1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36 
37 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
39 
40 /*
41  * The polling frequency of this governor depends on the capability of
42  * the processor. Default polling frequency is 1000 times the transition
43  * latency of the processor. The governor will work on any processor with
44  * transition latency <= 10mS, using appropriate sampling
45  * rate.
46  * For CPUs with transition latency > 10mS (mostly drivers
47  * with CPUFREQ_ETERNAL), this governor will not work.
48  * All times here are in uS.
49  */
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE			\
54 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE			\
56 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
59 #define DEF_SAMPLING_DOWN_FACTOR		(1)
60 #define MAX_SAMPLING_DOWN_FACTOR		(10)
61 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
62 
63 static void do_dbs_timer(struct work_struct *work);
64 
65 struct cpu_dbs_info_s {
66 	struct cpufreq_policy *cur_policy;
67 	unsigned int prev_cpu_idle_up;
68 	unsigned int prev_cpu_idle_down;
69 	unsigned int enable;
70 	unsigned int down_skip;
71 	unsigned int requested_freq;
72 };
73 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
74 
75 static unsigned int dbs_enable;	/* number of CPUs using this policy */
76 
77 /*
78  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
79  * lock and dbs_mutex. cpu_hotplug lock should always be held before
80  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
81  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
82  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
83  * is recursive for the same process. -Venki
84  */
85 static DEFINE_MUTEX(dbs_mutex);
86 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
87 
88 struct dbs_tuners {
89 	unsigned int sampling_rate;
90 	unsigned int sampling_down_factor;
91 	unsigned int up_threshold;
92 	unsigned int down_threshold;
93 	unsigned int ignore_nice;
94 	unsigned int freq_step;
95 };
96 
97 static struct dbs_tuners dbs_tuners_ins = {
98 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
99 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
100 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
101 	.ignore_nice = 0,
102 	.freq_step = 5,
103 };
104 
105 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
106 {
107 	unsigned int add_nice = 0, ret;
108 
109 	if (dbs_tuners_ins.ignore_nice)
110 		add_nice = kstat_cpu(cpu).cpustat.nice;
111 
112 	ret = kstat_cpu(cpu).cpustat.idle +
113 		kstat_cpu(cpu).cpustat.iowait +
114 		add_nice;
115 
116 	return ret;
117 }
118 
119 /* keep track of frequency transitions */
120 static int
121 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
122 		     void *data)
123 {
124 	struct cpufreq_freqs *freq = data;
125 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
126 							freq->cpu);
127 
128 	if (!this_dbs_info->enable)
129 		return 0;
130 
131 	this_dbs_info->requested_freq = freq->new;
132 
133 	return 0;
134 }
135 
136 static struct notifier_block dbs_cpufreq_notifier_block = {
137 	.notifier_call = dbs_cpufreq_notifier
138 };
139 
140 /************************** sysfs interface ************************/
141 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
142 {
143 	static int print_once;
144 
145 	if (!print_once) {
146 		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
147 		       "sysfs file is deprecated - used by: %s\n",
148 		       current->comm);
149 		print_once = 1;
150 	}
151 	return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
152 }
153 
154 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
155 {
156 	static int print_once;
157 
158 	if (!print_once) {
159 		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
160 		       "sysfs file is deprecated - used by: %s\n", current->comm);
161 		print_once = 1;
162 	}
163 	return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
164 }
165 
166 #define define_one_ro(_name)				\
167 static struct freq_attr _name =				\
168 __ATTR(_name, 0444, show_##_name, NULL)
169 
170 define_one_ro(sampling_rate_max);
171 define_one_ro(sampling_rate_min);
172 
173 /* cpufreq_conservative Governor Tunables */
174 #define show_one(file_name, object)					\
175 static ssize_t show_##file_name						\
176 (struct cpufreq_policy *unused, char *buf)				\
177 {									\
178 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
179 }
180 show_one(sampling_rate, sampling_rate);
181 show_one(sampling_down_factor, sampling_down_factor);
182 show_one(up_threshold, up_threshold);
183 show_one(down_threshold, down_threshold);
184 show_one(ignore_nice_load, ignore_nice);
185 show_one(freq_step, freq_step);
186 
187 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
188 		const char *buf, size_t count)
189 {
190 	unsigned int input;
191 	int ret;
192 	ret = sscanf(buf, "%u", &input);
193 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
194 		return -EINVAL;
195 
196 	mutex_lock(&dbs_mutex);
197 	dbs_tuners_ins.sampling_down_factor = input;
198 	mutex_unlock(&dbs_mutex);
199 
200 	return count;
201 }
202 
203 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
204 		const char *buf, size_t count)
205 {
206 	unsigned int input;
207 	int ret;
208 	ret = sscanf(buf, "%u", &input);
209 
210 	mutex_lock(&dbs_mutex);
211 	if (ret != 1 || input > MAX_SAMPLING_RATE ||
212 	    input < MIN_SAMPLING_RATE) {
213 		mutex_unlock(&dbs_mutex);
214 		return -EINVAL;
215 	}
216 
217 	dbs_tuners_ins.sampling_rate = input;
218 	mutex_unlock(&dbs_mutex);
219 
220 	return count;
221 }
222 
223 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
224 		const char *buf, size_t count)
225 {
226 	unsigned int input;
227 	int ret;
228 	ret = sscanf(buf, "%u", &input);
229 
230 	mutex_lock(&dbs_mutex);
231 	if (ret != 1 || input > 100 ||
232 	    input <= dbs_tuners_ins.down_threshold) {
233 		mutex_unlock(&dbs_mutex);
234 		return -EINVAL;
235 	}
236 
237 	dbs_tuners_ins.up_threshold = input;
238 	mutex_unlock(&dbs_mutex);
239 
240 	return count;
241 }
242 
243 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
244 		const char *buf, size_t count)
245 {
246 	unsigned int input;
247 	int ret;
248 	ret = sscanf(buf, "%u", &input);
249 
250 	mutex_lock(&dbs_mutex);
251 	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
252 		mutex_unlock(&dbs_mutex);
253 		return -EINVAL;
254 	}
255 
256 	dbs_tuners_ins.down_threshold = input;
257 	mutex_unlock(&dbs_mutex);
258 
259 	return count;
260 }
261 
262 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
263 		const char *buf, size_t count)
264 {
265 	unsigned int input;
266 	int ret;
267 
268 	unsigned int j;
269 
270 	ret = sscanf(buf, "%u", &input);
271 	if (ret != 1)
272 		return -EINVAL;
273 
274 	if (input > 1)
275 		input = 1;
276 
277 	mutex_lock(&dbs_mutex);
278 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
279 		mutex_unlock(&dbs_mutex);
280 		return count;
281 	}
282 	dbs_tuners_ins.ignore_nice = input;
283 
284 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
285 	for_each_online_cpu(j) {
286 		struct cpu_dbs_info_s *j_dbs_info;
287 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
288 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
289 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
290 	}
291 	mutex_unlock(&dbs_mutex);
292 
293 	return count;
294 }
295 
296 static ssize_t store_freq_step(struct cpufreq_policy *policy,
297 		const char *buf, size_t count)
298 {
299 	unsigned int input;
300 	int ret;
301 
302 	ret = sscanf(buf, "%u", &input);
303 
304 	if (ret != 1)
305 		return -EINVAL;
306 
307 	if (input > 100)
308 		input = 100;
309 
310 	/* no need to test here if freq_step is zero as the user might actually
311 	 * want this, they would be crazy though :) */
312 	mutex_lock(&dbs_mutex);
313 	dbs_tuners_ins.freq_step = input;
314 	mutex_unlock(&dbs_mutex);
315 
316 	return count;
317 }
318 
319 #define define_one_rw(_name) \
320 static struct freq_attr _name = \
321 __ATTR(_name, 0644, show_##_name, store_##_name)
322 
323 define_one_rw(sampling_rate);
324 define_one_rw(sampling_down_factor);
325 define_one_rw(up_threshold);
326 define_one_rw(down_threshold);
327 define_one_rw(ignore_nice_load);
328 define_one_rw(freq_step);
329 
330 static struct attribute *dbs_attributes[] = {
331 	&sampling_rate_max.attr,
332 	&sampling_rate_min.attr,
333 	&sampling_rate.attr,
334 	&sampling_down_factor.attr,
335 	&up_threshold.attr,
336 	&down_threshold.attr,
337 	&ignore_nice_load.attr,
338 	&freq_step.attr,
339 	NULL
340 };
341 
342 static struct attribute_group dbs_attr_group = {
343 	.attrs = dbs_attributes,
344 	.name = "conservative",
345 };
346 
347 /************************** sysfs end ************************/
348 
349 static void dbs_check_cpu(int cpu)
350 {
351 	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
352 	unsigned int tmp_idle_ticks, total_idle_ticks;
353 	unsigned int freq_target;
354 	unsigned int freq_down_sampling_rate;
355 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
356 	struct cpufreq_policy *policy;
357 
358 	if (!this_dbs_info->enable)
359 		return;
360 
361 	policy = this_dbs_info->cur_policy;
362 
363 	/*
364 	 * The default safe range is 20% to 80%
365 	 * Every sampling_rate, we check
366 	 *	- If current idle time is less than 20%, then we try to
367 	 *	  increase frequency
368 	 * Every sampling_rate*sampling_down_factor, we check
369 	 *	- If current idle time is more than 80%, then we try to
370 	 *	  decrease frequency
371 	 *
372 	 * Any frequency increase takes it to the maximum frequency.
373 	 * Frequency reduction happens at minimum steps of
374 	 * 5% (default) of max_frequency
375 	 */
376 
377 	/* Check for frequency increase */
378 	idle_ticks = UINT_MAX;
379 
380 	/* Check for frequency increase */
381 	total_idle_ticks = get_cpu_idle_time(cpu);
382 	tmp_idle_ticks = total_idle_ticks -
383 		this_dbs_info->prev_cpu_idle_up;
384 	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
385 
386 	if (tmp_idle_ticks < idle_ticks)
387 		idle_ticks = tmp_idle_ticks;
388 
389 	/* Scale idle ticks by 100 and compare with up and down ticks */
390 	idle_ticks *= 100;
391 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
392 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
393 
394 	if (idle_ticks < up_idle_ticks) {
395 		this_dbs_info->down_skip = 0;
396 		this_dbs_info->prev_cpu_idle_down =
397 			this_dbs_info->prev_cpu_idle_up;
398 
399 		/* if we are already at full speed then break out early */
400 		if (this_dbs_info->requested_freq == policy->max)
401 			return;
402 
403 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
404 
405 		/* max freq cannot be less than 100. But who knows.... */
406 		if (unlikely(freq_target == 0))
407 			freq_target = 5;
408 
409 		this_dbs_info->requested_freq += freq_target;
410 		if (this_dbs_info->requested_freq > policy->max)
411 			this_dbs_info->requested_freq = policy->max;
412 
413 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
414 			CPUFREQ_RELATION_H);
415 		return;
416 	}
417 
418 	/* Check for frequency decrease */
419 	this_dbs_info->down_skip++;
420 	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
421 		return;
422 
423 	/* Check for frequency decrease */
424 	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
425 	tmp_idle_ticks = total_idle_ticks -
426 		this_dbs_info->prev_cpu_idle_down;
427 	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
428 
429 	if (tmp_idle_ticks < idle_ticks)
430 		idle_ticks = tmp_idle_ticks;
431 
432 	/* Scale idle ticks by 100 and compare with up and down ticks */
433 	idle_ticks *= 100;
434 	this_dbs_info->down_skip = 0;
435 
436 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
437 		dbs_tuners_ins.sampling_down_factor;
438 	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
439 		usecs_to_jiffies(freq_down_sampling_rate);
440 
441 	if (idle_ticks > down_idle_ticks) {
442 		/*
443 		 * if we are already at the lowest speed then break out early
444 		 * or if we 'cannot' reduce the speed as the user might want
445 		 * freq_target to be zero
446 		 */
447 		if (this_dbs_info->requested_freq == policy->min
448 				|| dbs_tuners_ins.freq_step == 0)
449 			return;
450 
451 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
452 
453 		/* max freq cannot be less than 100. But who knows.... */
454 		if (unlikely(freq_target == 0))
455 			freq_target = 5;
456 
457 		this_dbs_info->requested_freq -= freq_target;
458 		if (this_dbs_info->requested_freq < policy->min)
459 			this_dbs_info->requested_freq = policy->min;
460 
461 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
462 				CPUFREQ_RELATION_H);
463 		return;
464 	}
465 }
466 
467 static void do_dbs_timer(struct work_struct *work)
468 {
469 	int i;
470 	mutex_lock(&dbs_mutex);
471 	for_each_online_cpu(i)
472 		dbs_check_cpu(i);
473 	schedule_delayed_work(&dbs_work,
474 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
475 	mutex_unlock(&dbs_mutex);
476 }
477 
478 static inline void dbs_timer_init(void)
479 {
480 	init_timer_deferrable(&dbs_work.timer);
481 	schedule_delayed_work(&dbs_work,
482 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
483 	return;
484 }
485 
486 static inline void dbs_timer_exit(void)
487 {
488 	cancel_delayed_work(&dbs_work);
489 	return;
490 }
491 
492 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
493 				   unsigned int event)
494 {
495 	unsigned int cpu = policy->cpu;
496 	struct cpu_dbs_info_s *this_dbs_info;
497 	unsigned int j;
498 	int rc;
499 
500 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
501 
502 	switch (event) {
503 	case CPUFREQ_GOV_START:
504 		if ((!cpu_online(cpu)) || (!policy->cur))
505 			return -EINVAL;
506 
507 		if (this_dbs_info->enable) /* Already enabled */
508 			break;
509 
510 		mutex_lock(&dbs_mutex);
511 
512 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
513 		if (rc) {
514 			mutex_unlock(&dbs_mutex);
515 			return rc;
516 		}
517 
518 		for_each_cpu(j, policy->cpus) {
519 			struct cpu_dbs_info_s *j_dbs_info;
520 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
521 			j_dbs_info->cur_policy = policy;
522 
523 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
524 			j_dbs_info->prev_cpu_idle_down
525 				= j_dbs_info->prev_cpu_idle_up;
526 		}
527 		this_dbs_info->enable = 1;
528 		this_dbs_info->down_skip = 0;
529 		this_dbs_info->requested_freq = policy->cur;
530 
531 		dbs_enable++;
532 		/*
533 		 * Start the timerschedule work, when this governor
534 		 * is used for first time
535 		 */
536 		if (dbs_enable == 1) {
537 			unsigned int latency;
538 			/* policy latency is in nS. Convert it to uS first */
539 			latency = policy->cpuinfo.transition_latency / 1000;
540 			if (latency == 0)
541 				latency = 1;
542 
543 			def_sampling_rate = 10 * latency *
544 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
545 
546 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
547 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
548 
549 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
550 
551 			dbs_timer_init();
552 			cpufreq_register_notifier(
553 					&dbs_cpufreq_notifier_block,
554 					CPUFREQ_TRANSITION_NOTIFIER);
555 		}
556 
557 		mutex_unlock(&dbs_mutex);
558 		break;
559 
560 	case CPUFREQ_GOV_STOP:
561 		mutex_lock(&dbs_mutex);
562 		this_dbs_info->enable = 0;
563 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
564 		dbs_enable--;
565 		/*
566 		 * Stop the timerschedule work, when this governor
567 		 * is used for first time
568 		 */
569 		if (dbs_enable == 0) {
570 			dbs_timer_exit();
571 			cpufreq_unregister_notifier(
572 					&dbs_cpufreq_notifier_block,
573 					CPUFREQ_TRANSITION_NOTIFIER);
574 		}
575 
576 		mutex_unlock(&dbs_mutex);
577 
578 		break;
579 
580 	case CPUFREQ_GOV_LIMITS:
581 		mutex_lock(&dbs_mutex);
582 		if (policy->max < this_dbs_info->cur_policy->cur)
583 			__cpufreq_driver_target(
584 					this_dbs_info->cur_policy,
585 					policy->max, CPUFREQ_RELATION_H);
586 		else if (policy->min > this_dbs_info->cur_policy->cur)
587 			__cpufreq_driver_target(
588 					this_dbs_info->cur_policy,
589 					policy->min, CPUFREQ_RELATION_L);
590 		mutex_unlock(&dbs_mutex);
591 		break;
592 	}
593 	return 0;
594 }
595 
596 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
597 static
598 #endif
599 struct cpufreq_governor cpufreq_gov_conservative = {
600 	.name			= "conservative",
601 	.governor		= cpufreq_governor_dbs,
602 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
603 	.owner			= THIS_MODULE,
604 };
605 
606 static int __init cpufreq_gov_dbs_init(void)
607 {
608 	return cpufreq_register_governor(&cpufreq_gov_conservative);
609 }
610 
611 static void __exit cpufreq_gov_dbs_exit(void)
612 {
613 	/* Make sure that the scheduled work is indeed not running */
614 	flush_scheduled_work();
615 
616 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
617 }
618 
619 
620 MODULE_AUTHOR("Alexander Clouter <alex-kernel@digriz.org.uk>");
621 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
622 		"Low Latency Frequency Transition capable processors "
623 		"optimised for use in a battery environment");
624 MODULE_LICENSE("GPL");
625 
626 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
627 fs_initcall(cpufreq_gov_dbs_init);
628 #else
629 module_init(cpufreq_gov_dbs_init);
630 #endif
631 module_exit(cpufreq_gov_dbs_exit);
632