1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/sched.h>
27 #include <linux/kmod.h>
28 #include <linux/workqueue.h>
29 #include <linux/jiffies.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/percpu.h>
32 #include <linux/mutex.h>
33 /*
34  * dbs is used in this file as a shortform for demandbased switching
35  * It helps to keep variable names smaller, simpler
36  */
37 
38 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
39 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
40 
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers
48  * with CPUFREQ_ETERNAL), this governor will not work.
49  * All times here are in uS.
50  */
51 static unsigned int 				def_sampling_rate;
52 #define MIN_SAMPLING_RATE_RATIO			(2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE			\
55 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
56 #define MIN_SAMPLING_RATE			\
57 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
58 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
59 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
60 #define DEF_SAMPLING_DOWN_FACTOR		(1)
61 #define MAX_SAMPLING_DOWN_FACTOR		(10)
62 #define TRANSITION_LATENCY_LIMIT		(10 * 1000)
63 
64 static void do_dbs_timer(struct work_struct *work);
65 
66 struct cpu_dbs_info_s {
67 	struct cpufreq_policy 	*cur_policy;
68 	unsigned int 		prev_cpu_idle_up;
69 	unsigned int 		prev_cpu_idle_down;
70 	unsigned int 		enable;
71 	unsigned int		down_skip;
72 	unsigned int		requested_freq;
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
75 
76 static unsigned int dbs_enable;	/* number of CPUs using this policy */
77 
78 /*
79  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
80  * lock and dbs_mutex. cpu_hotplug lock should always be held before
81  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
82  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
83  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
84  * is recursive for the same process. -Venki
85  */
86 static DEFINE_MUTEX 	(dbs_mutex);
87 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
88 
89 struct dbs_tuners {
90 	unsigned int 		sampling_rate;
91 	unsigned int		sampling_down_factor;
92 	unsigned int		up_threshold;
93 	unsigned int		down_threshold;
94 	unsigned int		ignore_nice;
95 	unsigned int		freq_step;
96 };
97 
98 static struct dbs_tuners dbs_tuners_ins = {
99 	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
100 	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
101 	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
102 	.ignore_nice		= 0,
103 	.freq_step		= 5,
104 };
105 
106 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
107 {
108 	unsigned int add_nice = 0, ret;
109 
110 	if (dbs_tuners_ins.ignore_nice)
111 		add_nice = kstat_cpu(cpu).cpustat.nice;
112 
113 	ret = 	kstat_cpu(cpu).cpustat.idle +
114 		kstat_cpu(cpu).cpustat.iowait +
115 		add_nice;
116 
117 	return ret;
118 }
119 
120 /************************** sysfs interface ************************/
121 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
122 {
123 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
124 }
125 
126 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
127 {
128 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
129 }
130 
131 #define define_one_ro(_name) 					\
132 static struct freq_attr _name =  				\
133 __ATTR(_name, 0444, show_##_name, NULL)
134 
135 define_one_ro(sampling_rate_max);
136 define_one_ro(sampling_rate_min);
137 
138 /* cpufreq_conservative Governor Tunables */
139 #define show_one(file_name, object)					\
140 static ssize_t show_##file_name						\
141 (struct cpufreq_policy *unused, char *buf)				\
142 {									\
143 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
144 }
145 show_one(sampling_rate, sampling_rate);
146 show_one(sampling_down_factor, sampling_down_factor);
147 show_one(up_threshold, up_threshold);
148 show_one(down_threshold, down_threshold);
149 show_one(ignore_nice_load, ignore_nice);
150 show_one(freq_step, freq_step);
151 
152 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
153 		const char *buf, size_t count)
154 {
155 	unsigned int input;
156 	int ret;
157 	ret = sscanf (buf, "%u", &input);
158 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
159 		return -EINVAL;
160 
161 	mutex_lock(&dbs_mutex);
162 	dbs_tuners_ins.sampling_down_factor = input;
163 	mutex_unlock(&dbs_mutex);
164 
165 	return count;
166 }
167 
168 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
169 		const char *buf, size_t count)
170 {
171 	unsigned int input;
172 	int ret;
173 	ret = sscanf (buf, "%u", &input);
174 
175 	mutex_lock(&dbs_mutex);
176 	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
177 		mutex_unlock(&dbs_mutex);
178 		return -EINVAL;
179 	}
180 
181 	dbs_tuners_ins.sampling_rate = input;
182 	mutex_unlock(&dbs_mutex);
183 
184 	return count;
185 }
186 
187 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
188 		const char *buf, size_t count)
189 {
190 	unsigned int input;
191 	int ret;
192 	ret = sscanf (buf, "%u", &input);
193 
194 	mutex_lock(&dbs_mutex);
195 	if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
196 		mutex_unlock(&dbs_mutex);
197 		return -EINVAL;
198 	}
199 
200 	dbs_tuners_ins.up_threshold = input;
201 	mutex_unlock(&dbs_mutex);
202 
203 	return count;
204 }
205 
206 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
207 		const char *buf, size_t count)
208 {
209 	unsigned int input;
210 	int ret;
211 	ret = sscanf (buf, "%u", &input);
212 
213 	mutex_lock(&dbs_mutex);
214 	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
215 		mutex_unlock(&dbs_mutex);
216 		return -EINVAL;
217 	}
218 
219 	dbs_tuners_ins.down_threshold = input;
220 	mutex_unlock(&dbs_mutex);
221 
222 	return count;
223 }
224 
225 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
226 		const char *buf, size_t count)
227 {
228 	unsigned int input;
229 	int ret;
230 
231 	unsigned int j;
232 
233 	ret = sscanf (buf, "%u", &input);
234 	if ( ret != 1 )
235 		return -EINVAL;
236 
237 	if ( input > 1 )
238 		input = 1;
239 
240 	mutex_lock(&dbs_mutex);
241 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
242 		mutex_unlock(&dbs_mutex);
243 		return count;
244 	}
245 	dbs_tuners_ins.ignore_nice = input;
246 
247 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
248 	for_each_online_cpu(j) {
249 		struct cpu_dbs_info_s *j_dbs_info;
250 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
251 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
252 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
253 	}
254 	mutex_unlock(&dbs_mutex);
255 
256 	return count;
257 }
258 
259 static ssize_t store_freq_step(struct cpufreq_policy *policy,
260 		const char *buf, size_t count)
261 {
262 	unsigned int input;
263 	int ret;
264 
265 	ret = sscanf (buf, "%u", &input);
266 
267 	if ( ret != 1 )
268 		return -EINVAL;
269 
270 	if ( input > 100 )
271 		input = 100;
272 
273 	/* no need to test here if freq_step is zero as the user might actually
274 	 * want this, they would be crazy though :) */
275 	mutex_lock(&dbs_mutex);
276 	dbs_tuners_ins.freq_step = input;
277 	mutex_unlock(&dbs_mutex);
278 
279 	return count;
280 }
281 
282 #define define_one_rw(_name) \
283 static struct freq_attr _name = \
284 __ATTR(_name, 0644, show_##_name, store_##_name)
285 
286 define_one_rw(sampling_rate);
287 define_one_rw(sampling_down_factor);
288 define_one_rw(up_threshold);
289 define_one_rw(down_threshold);
290 define_one_rw(ignore_nice_load);
291 define_one_rw(freq_step);
292 
293 static struct attribute * dbs_attributes[] = {
294 	&sampling_rate_max.attr,
295 	&sampling_rate_min.attr,
296 	&sampling_rate.attr,
297 	&sampling_down_factor.attr,
298 	&up_threshold.attr,
299 	&down_threshold.attr,
300 	&ignore_nice_load.attr,
301 	&freq_step.attr,
302 	NULL
303 };
304 
305 static struct attribute_group dbs_attr_group = {
306 	.attrs = dbs_attributes,
307 	.name = "conservative",
308 };
309 
310 /************************** sysfs end ************************/
311 
312 static void dbs_check_cpu(int cpu)
313 {
314 	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
315 	unsigned int tmp_idle_ticks, total_idle_ticks;
316 	unsigned int freq_step;
317 	unsigned int freq_down_sampling_rate;
318 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
319 	struct cpufreq_policy *policy;
320 
321 	if (!this_dbs_info->enable)
322 		return;
323 
324 	policy = this_dbs_info->cur_policy;
325 
326 	/*
327 	 * The default safe range is 20% to 80%
328 	 * Every sampling_rate, we check
329 	 * 	- If current idle time is less than 20%, then we try to
330 	 * 	  increase frequency
331 	 * Every sampling_rate*sampling_down_factor, we check
332 	 * 	- If current idle time is more than 80%, then we try to
333 	 * 	  decrease frequency
334 	 *
335 	 * Any frequency increase takes it to the maximum frequency.
336 	 * Frequency reduction happens at minimum steps of
337 	 * 5% (default) of max_frequency
338 	 */
339 
340 	/* Check for frequency increase */
341 	idle_ticks = UINT_MAX;
342 
343 	/* Check for frequency increase */
344 	total_idle_ticks = get_cpu_idle_time(cpu);
345 	tmp_idle_ticks = total_idle_ticks -
346 		this_dbs_info->prev_cpu_idle_up;
347 	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
348 
349 	if (tmp_idle_ticks < idle_ticks)
350 		idle_ticks = tmp_idle_ticks;
351 
352 	/* Scale idle ticks by 100 and compare with up and down ticks */
353 	idle_ticks *= 100;
354 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
355 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
356 
357 	if (idle_ticks < up_idle_ticks) {
358 		this_dbs_info->down_skip = 0;
359 		this_dbs_info->prev_cpu_idle_down =
360 			this_dbs_info->prev_cpu_idle_up;
361 
362 		/* if we are already at full speed then break out early */
363 		if (this_dbs_info->requested_freq == policy->max)
364 			return;
365 
366 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
367 
368 		/* max freq cannot be less than 100. But who knows.... */
369 		if (unlikely(freq_step == 0))
370 			freq_step = 5;
371 
372 		this_dbs_info->requested_freq += freq_step;
373 		if (this_dbs_info->requested_freq > policy->max)
374 			this_dbs_info->requested_freq = policy->max;
375 
376 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
377 			CPUFREQ_RELATION_H);
378 		return;
379 	}
380 
381 	/* Check for frequency decrease */
382 	this_dbs_info->down_skip++;
383 	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
384 		return;
385 
386 	/* Check for frequency decrease */
387 	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
388 	tmp_idle_ticks = total_idle_ticks -
389 		this_dbs_info->prev_cpu_idle_down;
390 	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
391 
392 	if (tmp_idle_ticks < idle_ticks)
393 		idle_ticks = tmp_idle_ticks;
394 
395 	/* Scale idle ticks by 100 and compare with up and down ticks */
396 	idle_ticks *= 100;
397 	this_dbs_info->down_skip = 0;
398 
399 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
400 		dbs_tuners_ins.sampling_down_factor;
401 	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
402 		usecs_to_jiffies(freq_down_sampling_rate);
403 
404 	if (idle_ticks > down_idle_ticks) {
405 		/*
406 		 * if we are already at the lowest speed then break out early
407 		 * or if we 'cannot' reduce the speed as the user might want
408 		 * freq_step to be zero
409 		 */
410 		if (this_dbs_info->requested_freq == policy->min
411 				|| dbs_tuners_ins.freq_step == 0)
412 			return;
413 
414 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
415 
416 		/* max freq cannot be less than 100. But who knows.... */
417 		if (unlikely(freq_step == 0))
418 			freq_step = 5;
419 
420 		this_dbs_info->requested_freq -= freq_step;
421 		if (this_dbs_info->requested_freq < policy->min)
422 			this_dbs_info->requested_freq = policy->min;
423 
424 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
425 				CPUFREQ_RELATION_H);
426 		return;
427 	}
428 }
429 
430 static void do_dbs_timer(struct work_struct *work)
431 {
432 	int i;
433 	mutex_lock(&dbs_mutex);
434 	for_each_online_cpu(i)
435 		dbs_check_cpu(i);
436 	schedule_delayed_work(&dbs_work,
437 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
438 	mutex_unlock(&dbs_mutex);
439 }
440 
441 static inline void dbs_timer_init(void)
442 {
443 	schedule_delayed_work(&dbs_work,
444 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
445 	return;
446 }
447 
448 static inline void dbs_timer_exit(void)
449 {
450 	cancel_delayed_work(&dbs_work);
451 	return;
452 }
453 
454 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
455 				   unsigned int event)
456 {
457 	unsigned int cpu = policy->cpu;
458 	struct cpu_dbs_info_s *this_dbs_info;
459 	unsigned int j;
460 	int rc;
461 
462 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
463 
464 	switch (event) {
465 	case CPUFREQ_GOV_START:
466 		if ((!cpu_online(cpu)) ||
467 		    (!policy->cur))
468 			return -EINVAL;
469 
470 		if (policy->cpuinfo.transition_latency >
471 				(TRANSITION_LATENCY_LIMIT * 1000))
472 			return -EINVAL;
473 		if (this_dbs_info->enable) /* Already enabled */
474 			break;
475 
476 		mutex_lock(&dbs_mutex);
477 
478 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
479 		if (rc) {
480 			mutex_unlock(&dbs_mutex);
481 			return rc;
482 		}
483 
484 		for_each_cpu_mask(j, policy->cpus) {
485 			struct cpu_dbs_info_s *j_dbs_info;
486 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
487 			j_dbs_info->cur_policy = policy;
488 
489 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
490 			j_dbs_info->prev_cpu_idle_down
491 				= j_dbs_info->prev_cpu_idle_up;
492 		}
493 		this_dbs_info->enable = 1;
494 		this_dbs_info->down_skip = 0;
495 		this_dbs_info->requested_freq = policy->cur;
496 
497 		dbs_enable++;
498 		/*
499 		 * Start the timerschedule work, when this governor
500 		 * is used for first time
501 		 */
502 		if (dbs_enable == 1) {
503 			unsigned int latency;
504 			/* policy latency is in nS. Convert it to uS first */
505 			latency = policy->cpuinfo.transition_latency / 1000;
506 			if (latency == 0)
507 				latency = 1;
508 
509 			def_sampling_rate = 10 * latency *
510 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
511 
512 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
513 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
514 
515 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
516 
517 			dbs_timer_init();
518 		}
519 
520 		mutex_unlock(&dbs_mutex);
521 		break;
522 
523 	case CPUFREQ_GOV_STOP:
524 		mutex_lock(&dbs_mutex);
525 		this_dbs_info->enable = 0;
526 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
527 		dbs_enable--;
528 		/*
529 		 * Stop the timerschedule work, when this governor
530 		 * is used for first time
531 		 */
532 		if (dbs_enable == 0)
533 			dbs_timer_exit();
534 
535 		mutex_unlock(&dbs_mutex);
536 
537 		break;
538 
539 	case CPUFREQ_GOV_LIMITS:
540 		mutex_lock(&dbs_mutex);
541 		if (policy->max < this_dbs_info->cur_policy->cur)
542 			__cpufreq_driver_target(
543 					this_dbs_info->cur_policy,
544 				       	policy->max, CPUFREQ_RELATION_H);
545 		else if (policy->min > this_dbs_info->cur_policy->cur)
546 			__cpufreq_driver_target(
547 					this_dbs_info->cur_policy,
548 				       	policy->min, CPUFREQ_RELATION_L);
549 		mutex_unlock(&dbs_mutex);
550 		break;
551 	}
552 	return 0;
553 }
554 
555 static struct cpufreq_governor cpufreq_gov_dbs = {
556 	.name		= "conservative",
557 	.governor	= cpufreq_governor_dbs,
558 	.owner		= THIS_MODULE,
559 };
560 
561 static int __init cpufreq_gov_dbs_init(void)
562 {
563 	return cpufreq_register_governor(&cpufreq_gov_dbs);
564 }
565 
566 static void __exit cpufreq_gov_dbs_exit(void)
567 {
568 	/* Make sure that the scheduled work is indeed not running */
569 	flush_scheduled_work();
570 
571 	cpufreq_unregister_governor(&cpufreq_gov_dbs);
572 }
573 
574 
575 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
576 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
577 		"Low Latency Frequency Transition capable processors "
578 		"optimised for use in a battery environment");
579 MODULE_LICENSE ("GPL");
580 
581 module_init(cpufreq_gov_dbs_init);
582 module_exit(cpufreq_gov_dbs_exit);
583