1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/cpufreq.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 
26 #include "cpufreq_governor.h"
27 
28 /* Conservative governor macors */
29 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
30 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
31 #define DEF_SAMPLING_DOWN_FACTOR		(1)
32 #define MAX_SAMPLING_DOWN_FACTOR		(10)
33 
34 static struct dbs_data cs_dbs_data;
35 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
36 
37 static struct cs_dbs_tuners cs_tuners = {
38 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
39 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
40 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
41 	.ignore_nice = 0,
42 	.freq_step = 5,
43 };
44 
45 /*
46  * Every sampling_rate, we check, if current idle time is less than 20%
47  * (default), then we try to increase frequency Every sampling_rate *
48  * sampling_down_factor, we check, if current idle time is more than 80%, then
49  * we try to decrease frequency
50  *
51  * Any frequency increase takes it to the maximum frequency. Frequency reduction
52  * happens at minimum steps of 5% (default) of maximum frequency
53  */
54 static void cs_check_cpu(int cpu, unsigned int load)
55 {
56 	struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
57 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
58 	unsigned int freq_target;
59 
60 	/*
61 	 * break out if we 'cannot' reduce the speed as the user might
62 	 * want freq_step to be zero
63 	 */
64 	if (cs_tuners.freq_step == 0)
65 		return;
66 
67 	/* Check for frequency increase */
68 	if (load > cs_tuners.up_threshold) {
69 		dbs_info->down_skip = 0;
70 
71 		/* if we are already at full speed then break out early */
72 		if (dbs_info->requested_freq == policy->max)
73 			return;
74 
75 		freq_target = (cs_tuners.freq_step * policy->max) / 100;
76 
77 		/* max freq cannot be less than 100. But who knows.... */
78 		if (unlikely(freq_target == 0))
79 			freq_target = 5;
80 
81 		dbs_info->requested_freq += freq_target;
82 		if (dbs_info->requested_freq > policy->max)
83 			dbs_info->requested_freq = policy->max;
84 
85 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
86 			CPUFREQ_RELATION_H);
87 		return;
88 	}
89 
90 	/*
91 	 * The optimal frequency is the frequency that is the lowest that can
92 	 * support the current CPU usage without triggering the up policy. To be
93 	 * safe, we focus 10 points under the threshold.
94 	 */
95 	if (load < (cs_tuners.down_threshold - 10)) {
96 		freq_target = (cs_tuners.freq_step * policy->max) / 100;
97 
98 		dbs_info->requested_freq -= freq_target;
99 		if (dbs_info->requested_freq < policy->min)
100 			dbs_info->requested_freq = policy->min;
101 
102 		/*
103 		 * if we cannot reduce the frequency anymore, break out early
104 		 */
105 		if (policy->cur == policy->min)
106 			return;
107 
108 		__cpufreq_driver_target(policy, dbs_info->requested_freq,
109 				CPUFREQ_RELATION_H);
110 		return;
111 	}
112 }
113 
114 static void cs_timer_update(struct cs_cpu_dbs_info_s *dbs_info, bool sample,
115 			    struct delayed_work *dw)
116 {
117 	unsigned int cpu = dbs_info->cdbs.cpu;
118 	int delay = delay_for_sampling_rate(cs_tuners.sampling_rate);
119 
120 	if (sample)
121 		dbs_check_cpu(&cs_dbs_data, cpu);
122 
123 	schedule_delayed_work_on(smp_processor_id(), dw, delay);
124 }
125 
126 static void cs_timer_coordinated(struct cs_cpu_dbs_info_s *dbs_info_local,
127 				 struct delayed_work *dw)
128 {
129 	struct cs_cpu_dbs_info_s *dbs_info;
130 	ktime_t time_now;
131 	s64 delta_us;
132 	bool sample = true;
133 
134 	/* use leader CPU's dbs_info */
135 	dbs_info = &per_cpu(cs_cpu_dbs_info, dbs_info_local->cdbs.cpu);
136 	mutex_lock(&dbs_info->cdbs.timer_mutex);
137 
138 	time_now = ktime_get();
139 	delta_us = ktime_us_delta(time_now, dbs_info->cdbs.time_stamp);
140 
141 	/* Do nothing if we recently have sampled */
142 	if (delta_us < (s64)(cs_tuners.sampling_rate / 2))
143 		sample = false;
144 	else
145 		dbs_info->cdbs.time_stamp = time_now;
146 
147 	cs_timer_update(dbs_info, sample, dw);
148 	mutex_unlock(&dbs_info->cdbs.timer_mutex);
149 }
150 
151 static void cs_dbs_timer(struct work_struct *work)
152 {
153 	struct delayed_work *dw = to_delayed_work(work);
154 	struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
155 			struct cs_cpu_dbs_info_s, cdbs.work.work);
156 
157 	if (dbs_sw_coordinated_cpus(&dbs_info->cdbs)) {
158 		cs_timer_coordinated(dbs_info, dw);
159 	} else {
160 		mutex_lock(&dbs_info->cdbs.timer_mutex);
161 		cs_timer_update(dbs_info, true, dw);
162 		mutex_unlock(&dbs_info->cdbs.timer_mutex);
163 	}
164 }
165 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
166 		void *data)
167 {
168 	struct cpufreq_freqs *freq = data;
169 	struct cs_cpu_dbs_info_s *dbs_info =
170 					&per_cpu(cs_cpu_dbs_info, freq->cpu);
171 	struct cpufreq_policy *policy;
172 
173 	if (!dbs_info->enable)
174 		return 0;
175 
176 	policy = dbs_info->cdbs.cur_policy;
177 
178 	/*
179 	 * we only care if our internally tracked freq moves outside the 'valid'
180 	 * ranges of freqency available to us otherwise we do not change it
181 	*/
182 	if (dbs_info->requested_freq > policy->max
183 			|| dbs_info->requested_freq < policy->min)
184 		dbs_info->requested_freq = freq->new;
185 
186 	return 0;
187 }
188 
189 /************************** sysfs interface ************************/
190 static ssize_t show_sampling_rate_min(struct kobject *kobj,
191 				      struct attribute *attr, char *buf)
192 {
193 	return sprintf(buf, "%u\n", cs_dbs_data.min_sampling_rate);
194 }
195 
196 static ssize_t store_sampling_down_factor(struct kobject *a,
197 					  struct attribute *b,
198 					  const char *buf, size_t count)
199 {
200 	unsigned int input;
201 	int ret;
202 	ret = sscanf(buf, "%u", &input);
203 
204 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
205 		return -EINVAL;
206 
207 	cs_tuners.sampling_down_factor = input;
208 	return count;
209 }
210 
211 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
212 				   const char *buf, size_t count)
213 {
214 	unsigned int input;
215 	int ret;
216 	ret = sscanf(buf, "%u", &input);
217 
218 	if (ret != 1)
219 		return -EINVAL;
220 
221 	cs_tuners.sampling_rate = max(input, cs_dbs_data.min_sampling_rate);
222 	return count;
223 }
224 
225 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
226 				  const char *buf, size_t count)
227 {
228 	unsigned int input;
229 	int ret;
230 	ret = sscanf(buf, "%u", &input);
231 
232 	if (ret != 1 || input > 100 || input <= cs_tuners.down_threshold)
233 		return -EINVAL;
234 
235 	cs_tuners.up_threshold = input;
236 	return count;
237 }
238 
239 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
240 				    const char *buf, size_t count)
241 {
242 	unsigned int input;
243 	int ret;
244 	ret = sscanf(buf, "%u", &input);
245 
246 	/* cannot be lower than 11 otherwise freq will not fall */
247 	if (ret != 1 || input < 11 || input > 100 ||
248 			input >= cs_tuners.up_threshold)
249 		return -EINVAL;
250 
251 	cs_tuners.down_threshold = input;
252 	return count;
253 }
254 
255 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
256 				      const char *buf, size_t count)
257 {
258 	unsigned int input, j;
259 	int ret;
260 
261 	ret = sscanf(buf, "%u", &input);
262 	if (ret != 1)
263 		return -EINVAL;
264 
265 	if (input > 1)
266 		input = 1;
267 
268 	if (input == cs_tuners.ignore_nice) /* nothing to do */
269 		return count;
270 
271 	cs_tuners.ignore_nice = input;
272 
273 	/* we need to re-evaluate prev_cpu_idle */
274 	for_each_online_cpu(j) {
275 		struct cs_cpu_dbs_info_s *dbs_info;
276 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
277 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
278 						&dbs_info->cdbs.prev_cpu_wall);
279 		if (cs_tuners.ignore_nice)
280 			dbs_info->cdbs.prev_cpu_nice =
281 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
282 	}
283 	return count;
284 }
285 
286 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
287 			       const char *buf, size_t count)
288 {
289 	unsigned int input;
290 	int ret;
291 	ret = sscanf(buf, "%u", &input);
292 
293 	if (ret != 1)
294 		return -EINVAL;
295 
296 	if (input > 100)
297 		input = 100;
298 
299 	/*
300 	 * no need to test here if freq_step is zero as the user might actually
301 	 * want this, they would be crazy though :)
302 	 */
303 	cs_tuners.freq_step = input;
304 	return count;
305 }
306 
307 show_one(cs, sampling_rate, sampling_rate);
308 show_one(cs, sampling_down_factor, sampling_down_factor);
309 show_one(cs, up_threshold, up_threshold);
310 show_one(cs, down_threshold, down_threshold);
311 show_one(cs, ignore_nice_load, ignore_nice);
312 show_one(cs, freq_step, freq_step);
313 
314 define_one_global_rw(sampling_rate);
315 define_one_global_rw(sampling_down_factor);
316 define_one_global_rw(up_threshold);
317 define_one_global_rw(down_threshold);
318 define_one_global_rw(ignore_nice_load);
319 define_one_global_rw(freq_step);
320 define_one_global_ro(sampling_rate_min);
321 
322 static struct attribute *dbs_attributes[] = {
323 	&sampling_rate_min.attr,
324 	&sampling_rate.attr,
325 	&sampling_down_factor.attr,
326 	&up_threshold.attr,
327 	&down_threshold.attr,
328 	&ignore_nice_load.attr,
329 	&freq_step.attr,
330 	NULL
331 };
332 
333 static struct attribute_group cs_attr_group = {
334 	.attrs = dbs_attributes,
335 	.name = "conservative",
336 };
337 
338 /************************** sysfs end ************************/
339 
340 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
341 
342 static struct notifier_block cs_cpufreq_notifier_block = {
343 	.notifier_call = dbs_cpufreq_notifier,
344 };
345 
346 static struct cs_ops cs_ops = {
347 	.notifier_block = &cs_cpufreq_notifier_block,
348 };
349 
350 static struct dbs_data cs_dbs_data = {
351 	.governor = GOV_CONSERVATIVE,
352 	.attr_group = &cs_attr_group,
353 	.tuners = &cs_tuners,
354 	.get_cpu_cdbs = get_cpu_cdbs,
355 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
356 	.gov_dbs_timer = cs_dbs_timer,
357 	.gov_check_cpu = cs_check_cpu,
358 	.gov_ops = &cs_ops,
359 };
360 
361 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
362 				   unsigned int event)
363 {
364 	return cpufreq_governor_dbs(&cs_dbs_data, policy, event);
365 }
366 
367 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
368 static
369 #endif
370 struct cpufreq_governor cpufreq_gov_conservative = {
371 	.name			= "conservative",
372 	.governor		= cs_cpufreq_governor_dbs,
373 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
374 	.owner			= THIS_MODULE,
375 };
376 
377 static int __init cpufreq_gov_dbs_init(void)
378 {
379 	mutex_init(&cs_dbs_data.mutex);
380 	return cpufreq_register_governor(&cpufreq_gov_conservative);
381 }
382 
383 static void __exit cpufreq_gov_dbs_exit(void)
384 {
385 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
386 }
387 
388 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
389 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
390 		"Low Latency Frequency Transition capable processors "
391 		"optimised for use in a battery environment");
392 MODULE_LICENSE("GPL");
393 
394 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
395 fs_initcall(cpufreq_gov_dbs_init);
396 #else
397 module_init(cpufreq_gov_dbs_init);
398 #endif
399 module_exit(cpufreq_gov_dbs_exit);
400