1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/slab.h>
15 #include "cpufreq_governor.h"
16 
17 /* Conservative governor macros */
18 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
19 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
20 #define DEF_FREQUENCY_STEP			(5)
21 #define DEF_SAMPLING_DOWN_FACTOR		(1)
22 #define MAX_SAMPLING_DOWN_FACTOR		(10)
23 
24 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25 
26 static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
27 					   struct cpufreq_policy *policy)
28 {
29 	unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
30 
31 	/* max freq cannot be less than 100. But who knows... */
32 	if (unlikely(freq_target == 0))
33 		freq_target = DEF_FREQUENCY_STEP;
34 
35 	return freq_target;
36 }
37 
38 /*
39  * Every sampling_rate, we check, if current idle time is less than 20%
40  * (default), then we try to increase frequency. Every sampling_rate *
41  * sampling_down_factor, we check, if current idle time is more than 80%
42  * (default), then we try to decrease frequency
43  *
44  * Any frequency increase takes it to the maximum frequency. Frequency reduction
45  * happens at minimum steps of 5% (default) of maximum frequency
46  */
47 static void cs_check_cpu(int cpu, unsigned int load)
48 {
49 	struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
50 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
51 	struct dbs_data *dbs_data = policy->governor_data;
52 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
53 
54 	/*
55 	 * break out if we 'cannot' reduce the speed as the user might
56 	 * want freq_step to be zero
57 	 */
58 	if (cs_tuners->freq_step == 0)
59 		return;
60 
61 	/* Check for frequency increase */
62 	if (load > cs_tuners->up_threshold) {
63 		dbs_info->down_skip = 0;
64 
65 		/* if we are already at full speed then break out early */
66 		if (dbs_info->requested_freq == policy->max)
67 			return;
68 
69 		dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
70 
71 		if (dbs_info->requested_freq > policy->max)
72 			dbs_info->requested_freq = policy->max;
73 
74 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
75 			CPUFREQ_RELATION_H);
76 		return;
77 	}
78 
79 	/* if sampling_down_factor is active break out early */
80 	if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
81 		return;
82 	dbs_info->down_skip = 0;
83 
84 	/* Check for frequency decrease */
85 	if (load < cs_tuners->down_threshold) {
86 		unsigned int freq_target;
87 		/*
88 		 * if we cannot reduce the frequency anymore, break out early
89 		 */
90 		if (policy->cur == policy->min)
91 			return;
92 
93 		freq_target = get_freq_target(cs_tuners, policy);
94 		if (dbs_info->requested_freq > freq_target)
95 			dbs_info->requested_freq -= freq_target;
96 		else
97 			dbs_info->requested_freq = policy->min;
98 
99 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
100 				CPUFREQ_RELATION_L);
101 		return;
102 	}
103 }
104 
105 static void cs_dbs_timer(struct work_struct *work)
106 {
107 	struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
108 			struct cs_cpu_dbs_info_s, cdbs.work.work);
109 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
110 	struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
111 			cpu);
112 	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
113 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
114 	int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
115 	bool modify_all = true;
116 
117 	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
118 	if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
119 		modify_all = false;
120 	else
121 		dbs_check_cpu(dbs_data, cpu);
122 
123 	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
124 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
125 }
126 
127 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
128 		void *data)
129 {
130 	struct cpufreq_freqs *freq = data;
131 	struct cs_cpu_dbs_info_s *dbs_info =
132 					&per_cpu(cs_cpu_dbs_info, freq->cpu);
133 	struct cpufreq_policy *policy;
134 
135 	if (!dbs_info->enable)
136 		return 0;
137 
138 	policy = dbs_info->cdbs.cur_policy;
139 
140 	/*
141 	 * we only care if our internally tracked freq moves outside the 'valid'
142 	 * ranges of frequency available to us otherwise we do not change it
143 	*/
144 	if (dbs_info->requested_freq > policy->max
145 			|| dbs_info->requested_freq < policy->min)
146 		dbs_info->requested_freq = freq->new;
147 
148 	return 0;
149 }
150 
151 /************************** sysfs interface ************************/
152 static struct common_dbs_data cs_dbs_cdata;
153 
154 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
155 		const char *buf, size_t count)
156 {
157 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
158 	unsigned int input;
159 	int ret;
160 	ret = sscanf(buf, "%u", &input);
161 
162 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
163 		return -EINVAL;
164 
165 	cs_tuners->sampling_down_factor = input;
166 	return count;
167 }
168 
169 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
170 		size_t count)
171 {
172 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
173 	unsigned int input;
174 	int ret;
175 	ret = sscanf(buf, "%u", &input);
176 
177 	if (ret != 1)
178 		return -EINVAL;
179 
180 	cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
181 	return count;
182 }
183 
184 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
185 		size_t count)
186 {
187 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
188 	unsigned int input;
189 	int ret;
190 	ret = sscanf(buf, "%u", &input);
191 
192 	if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
193 		return -EINVAL;
194 
195 	cs_tuners->up_threshold = input;
196 	return count;
197 }
198 
199 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
200 		size_t count)
201 {
202 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
203 	unsigned int input;
204 	int ret;
205 	ret = sscanf(buf, "%u", &input);
206 
207 	/* cannot be lower than 11 otherwise freq will not fall */
208 	if (ret != 1 || input < 11 || input > 100 ||
209 			input >= cs_tuners->up_threshold)
210 		return -EINVAL;
211 
212 	cs_tuners->down_threshold = input;
213 	return count;
214 }
215 
216 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
217 		const char *buf, size_t count)
218 {
219 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
220 	unsigned int input, j;
221 	int ret;
222 
223 	ret = sscanf(buf, "%u", &input);
224 	if (ret != 1)
225 		return -EINVAL;
226 
227 	if (input > 1)
228 		input = 1;
229 
230 	if (input == cs_tuners->ignore_nice_load) /* nothing to do */
231 		return count;
232 
233 	cs_tuners->ignore_nice_load = input;
234 
235 	/* we need to re-evaluate prev_cpu_idle */
236 	for_each_online_cpu(j) {
237 		struct cs_cpu_dbs_info_s *dbs_info;
238 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
239 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
240 					&dbs_info->cdbs.prev_cpu_wall, 0);
241 		if (cs_tuners->ignore_nice_load)
242 			dbs_info->cdbs.prev_cpu_nice =
243 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
244 	}
245 	return count;
246 }
247 
248 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
249 		size_t count)
250 {
251 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
252 	unsigned int input;
253 	int ret;
254 	ret = sscanf(buf, "%u", &input);
255 
256 	if (ret != 1)
257 		return -EINVAL;
258 
259 	if (input > 100)
260 		input = 100;
261 
262 	/*
263 	 * no need to test here if freq_step is zero as the user might actually
264 	 * want this, they would be crazy though :)
265 	 */
266 	cs_tuners->freq_step = input;
267 	return count;
268 }
269 
270 show_store_one(cs, sampling_rate);
271 show_store_one(cs, sampling_down_factor);
272 show_store_one(cs, up_threshold);
273 show_store_one(cs, down_threshold);
274 show_store_one(cs, ignore_nice_load);
275 show_store_one(cs, freq_step);
276 declare_show_sampling_rate_min(cs);
277 
278 gov_sys_pol_attr_rw(sampling_rate);
279 gov_sys_pol_attr_rw(sampling_down_factor);
280 gov_sys_pol_attr_rw(up_threshold);
281 gov_sys_pol_attr_rw(down_threshold);
282 gov_sys_pol_attr_rw(ignore_nice_load);
283 gov_sys_pol_attr_rw(freq_step);
284 gov_sys_pol_attr_ro(sampling_rate_min);
285 
286 static struct attribute *dbs_attributes_gov_sys[] = {
287 	&sampling_rate_min_gov_sys.attr,
288 	&sampling_rate_gov_sys.attr,
289 	&sampling_down_factor_gov_sys.attr,
290 	&up_threshold_gov_sys.attr,
291 	&down_threshold_gov_sys.attr,
292 	&ignore_nice_load_gov_sys.attr,
293 	&freq_step_gov_sys.attr,
294 	NULL
295 };
296 
297 static struct attribute_group cs_attr_group_gov_sys = {
298 	.attrs = dbs_attributes_gov_sys,
299 	.name = "conservative",
300 };
301 
302 static struct attribute *dbs_attributes_gov_pol[] = {
303 	&sampling_rate_min_gov_pol.attr,
304 	&sampling_rate_gov_pol.attr,
305 	&sampling_down_factor_gov_pol.attr,
306 	&up_threshold_gov_pol.attr,
307 	&down_threshold_gov_pol.attr,
308 	&ignore_nice_load_gov_pol.attr,
309 	&freq_step_gov_pol.attr,
310 	NULL
311 };
312 
313 static struct attribute_group cs_attr_group_gov_pol = {
314 	.attrs = dbs_attributes_gov_pol,
315 	.name = "conservative",
316 };
317 
318 /************************** sysfs end ************************/
319 
320 static int cs_init(struct dbs_data *dbs_data)
321 {
322 	struct cs_dbs_tuners *tuners;
323 
324 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
325 	if (!tuners) {
326 		pr_err("%s: kzalloc failed\n", __func__);
327 		return -ENOMEM;
328 	}
329 
330 	tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
331 	tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
332 	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
333 	tuners->ignore_nice_load = 0;
334 	tuners->freq_step = DEF_FREQUENCY_STEP;
335 
336 	dbs_data->tuners = tuners;
337 	dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
338 		jiffies_to_usecs(10);
339 	mutex_init(&dbs_data->mutex);
340 	return 0;
341 }
342 
343 static void cs_exit(struct dbs_data *dbs_data)
344 {
345 	kfree(dbs_data->tuners);
346 }
347 
348 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
349 
350 static struct notifier_block cs_cpufreq_notifier_block = {
351 	.notifier_call = dbs_cpufreq_notifier,
352 };
353 
354 static struct cs_ops cs_ops = {
355 	.notifier_block = &cs_cpufreq_notifier_block,
356 };
357 
358 static struct common_dbs_data cs_dbs_cdata = {
359 	.governor = GOV_CONSERVATIVE,
360 	.attr_group_gov_sys = &cs_attr_group_gov_sys,
361 	.attr_group_gov_pol = &cs_attr_group_gov_pol,
362 	.get_cpu_cdbs = get_cpu_cdbs,
363 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
364 	.gov_dbs_timer = cs_dbs_timer,
365 	.gov_check_cpu = cs_check_cpu,
366 	.gov_ops = &cs_ops,
367 	.init = cs_init,
368 	.exit = cs_exit,
369 };
370 
371 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
372 				   unsigned int event)
373 {
374 	return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
375 }
376 
377 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
378 static
379 #endif
380 struct cpufreq_governor cpufreq_gov_conservative = {
381 	.name			= "conservative",
382 	.governor		= cs_cpufreq_governor_dbs,
383 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
384 	.owner			= THIS_MODULE,
385 };
386 
387 static int __init cpufreq_gov_dbs_init(void)
388 {
389 	return cpufreq_register_governor(&cpufreq_gov_conservative);
390 }
391 
392 static void __exit cpufreq_gov_dbs_exit(void)
393 {
394 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
395 }
396 
397 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
398 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
399 		"Low Latency Frequency Transition capable processors "
400 		"optimised for use in a battery environment");
401 MODULE_LICENSE("GPL");
402 
403 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
404 fs_initcall(cpufreq_gov_dbs_init);
405 #else
406 module_init(cpufreq_gov_dbs_init);
407 #endif
408 module_exit(cpufreq_gov_dbs_exit);
409