xref: /openbmc/linux/drivers/cpufreq/cpufreq_conservative.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26 
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31 
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
34 
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 #define MIN_SAMPLING_RATE_RATIO			(2)
46 
47 static unsigned int min_sampling_rate;
48 
49 #define LATENCY_MULTIPLIER			(1000)
50 #define MIN_LATENCY_MULTIPLIER			(100)
51 #define DEF_SAMPLING_DOWN_FACTOR		(1)
52 #define MAX_SAMPLING_DOWN_FACTOR		(10)
53 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54 
55 static void do_dbs_timer(struct work_struct *work);
56 
57 struct cpu_dbs_info_s {
58 	cputime64_t prev_cpu_idle;
59 	cputime64_t prev_cpu_wall;
60 	cputime64_t prev_cpu_nice;
61 	struct cpufreq_policy *cur_policy;
62 	struct delayed_work work;
63 	unsigned int down_skip;
64 	unsigned int requested_freq;
65 	int cpu;
66 	unsigned int enable:1;
67 	/*
68 	 * percpu mutex that serializes governor limit change with
69 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 	 * when user is changing the governor or limits.
71 	 */
72 	struct mutex timer_mutex;
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 
76 static unsigned int dbs_enable;	/* number of CPUs using this policy */
77 
78 /*
79  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80  * different CPUs. It protects dbs_enable in governor start/stop.
81  */
82 static DEFINE_MUTEX(dbs_mutex);
83 
84 static struct workqueue_struct	*kconservative_wq;
85 
86 static struct dbs_tuners {
87 	unsigned int sampling_rate;
88 	unsigned int sampling_down_factor;
89 	unsigned int up_threshold;
90 	unsigned int down_threshold;
91 	unsigned int ignore_nice;
92 	unsigned int freq_step;
93 } dbs_tuners_ins = {
94 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
95 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
96 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
97 	.ignore_nice = 0,
98 	.freq_step = 5,
99 };
100 
101 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
102 							cputime64_t *wall)
103 {
104 	cputime64_t idle_time;
105 	cputime64_t cur_wall_time;
106 	cputime64_t busy_time;
107 
108 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
109 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
110 			kstat_cpu(cpu).cpustat.system);
111 
112 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
113 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
114 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
115 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
116 
117 	idle_time = cputime64_sub(cur_wall_time, busy_time);
118 	if (wall)
119 		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
120 
121 	return (cputime64_t)jiffies_to_usecs(idle_time);;
122 }
123 
124 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
125 {
126 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
127 
128 	if (idle_time == -1ULL)
129 		return get_cpu_idle_time_jiffy(cpu, wall);
130 
131 	return idle_time;
132 }
133 
134 /* keep track of frequency transitions */
135 static int
136 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
137 		     void *data)
138 {
139 	struct cpufreq_freqs *freq = data;
140 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
141 							freq->cpu);
142 
143 	struct cpufreq_policy *policy;
144 
145 	if (!this_dbs_info->enable)
146 		return 0;
147 
148 	policy = this_dbs_info->cur_policy;
149 
150 	/*
151 	 * we only care if our internally tracked freq moves outside
152 	 * the 'valid' ranges of freqency available to us otherwise
153 	 * we do not change it
154 	*/
155 	if (this_dbs_info->requested_freq > policy->max
156 			|| this_dbs_info->requested_freq < policy->min)
157 		this_dbs_info->requested_freq = freq->new;
158 
159 	return 0;
160 }
161 
162 static struct notifier_block dbs_cpufreq_notifier_block = {
163 	.notifier_call = dbs_cpufreq_notifier
164 };
165 
166 /************************** sysfs interface ************************/
167 static ssize_t show_sampling_rate_max(struct kobject *kobj,
168 				      struct attribute *attr, char *buf)
169 {
170 	printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
171 		    "sysfs file is deprecated - used by: %s\n", current->comm);
172 	return sprintf(buf, "%u\n", -1U);
173 }
174 
175 static ssize_t show_sampling_rate_min(struct kobject *kobj,
176 				      struct attribute *attr, char *buf)
177 {
178 	return sprintf(buf, "%u\n", min_sampling_rate);
179 }
180 
181 define_one_global_ro(sampling_rate_max);
182 define_one_global_ro(sampling_rate_min);
183 
184 /* cpufreq_conservative Governor Tunables */
185 #define show_one(file_name, object)					\
186 static ssize_t show_##file_name						\
187 (struct kobject *kobj, struct attribute *attr, char *buf)		\
188 {									\
189 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
190 }
191 show_one(sampling_rate, sampling_rate);
192 show_one(sampling_down_factor, sampling_down_factor);
193 show_one(up_threshold, up_threshold);
194 show_one(down_threshold, down_threshold);
195 show_one(ignore_nice_load, ignore_nice);
196 show_one(freq_step, freq_step);
197 
198 /*** delete after deprecation time ***/
199 #define DEPRECATION_MSG(file_name)					\
200 	printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs "	\
201 		"interface is deprecated - " #file_name "\n");
202 
203 #define show_one_old(file_name)						\
204 static ssize_t show_##file_name##_old					\
205 (struct cpufreq_policy *unused, char *buf)				\
206 {									\
207 	printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs "	\
208 		"interface is deprecated - " #file_name "\n");		\
209 	return show_##file_name(NULL, NULL, buf);			\
210 }
211 show_one_old(sampling_rate);
212 show_one_old(sampling_down_factor);
213 show_one_old(up_threshold);
214 show_one_old(down_threshold);
215 show_one_old(ignore_nice_load);
216 show_one_old(freq_step);
217 show_one_old(sampling_rate_min);
218 show_one_old(sampling_rate_max);
219 
220 cpufreq_freq_attr_ro_old(sampling_rate_min);
221 cpufreq_freq_attr_ro_old(sampling_rate_max);
222 
223 /*** delete after deprecation time ***/
224 
225 static ssize_t store_sampling_down_factor(struct kobject *a,
226 					  struct attribute *b,
227 					  const char *buf, size_t count)
228 {
229 	unsigned int input;
230 	int ret;
231 	ret = sscanf(buf, "%u", &input);
232 
233 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
234 		return -EINVAL;
235 
236 	mutex_lock(&dbs_mutex);
237 	dbs_tuners_ins.sampling_down_factor = input;
238 	mutex_unlock(&dbs_mutex);
239 
240 	return count;
241 }
242 
243 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
244 				   const char *buf, size_t count)
245 {
246 	unsigned int input;
247 	int ret;
248 	ret = sscanf(buf, "%u", &input);
249 
250 	if (ret != 1)
251 		return -EINVAL;
252 
253 	mutex_lock(&dbs_mutex);
254 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
255 	mutex_unlock(&dbs_mutex);
256 
257 	return count;
258 }
259 
260 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
261 				  const char *buf, size_t count)
262 {
263 	unsigned int input;
264 	int ret;
265 	ret = sscanf(buf, "%u", &input);
266 
267 	mutex_lock(&dbs_mutex);
268 	if (ret != 1 || input > 100 ||
269 			input <= dbs_tuners_ins.down_threshold) {
270 		mutex_unlock(&dbs_mutex);
271 		return -EINVAL;
272 	}
273 
274 	dbs_tuners_ins.up_threshold = input;
275 	mutex_unlock(&dbs_mutex);
276 
277 	return count;
278 }
279 
280 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
281 				    const char *buf, size_t count)
282 {
283 	unsigned int input;
284 	int ret;
285 	ret = sscanf(buf, "%u", &input);
286 
287 	mutex_lock(&dbs_mutex);
288 	/* cannot be lower than 11 otherwise freq will not fall */
289 	if (ret != 1 || input < 11 || input > 100 ||
290 			input >= dbs_tuners_ins.up_threshold) {
291 		mutex_unlock(&dbs_mutex);
292 		return -EINVAL;
293 	}
294 
295 	dbs_tuners_ins.down_threshold = input;
296 	mutex_unlock(&dbs_mutex);
297 
298 	return count;
299 }
300 
301 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
302 				      const char *buf, size_t count)
303 {
304 	unsigned int input;
305 	int ret;
306 
307 	unsigned int j;
308 
309 	ret = sscanf(buf, "%u", &input);
310 	if (ret != 1)
311 		return -EINVAL;
312 
313 	if (input > 1)
314 		input = 1;
315 
316 	mutex_lock(&dbs_mutex);
317 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
318 		mutex_unlock(&dbs_mutex);
319 		return count;
320 	}
321 	dbs_tuners_ins.ignore_nice = input;
322 
323 	/* we need to re-evaluate prev_cpu_idle */
324 	for_each_online_cpu(j) {
325 		struct cpu_dbs_info_s *dbs_info;
326 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
327 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
328 						&dbs_info->prev_cpu_wall);
329 		if (dbs_tuners_ins.ignore_nice)
330 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
331 	}
332 	mutex_unlock(&dbs_mutex);
333 
334 	return count;
335 }
336 
337 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
338 			       const char *buf, size_t count)
339 {
340 	unsigned int input;
341 	int ret;
342 	ret = sscanf(buf, "%u", &input);
343 
344 	if (ret != 1)
345 		return -EINVAL;
346 
347 	if (input > 100)
348 		input = 100;
349 
350 	/* no need to test here if freq_step is zero as the user might actually
351 	 * want this, they would be crazy though :) */
352 	mutex_lock(&dbs_mutex);
353 	dbs_tuners_ins.freq_step = input;
354 	mutex_unlock(&dbs_mutex);
355 
356 	return count;
357 }
358 
359 define_one_global_rw(sampling_rate);
360 define_one_global_rw(sampling_down_factor);
361 define_one_global_rw(up_threshold);
362 define_one_global_rw(down_threshold);
363 define_one_global_rw(ignore_nice_load);
364 define_one_global_rw(freq_step);
365 
366 static struct attribute *dbs_attributes[] = {
367 	&sampling_rate_max.attr,
368 	&sampling_rate_min.attr,
369 	&sampling_rate.attr,
370 	&sampling_down_factor.attr,
371 	&up_threshold.attr,
372 	&down_threshold.attr,
373 	&ignore_nice_load.attr,
374 	&freq_step.attr,
375 	NULL
376 };
377 
378 static struct attribute_group dbs_attr_group = {
379 	.attrs = dbs_attributes,
380 	.name = "conservative",
381 };
382 
383 /*** delete after deprecation time ***/
384 
385 #define write_one_old(file_name)					\
386 static ssize_t store_##file_name##_old					\
387 (struct cpufreq_policy *unused, const char *buf, size_t count)		\
388 {									\
389 	printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs "	\
390 		"interface is deprecated - " #file_name "\n");	\
391 	return store_##file_name(NULL, NULL, buf, count);		\
392 }
393 write_one_old(sampling_rate);
394 write_one_old(sampling_down_factor);
395 write_one_old(up_threshold);
396 write_one_old(down_threshold);
397 write_one_old(ignore_nice_load);
398 write_one_old(freq_step);
399 
400 cpufreq_freq_attr_rw_old(sampling_rate);
401 cpufreq_freq_attr_rw_old(sampling_down_factor);
402 cpufreq_freq_attr_rw_old(up_threshold);
403 cpufreq_freq_attr_rw_old(down_threshold);
404 cpufreq_freq_attr_rw_old(ignore_nice_load);
405 cpufreq_freq_attr_rw_old(freq_step);
406 
407 static struct attribute *dbs_attributes_old[] = {
408 	&sampling_rate_max_old.attr,
409 	&sampling_rate_min_old.attr,
410 	&sampling_rate_old.attr,
411 	&sampling_down_factor_old.attr,
412 	&up_threshold_old.attr,
413 	&down_threshold_old.attr,
414 	&ignore_nice_load_old.attr,
415 	&freq_step_old.attr,
416 	NULL
417 };
418 
419 static struct attribute_group dbs_attr_group_old = {
420 	.attrs = dbs_attributes_old,
421 	.name = "conservative",
422 };
423 
424 /*** delete after deprecation time ***/
425 
426 /************************** sysfs end ************************/
427 
428 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
429 {
430 	unsigned int load = 0;
431 	unsigned int max_load = 0;
432 	unsigned int freq_target;
433 
434 	struct cpufreq_policy *policy;
435 	unsigned int j;
436 
437 	policy = this_dbs_info->cur_policy;
438 
439 	/*
440 	 * Every sampling_rate, we check, if current idle time is less
441 	 * than 20% (default), then we try to increase frequency
442 	 * Every sampling_rate*sampling_down_factor, we check, if current
443 	 * idle time is more than 80%, then we try to decrease frequency
444 	 *
445 	 * Any frequency increase takes it to the maximum frequency.
446 	 * Frequency reduction happens at minimum steps of
447 	 * 5% (default) of maximum frequency
448 	 */
449 
450 	/* Get Absolute Load */
451 	for_each_cpu(j, policy->cpus) {
452 		struct cpu_dbs_info_s *j_dbs_info;
453 		cputime64_t cur_wall_time, cur_idle_time;
454 		unsigned int idle_time, wall_time;
455 
456 		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
457 
458 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
459 
460 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
461 				j_dbs_info->prev_cpu_wall);
462 		j_dbs_info->prev_cpu_wall = cur_wall_time;
463 
464 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
465 				j_dbs_info->prev_cpu_idle);
466 		j_dbs_info->prev_cpu_idle = cur_idle_time;
467 
468 		if (dbs_tuners_ins.ignore_nice) {
469 			cputime64_t cur_nice;
470 			unsigned long cur_nice_jiffies;
471 
472 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
473 					 j_dbs_info->prev_cpu_nice);
474 			/*
475 			 * Assumption: nice time between sampling periods will
476 			 * be less than 2^32 jiffies for 32 bit sys
477 			 */
478 			cur_nice_jiffies = (unsigned long)
479 					cputime64_to_jiffies64(cur_nice);
480 
481 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
482 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
483 		}
484 
485 		if (unlikely(!wall_time || wall_time < idle_time))
486 			continue;
487 
488 		load = 100 * (wall_time - idle_time) / wall_time;
489 
490 		if (load > max_load)
491 			max_load = load;
492 	}
493 
494 	/*
495 	 * break out if we 'cannot' reduce the speed as the user might
496 	 * want freq_step to be zero
497 	 */
498 	if (dbs_tuners_ins.freq_step == 0)
499 		return;
500 
501 	/* Check for frequency increase */
502 	if (max_load > dbs_tuners_ins.up_threshold) {
503 		this_dbs_info->down_skip = 0;
504 
505 		/* if we are already at full speed then break out early */
506 		if (this_dbs_info->requested_freq == policy->max)
507 			return;
508 
509 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
510 
511 		/* max freq cannot be less than 100. But who knows.... */
512 		if (unlikely(freq_target == 0))
513 			freq_target = 5;
514 
515 		this_dbs_info->requested_freq += freq_target;
516 		if (this_dbs_info->requested_freq > policy->max)
517 			this_dbs_info->requested_freq = policy->max;
518 
519 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
520 			CPUFREQ_RELATION_H);
521 		return;
522 	}
523 
524 	/*
525 	 * The optimal frequency is the frequency that is the lowest that
526 	 * can support the current CPU usage without triggering the up
527 	 * policy. To be safe, we focus 10 points under the threshold.
528 	 */
529 	if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
530 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
531 
532 		this_dbs_info->requested_freq -= freq_target;
533 		if (this_dbs_info->requested_freq < policy->min)
534 			this_dbs_info->requested_freq = policy->min;
535 
536 		/*
537 		 * if we cannot reduce the frequency anymore, break out early
538 		 */
539 		if (policy->cur == policy->min)
540 			return;
541 
542 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
543 				CPUFREQ_RELATION_H);
544 		return;
545 	}
546 }
547 
548 static void do_dbs_timer(struct work_struct *work)
549 {
550 	struct cpu_dbs_info_s *dbs_info =
551 		container_of(work, struct cpu_dbs_info_s, work.work);
552 	unsigned int cpu = dbs_info->cpu;
553 
554 	/* We want all CPUs to do sampling nearly on same jiffy */
555 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
556 
557 	delay -= jiffies % delay;
558 
559 	mutex_lock(&dbs_info->timer_mutex);
560 
561 	dbs_check_cpu(dbs_info);
562 
563 	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
564 	mutex_unlock(&dbs_info->timer_mutex);
565 }
566 
567 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
568 {
569 	/* We want all CPUs to do sampling nearly on same jiffy */
570 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
571 	delay -= jiffies % delay;
572 
573 	dbs_info->enable = 1;
574 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
575 	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
576 				delay);
577 }
578 
579 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
580 {
581 	dbs_info->enable = 0;
582 	cancel_delayed_work_sync(&dbs_info->work);
583 }
584 
585 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
586 				   unsigned int event)
587 {
588 	unsigned int cpu = policy->cpu;
589 	struct cpu_dbs_info_s *this_dbs_info;
590 	unsigned int j;
591 	int rc;
592 
593 	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
594 
595 	switch (event) {
596 	case CPUFREQ_GOV_START:
597 		if ((!cpu_online(cpu)) || (!policy->cur))
598 			return -EINVAL;
599 
600 		mutex_lock(&dbs_mutex);
601 
602 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
603 		if (rc) {
604 			mutex_unlock(&dbs_mutex);
605 			return rc;
606 		}
607 
608 		for_each_cpu(j, policy->cpus) {
609 			struct cpu_dbs_info_s *j_dbs_info;
610 			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
611 			j_dbs_info->cur_policy = policy;
612 
613 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
614 						&j_dbs_info->prev_cpu_wall);
615 			if (dbs_tuners_ins.ignore_nice) {
616 				j_dbs_info->prev_cpu_nice =
617 						kstat_cpu(j).cpustat.nice;
618 			}
619 		}
620 		this_dbs_info->down_skip = 0;
621 		this_dbs_info->requested_freq = policy->cur;
622 
623 		mutex_init(&this_dbs_info->timer_mutex);
624 		dbs_enable++;
625 		/*
626 		 * Start the timerschedule work, when this governor
627 		 * is used for first time
628 		 */
629 		if (dbs_enable == 1) {
630 			unsigned int latency;
631 			/* policy latency is in nS. Convert it to uS first */
632 			latency = policy->cpuinfo.transition_latency / 1000;
633 			if (latency == 0)
634 				latency = 1;
635 
636 			rc = sysfs_create_group(cpufreq_global_kobject,
637 						&dbs_attr_group);
638 			if (rc) {
639 				mutex_unlock(&dbs_mutex);
640 				return rc;
641 			}
642 
643 			/*
644 			 * conservative does not implement micro like ondemand
645 			 * governor, thus we are bound to jiffes/HZ
646 			 */
647 			min_sampling_rate =
648 				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
649 			/* Bring kernel and HW constraints together */
650 			min_sampling_rate = max(min_sampling_rate,
651 					MIN_LATENCY_MULTIPLIER * latency);
652 			dbs_tuners_ins.sampling_rate =
653 				max(min_sampling_rate,
654 				    latency * LATENCY_MULTIPLIER);
655 
656 			cpufreq_register_notifier(
657 					&dbs_cpufreq_notifier_block,
658 					CPUFREQ_TRANSITION_NOTIFIER);
659 		}
660 		mutex_unlock(&dbs_mutex);
661 
662 		dbs_timer_init(this_dbs_info);
663 
664 		break;
665 
666 	case CPUFREQ_GOV_STOP:
667 		dbs_timer_exit(this_dbs_info);
668 
669 		mutex_lock(&dbs_mutex);
670 		sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
671 		dbs_enable--;
672 		mutex_destroy(&this_dbs_info->timer_mutex);
673 
674 		/*
675 		 * Stop the timerschedule work, when this governor
676 		 * is used for first time
677 		 */
678 		if (dbs_enable == 0)
679 			cpufreq_unregister_notifier(
680 					&dbs_cpufreq_notifier_block,
681 					CPUFREQ_TRANSITION_NOTIFIER);
682 
683 		mutex_unlock(&dbs_mutex);
684 		if (!dbs_enable)
685 			sysfs_remove_group(cpufreq_global_kobject,
686 					   &dbs_attr_group);
687 
688 		break;
689 
690 	case CPUFREQ_GOV_LIMITS:
691 		mutex_lock(&this_dbs_info->timer_mutex);
692 		if (policy->max < this_dbs_info->cur_policy->cur)
693 			__cpufreq_driver_target(
694 					this_dbs_info->cur_policy,
695 					policy->max, CPUFREQ_RELATION_H);
696 		else if (policy->min > this_dbs_info->cur_policy->cur)
697 			__cpufreq_driver_target(
698 					this_dbs_info->cur_policy,
699 					policy->min, CPUFREQ_RELATION_L);
700 		mutex_unlock(&this_dbs_info->timer_mutex);
701 
702 		break;
703 	}
704 	return 0;
705 }
706 
707 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
708 static
709 #endif
710 struct cpufreq_governor cpufreq_gov_conservative = {
711 	.name			= "conservative",
712 	.governor		= cpufreq_governor_dbs,
713 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
714 	.owner			= THIS_MODULE,
715 };
716 
717 static int __init cpufreq_gov_dbs_init(void)
718 {
719 	int err;
720 
721 	kconservative_wq = create_workqueue("kconservative");
722 	if (!kconservative_wq) {
723 		printk(KERN_ERR "Creation of kconservative failed\n");
724 		return -EFAULT;
725 	}
726 
727 	err = cpufreq_register_governor(&cpufreq_gov_conservative);
728 	if (err)
729 		destroy_workqueue(kconservative_wq);
730 
731 	return err;
732 }
733 
734 static void __exit cpufreq_gov_dbs_exit(void)
735 {
736 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
737 	destroy_workqueue(kconservative_wq);
738 }
739 
740 
741 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
742 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
743 		"Low Latency Frequency Transition capable processors "
744 		"optimised for use in a battery environment");
745 MODULE_LICENSE("GPL");
746 
747 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
748 fs_initcall(cpufreq_gov_dbs_init);
749 #else
750 module_init(cpufreq_gov_dbs_init);
751 #endif
752 module_exit(cpufreq_gov_dbs_exit);
753