1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36 
37 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
39 
40 /*
41  * The polling frequency of this governor depends on the capability of
42  * the processor. Default polling frequency is 1000 times the transition
43  * latency of the processor. The governor will work on any processor with
44  * transition latency <= 10mS, using appropriate sampling
45  * rate.
46  * For CPUs with transition latency > 10mS (mostly drivers
47  * with CPUFREQ_ETERNAL), this governor will not work.
48  * All times here are in uS.
49  */
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE			\
54 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE			\
56 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
59 #define DEF_SAMPLING_DOWN_FACTOR		(1)
60 #define MAX_SAMPLING_DOWN_FACTOR		(10)
61 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
62 
63 static void do_dbs_timer(struct work_struct *work);
64 
65 struct cpu_dbs_info_s {
66 	struct cpufreq_policy *cur_policy;
67 	unsigned int prev_cpu_idle_up;
68 	unsigned int prev_cpu_idle_down;
69 	unsigned int enable;
70 	unsigned int down_skip;
71 	unsigned int requested_freq;
72 };
73 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
74 
75 static unsigned int dbs_enable;	/* number of CPUs using this policy */
76 
77 /*
78  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
79  * lock and dbs_mutex. cpu_hotplug lock should always be held before
80  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
81  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
82  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
83  * is recursive for the same process. -Venki
84  */
85 static DEFINE_MUTEX(dbs_mutex);
86 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
87 
88 struct dbs_tuners {
89 	unsigned int sampling_rate;
90 	unsigned int sampling_down_factor;
91 	unsigned int up_threshold;
92 	unsigned int down_threshold;
93 	unsigned int ignore_nice;
94 	unsigned int freq_step;
95 };
96 
97 static struct dbs_tuners dbs_tuners_ins = {
98 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
99 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
100 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
101 	.ignore_nice = 0,
102 	.freq_step = 5,
103 };
104 
105 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
106 {
107 	unsigned int add_nice = 0, ret;
108 
109 	if (dbs_tuners_ins.ignore_nice)
110 		add_nice = kstat_cpu(cpu).cpustat.nice;
111 
112 	ret = kstat_cpu(cpu).cpustat.idle +
113 		kstat_cpu(cpu).cpustat.iowait +
114 		add_nice;
115 
116 	return ret;
117 }
118 
119 /* keep track of frequency transitions */
120 static int
121 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
122 		     void *data)
123 {
124 	struct cpufreq_freqs *freq = data;
125 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
126 							freq->cpu);
127 
128 	if (!this_dbs_info->enable)
129 		return 0;
130 
131 	this_dbs_info->requested_freq = freq->new;
132 
133 	return 0;
134 }
135 
136 static struct notifier_block dbs_cpufreq_notifier_block = {
137 	.notifier_call = dbs_cpufreq_notifier
138 };
139 
140 /************************** sysfs interface ************************/
141 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
142 {
143 	return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
144 }
145 
146 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
147 {
148 	return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
149 }
150 
151 #define define_one_ro(_name)				\
152 static struct freq_attr _name =				\
153 __ATTR(_name, 0444, show_##_name, NULL)
154 
155 define_one_ro(sampling_rate_max);
156 define_one_ro(sampling_rate_min);
157 
158 /* cpufreq_conservative Governor Tunables */
159 #define show_one(file_name, object)					\
160 static ssize_t show_##file_name						\
161 (struct cpufreq_policy *unused, char *buf)				\
162 {									\
163 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
164 }
165 show_one(sampling_rate, sampling_rate);
166 show_one(sampling_down_factor, sampling_down_factor);
167 show_one(up_threshold, up_threshold);
168 show_one(down_threshold, down_threshold);
169 show_one(ignore_nice_load, ignore_nice);
170 show_one(freq_step, freq_step);
171 
172 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
173 		const char *buf, size_t count)
174 {
175 	unsigned int input;
176 	int ret;
177 	ret = sscanf(buf, "%u", &input);
178 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
179 		return -EINVAL;
180 
181 	mutex_lock(&dbs_mutex);
182 	dbs_tuners_ins.sampling_down_factor = input;
183 	mutex_unlock(&dbs_mutex);
184 
185 	return count;
186 }
187 
188 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
189 		const char *buf, size_t count)
190 {
191 	unsigned int input;
192 	int ret;
193 	ret = sscanf(buf, "%u", &input);
194 
195 	mutex_lock(&dbs_mutex);
196 	if (ret != 1 || input > MAX_SAMPLING_RATE ||
197 	    input < MIN_SAMPLING_RATE) {
198 		mutex_unlock(&dbs_mutex);
199 		return -EINVAL;
200 	}
201 
202 	dbs_tuners_ins.sampling_rate = input;
203 	mutex_unlock(&dbs_mutex);
204 
205 	return count;
206 }
207 
208 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
209 		const char *buf, size_t count)
210 {
211 	unsigned int input;
212 	int ret;
213 	ret = sscanf(buf, "%u", &input);
214 
215 	mutex_lock(&dbs_mutex);
216 	if (ret != 1 || input > 100 ||
217 	    input <= dbs_tuners_ins.down_threshold) {
218 		mutex_unlock(&dbs_mutex);
219 		return -EINVAL;
220 	}
221 
222 	dbs_tuners_ins.up_threshold = input;
223 	mutex_unlock(&dbs_mutex);
224 
225 	return count;
226 }
227 
228 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
229 		const char *buf, size_t count)
230 {
231 	unsigned int input;
232 	int ret;
233 	ret = sscanf(buf, "%u", &input);
234 
235 	mutex_lock(&dbs_mutex);
236 	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
237 		mutex_unlock(&dbs_mutex);
238 		return -EINVAL;
239 	}
240 
241 	dbs_tuners_ins.down_threshold = input;
242 	mutex_unlock(&dbs_mutex);
243 
244 	return count;
245 }
246 
247 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
248 		const char *buf, size_t count)
249 {
250 	unsigned int input;
251 	int ret;
252 
253 	unsigned int j;
254 
255 	ret = sscanf(buf, "%u", &input);
256 	if (ret != 1)
257 		return -EINVAL;
258 
259 	if (input > 1)
260 		input = 1;
261 
262 	mutex_lock(&dbs_mutex);
263 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
264 		mutex_unlock(&dbs_mutex);
265 		return count;
266 	}
267 	dbs_tuners_ins.ignore_nice = input;
268 
269 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
270 	for_each_online_cpu(j) {
271 		struct cpu_dbs_info_s *j_dbs_info;
272 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
273 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
274 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
275 	}
276 	mutex_unlock(&dbs_mutex);
277 
278 	return count;
279 }
280 
281 static ssize_t store_freq_step(struct cpufreq_policy *policy,
282 		const char *buf, size_t count)
283 {
284 	unsigned int input;
285 	int ret;
286 
287 	ret = sscanf(buf, "%u", &input);
288 
289 	if (ret != 1)
290 		return -EINVAL;
291 
292 	if (input > 100)
293 		input = 100;
294 
295 	/* no need to test here if freq_step is zero as the user might actually
296 	 * want this, they would be crazy though :) */
297 	mutex_lock(&dbs_mutex);
298 	dbs_tuners_ins.freq_step = input;
299 	mutex_unlock(&dbs_mutex);
300 
301 	return count;
302 }
303 
304 #define define_one_rw(_name) \
305 static struct freq_attr _name = \
306 __ATTR(_name, 0644, show_##_name, store_##_name)
307 
308 define_one_rw(sampling_rate);
309 define_one_rw(sampling_down_factor);
310 define_one_rw(up_threshold);
311 define_one_rw(down_threshold);
312 define_one_rw(ignore_nice_load);
313 define_one_rw(freq_step);
314 
315 static struct attribute *dbs_attributes[] = {
316 	&sampling_rate_max.attr,
317 	&sampling_rate_min.attr,
318 	&sampling_rate.attr,
319 	&sampling_down_factor.attr,
320 	&up_threshold.attr,
321 	&down_threshold.attr,
322 	&ignore_nice_load.attr,
323 	&freq_step.attr,
324 	NULL
325 };
326 
327 static struct attribute_group dbs_attr_group = {
328 	.attrs = dbs_attributes,
329 	.name = "conservative",
330 };
331 
332 /************************** sysfs end ************************/
333 
334 static void dbs_check_cpu(int cpu)
335 {
336 	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
337 	unsigned int tmp_idle_ticks, total_idle_ticks;
338 	unsigned int freq_target;
339 	unsigned int freq_down_sampling_rate;
340 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
341 	struct cpufreq_policy *policy;
342 
343 	if (!this_dbs_info->enable)
344 		return;
345 
346 	policy = this_dbs_info->cur_policy;
347 
348 	/*
349 	 * The default safe range is 20% to 80%
350 	 * Every sampling_rate, we check
351 	 *	- If current idle time is less than 20%, then we try to
352 	 *	  increase frequency
353 	 * Every sampling_rate*sampling_down_factor, we check
354 	 *	- If current idle time is more than 80%, then we try to
355 	 *	  decrease frequency
356 	 *
357 	 * Any frequency increase takes it to the maximum frequency.
358 	 * Frequency reduction happens at minimum steps of
359 	 * 5% (default) of max_frequency
360 	 */
361 
362 	/* Check for frequency increase */
363 	idle_ticks = UINT_MAX;
364 
365 	/* Check for frequency increase */
366 	total_idle_ticks = get_cpu_idle_time(cpu);
367 	tmp_idle_ticks = total_idle_ticks -
368 		this_dbs_info->prev_cpu_idle_up;
369 	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
370 
371 	if (tmp_idle_ticks < idle_ticks)
372 		idle_ticks = tmp_idle_ticks;
373 
374 	/* Scale idle ticks by 100 and compare with up and down ticks */
375 	idle_ticks *= 100;
376 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
377 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
378 
379 	if (idle_ticks < up_idle_ticks) {
380 		this_dbs_info->down_skip = 0;
381 		this_dbs_info->prev_cpu_idle_down =
382 			this_dbs_info->prev_cpu_idle_up;
383 
384 		/* if we are already at full speed then break out early */
385 		if (this_dbs_info->requested_freq == policy->max)
386 			return;
387 
388 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
389 
390 		/* max freq cannot be less than 100. But who knows.... */
391 		if (unlikely(freq_target == 0))
392 			freq_target = 5;
393 
394 		this_dbs_info->requested_freq += freq_target;
395 		if (this_dbs_info->requested_freq > policy->max)
396 			this_dbs_info->requested_freq = policy->max;
397 
398 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
399 			CPUFREQ_RELATION_H);
400 		return;
401 	}
402 
403 	/* Check for frequency decrease */
404 	this_dbs_info->down_skip++;
405 	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
406 		return;
407 
408 	/* Check for frequency decrease */
409 	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
410 	tmp_idle_ticks = total_idle_ticks -
411 		this_dbs_info->prev_cpu_idle_down;
412 	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
413 
414 	if (tmp_idle_ticks < idle_ticks)
415 		idle_ticks = tmp_idle_ticks;
416 
417 	/* Scale idle ticks by 100 and compare with up and down ticks */
418 	idle_ticks *= 100;
419 	this_dbs_info->down_skip = 0;
420 
421 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
422 		dbs_tuners_ins.sampling_down_factor;
423 	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
424 		usecs_to_jiffies(freq_down_sampling_rate);
425 
426 	if (idle_ticks > down_idle_ticks) {
427 		/*
428 		 * if we are already at the lowest speed then break out early
429 		 * or if we 'cannot' reduce the speed as the user might want
430 		 * freq_target to be zero
431 		 */
432 		if (this_dbs_info->requested_freq == policy->min
433 				|| dbs_tuners_ins.freq_step == 0)
434 			return;
435 
436 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
437 
438 		/* max freq cannot be less than 100. But who knows.... */
439 		if (unlikely(freq_target == 0))
440 			freq_target = 5;
441 
442 		this_dbs_info->requested_freq -= freq_target;
443 		if (this_dbs_info->requested_freq < policy->min)
444 			this_dbs_info->requested_freq = policy->min;
445 
446 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
447 				CPUFREQ_RELATION_H);
448 		return;
449 	}
450 }
451 
452 static void do_dbs_timer(struct work_struct *work)
453 {
454 	int i;
455 	mutex_lock(&dbs_mutex);
456 	for_each_online_cpu(i)
457 		dbs_check_cpu(i);
458 	schedule_delayed_work(&dbs_work,
459 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
460 	mutex_unlock(&dbs_mutex);
461 }
462 
463 static inline void dbs_timer_init(void)
464 {
465 	init_timer_deferrable(&dbs_work.timer);
466 	schedule_delayed_work(&dbs_work,
467 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
468 	return;
469 }
470 
471 static inline void dbs_timer_exit(void)
472 {
473 	cancel_delayed_work(&dbs_work);
474 	return;
475 }
476 
477 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
478 				   unsigned int event)
479 {
480 	unsigned int cpu = policy->cpu;
481 	struct cpu_dbs_info_s *this_dbs_info;
482 	unsigned int j;
483 	int rc;
484 
485 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
486 
487 	switch (event) {
488 	case CPUFREQ_GOV_START:
489 		if ((!cpu_online(cpu)) || (!policy->cur))
490 			return -EINVAL;
491 
492 		if (this_dbs_info->enable) /* Already enabled */
493 			break;
494 
495 		mutex_lock(&dbs_mutex);
496 
497 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
498 		if (rc) {
499 			mutex_unlock(&dbs_mutex);
500 			return rc;
501 		}
502 
503 		for_each_cpu(j, policy->cpus) {
504 			struct cpu_dbs_info_s *j_dbs_info;
505 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
506 			j_dbs_info->cur_policy = policy;
507 
508 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
509 			j_dbs_info->prev_cpu_idle_down
510 				= j_dbs_info->prev_cpu_idle_up;
511 		}
512 		this_dbs_info->enable = 1;
513 		this_dbs_info->down_skip = 0;
514 		this_dbs_info->requested_freq = policy->cur;
515 
516 		dbs_enable++;
517 		/*
518 		 * Start the timerschedule work, when this governor
519 		 * is used for first time
520 		 */
521 		if (dbs_enable == 1) {
522 			unsigned int latency;
523 			/* policy latency is in nS. Convert it to uS first */
524 			latency = policy->cpuinfo.transition_latency / 1000;
525 			if (latency == 0)
526 				latency = 1;
527 
528 			def_sampling_rate = 10 * latency *
529 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
530 
531 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
532 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
533 
534 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
535 
536 			dbs_timer_init();
537 			cpufreq_register_notifier(
538 					&dbs_cpufreq_notifier_block,
539 					CPUFREQ_TRANSITION_NOTIFIER);
540 		}
541 
542 		mutex_unlock(&dbs_mutex);
543 		break;
544 
545 	case CPUFREQ_GOV_STOP:
546 		mutex_lock(&dbs_mutex);
547 		this_dbs_info->enable = 0;
548 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
549 		dbs_enable--;
550 		/*
551 		 * Stop the timerschedule work, when this governor
552 		 * is used for first time
553 		 */
554 		if (dbs_enable == 0) {
555 			dbs_timer_exit();
556 			cpufreq_unregister_notifier(
557 					&dbs_cpufreq_notifier_block,
558 					CPUFREQ_TRANSITION_NOTIFIER);
559 		}
560 
561 		mutex_unlock(&dbs_mutex);
562 
563 		break;
564 
565 	case CPUFREQ_GOV_LIMITS:
566 		mutex_lock(&dbs_mutex);
567 		if (policy->max < this_dbs_info->cur_policy->cur)
568 			__cpufreq_driver_target(
569 					this_dbs_info->cur_policy,
570 					policy->max, CPUFREQ_RELATION_H);
571 		else if (policy->min > this_dbs_info->cur_policy->cur)
572 			__cpufreq_driver_target(
573 					this_dbs_info->cur_policy,
574 					policy->min, CPUFREQ_RELATION_L);
575 		mutex_unlock(&dbs_mutex);
576 		break;
577 	}
578 	return 0;
579 }
580 
581 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
582 static
583 #endif
584 struct cpufreq_governor cpufreq_gov_conservative = {
585 	.name			= "conservative",
586 	.governor		= cpufreq_governor_dbs,
587 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
588 	.owner			= THIS_MODULE,
589 };
590 
591 static int __init cpufreq_gov_dbs_init(void)
592 {
593 	return cpufreq_register_governor(&cpufreq_gov_conservative);
594 }
595 
596 static void __exit cpufreq_gov_dbs_exit(void)
597 {
598 	/* Make sure that the scheduled work is indeed not running */
599 	flush_scheduled_work();
600 
601 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
602 }
603 
604 
605 MODULE_AUTHOR("Alexander Clouter <alex-kernel@digriz.org.uk>");
606 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
607 		"Low Latency Frequency Transition capable processors "
608 		"optimised for use in a battery environment");
609 MODULE_LICENSE("GPL");
610 
611 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
612 fs_initcall(cpufreq_gov_dbs_init);
613 #else
614 module_init(cpufreq_gov_dbs_init);
615 #endif
616 module_exit(cpufreq_gov_dbs_exit);
617