1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26 
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31 
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
34 
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 static unsigned int def_sampling_rate;
46 #define MIN_SAMPLING_RATE_RATIO			(2)
47 /* for correct statistics, we need at least 10 ticks between each measure */
48 #define MIN_STAT_SAMPLING_RATE 			\
49 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
50 #define MIN_SAMPLING_RATE			\
51 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
52 /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
53  * Define the minimal settable sampling rate to the greater of:
54  *   - "HW transition latency" * 100 (same as default sampling / 10)
55  *   - MIN_STAT_SAMPLING_RATE
56  * To avoid that userspace shoots itself.
57 */
58 static unsigned int minimum_sampling_rate(void)
59 {
60 	return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
61 }
62 
63 /* This will also vanish soon with removing sampling_rate_max */
64 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
65 #define LATENCY_MULTIPLIER			(1000)
66 #define DEF_SAMPLING_DOWN_FACTOR		(1)
67 #define MAX_SAMPLING_DOWN_FACTOR		(10)
68 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
69 
70 static void do_dbs_timer(struct work_struct *work);
71 
72 struct cpu_dbs_info_s {
73 	cputime64_t prev_cpu_idle;
74 	cputime64_t prev_cpu_wall;
75 	cputime64_t prev_cpu_nice;
76 	struct cpufreq_policy *cur_policy;
77 	struct delayed_work work;
78 	unsigned int down_skip;
79 	unsigned int requested_freq;
80 	int cpu;
81 	unsigned int enable:1;
82 };
83 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
84 
85 static unsigned int dbs_enable;	/* number of CPUs using this policy */
86 
87 /*
88  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
89  * lock and dbs_mutex. cpu_hotplug lock should always be held before
90  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
91  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
92  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
93  * is recursive for the same process. -Venki
94  */
95 static DEFINE_MUTEX(dbs_mutex);
96 
97 static struct workqueue_struct	*kconservative_wq;
98 
99 static struct dbs_tuners {
100 	unsigned int sampling_rate;
101 	unsigned int sampling_down_factor;
102 	unsigned int up_threshold;
103 	unsigned int down_threshold;
104 	unsigned int ignore_nice;
105 	unsigned int freq_step;
106 } dbs_tuners_ins = {
107 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
108 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
109 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
110 	.ignore_nice = 0,
111 	.freq_step = 5,
112 };
113 
114 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
115 							cputime64_t *wall)
116 {
117 	cputime64_t idle_time;
118 	cputime64_t cur_wall_time;
119 	cputime64_t busy_time;
120 
121 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
122 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
123 			kstat_cpu(cpu).cpustat.system);
124 
125 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
126 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
127 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
128 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
129 
130 	idle_time = cputime64_sub(cur_wall_time, busy_time);
131 	if (wall)
132 		*wall = cur_wall_time;
133 
134 	return idle_time;
135 }
136 
137 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
138 {
139 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
140 
141 	if (idle_time == -1ULL)
142 		return get_cpu_idle_time_jiffy(cpu, wall);
143 
144 	return idle_time;
145 }
146 
147 /* keep track of frequency transitions */
148 static int
149 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
150 		     void *data)
151 {
152 	struct cpufreq_freqs *freq = data;
153 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
154 							freq->cpu);
155 
156 	struct cpufreq_policy *policy;
157 
158 	if (!this_dbs_info->enable)
159 		return 0;
160 
161 	policy = this_dbs_info->cur_policy;
162 
163 	/*
164 	 * we only care if our internally tracked freq moves outside
165 	 * the 'valid' ranges of freqency available to us otherwise
166 	 * we do not change it
167 	*/
168 	if (this_dbs_info->requested_freq > policy->max
169 			|| this_dbs_info->requested_freq < policy->min)
170 		this_dbs_info->requested_freq = freq->new;
171 
172 	return 0;
173 }
174 
175 static struct notifier_block dbs_cpufreq_notifier_block = {
176 	.notifier_call = dbs_cpufreq_notifier
177 };
178 
179 /************************** sysfs interface ************************/
180 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
181 {
182 	static int print_once;
183 
184 	if (!print_once) {
185 		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
186 		       "sysfs file is deprecated - used by: %s\n",
187 		       current->comm);
188 		print_once = 1;
189 	}
190 	return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
191 }
192 
193 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
194 {
195 	static int print_once;
196 
197 	if (!print_once) {
198 		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
199 		       "sysfs file is deprecated - used by: %s\n", current->comm);
200 		print_once = 1;
201 	}
202 	return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
203 }
204 
205 #define define_one_ro(_name)		\
206 static struct freq_attr _name =		\
207 __ATTR(_name, 0444, show_##_name, NULL)
208 
209 define_one_ro(sampling_rate_max);
210 define_one_ro(sampling_rate_min);
211 
212 /* cpufreq_conservative Governor Tunables */
213 #define show_one(file_name, object)					\
214 static ssize_t show_##file_name						\
215 (struct cpufreq_policy *unused, char *buf)				\
216 {									\
217 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
218 }
219 show_one(sampling_rate, sampling_rate);
220 show_one(sampling_down_factor, sampling_down_factor);
221 show_one(up_threshold, up_threshold);
222 show_one(down_threshold, down_threshold);
223 show_one(ignore_nice_load, ignore_nice);
224 show_one(freq_step, freq_step);
225 
226 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
227 		const char *buf, size_t count)
228 {
229 	unsigned int input;
230 	int ret;
231 	ret = sscanf(buf, "%u", &input);
232 
233 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
234 		return -EINVAL;
235 
236 	mutex_lock(&dbs_mutex);
237 	dbs_tuners_ins.sampling_down_factor = input;
238 	mutex_unlock(&dbs_mutex);
239 
240 	return count;
241 }
242 
243 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
244 		const char *buf, size_t count)
245 {
246 	unsigned int input;
247 	int ret;
248 	ret = sscanf(buf, "%u", &input);
249 
250 	if (ret != 1)
251 		return -EINVAL;
252 
253 	mutex_lock(&dbs_mutex);
254 	dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
255 	mutex_unlock(&dbs_mutex);
256 
257 	return count;
258 }
259 
260 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
261 		const char *buf, size_t count)
262 {
263 	unsigned int input;
264 	int ret;
265 	ret = sscanf(buf, "%u", &input);
266 
267 	mutex_lock(&dbs_mutex);
268 	if (ret != 1 || input > 100 ||
269 			input <= dbs_tuners_ins.down_threshold) {
270 		mutex_unlock(&dbs_mutex);
271 		return -EINVAL;
272 	}
273 
274 	dbs_tuners_ins.up_threshold = input;
275 	mutex_unlock(&dbs_mutex);
276 
277 	return count;
278 }
279 
280 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
281 		const char *buf, size_t count)
282 {
283 	unsigned int input;
284 	int ret;
285 	ret = sscanf(buf, "%u", &input);
286 
287 	mutex_lock(&dbs_mutex);
288 	/* cannot be lower than 11 otherwise freq will not fall */
289 	if (ret != 1 || input < 11 || input > 100 ||
290 			input >= dbs_tuners_ins.up_threshold) {
291 		mutex_unlock(&dbs_mutex);
292 		return -EINVAL;
293 	}
294 
295 	dbs_tuners_ins.down_threshold = input;
296 	mutex_unlock(&dbs_mutex);
297 
298 	return count;
299 }
300 
301 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
302 		const char *buf, size_t count)
303 {
304 	unsigned int input;
305 	int ret;
306 
307 	unsigned int j;
308 
309 	ret = sscanf(buf, "%u", &input);
310 	if (ret != 1)
311 		return -EINVAL;
312 
313 	if (input > 1)
314 		input = 1;
315 
316 	mutex_lock(&dbs_mutex);
317 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
318 		mutex_unlock(&dbs_mutex);
319 		return count;
320 	}
321 	dbs_tuners_ins.ignore_nice = input;
322 
323 	/* we need to re-evaluate prev_cpu_idle */
324 	for_each_online_cpu(j) {
325 		struct cpu_dbs_info_s *dbs_info;
326 		dbs_info = &per_cpu(cpu_dbs_info, j);
327 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
328 						&dbs_info->prev_cpu_wall);
329 		if (dbs_tuners_ins.ignore_nice)
330 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
331 	}
332 	mutex_unlock(&dbs_mutex);
333 
334 	return count;
335 }
336 
337 static ssize_t store_freq_step(struct cpufreq_policy *policy,
338 		const char *buf, size_t count)
339 {
340 	unsigned int input;
341 	int ret;
342 	ret = sscanf(buf, "%u", &input);
343 
344 	if (ret != 1)
345 		return -EINVAL;
346 
347 	if (input > 100)
348 		input = 100;
349 
350 	/* no need to test here if freq_step is zero as the user might actually
351 	 * want this, they would be crazy though :) */
352 	mutex_lock(&dbs_mutex);
353 	dbs_tuners_ins.freq_step = input;
354 	mutex_unlock(&dbs_mutex);
355 
356 	return count;
357 }
358 
359 #define define_one_rw(_name) \
360 static struct freq_attr _name = \
361 __ATTR(_name, 0644, show_##_name, store_##_name)
362 
363 define_one_rw(sampling_rate);
364 define_one_rw(sampling_down_factor);
365 define_one_rw(up_threshold);
366 define_one_rw(down_threshold);
367 define_one_rw(ignore_nice_load);
368 define_one_rw(freq_step);
369 
370 static struct attribute *dbs_attributes[] = {
371 	&sampling_rate_max.attr,
372 	&sampling_rate_min.attr,
373 	&sampling_rate.attr,
374 	&sampling_down_factor.attr,
375 	&up_threshold.attr,
376 	&down_threshold.attr,
377 	&ignore_nice_load.attr,
378 	&freq_step.attr,
379 	NULL
380 };
381 
382 static struct attribute_group dbs_attr_group = {
383 	.attrs = dbs_attributes,
384 	.name = "conservative",
385 };
386 
387 /************************** sysfs end ************************/
388 
389 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
390 {
391 	unsigned int load = 0;
392 	unsigned int freq_target;
393 
394 	struct cpufreq_policy *policy;
395 	unsigned int j;
396 
397 	policy = this_dbs_info->cur_policy;
398 
399 	/*
400 	 * Every sampling_rate, we check, if current idle time is less
401 	 * than 20% (default), then we try to increase frequency
402 	 * Every sampling_rate*sampling_down_factor, we check, if current
403 	 * idle time is more than 80%, then we try to decrease frequency
404 	 *
405 	 * Any frequency increase takes it to the maximum frequency.
406 	 * Frequency reduction happens at minimum steps of
407 	 * 5% (default) of maximum frequency
408 	 */
409 
410 	/* Get Absolute Load */
411 	for_each_cpu(j, policy->cpus) {
412 		struct cpu_dbs_info_s *j_dbs_info;
413 		cputime64_t cur_wall_time, cur_idle_time;
414 		unsigned int idle_time, wall_time;
415 
416 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
417 
418 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
419 
420 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
421 				j_dbs_info->prev_cpu_wall);
422 		j_dbs_info->prev_cpu_wall = cur_wall_time;
423 
424 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
425 				j_dbs_info->prev_cpu_idle);
426 		j_dbs_info->prev_cpu_idle = cur_idle_time;
427 
428 		if (dbs_tuners_ins.ignore_nice) {
429 			cputime64_t cur_nice;
430 			unsigned long cur_nice_jiffies;
431 
432 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
433 					 j_dbs_info->prev_cpu_nice);
434 			/*
435 			 * Assumption: nice time between sampling periods will
436 			 * be less than 2^32 jiffies for 32 bit sys
437 			 */
438 			cur_nice_jiffies = (unsigned long)
439 					cputime64_to_jiffies64(cur_nice);
440 
441 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
442 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
443 		}
444 
445 		if (unlikely(!wall_time || wall_time < idle_time))
446 			continue;
447 
448 		load = 100 * (wall_time - idle_time) / wall_time;
449 	}
450 
451 	/*
452 	 * break out if we 'cannot' reduce the speed as the user might
453 	 * want freq_step to be zero
454 	 */
455 	if (dbs_tuners_ins.freq_step == 0)
456 		return;
457 
458 	/* Check for frequency increase */
459 	if (load > dbs_tuners_ins.up_threshold) {
460 		this_dbs_info->down_skip = 0;
461 
462 		/* if we are already at full speed then break out early */
463 		if (this_dbs_info->requested_freq == policy->max)
464 			return;
465 
466 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
467 
468 		/* max freq cannot be less than 100. But who knows.... */
469 		if (unlikely(freq_target == 0))
470 			freq_target = 5;
471 
472 		this_dbs_info->requested_freq += freq_target;
473 		if (this_dbs_info->requested_freq > policy->max)
474 			this_dbs_info->requested_freq = policy->max;
475 
476 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
477 			CPUFREQ_RELATION_H);
478 		return;
479 	}
480 
481 	/*
482 	 * The optimal frequency is the frequency that is the lowest that
483 	 * can support the current CPU usage without triggering the up
484 	 * policy. To be safe, we focus 10 points under the threshold.
485 	 */
486 	if (load < (dbs_tuners_ins.down_threshold - 10)) {
487 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
488 
489 		this_dbs_info->requested_freq -= freq_target;
490 		if (this_dbs_info->requested_freq < policy->min)
491 			this_dbs_info->requested_freq = policy->min;
492 
493 		/*
494 		 * if we cannot reduce the frequency anymore, break out early
495 		 */
496 		if (policy->cur == policy->min)
497 			return;
498 
499 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
500 				CPUFREQ_RELATION_H);
501 		return;
502 	}
503 }
504 
505 static void do_dbs_timer(struct work_struct *work)
506 {
507 	struct cpu_dbs_info_s *dbs_info =
508 		container_of(work, struct cpu_dbs_info_s, work.work);
509 	unsigned int cpu = dbs_info->cpu;
510 
511 	/* We want all CPUs to do sampling nearly on same jiffy */
512 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
513 
514 	delay -= jiffies % delay;
515 
516 	if (lock_policy_rwsem_write(cpu) < 0)
517 		return;
518 
519 	if (!dbs_info->enable) {
520 		unlock_policy_rwsem_write(cpu);
521 		return;
522 	}
523 
524 	dbs_check_cpu(dbs_info);
525 
526 	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
527 	unlock_policy_rwsem_write(cpu);
528 }
529 
530 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
531 {
532 	/* We want all CPUs to do sampling nearly on same jiffy */
533 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
534 	delay -= jiffies % delay;
535 
536 	dbs_info->enable = 1;
537 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
538 	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
539 				delay);
540 }
541 
542 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
543 {
544 	dbs_info->enable = 0;
545 	cancel_delayed_work(&dbs_info->work);
546 }
547 
548 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
549 				   unsigned int event)
550 {
551 	unsigned int cpu = policy->cpu;
552 	struct cpu_dbs_info_s *this_dbs_info;
553 	unsigned int j;
554 	int rc;
555 
556 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
557 
558 	switch (event) {
559 	case CPUFREQ_GOV_START:
560 		if ((!cpu_online(cpu)) || (!policy->cur))
561 			return -EINVAL;
562 
563 		if (this_dbs_info->enable) /* Already enabled */
564 			break;
565 
566 		mutex_lock(&dbs_mutex);
567 
568 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
569 		if (rc) {
570 			mutex_unlock(&dbs_mutex);
571 			return rc;
572 		}
573 
574 		for_each_cpu(j, policy->cpus) {
575 			struct cpu_dbs_info_s *j_dbs_info;
576 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
577 			j_dbs_info->cur_policy = policy;
578 
579 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
580 						&j_dbs_info->prev_cpu_wall);
581 			if (dbs_tuners_ins.ignore_nice) {
582 				j_dbs_info->prev_cpu_nice =
583 						kstat_cpu(j).cpustat.nice;
584 			}
585 		}
586 		this_dbs_info->down_skip = 0;
587 		this_dbs_info->requested_freq = policy->cur;
588 
589 		dbs_enable++;
590 		/*
591 		 * Start the timerschedule work, when this governor
592 		 * is used for first time
593 		 */
594 		if (dbs_enable == 1) {
595 			unsigned int latency;
596 			/* policy latency is in nS. Convert it to uS first */
597 			latency = policy->cpuinfo.transition_latency / 1000;
598 			if (latency == 0)
599 				latency = 1;
600 
601 			def_sampling_rate =
602 				max(latency * LATENCY_MULTIPLIER,
603 				    MIN_STAT_SAMPLING_RATE);
604 
605 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
606 
607 			cpufreq_register_notifier(
608 					&dbs_cpufreq_notifier_block,
609 					CPUFREQ_TRANSITION_NOTIFIER);
610 		}
611 		dbs_timer_init(this_dbs_info);
612 
613 		mutex_unlock(&dbs_mutex);
614 
615 		break;
616 
617 	case CPUFREQ_GOV_STOP:
618 		mutex_lock(&dbs_mutex);
619 		dbs_timer_exit(this_dbs_info);
620 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
621 		dbs_enable--;
622 
623 		/*
624 		 * Stop the timerschedule work, when this governor
625 		 * is used for first time
626 		 */
627 		if (dbs_enable == 0)
628 			cpufreq_unregister_notifier(
629 					&dbs_cpufreq_notifier_block,
630 					CPUFREQ_TRANSITION_NOTIFIER);
631 
632 		mutex_unlock(&dbs_mutex);
633 
634 		break;
635 
636 	case CPUFREQ_GOV_LIMITS:
637 		mutex_lock(&dbs_mutex);
638 		if (policy->max < this_dbs_info->cur_policy->cur)
639 			__cpufreq_driver_target(
640 					this_dbs_info->cur_policy,
641 					policy->max, CPUFREQ_RELATION_H);
642 		else if (policy->min > this_dbs_info->cur_policy->cur)
643 			__cpufreq_driver_target(
644 					this_dbs_info->cur_policy,
645 					policy->min, CPUFREQ_RELATION_L);
646 		mutex_unlock(&dbs_mutex);
647 
648 		break;
649 	}
650 	return 0;
651 }
652 
653 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
654 static
655 #endif
656 struct cpufreq_governor cpufreq_gov_conservative = {
657 	.name			= "conservative",
658 	.governor		= cpufreq_governor_dbs,
659 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
660 	.owner			= THIS_MODULE,
661 };
662 
663 static int __init cpufreq_gov_dbs_init(void)
664 {
665 	int err;
666 
667 	kconservative_wq = create_workqueue("kconservative");
668 	if (!kconservative_wq) {
669 		printk(KERN_ERR "Creation of kconservative failed\n");
670 		return -EFAULT;
671 	}
672 
673 	err = cpufreq_register_governor(&cpufreq_gov_conservative);
674 	if (err)
675 		destroy_workqueue(kconservative_wq);
676 
677 	return err;
678 }
679 
680 static void __exit cpufreq_gov_dbs_exit(void)
681 {
682 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
683 	destroy_workqueue(kconservative_wq);
684 }
685 
686 
687 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
688 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
689 		"Low Latency Frequency Transition capable processors "
690 		"optimised for use in a battery environment");
691 MODULE_LICENSE("GPL");
692 
693 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
694 fs_initcall(cpufreq_gov_dbs_init);
695 #else
696 module_init(cpufreq_gov_dbs_init);
697 #endif
698 module_exit(cpufreq_gov_dbs_exit);
699