1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/cpufreq.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 
27 #include "cpufreq_governor.h"
28 
29 /* Conservative governor macros */
30 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
31 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
32 #define DEF_SAMPLING_DOWN_FACTOR		(1)
33 #define MAX_SAMPLING_DOWN_FACTOR		(10)
34 
35 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
36 
37 /*
38  * Every sampling_rate, we check, if current idle time is less than 20%
39  * (default), then we try to increase frequency Every sampling_rate *
40  * sampling_down_factor, we check, if current idle time is more than 80%, then
41  * we try to decrease frequency
42  *
43  * Any frequency increase takes it to the maximum frequency. Frequency reduction
44  * happens at minimum steps of 5% (default) of maximum frequency
45  */
46 static void cs_check_cpu(int cpu, unsigned int load)
47 {
48 	struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
49 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
50 	struct dbs_data *dbs_data = policy->governor_data;
51 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
52 	unsigned int freq_target;
53 
54 	/*
55 	 * break out if we 'cannot' reduce the speed as the user might
56 	 * want freq_step to be zero
57 	 */
58 	if (cs_tuners->freq_step == 0)
59 		return;
60 
61 	/* Check for frequency increase */
62 	if (load > cs_tuners->up_threshold) {
63 		dbs_info->down_skip = 0;
64 
65 		/* if we are already at full speed then break out early */
66 		if (dbs_info->requested_freq == policy->max)
67 			return;
68 
69 		freq_target = (cs_tuners->freq_step * policy->max) / 100;
70 
71 		/* max freq cannot be less than 100. But who knows.... */
72 		if (unlikely(freq_target == 0))
73 			freq_target = 5;
74 
75 		dbs_info->requested_freq += freq_target;
76 		if (dbs_info->requested_freq > policy->max)
77 			dbs_info->requested_freq = policy->max;
78 
79 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
80 			CPUFREQ_RELATION_H);
81 		return;
82 	}
83 
84 	/*
85 	 * The optimal frequency is the frequency that is the lowest that can
86 	 * support the current CPU usage without triggering the up policy. To be
87 	 * safe, we focus 10 points under the threshold.
88 	 */
89 	if (load < (cs_tuners->down_threshold - 10)) {
90 		/*
91 		 * if we cannot reduce the frequency anymore, break out early
92 		 */
93 		if (policy->cur == policy->min)
94 			return;
95 
96 		freq_target = (cs_tuners->freq_step * policy->max) / 100;
97 
98 		dbs_info->requested_freq -= freq_target;
99 		if (dbs_info->requested_freq < policy->min)
100 			dbs_info->requested_freq = policy->min;
101 
102 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
103 				CPUFREQ_RELATION_L);
104 		return;
105 	}
106 }
107 
108 static void cs_dbs_timer(struct work_struct *work)
109 {
110 	struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
111 			struct cs_cpu_dbs_info_s, cdbs.work.work);
112 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
113 	struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
114 			cpu);
115 	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
116 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
117 	int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
118 	bool modify_all = true;
119 
120 	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
121 	if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
122 		modify_all = false;
123 	else
124 		dbs_check_cpu(dbs_data, cpu);
125 
126 	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
127 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
128 }
129 
130 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
131 		void *data)
132 {
133 	struct cpufreq_freqs *freq = data;
134 	struct cs_cpu_dbs_info_s *dbs_info =
135 					&per_cpu(cs_cpu_dbs_info, freq->cpu);
136 	struct cpufreq_policy *policy;
137 
138 	if (!dbs_info->enable)
139 		return 0;
140 
141 	policy = dbs_info->cdbs.cur_policy;
142 
143 	/*
144 	 * we only care if our internally tracked freq moves outside the 'valid'
145 	 * ranges of frequency available to us otherwise we do not change it
146 	*/
147 	if (dbs_info->requested_freq > policy->max
148 			|| dbs_info->requested_freq < policy->min)
149 		dbs_info->requested_freq = freq->new;
150 
151 	return 0;
152 }
153 
154 /************************** sysfs interface ************************/
155 static struct common_dbs_data cs_dbs_cdata;
156 
157 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
158 		const char *buf, size_t count)
159 {
160 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
161 	unsigned int input;
162 	int ret;
163 	ret = sscanf(buf, "%u", &input);
164 
165 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
166 		return -EINVAL;
167 
168 	cs_tuners->sampling_down_factor = input;
169 	return count;
170 }
171 
172 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
173 		size_t count)
174 {
175 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
176 	unsigned int input;
177 	int ret;
178 	ret = sscanf(buf, "%u", &input);
179 
180 	if (ret != 1)
181 		return -EINVAL;
182 
183 	cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
184 	return count;
185 }
186 
187 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
188 		size_t count)
189 {
190 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
191 	unsigned int input;
192 	int ret;
193 	ret = sscanf(buf, "%u", &input);
194 
195 	if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
196 		return -EINVAL;
197 
198 	cs_tuners->up_threshold = input;
199 	return count;
200 }
201 
202 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
203 		size_t count)
204 {
205 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
206 	unsigned int input;
207 	int ret;
208 	ret = sscanf(buf, "%u", &input);
209 
210 	/* cannot be lower than 11 otherwise freq will not fall */
211 	if (ret != 1 || input < 11 || input > 100 ||
212 			input >= cs_tuners->up_threshold)
213 		return -EINVAL;
214 
215 	cs_tuners->down_threshold = input;
216 	return count;
217 }
218 
219 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
220 		size_t count)
221 {
222 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
223 	unsigned int input, j;
224 	int ret;
225 
226 	ret = sscanf(buf, "%u", &input);
227 	if (ret != 1)
228 		return -EINVAL;
229 
230 	if (input > 1)
231 		input = 1;
232 
233 	if (input == cs_tuners->ignore_nice) /* nothing to do */
234 		return count;
235 
236 	cs_tuners->ignore_nice = input;
237 
238 	/* we need to re-evaluate prev_cpu_idle */
239 	for_each_online_cpu(j) {
240 		struct cs_cpu_dbs_info_s *dbs_info;
241 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
242 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
243 					&dbs_info->cdbs.prev_cpu_wall, 0);
244 		if (cs_tuners->ignore_nice)
245 			dbs_info->cdbs.prev_cpu_nice =
246 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
247 	}
248 	return count;
249 }
250 
251 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
252 		size_t count)
253 {
254 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
255 	unsigned int input;
256 	int ret;
257 	ret = sscanf(buf, "%u", &input);
258 
259 	if (ret != 1)
260 		return -EINVAL;
261 
262 	if (input > 100)
263 		input = 100;
264 
265 	/*
266 	 * no need to test here if freq_step is zero as the user might actually
267 	 * want this, they would be crazy though :)
268 	 */
269 	cs_tuners->freq_step = input;
270 	return count;
271 }
272 
273 show_store_one(cs, sampling_rate);
274 show_store_one(cs, sampling_down_factor);
275 show_store_one(cs, up_threshold);
276 show_store_one(cs, down_threshold);
277 show_store_one(cs, ignore_nice);
278 show_store_one(cs, freq_step);
279 declare_show_sampling_rate_min(cs);
280 
281 gov_sys_pol_attr_rw(sampling_rate);
282 gov_sys_pol_attr_rw(sampling_down_factor);
283 gov_sys_pol_attr_rw(up_threshold);
284 gov_sys_pol_attr_rw(down_threshold);
285 gov_sys_pol_attr_rw(ignore_nice);
286 gov_sys_pol_attr_rw(freq_step);
287 gov_sys_pol_attr_ro(sampling_rate_min);
288 
289 static struct attribute *dbs_attributes_gov_sys[] = {
290 	&sampling_rate_min_gov_sys.attr,
291 	&sampling_rate_gov_sys.attr,
292 	&sampling_down_factor_gov_sys.attr,
293 	&up_threshold_gov_sys.attr,
294 	&down_threshold_gov_sys.attr,
295 	&ignore_nice_gov_sys.attr,
296 	&freq_step_gov_sys.attr,
297 	NULL
298 };
299 
300 static struct attribute_group cs_attr_group_gov_sys = {
301 	.attrs = dbs_attributes_gov_sys,
302 	.name = "conservative",
303 };
304 
305 static struct attribute *dbs_attributes_gov_pol[] = {
306 	&sampling_rate_min_gov_pol.attr,
307 	&sampling_rate_gov_pol.attr,
308 	&sampling_down_factor_gov_pol.attr,
309 	&up_threshold_gov_pol.attr,
310 	&down_threshold_gov_pol.attr,
311 	&ignore_nice_gov_pol.attr,
312 	&freq_step_gov_pol.attr,
313 	NULL
314 };
315 
316 static struct attribute_group cs_attr_group_gov_pol = {
317 	.attrs = dbs_attributes_gov_pol,
318 	.name = "conservative",
319 };
320 
321 /************************** sysfs end ************************/
322 
323 static int cs_init(struct dbs_data *dbs_data)
324 {
325 	struct cs_dbs_tuners *tuners;
326 
327 	tuners = kzalloc(sizeof(struct cs_dbs_tuners), GFP_KERNEL);
328 	if (!tuners) {
329 		pr_err("%s: kzalloc failed\n", __func__);
330 		return -ENOMEM;
331 	}
332 
333 	tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
334 	tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
335 	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
336 	tuners->ignore_nice = 0;
337 	tuners->freq_step = 5;
338 
339 	dbs_data->tuners = tuners;
340 	dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
341 		jiffies_to_usecs(10);
342 	mutex_init(&dbs_data->mutex);
343 	return 0;
344 }
345 
346 static void cs_exit(struct dbs_data *dbs_data)
347 {
348 	kfree(dbs_data->tuners);
349 }
350 
351 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
352 
353 static struct notifier_block cs_cpufreq_notifier_block = {
354 	.notifier_call = dbs_cpufreq_notifier,
355 };
356 
357 static struct cs_ops cs_ops = {
358 	.notifier_block = &cs_cpufreq_notifier_block,
359 };
360 
361 static struct common_dbs_data cs_dbs_cdata = {
362 	.governor = GOV_CONSERVATIVE,
363 	.attr_group_gov_sys = &cs_attr_group_gov_sys,
364 	.attr_group_gov_pol = &cs_attr_group_gov_pol,
365 	.get_cpu_cdbs = get_cpu_cdbs,
366 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
367 	.gov_dbs_timer = cs_dbs_timer,
368 	.gov_check_cpu = cs_check_cpu,
369 	.gov_ops = &cs_ops,
370 	.init = cs_init,
371 	.exit = cs_exit,
372 };
373 
374 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
375 				   unsigned int event)
376 {
377 	return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
378 }
379 
380 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
381 static
382 #endif
383 struct cpufreq_governor cpufreq_gov_conservative = {
384 	.name			= "conservative",
385 	.governor		= cs_cpufreq_governor_dbs,
386 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
387 	.owner			= THIS_MODULE,
388 };
389 
390 static int __init cpufreq_gov_dbs_init(void)
391 {
392 	return cpufreq_register_governor(&cpufreq_gov_conservative);
393 }
394 
395 static void __exit cpufreq_gov_dbs_exit(void)
396 {
397 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
398 }
399 
400 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
401 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
402 		"Low Latency Frequency Transition capable processors "
403 		"optimised for use in a battery environment");
404 MODULE_LICENSE("GPL");
405 
406 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
407 fs_initcall(cpufreq_gov_dbs_init);
408 #else
409 module_init(cpufreq_gov_dbs_init);
410 #endif
411 module_exit(cpufreq_gov_dbs_exit);
412