1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26 
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31 
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
34 
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 static unsigned int def_sampling_rate;
46 #define MIN_SAMPLING_RATE_RATIO			(2)
47 /* for correct statistics, we need at least 10 ticks between each measure */
48 #define MIN_STAT_SAMPLING_RATE 			\
49 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
50 #define MIN_SAMPLING_RATE			\
51 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
52 /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
53  * Define the minimal settable sampling rate to the greater of:
54  *   - "HW transition latency" * 100 (same as default sampling / 10)
55  *   - MIN_STAT_SAMPLING_RATE
56  * To avoid that userspace shoots itself.
57 */
58 static unsigned int minimum_sampling_rate(void)
59 {
60 	return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
61 }
62 
63 /* This will also vanish soon with removing sampling_rate_max */
64 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
65 #define LATENCY_MULTIPLIER			(1000)
66 #define DEF_SAMPLING_DOWN_FACTOR		(1)
67 #define MAX_SAMPLING_DOWN_FACTOR		(10)
68 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
69 
70 static void do_dbs_timer(struct work_struct *work);
71 
72 struct cpu_dbs_info_s {
73 	cputime64_t prev_cpu_idle;
74 	cputime64_t prev_cpu_wall;
75 	cputime64_t prev_cpu_nice;
76 	struct cpufreq_policy *cur_policy;
77 	struct delayed_work work;
78 	unsigned int down_skip;
79 	unsigned int requested_freq;
80 	int cpu;
81 	unsigned int enable:1;
82 };
83 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
84 
85 static unsigned int dbs_enable;	/* number of CPUs using this policy */
86 
87 /*
88  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
89  * lock and dbs_mutex. cpu_hotplug lock should always be held before
90  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
91  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
92  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
93  * is recursive for the same process. -Venki
94  * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
95  * would deadlock with cancel_delayed_work_sync(), which is needed for proper
96  * raceless workqueue teardown.
97  */
98 static DEFINE_MUTEX(dbs_mutex);
99 
100 static struct workqueue_struct	*kconservative_wq;
101 
102 static struct dbs_tuners {
103 	unsigned int sampling_rate;
104 	unsigned int sampling_down_factor;
105 	unsigned int up_threshold;
106 	unsigned int down_threshold;
107 	unsigned int ignore_nice;
108 	unsigned int freq_step;
109 } dbs_tuners_ins = {
110 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
111 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
112 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
113 	.ignore_nice = 0,
114 	.freq_step = 5,
115 };
116 
117 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
118 							cputime64_t *wall)
119 {
120 	cputime64_t idle_time;
121 	cputime64_t cur_wall_time;
122 	cputime64_t busy_time;
123 
124 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
125 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
126 			kstat_cpu(cpu).cpustat.system);
127 
128 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
129 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
130 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
131 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
132 
133 	idle_time = cputime64_sub(cur_wall_time, busy_time);
134 	if (wall)
135 		*wall = cur_wall_time;
136 
137 	return idle_time;
138 }
139 
140 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
141 {
142 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
143 
144 	if (idle_time == -1ULL)
145 		return get_cpu_idle_time_jiffy(cpu, wall);
146 
147 	return idle_time;
148 }
149 
150 /* keep track of frequency transitions */
151 static int
152 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
153 		     void *data)
154 {
155 	struct cpufreq_freqs *freq = data;
156 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
157 							freq->cpu);
158 
159 	struct cpufreq_policy *policy;
160 
161 	if (!this_dbs_info->enable)
162 		return 0;
163 
164 	policy = this_dbs_info->cur_policy;
165 
166 	/*
167 	 * we only care if our internally tracked freq moves outside
168 	 * the 'valid' ranges of freqency available to us otherwise
169 	 * we do not change it
170 	*/
171 	if (this_dbs_info->requested_freq > policy->max
172 			|| this_dbs_info->requested_freq < policy->min)
173 		this_dbs_info->requested_freq = freq->new;
174 
175 	return 0;
176 }
177 
178 static struct notifier_block dbs_cpufreq_notifier_block = {
179 	.notifier_call = dbs_cpufreq_notifier
180 };
181 
182 /************************** sysfs interface ************************/
183 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
184 {
185 	static int print_once;
186 
187 	if (!print_once) {
188 		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
189 		       "sysfs file is deprecated - used by: %s\n",
190 		       current->comm);
191 		print_once = 1;
192 	}
193 	return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
194 }
195 
196 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
197 {
198 	static int print_once;
199 
200 	if (!print_once) {
201 		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
202 		       "sysfs file is deprecated - used by: %s\n", current->comm);
203 		print_once = 1;
204 	}
205 	return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
206 }
207 
208 #define define_one_ro(_name)		\
209 static struct freq_attr _name =		\
210 __ATTR(_name, 0444, show_##_name, NULL)
211 
212 define_one_ro(sampling_rate_max);
213 define_one_ro(sampling_rate_min);
214 
215 /* cpufreq_conservative Governor Tunables */
216 #define show_one(file_name, object)					\
217 static ssize_t show_##file_name						\
218 (struct cpufreq_policy *unused, char *buf)				\
219 {									\
220 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
221 }
222 show_one(sampling_rate, sampling_rate);
223 show_one(sampling_down_factor, sampling_down_factor);
224 show_one(up_threshold, up_threshold);
225 show_one(down_threshold, down_threshold);
226 show_one(ignore_nice_load, ignore_nice);
227 show_one(freq_step, freq_step);
228 
229 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
230 		const char *buf, size_t count)
231 {
232 	unsigned int input;
233 	int ret;
234 	ret = sscanf(buf, "%u", &input);
235 
236 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
237 		return -EINVAL;
238 
239 	mutex_lock(&dbs_mutex);
240 	dbs_tuners_ins.sampling_down_factor = input;
241 	mutex_unlock(&dbs_mutex);
242 
243 	return count;
244 }
245 
246 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
247 		const char *buf, size_t count)
248 {
249 	unsigned int input;
250 	int ret;
251 	ret = sscanf(buf, "%u", &input);
252 
253 	if (ret != 1)
254 		return -EINVAL;
255 
256 	mutex_lock(&dbs_mutex);
257 	dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
258 	mutex_unlock(&dbs_mutex);
259 
260 	return count;
261 }
262 
263 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
264 		const char *buf, size_t count)
265 {
266 	unsigned int input;
267 	int ret;
268 	ret = sscanf(buf, "%u", &input);
269 
270 	mutex_lock(&dbs_mutex);
271 	if (ret != 1 || input > 100 ||
272 			input <= dbs_tuners_ins.down_threshold) {
273 		mutex_unlock(&dbs_mutex);
274 		return -EINVAL;
275 	}
276 
277 	dbs_tuners_ins.up_threshold = input;
278 	mutex_unlock(&dbs_mutex);
279 
280 	return count;
281 }
282 
283 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
284 		const char *buf, size_t count)
285 {
286 	unsigned int input;
287 	int ret;
288 	ret = sscanf(buf, "%u", &input);
289 
290 	mutex_lock(&dbs_mutex);
291 	/* cannot be lower than 11 otherwise freq will not fall */
292 	if (ret != 1 || input < 11 || input > 100 ||
293 			input >= dbs_tuners_ins.up_threshold) {
294 		mutex_unlock(&dbs_mutex);
295 		return -EINVAL;
296 	}
297 
298 	dbs_tuners_ins.down_threshold = input;
299 	mutex_unlock(&dbs_mutex);
300 
301 	return count;
302 }
303 
304 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
305 		const char *buf, size_t count)
306 {
307 	unsigned int input;
308 	int ret;
309 
310 	unsigned int j;
311 
312 	ret = sscanf(buf, "%u", &input);
313 	if (ret != 1)
314 		return -EINVAL;
315 
316 	if (input > 1)
317 		input = 1;
318 
319 	mutex_lock(&dbs_mutex);
320 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
321 		mutex_unlock(&dbs_mutex);
322 		return count;
323 	}
324 	dbs_tuners_ins.ignore_nice = input;
325 
326 	/* we need to re-evaluate prev_cpu_idle */
327 	for_each_online_cpu(j) {
328 		struct cpu_dbs_info_s *dbs_info;
329 		dbs_info = &per_cpu(cpu_dbs_info, j);
330 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
331 						&dbs_info->prev_cpu_wall);
332 		if (dbs_tuners_ins.ignore_nice)
333 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
334 	}
335 	mutex_unlock(&dbs_mutex);
336 
337 	return count;
338 }
339 
340 static ssize_t store_freq_step(struct cpufreq_policy *policy,
341 		const char *buf, size_t count)
342 {
343 	unsigned int input;
344 	int ret;
345 	ret = sscanf(buf, "%u", &input);
346 
347 	if (ret != 1)
348 		return -EINVAL;
349 
350 	if (input > 100)
351 		input = 100;
352 
353 	/* no need to test here if freq_step is zero as the user might actually
354 	 * want this, they would be crazy though :) */
355 	mutex_lock(&dbs_mutex);
356 	dbs_tuners_ins.freq_step = input;
357 	mutex_unlock(&dbs_mutex);
358 
359 	return count;
360 }
361 
362 #define define_one_rw(_name) \
363 static struct freq_attr _name = \
364 __ATTR(_name, 0644, show_##_name, store_##_name)
365 
366 define_one_rw(sampling_rate);
367 define_one_rw(sampling_down_factor);
368 define_one_rw(up_threshold);
369 define_one_rw(down_threshold);
370 define_one_rw(ignore_nice_load);
371 define_one_rw(freq_step);
372 
373 static struct attribute *dbs_attributes[] = {
374 	&sampling_rate_max.attr,
375 	&sampling_rate_min.attr,
376 	&sampling_rate.attr,
377 	&sampling_down_factor.attr,
378 	&up_threshold.attr,
379 	&down_threshold.attr,
380 	&ignore_nice_load.attr,
381 	&freq_step.attr,
382 	NULL
383 };
384 
385 static struct attribute_group dbs_attr_group = {
386 	.attrs = dbs_attributes,
387 	.name = "conservative",
388 };
389 
390 /************************** sysfs end ************************/
391 
392 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
393 {
394 	unsigned int load = 0;
395 	unsigned int freq_target;
396 
397 	struct cpufreq_policy *policy;
398 	unsigned int j;
399 
400 	policy = this_dbs_info->cur_policy;
401 
402 	/*
403 	 * Every sampling_rate, we check, if current idle time is less
404 	 * than 20% (default), then we try to increase frequency
405 	 * Every sampling_rate*sampling_down_factor, we check, if current
406 	 * idle time is more than 80%, then we try to decrease frequency
407 	 *
408 	 * Any frequency increase takes it to the maximum frequency.
409 	 * Frequency reduction happens at minimum steps of
410 	 * 5% (default) of maximum frequency
411 	 */
412 
413 	/* Get Absolute Load */
414 	for_each_cpu(j, policy->cpus) {
415 		struct cpu_dbs_info_s *j_dbs_info;
416 		cputime64_t cur_wall_time, cur_idle_time;
417 		unsigned int idle_time, wall_time;
418 
419 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
420 
421 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
422 
423 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
424 				j_dbs_info->prev_cpu_wall);
425 		j_dbs_info->prev_cpu_wall = cur_wall_time;
426 
427 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
428 				j_dbs_info->prev_cpu_idle);
429 		j_dbs_info->prev_cpu_idle = cur_idle_time;
430 
431 		if (dbs_tuners_ins.ignore_nice) {
432 			cputime64_t cur_nice;
433 			unsigned long cur_nice_jiffies;
434 
435 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
436 					 j_dbs_info->prev_cpu_nice);
437 			/*
438 			 * Assumption: nice time between sampling periods will
439 			 * be less than 2^32 jiffies for 32 bit sys
440 			 */
441 			cur_nice_jiffies = (unsigned long)
442 					cputime64_to_jiffies64(cur_nice);
443 
444 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
445 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
446 		}
447 
448 		if (unlikely(!wall_time || wall_time < idle_time))
449 			continue;
450 
451 		load = 100 * (wall_time - idle_time) / wall_time;
452 	}
453 
454 	/*
455 	 * break out if we 'cannot' reduce the speed as the user might
456 	 * want freq_step to be zero
457 	 */
458 	if (dbs_tuners_ins.freq_step == 0)
459 		return;
460 
461 	/* Check for frequency increase */
462 	if (load > dbs_tuners_ins.up_threshold) {
463 		this_dbs_info->down_skip = 0;
464 
465 		/* if we are already at full speed then break out early */
466 		if (this_dbs_info->requested_freq == policy->max)
467 			return;
468 
469 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
470 
471 		/* max freq cannot be less than 100. But who knows.... */
472 		if (unlikely(freq_target == 0))
473 			freq_target = 5;
474 
475 		this_dbs_info->requested_freq += freq_target;
476 		if (this_dbs_info->requested_freq > policy->max)
477 			this_dbs_info->requested_freq = policy->max;
478 
479 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
480 			CPUFREQ_RELATION_H);
481 		return;
482 	}
483 
484 	/*
485 	 * The optimal frequency is the frequency that is the lowest that
486 	 * can support the current CPU usage without triggering the up
487 	 * policy. To be safe, we focus 10 points under the threshold.
488 	 */
489 	if (load < (dbs_tuners_ins.down_threshold - 10)) {
490 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
491 
492 		this_dbs_info->requested_freq -= freq_target;
493 		if (this_dbs_info->requested_freq < policy->min)
494 			this_dbs_info->requested_freq = policy->min;
495 
496 		/*
497 		 * if we cannot reduce the frequency anymore, break out early
498 		 */
499 		if (policy->cur == policy->min)
500 			return;
501 
502 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
503 				CPUFREQ_RELATION_H);
504 		return;
505 	}
506 }
507 
508 static void do_dbs_timer(struct work_struct *work)
509 {
510 	struct cpu_dbs_info_s *dbs_info =
511 		container_of(work, struct cpu_dbs_info_s, work.work);
512 	unsigned int cpu = dbs_info->cpu;
513 
514 	/* We want all CPUs to do sampling nearly on same jiffy */
515 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
516 
517 	delay -= jiffies % delay;
518 
519 	if (lock_policy_rwsem_write(cpu) < 0)
520 		return;
521 
522 	if (!dbs_info->enable) {
523 		unlock_policy_rwsem_write(cpu);
524 		return;
525 	}
526 
527 	dbs_check_cpu(dbs_info);
528 
529 	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
530 	unlock_policy_rwsem_write(cpu);
531 }
532 
533 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
534 {
535 	/* We want all CPUs to do sampling nearly on same jiffy */
536 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
537 	delay -= jiffies % delay;
538 
539 	dbs_info->enable = 1;
540 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
541 	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
542 				delay);
543 }
544 
545 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
546 {
547 	dbs_info->enable = 0;
548 	cancel_delayed_work_sync(&dbs_info->work);
549 }
550 
551 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
552 				   unsigned int event)
553 {
554 	unsigned int cpu = policy->cpu;
555 	struct cpu_dbs_info_s *this_dbs_info;
556 	unsigned int j;
557 	int rc;
558 
559 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
560 
561 	switch (event) {
562 	case CPUFREQ_GOV_START:
563 		if ((!cpu_online(cpu)) || (!policy->cur))
564 			return -EINVAL;
565 
566 		if (this_dbs_info->enable) /* Already enabled */
567 			break;
568 
569 		mutex_lock(&dbs_mutex);
570 
571 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
572 		if (rc) {
573 			mutex_unlock(&dbs_mutex);
574 			return rc;
575 		}
576 
577 		for_each_cpu(j, policy->cpus) {
578 			struct cpu_dbs_info_s *j_dbs_info;
579 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
580 			j_dbs_info->cur_policy = policy;
581 
582 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
583 						&j_dbs_info->prev_cpu_wall);
584 			if (dbs_tuners_ins.ignore_nice) {
585 				j_dbs_info->prev_cpu_nice =
586 						kstat_cpu(j).cpustat.nice;
587 			}
588 		}
589 		this_dbs_info->down_skip = 0;
590 		this_dbs_info->requested_freq = policy->cur;
591 
592 		dbs_enable++;
593 		/*
594 		 * Start the timerschedule work, when this governor
595 		 * is used for first time
596 		 */
597 		if (dbs_enable == 1) {
598 			unsigned int latency;
599 			/* policy latency is in nS. Convert it to uS first */
600 			latency = policy->cpuinfo.transition_latency / 1000;
601 			if (latency == 0)
602 				latency = 1;
603 
604 			def_sampling_rate =
605 				max(latency * LATENCY_MULTIPLIER,
606 				    MIN_STAT_SAMPLING_RATE);
607 
608 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
609 
610 			cpufreq_register_notifier(
611 					&dbs_cpufreq_notifier_block,
612 					CPUFREQ_TRANSITION_NOTIFIER);
613 		}
614 		dbs_timer_init(this_dbs_info);
615 
616 		mutex_unlock(&dbs_mutex);
617 
618 		break;
619 
620 	case CPUFREQ_GOV_STOP:
621 		mutex_lock(&dbs_mutex);
622 		dbs_timer_exit(this_dbs_info);
623 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
624 		dbs_enable--;
625 
626 		/*
627 		 * Stop the timerschedule work, when this governor
628 		 * is used for first time
629 		 */
630 		if (dbs_enable == 0)
631 			cpufreq_unregister_notifier(
632 					&dbs_cpufreq_notifier_block,
633 					CPUFREQ_TRANSITION_NOTIFIER);
634 
635 		mutex_unlock(&dbs_mutex);
636 
637 		break;
638 
639 	case CPUFREQ_GOV_LIMITS:
640 		mutex_lock(&dbs_mutex);
641 		if (policy->max < this_dbs_info->cur_policy->cur)
642 			__cpufreq_driver_target(
643 					this_dbs_info->cur_policy,
644 					policy->max, CPUFREQ_RELATION_H);
645 		else if (policy->min > this_dbs_info->cur_policy->cur)
646 			__cpufreq_driver_target(
647 					this_dbs_info->cur_policy,
648 					policy->min, CPUFREQ_RELATION_L);
649 		mutex_unlock(&dbs_mutex);
650 
651 		break;
652 	}
653 	return 0;
654 }
655 
656 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
657 static
658 #endif
659 struct cpufreq_governor cpufreq_gov_conservative = {
660 	.name			= "conservative",
661 	.governor		= cpufreq_governor_dbs,
662 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
663 	.owner			= THIS_MODULE,
664 };
665 
666 static int __init cpufreq_gov_dbs_init(void)
667 {
668 	int err;
669 
670 	kconservative_wq = create_workqueue("kconservative");
671 	if (!kconservative_wq) {
672 		printk(KERN_ERR "Creation of kconservative failed\n");
673 		return -EFAULT;
674 	}
675 
676 	err = cpufreq_register_governor(&cpufreq_gov_conservative);
677 	if (err)
678 		destroy_workqueue(kconservative_wq);
679 
680 	return err;
681 }
682 
683 static void __exit cpufreq_gov_dbs_exit(void)
684 {
685 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
686 	destroy_workqueue(kconservative_wq);
687 }
688 
689 
690 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
691 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
692 		"Low Latency Frequency Transition capable processors "
693 		"optimised for use in a battery environment");
694 MODULE_LICENSE("GPL");
695 
696 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
697 fs_initcall(cpufreq_gov_dbs_init);
698 #else
699 module_init(cpufreq_gov_dbs_init);
700 #endif
701 module_exit(cpufreq_gov_dbs_exit);
702