1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/cpufreq.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 
26 #include "cpufreq_governor.h"
27 
28 /* Conservative governor macros */
29 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
30 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
31 #define DEF_SAMPLING_DOWN_FACTOR		(1)
32 #define MAX_SAMPLING_DOWN_FACTOR		(10)
33 
34 static struct dbs_data cs_dbs_data;
35 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
36 
37 static struct cs_dbs_tuners cs_tuners = {
38 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
39 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
40 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
41 	.ignore_nice = 0,
42 	.freq_step = 5,
43 };
44 
45 /*
46  * Every sampling_rate, we check, if current idle time is less than 20%
47  * (default), then we try to increase frequency Every sampling_rate *
48  * sampling_down_factor, we check, if current idle time is more than 80%, then
49  * we try to decrease frequency
50  *
51  * Any frequency increase takes it to the maximum frequency. Frequency reduction
52  * happens at minimum steps of 5% (default) of maximum frequency
53  */
54 static void cs_check_cpu(int cpu, unsigned int load)
55 {
56 	struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
57 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
58 	unsigned int freq_target;
59 
60 	/*
61 	 * break out if we 'cannot' reduce the speed as the user might
62 	 * want freq_step to be zero
63 	 */
64 	if (cs_tuners.freq_step == 0)
65 		return;
66 
67 	/* Check for frequency increase */
68 	if (load > cs_tuners.up_threshold) {
69 		dbs_info->down_skip = 0;
70 
71 		/* if we are already at full speed then break out early */
72 		if (dbs_info->requested_freq == policy->max)
73 			return;
74 
75 		freq_target = (cs_tuners.freq_step * policy->max) / 100;
76 
77 		/* max freq cannot be less than 100. But who knows.... */
78 		if (unlikely(freq_target == 0))
79 			freq_target = 5;
80 
81 		dbs_info->requested_freq += freq_target;
82 		if (dbs_info->requested_freq > policy->max)
83 			dbs_info->requested_freq = policy->max;
84 
85 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
86 			CPUFREQ_RELATION_H);
87 		return;
88 	}
89 
90 	/*
91 	 * The optimal frequency is the frequency that is the lowest that can
92 	 * support the current CPU usage without triggering the up policy. To be
93 	 * safe, we focus 10 points under the threshold.
94 	 */
95 	if (load < (cs_tuners.down_threshold - 10)) {
96 		freq_target = (cs_tuners.freq_step * policy->max) / 100;
97 
98 		dbs_info->requested_freq -= freq_target;
99 		if (dbs_info->requested_freq < policy->min)
100 			dbs_info->requested_freq = policy->min;
101 
102 		/*
103 		 * if we cannot reduce the frequency anymore, break out early
104 		 */
105 		if (policy->cur == policy->min)
106 			return;
107 
108 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
109 				CPUFREQ_RELATION_H);
110 		return;
111 	}
112 }
113 
114 static void cs_dbs_timer(struct work_struct *work)
115 {
116 	struct delayed_work *dw = to_delayed_work(work);
117 	struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
118 			struct cs_cpu_dbs_info_s, cdbs.work.work);
119 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
120 	struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
121 			cpu);
122 	int delay = delay_for_sampling_rate(cs_tuners.sampling_rate);
123 
124 	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
125 	if (need_load_eval(&core_dbs_info->cdbs, cs_tuners.sampling_rate))
126 		dbs_check_cpu(&cs_dbs_data, cpu);
127 
128 	schedule_delayed_work_on(smp_processor_id(), dw, delay);
129 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
130 }
131 
132 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
133 		void *data)
134 {
135 	struct cpufreq_freqs *freq = data;
136 	struct cs_cpu_dbs_info_s *dbs_info =
137 					&per_cpu(cs_cpu_dbs_info, freq->cpu);
138 	struct cpufreq_policy *policy;
139 
140 	if (!dbs_info->enable)
141 		return 0;
142 
143 	policy = dbs_info->cdbs.cur_policy;
144 
145 	/*
146 	 * we only care if our internally tracked freq moves outside the 'valid'
147 	 * ranges of frequency available to us otherwise we do not change it
148 	*/
149 	if (dbs_info->requested_freq > policy->max
150 			|| dbs_info->requested_freq < policy->min)
151 		dbs_info->requested_freq = freq->new;
152 
153 	return 0;
154 }
155 
156 /************************** sysfs interface ************************/
157 static ssize_t show_sampling_rate_min(struct kobject *kobj,
158 				      struct attribute *attr, char *buf)
159 {
160 	return sprintf(buf, "%u\n", cs_dbs_data.min_sampling_rate);
161 }
162 
163 static ssize_t store_sampling_down_factor(struct kobject *a,
164 					  struct attribute *b,
165 					  const char *buf, size_t count)
166 {
167 	unsigned int input;
168 	int ret;
169 	ret = sscanf(buf, "%u", &input);
170 
171 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
172 		return -EINVAL;
173 
174 	cs_tuners.sampling_down_factor = input;
175 	return count;
176 }
177 
178 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
179 				   const char *buf, size_t count)
180 {
181 	unsigned int input;
182 	int ret;
183 	ret = sscanf(buf, "%u", &input);
184 
185 	if (ret != 1)
186 		return -EINVAL;
187 
188 	cs_tuners.sampling_rate = max(input, cs_dbs_data.min_sampling_rate);
189 	return count;
190 }
191 
192 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
193 				  const char *buf, size_t count)
194 {
195 	unsigned int input;
196 	int ret;
197 	ret = sscanf(buf, "%u", &input);
198 
199 	if (ret != 1 || input > 100 || input <= cs_tuners.down_threshold)
200 		return -EINVAL;
201 
202 	cs_tuners.up_threshold = input;
203 	return count;
204 }
205 
206 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
207 				    const char *buf, size_t count)
208 {
209 	unsigned int input;
210 	int ret;
211 	ret = sscanf(buf, "%u", &input);
212 
213 	/* cannot be lower than 11 otherwise freq will not fall */
214 	if (ret != 1 || input < 11 || input > 100 ||
215 			input >= cs_tuners.up_threshold)
216 		return -EINVAL;
217 
218 	cs_tuners.down_threshold = input;
219 	return count;
220 }
221 
222 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
223 				      const char *buf, size_t count)
224 {
225 	unsigned int input, j;
226 	int ret;
227 
228 	ret = sscanf(buf, "%u", &input);
229 	if (ret != 1)
230 		return -EINVAL;
231 
232 	if (input > 1)
233 		input = 1;
234 
235 	if (input == cs_tuners.ignore_nice) /* nothing to do */
236 		return count;
237 
238 	cs_tuners.ignore_nice = input;
239 
240 	/* we need to re-evaluate prev_cpu_idle */
241 	for_each_online_cpu(j) {
242 		struct cs_cpu_dbs_info_s *dbs_info;
243 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
244 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
245 						&dbs_info->cdbs.prev_cpu_wall);
246 		if (cs_tuners.ignore_nice)
247 			dbs_info->cdbs.prev_cpu_nice =
248 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
249 	}
250 	return count;
251 }
252 
253 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
254 			       const char *buf, size_t count)
255 {
256 	unsigned int input;
257 	int ret;
258 	ret = sscanf(buf, "%u", &input);
259 
260 	if (ret != 1)
261 		return -EINVAL;
262 
263 	if (input > 100)
264 		input = 100;
265 
266 	/*
267 	 * no need to test here if freq_step is zero as the user might actually
268 	 * want this, they would be crazy though :)
269 	 */
270 	cs_tuners.freq_step = input;
271 	return count;
272 }
273 
274 show_one(cs, sampling_rate, sampling_rate);
275 show_one(cs, sampling_down_factor, sampling_down_factor);
276 show_one(cs, up_threshold, up_threshold);
277 show_one(cs, down_threshold, down_threshold);
278 show_one(cs, ignore_nice_load, ignore_nice);
279 show_one(cs, freq_step, freq_step);
280 
281 define_one_global_rw(sampling_rate);
282 define_one_global_rw(sampling_down_factor);
283 define_one_global_rw(up_threshold);
284 define_one_global_rw(down_threshold);
285 define_one_global_rw(ignore_nice_load);
286 define_one_global_rw(freq_step);
287 define_one_global_ro(sampling_rate_min);
288 
289 static struct attribute *dbs_attributes[] = {
290 	&sampling_rate_min.attr,
291 	&sampling_rate.attr,
292 	&sampling_down_factor.attr,
293 	&up_threshold.attr,
294 	&down_threshold.attr,
295 	&ignore_nice_load.attr,
296 	&freq_step.attr,
297 	NULL
298 };
299 
300 static struct attribute_group cs_attr_group = {
301 	.attrs = dbs_attributes,
302 	.name = "conservative",
303 };
304 
305 /************************** sysfs end ************************/
306 
307 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
308 
309 static struct notifier_block cs_cpufreq_notifier_block = {
310 	.notifier_call = dbs_cpufreq_notifier,
311 };
312 
313 static struct cs_ops cs_ops = {
314 	.notifier_block = &cs_cpufreq_notifier_block,
315 };
316 
317 static struct dbs_data cs_dbs_data = {
318 	.governor = GOV_CONSERVATIVE,
319 	.attr_group = &cs_attr_group,
320 	.tuners = &cs_tuners,
321 	.get_cpu_cdbs = get_cpu_cdbs,
322 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
323 	.gov_dbs_timer = cs_dbs_timer,
324 	.gov_check_cpu = cs_check_cpu,
325 	.gov_ops = &cs_ops,
326 };
327 
328 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
329 				   unsigned int event)
330 {
331 	return cpufreq_governor_dbs(&cs_dbs_data, policy, event);
332 }
333 
334 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
335 static
336 #endif
337 struct cpufreq_governor cpufreq_gov_conservative = {
338 	.name			= "conservative",
339 	.governor		= cs_cpufreq_governor_dbs,
340 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
341 	.owner			= THIS_MODULE,
342 };
343 
344 static int __init cpufreq_gov_dbs_init(void)
345 {
346 	mutex_init(&cs_dbs_data.mutex);
347 	return cpufreq_register_governor(&cpufreq_gov_conservative);
348 }
349 
350 static void __exit cpufreq_gov_dbs_exit(void)
351 {
352 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
353 }
354 
355 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
356 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
357 		"Low Latency Frequency Transition capable processors "
358 		"optimised for use in a battery environment");
359 MODULE_LICENSE("GPL");
360 
361 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
362 fs_initcall(cpufreq_gov_dbs_init);
363 #else
364 module_init(cpufreq_gov_dbs_init);
365 #endif
366 module_exit(cpufreq_gov_dbs_exit);
367