling
45  * rate.
46  * For CPUs with transition latency > 10mS (mostly drivers
47  * with CPUFREQ_ETERNAL), this governor will not work.
48  * All times here are in uS.
49  */
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE			\
54 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE			\
56 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
59 #define DEF_SAMPLING_DOWN_FACTOR		(1)
60 #define MAX_SAMPLING_DOWN_FACTOR		(10)
61 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
62 
63 static void do_dbs_timer(struct work_struct *work);
64 
65 struct cpu_dbs_info_s {
66 	struct cpufreq_policy *cur_policy;
67 	unsigned int prev_cpu_idle_up;
68 	unsigned int prev_cpu_idle_down;
69 	unsigned int enable;
70 	unsigned int down_skip;
71 	unsigned int requested_freq;
72 };
73 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
74 
75 static unsigned int dbs_enable;	/* number of CPUs using this policy */
76 
77 /*
78  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
79  * lock and dbs_mutex. cpu_hotplug lock should always be held before
80  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
81  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
82  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
83  * is recursive for the same process. -Venki
84  */
85 static DEFINE_MUTEX (dbs_mutex);
86 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
87 
88 struct dbs_tuners {
89 	unsigned int sampling_rate;
90 	unsigned int sampling_down_factor;
91 	unsigned int up_threshold;
92 	unsigned int down_threshold;
93 	unsigned int ignore_nice;
94 	unsigned int freq_step;
95 };
96 
97 static struct dbs_tuners dbs_tuners_ins = {
98 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
99 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
100 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
101 	.ignore_nice = 0,
102 	.freq_step = 5,
103 };
104 
105 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
106 {
107 	unsigned int add_nice = 0, ret;
108 
109 	if (dbs_tuners_ins.ignore_nice)
110 		add_nice = kstat_cpu(cpu).cpustat.nice;
111 
112 	ret = kstat_cpu(cpu).cpustat.idle +
113 		kstat_cpu(cpu).cpustat.iowait +
114 		add_nice;
115 
116 	return ret;
117 }
118 
119 /* keep track of frequency transitions */
120 static int
121 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
122 		     void *data)
123 {
124 	struct cpufreq_freqs *freq = data;
125 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
126 							freq->cpu);
127 
128 	if (!this_dbs_info->enable)
129 		return 0;
130 
131 	this_dbs_info->requested_freq = freq->new;
132 
133 	return 0;
134 }
135 
136 static struct notifier_block dbs_cpufreq_notifier_block = {
137 	.notifier_call = dbs_cpufreq_notifier
138 };
139 
140 /************************** sysfs interface ************************/
141 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
142 {
143 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
144 }
145 
146 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
147 {
148 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
149 }
150 
151 #define define_one_ro(_name)				\
152 static struct freq_attr _name =				\
153 __ATTR(_name, 0444, show_##_name, NULL)
154 
155 define_one_ro(sampling_rate_max);
156 define_one_ro(sampling_rate_min);
157 
158 /* cpufreq_conservative Governor Tunables */
159 #define show_one(file_name, object)					\
160 static ssize_t show_##file_name						\
161 (struct cpufreq_policy *unused, char *buf)				\
162 {									\
163 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
164 }
165 show_one(sampling_rate, sampling_rate);
166 show_one(sampling_down_factor, sampling_down_factor);
167 show_one(up_threshold, up_threshold);
168 show_one(down_threshold, down_threshold);
169 show_one(ignore_nice_load, ignore_nice);
170 show_one(freq_step, freq_step);
171 
172 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
173 		const char *buf, size_t count)
174 {
175 	unsigned int input;
176 	int ret;
177 	ret = sscanf (buf, "%u", &input);
178 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
179 		return -EINVAL;
180 
181 	mutex_lock(&dbs_mutex);
182 	dbs_tuners_ins.sampling_down_factor = input;
183 	mutex_unlock(&dbs_mutex);
184 
185 	return count;
186 }
187 
188 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
189 		const char *buf, size_t count)
190 {
191 	unsigned int input;
192 	int ret;
193 	ret = sscanf (buf, "%u", &input);
194 
195 	mutex_lock(&dbs_mutex);
196 	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
197 		mutex_unlock(&dbs_mutex);
198 		return -EINVAL;
199 	}
200 
201 	dbs_tuners_ins.sampling_rate = input;
202 	mutex_unlock(&dbs_mutex);
203 
204 	return count;
205 }
206 
207 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
208 		const char *buf, size_t count)
209 {
210 	unsigned int input;
211 	int ret;
212 	ret = sscanf (buf, "%u", &input);
213 
214 	mutex_lock(&dbs_mutex);
215 	if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
216 		mutex_unlock(&dbs_mutex);
217 		return -EINVAL;
218 	}
219 
220 	dbs_tuners_ins.up_threshold = input;
221 	mutex_unlock(&dbs_mutex);
222 
223 	return count;
224 }
225 
226 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
227 		const char *buf, size_t count)
228 {
229 	unsigned int input;
230 	int ret;
231 	ret = sscanf (buf, "%u", &input);
232 
233 	mutex_lock(&dbs_mutex);
234 	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
235 		mutex_unlock(&dbs_mutex);
236 		return -EINVAL;
237 	}
238 
239 	dbs_tuners_ins.down_threshold = input;
240 	mutex_unlock(&dbs_mutex);
241 
242 	return count;
243 }
244 
245 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
246 		const char *buf, size_t count)
247 {
248 	unsigned int input;
249 	int ret;
250 
251 	unsigned int j;
252 
253 	ret = sscanf(buf, "%u", &input);
254 	if (ret != 1)
255 		return -EINVAL;
256 
257 	if (input > 1)
258 		input = 1;
259 
260 	mutex_lock(&dbs_mutex);
261 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
262 		mutex_unlock(&dbs_mutex);
263 		return count;
264 	}
265 	dbs_tuners_ins.ignore_nice = input;
266 
267 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
268 	for_each_online_cpu(j) {
269 		struct cpu_dbs_info_s *j_dbs_info;
270 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
271 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
272 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
273 	}
274 	mutex_unlock(&dbs_mutex);
275 
276 	return count;
277 }
278 
279 static ssize_t store_freq_step(struct cpufreq_policy *policy,
280 		const char *buf, size_t count)
281 {
282 	unsigned int input;
283 	int ret;
284 
285 	ret = sscanf(buf, "%u", &input);
286 
287 	if (ret != 1)
288 		return -EINVAL;
289 
290 	if (input > 100)
291 		input = 100;
292 
293 	/* no need to test here if freq_step is zero as the user might actually
294 	 * want this, they would be crazy though :) */
295 	mutex_lock(&dbs_mutex);
296 	dbs_tuners_ins.freq_step = input;
297 	mutex_unlock(&dbs_mutex);
298 
299 	return count;
300 }
301 
302 #define define_one_rw(_name) \
303 static struct freq_attr _name = \
304 __ATTR(_name, 0644, show_##_name, store_##_name)
305 
306 define_one_rw(sampling_rate);
307 define_one_rw(sampling_down_factor);
308 define_one_rw(up_threshold);
309 define_one_rw(down_threshold);
310 define_one_rw(ignore_nice_load);
311 define_one_rw(freq_step);
312 
313 static struct attribute * dbs_attributes[] = {
314 	&sampling_rate_max.attr,
315 	&sampling_rate_min.attr,
316 	&sampling_rate.attr,
317 	&sampling_down_factor.attr,
318 	&up_threshold.attr,
319 	&down_threshold.attr,
320 	&ignore_nice_load.attr,
321 	&freq_step.attr,
322 	NULL
323 };
324 
325 static struct attribute_group dbs_attr_group = {
326 	.attrs = dbs_attributes,
327 	.name = "conservative",
328 };
329 
330 /************************** sysfs end ************************/
331 
332 static void dbs_check_cpu(int cpu)
333 {
334 	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
335 	unsigned int tmp_idle_ticks, total_idle_ticks;
336 	unsigned int freq_step;
337 	unsigned int freq_down_sampling_rate;
338 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
339 	struct cpufreq_policy *policy;
340 
341 	if (!this_dbs_info->enable)
342 		return;
343 
344 	policy = this_dbs_info->cur_policy;
345 
346 	/*
347 	 * The default safe range is 20% to 80%
348 	 * Every sampling_rate, we check
349 	 *	- If current idle time is less than 20%, then we try to
350 	 *	  increase frequency
351 	 * Every sampling_rate*sampling_down_factor, we check
352 	 *	- If current idle time is more than 80%, then we try to
353 	 *	  decrease frequency
354 	 *
355 	 * Any frequency increase takes it to the maximum frequency.
356 	 * Frequency reduction happens at minimum steps of
357 	 * 5% (default) of max_frequency
358 	 */
359 
360 	/* Check for frequency increase */
361 	idle_ticks = UINT_MAX;
362 
363 	/* Check for frequency increase */
364 	total_idle_ticks = get_cpu_idle_time(cpu);
365 	tmp_idle_ticks = total_idle_ticks -
366 		this_dbs_info->prev_cpu_idle_up;
367 	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
368 
369 	if (tmp_idle_ticks < idle_ticks)
370 		idle_ticks = tmp_idle_ticks;
371 
372 	/* Scale idle ticks by 100 and compare with up and down ticks */
373 	idle_ticks *= 100;
374 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
375 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
376 
377 	if (idle_ticks < up_idle_ticks) {
378 		this_dbs_info->down_skip = 0;
379 		this_dbs_info->prev_cpu_idle_down =
380 			this_dbs_info->prev_cpu_idle_up;
381 
382 		/* if we are already at full speed then break out early */
383 		if (this_dbs_info->requested_freq == policy->max)
384 			return;
385 
386 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
387 
388 		/* max freq cannot be less than 100. But who knows.... */
389 		if (unlikely(freq_step == 0))
390 			freq_step = 5;
391 
392 		this_dbs_info->requested_freq += freq_step;
393 		if (this_dbs_info->requested_freq > policy->max)
394 			this_dbs_info->requested_freq = policy->max;
395 
396 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
397 			CPUFREQ_RELATION_H);
398 		return;
399 	}
400 
401 	/* Check for frequency decrease */
402 	this_dbs_info->down_skip++;
403 	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
404 		return;
405 
406 	/* Check for frequency decrease */
407 	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
408 	tmp_idle_ticks = total_idle_ticks -
409 		this_dbs_info->prev_cpu_idle_down;
410 	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
411 
412 	if (tmp_idle_ticks < idle_ticks)
413 		idle_ticks = tmp_idle_ticks;
414 
415 	/* Scale idle ticks by 100 and compare with up and down ticks */
416 	idle_ticks *= 100;
417 	this_dbs_info->down_skip = 0;
418 
419 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
420 		dbs_tuners_ins.sampling_down_factor;
421 	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
422 		usecs_to_jiffies(freq_down_sampling_rate);
423 
424 	if (idle_ticks > down_idle_ticks) {
425 		/*
426 		 * if we are already at the lowest speed then break out early
427 		 * or if we 'cannot' reduce the speed as the user might want
428 		 * freq_step to be zero
429 		 */
430 		if (this_dbs_info->requested_freq == policy->min
431 				|| dbs_tuners_ins.freq_step == 0)
432 			return;
433 
434 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
435 
436 		/* max freq cannot be less than 100. But who knows.... */
437 		if (unlikely(freq_step == 0))
438 			freq_step = 5;
439 
440 		this_dbs_info->requested_freq -= freq_step;
441 		if (this_dbs_info->requested_freq < policy->min)
442 			this_dbs_info->requested_freq = policy->min;
443 
444 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
445 				CPUFREQ_RELATION_H);
446 		return;
447 	}
448 }
449 
450 static void do_dbs_timer(struct work_struct *work)
451 {
452 	int i;
453 	mutex_lock(&dbs_mutex);
454 	for_each_online_cpu(i)
455 		dbs_check_cpu(i);
456 	schedule_delayed_work(&dbs_work,
457 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
458 	mutex_unlock(&dbs_mutex);
459 }
460 
461 static inline void dbs_timer_init(void)
462 {
463 	schedule_delayed_work(&dbs_work,
464 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
465 	return;
466 }
467 
468 static inline void dbs_timer_exit(void)
469 {
470 	cancel_delayed_work(&dbs_work);
471 	return;
472 }
473 
474 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
475 				   unsigned int event)
476 {
477 	unsigned int cpu = policy->cpu;
478 	struct cpu_dbs_info_s *this_dbs_info;
479 	unsigned int j;
480 	int rc;
481 
482 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
483 
484 	switch (event) {
485 	case CPUFREQ_GOV_START:
486 		if ((!cpu_online(cpu)) || (!policy->cur))
487 			return -EINVAL;
488 
489 		if (this_dbs_info->enable) /* Already enabled */
490 			break;
491 
492 		mutex_lock(&dbs_mutex);
493 
494 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
495 		if (rc) {
496 			mutex_unlock(&dbs_mutex);
497 			return rc;
498 		}
499 
500 		for_each_cpu_mask_nr(j, policy->cpus) {
501 			struct cpu_dbs_info_s *j_dbs_info;
502 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
503 			j_dbs_info->cur_policy = policy;
504 
505 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
506 			j_dbs_info->prev_cpu_idle_down
507 				= j_dbs_info->prev_cpu_idle_up;
508 		}
509 		this_dbs_info->enable = 1;
510 		this_dbs_info->down_skip = 0;
511 		this_dbs_info->requested_freq = policy->cur;
512 
513 		dbs_enable++;
514 		/*
515 		 * Start the timerschedule work, when this governor
516 		 * is used for first time
517 		 */
518 		if (dbs_enable == 1) {
519 			unsigned int latency;
520 			/* policy latency is in nS. Convert it to uS first */
521 			latency = policy->cpuinfo.transition_latency / 1000;
522 			if (latency == 0)
523 				latency = 1;
524 
525 			def_sampling_rate = 10 * latency *
526 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
527 
528 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
529 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
530 
531 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
532 
533 			dbs_timer_init();
534 			cpufreq_register_notifier(
535 					&dbs_cpufreq_notifier_block,
536 					CPUFREQ_TRANSITION_NOTIFIER);
537 		}
538 
539 		mutex_unlock(&dbs_mutex);
540 		break;
541 
542 	case CPUFREQ_GOV_STOP:
543 		mutex_lock(&dbs_mutex);
544 		this_dbs_info->enable = 0;
545 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
546 		dbs_enable--;
547 		/*
548 		 * Stop the timerschedule work, when this governor
549 		 * is used for first time
550 		 */
551 		if (dbs_enable == 0) {
552 			dbs_timer_exit();
553 			cpufreq_unregister_notifier(
554 					&dbs_cpufreq_notifier_block,
555 					CPUFREQ_TRANSITION_NOTIFIER);
556 		}
557 
558 		mutex_unlock(&dbs_mutex);
559 
560 		break;
561 
562 	case CPUFREQ_GOV_LIMITS:
563 		mutex_lock(&dbs_mutex);
564 		if (policy->max < this_dbs_info->cur_policy->cur)
565 			__cpufreq_driver_target(
566 					this_dbs_info->cur_policy,
567 					policy->max, CPUFREQ_RELATION_H);
568 		else if (policy->min > this_dbs_info->cur_policy->cur)
569 			__cpufreq_driver_target(
570 					this_dbs_info->cur_policy,
571 					policy->min, CPUFREQ_RELATION_L);
572 		mutex_unlock(&dbs_mutex);
573 		break;
574 	}
575 	return 0;
576 }
577 
578 struct cpufreq_governor cpufreq_gov_conservative = {
579 	.name			= "conservative",
580 	.governor		= cpufreq_governor_dbs,
581 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
582 	.owner			= THIS_MODULE,
583 };
584 EXPORT_SYMBOL(cpufreq_gov_conservative);
585 
586 static int __init cpufreq_gov_dbs_init(void)
587 {
588 	return cpufreq_register_governor(&cpufreq_gov_conservative);
589 }
590 
591 static void __exit cpufreq_gov_dbs_exit(void)
592 {
593 	/* Make sure that the scheduled work is indeed not running */
594 	flush_scheduled_work();
595 
596 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
597 }
598 
599 
600 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
601 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
602 		"Low Latency Frequency Transition capable processors "
603 		"optimised for use in a battery environment");
604 MODULE_LICENSE ("GPL");
605 
606 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
607 fs_initcall(cpufreq_gov_dbs_init);
608 #else
609 module_init(cpufreq_gov_dbs_init);
610 #endif
611 module_exit(cpufreq_gov_dbs_exit);
612