1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26 
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31 
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
34 
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 #define MIN_SAMPLING_RATE_RATIO			(2)
46 
47 static unsigned int min_sampling_rate;
48 
49 #define LATENCY_MULTIPLIER			(1000)
50 #define MIN_LATENCY_MULTIPLIER			(100)
51 #define DEF_SAMPLING_DOWN_FACTOR		(1)
52 #define MAX_SAMPLING_DOWN_FACTOR		(10)
53 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54 
55 static void do_dbs_timer(struct work_struct *work);
56 
57 struct cpu_dbs_info_s {
58 	cputime64_t prev_cpu_idle;
59 	cputime64_t prev_cpu_wall;
60 	cputime64_t prev_cpu_nice;
61 	struct cpufreq_policy *cur_policy;
62 	struct delayed_work work;
63 	unsigned int down_skip;
64 	unsigned int requested_freq;
65 	int cpu;
66 	unsigned int enable:1;
67 	/*
68 	 * percpu mutex that serializes governor limit change with
69 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 	 * when user is changing the governor or limits.
71 	 */
72 	struct mutex timer_mutex;
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 
76 static unsigned int dbs_enable;	/* number of CPUs using this policy */
77 
78 /*
79  * dbs_mutex protects dbs_enable in governor start/stop.
80  */
81 static DEFINE_MUTEX(dbs_mutex);
82 
83 static struct dbs_tuners {
84 	unsigned int sampling_rate;
85 	unsigned int sampling_down_factor;
86 	unsigned int up_threshold;
87 	unsigned int down_threshold;
88 	unsigned int ignore_nice;
89 	unsigned int freq_step;
90 } dbs_tuners_ins = {
91 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94 	.ignore_nice = 0,
95 	.freq_step = 5,
96 };
97 
98 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
99 							cputime64_t *wall)
100 {
101 	cputime64_t idle_time;
102 	cputime64_t cur_wall_time;
103 	cputime64_t busy_time;
104 
105 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
106 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
107 			kstat_cpu(cpu).cpustat.system);
108 
109 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
110 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
111 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
112 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
113 
114 	idle_time = cputime64_sub(cur_wall_time, busy_time);
115 	if (wall)
116 		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
117 
118 	return (cputime64_t)jiffies_to_usecs(idle_time);
119 }
120 
121 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
122 {
123 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
124 
125 	if (idle_time == -1ULL)
126 		return get_cpu_idle_time_jiffy(cpu, wall);
127 
128 	return idle_time;
129 }
130 
131 /* keep track of frequency transitions */
132 static int
133 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
134 		     void *data)
135 {
136 	struct cpufreq_freqs *freq = data;
137 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
138 							freq->cpu);
139 
140 	struct cpufreq_policy *policy;
141 
142 	if (!this_dbs_info->enable)
143 		return 0;
144 
145 	policy = this_dbs_info->cur_policy;
146 
147 	/*
148 	 * we only care if our internally tracked freq moves outside
149 	 * the 'valid' ranges of freqency available to us otherwise
150 	 * we do not change it
151 	*/
152 	if (this_dbs_info->requested_freq > policy->max
153 			|| this_dbs_info->requested_freq < policy->min)
154 		this_dbs_info->requested_freq = freq->new;
155 
156 	return 0;
157 }
158 
159 static struct notifier_block dbs_cpufreq_notifier_block = {
160 	.notifier_call = dbs_cpufreq_notifier
161 };
162 
163 /************************** sysfs interface ************************/
164 static ssize_t show_sampling_rate_min(struct kobject *kobj,
165 				      struct attribute *attr, char *buf)
166 {
167 	return sprintf(buf, "%u\n", min_sampling_rate);
168 }
169 
170 define_one_global_ro(sampling_rate_min);
171 
172 /* cpufreq_conservative Governor Tunables */
173 #define show_one(file_name, object)					\
174 static ssize_t show_##file_name						\
175 (struct kobject *kobj, struct attribute *attr, char *buf)		\
176 {									\
177 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
178 }
179 show_one(sampling_rate, sampling_rate);
180 show_one(sampling_down_factor, sampling_down_factor);
181 show_one(up_threshold, up_threshold);
182 show_one(down_threshold, down_threshold);
183 show_one(ignore_nice_load, ignore_nice);
184 show_one(freq_step, freq_step);
185 
186 static ssize_t store_sampling_down_factor(struct kobject *a,
187 					  struct attribute *b,
188 					  const char *buf, size_t count)
189 {
190 	unsigned int input;
191 	int ret;
192 	ret = sscanf(buf, "%u", &input);
193 
194 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
195 		return -EINVAL;
196 
197 	dbs_tuners_ins.sampling_down_factor = input;
198 	return count;
199 }
200 
201 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
202 				   const char *buf, size_t count)
203 {
204 	unsigned int input;
205 	int ret;
206 	ret = sscanf(buf, "%u", &input);
207 
208 	if (ret != 1)
209 		return -EINVAL;
210 
211 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
212 	return count;
213 }
214 
215 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
216 				  const char *buf, size_t count)
217 {
218 	unsigned int input;
219 	int ret;
220 	ret = sscanf(buf, "%u", &input);
221 
222 	if (ret != 1 || input > 100 ||
223 			input <= dbs_tuners_ins.down_threshold)
224 		return -EINVAL;
225 
226 	dbs_tuners_ins.up_threshold = input;
227 	return count;
228 }
229 
230 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
231 				    const char *buf, size_t count)
232 {
233 	unsigned int input;
234 	int ret;
235 	ret = sscanf(buf, "%u", &input);
236 
237 	/* cannot be lower than 11 otherwise freq will not fall */
238 	if (ret != 1 || input < 11 || input > 100 ||
239 			input >= dbs_tuners_ins.up_threshold)
240 		return -EINVAL;
241 
242 	dbs_tuners_ins.down_threshold = input;
243 	return count;
244 }
245 
246 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
247 				      const char *buf, size_t count)
248 {
249 	unsigned int input;
250 	int ret;
251 
252 	unsigned int j;
253 
254 	ret = sscanf(buf, "%u", &input);
255 	if (ret != 1)
256 		return -EINVAL;
257 
258 	if (input > 1)
259 		input = 1;
260 
261 	if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
262 		return count;
263 
264 	dbs_tuners_ins.ignore_nice = input;
265 
266 	/* we need to re-evaluate prev_cpu_idle */
267 	for_each_online_cpu(j) {
268 		struct cpu_dbs_info_s *dbs_info;
269 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
270 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
271 						&dbs_info->prev_cpu_wall);
272 		if (dbs_tuners_ins.ignore_nice)
273 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
274 	}
275 	return count;
276 }
277 
278 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
279 			       const char *buf, size_t count)
280 {
281 	unsigned int input;
282 	int ret;
283 	ret = sscanf(buf, "%u", &input);
284 
285 	if (ret != 1)
286 		return -EINVAL;
287 
288 	if (input > 100)
289 		input = 100;
290 
291 	/* no need to test here if freq_step is zero as the user might actually
292 	 * want this, they would be crazy though :) */
293 	dbs_tuners_ins.freq_step = input;
294 	return count;
295 }
296 
297 define_one_global_rw(sampling_rate);
298 define_one_global_rw(sampling_down_factor);
299 define_one_global_rw(up_threshold);
300 define_one_global_rw(down_threshold);
301 define_one_global_rw(ignore_nice_load);
302 define_one_global_rw(freq_step);
303 
304 static struct attribute *dbs_attributes[] = {
305 	&sampling_rate_min.attr,
306 	&sampling_rate.attr,
307 	&sampling_down_factor.attr,
308 	&up_threshold.attr,
309 	&down_threshold.attr,
310 	&ignore_nice_load.attr,
311 	&freq_step.attr,
312 	NULL
313 };
314 
315 static struct attribute_group dbs_attr_group = {
316 	.attrs = dbs_attributes,
317 	.name = "conservative",
318 };
319 
320 /************************** sysfs end ************************/
321 
322 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
323 {
324 	unsigned int load = 0;
325 	unsigned int max_load = 0;
326 	unsigned int freq_target;
327 
328 	struct cpufreq_policy *policy;
329 	unsigned int j;
330 
331 	policy = this_dbs_info->cur_policy;
332 
333 	/*
334 	 * Every sampling_rate, we check, if current idle time is less
335 	 * than 20% (default), then we try to increase frequency
336 	 * Every sampling_rate*sampling_down_factor, we check, if current
337 	 * idle time is more than 80%, then we try to decrease frequency
338 	 *
339 	 * Any frequency increase takes it to the maximum frequency.
340 	 * Frequency reduction happens at minimum steps of
341 	 * 5% (default) of maximum frequency
342 	 */
343 
344 	/* Get Absolute Load */
345 	for_each_cpu(j, policy->cpus) {
346 		struct cpu_dbs_info_s *j_dbs_info;
347 		cputime64_t cur_wall_time, cur_idle_time;
348 		unsigned int idle_time, wall_time;
349 
350 		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
351 
352 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
353 
354 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
355 				j_dbs_info->prev_cpu_wall);
356 		j_dbs_info->prev_cpu_wall = cur_wall_time;
357 
358 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
359 				j_dbs_info->prev_cpu_idle);
360 		j_dbs_info->prev_cpu_idle = cur_idle_time;
361 
362 		if (dbs_tuners_ins.ignore_nice) {
363 			cputime64_t cur_nice;
364 			unsigned long cur_nice_jiffies;
365 
366 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
367 					 j_dbs_info->prev_cpu_nice);
368 			/*
369 			 * Assumption: nice time between sampling periods will
370 			 * be less than 2^32 jiffies for 32 bit sys
371 			 */
372 			cur_nice_jiffies = (unsigned long)
373 					cputime64_to_jiffies64(cur_nice);
374 
375 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
376 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
377 		}
378 
379 		if (unlikely(!wall_time || wall_time < idle_time))
380 			continue;
381 
382 		load = 100 * (wall_time - idle_time) / wall_time;
383 
384 		if (load > max_load)
385 			max_load = load;
386 	}
387 
388 	/*
389 	 * break out if we 'cannot' reduce the speed as the user might
390 	 * want freq_step to be zero
391 	 */
392 	if (dbs_tuners_ins.freq_step == 0)
393 		return;
394 
395 	/* Check for frequency increase */
396 	if (max_load > dbs_tuners_ins.up_threshold) {
397 		this_dbs_info->down_skip = 0;
398 
399 		/* if we are already at full speed then break out early */
400 		if (this_dbs_info->requested_freq == policy->max)
401 			return;
402 
403 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
404 
405 		/* max freq cannot be less than 100. But who knows.... */
406 		if (unlikely(freq_target == 0))
407 			freq_target = 5;
408 
409 		this_dbs_info->requested_freq += freq_target;
410 		if (this_dbs_info->requested_freq > policy->max)
411 			this_dbs_info->requested_freq = policy->max;
412 
413 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
414 			CPUFREQ_RELATION_H);
415 		return;
416 	}
417 
418 	/*
419 	 * The optimal frequency is the frequency that is the lowest that
420 	 * can support the current CPU usage without triggering the up
421 	 * policy. To be safe, we focus 10 points under the threshold.
422 	 */
423 	if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
424 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
425 
426 		this_dbs_info->requested_freq -= freq_target;
427 		if (this_dbs_info->requested_freq < policy->min)
428 			this_dbs_info->requested_freq = policy->min;
429 
430 		/*
431 		 * if we cannot reduce the frequency anymore, break out early
432 		 */
433 		if (policy->cur == policy->min)
434 			return;
435 
436 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
437 				CPUFREQ_RELATION_H);
438 		return;
439 	}
440 }
441 
442 static void do_dbs_timer(struct work_struct *work)
443 {
444 	struct cpu_dbs_info_s *dbs_info =
445 		container_of(work, struct cpu_dbs_info_s, work.work);
446 	unsigned int cpu = dbs_info->cpu;
447 
448 	/* We want all CPUs to do sampling nearly on same jiffy */
449 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
450 
451 	delay -= jiffies % delay;
452 
453 	mutex_lock(&dbs_info->timer_mutex);
454 
455 	dbs_check_cpu(dbs_info);
456 
457 	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
458 	mutex_unlock(&dbs_info->timer_mutex);
459 }
460 
461 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
462 {
463 	/* We want all CPUs to do sampling nearly on same jiffy */
464 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
465 	delay -= jiffies % delay;
466 
467 	dbs_info->enable = 1;
468 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
469 	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
470 }
471 
472 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
473 {
474 	dbs_info->enable = 0;
475 	cancel_delayed_work_sync(&dbs_info->work);
476 }
477 
478 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
479 				   unsigned int event)
480 {
481 	unsigned int cpu = policy->cpu;
482 	struct cpu_dbs_info_s *this_dbs_info;
483 	unsigned int j;
484 	int rc;
485 
486 	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
487 
488 	switch (event) {
489 	case CPUFREQ_GOV_START:
490 		if ((!cpu_online(cpu)) || (!policy->cur))
491 			return -EINVAL;
492 
493 		mutex_lock(&dbs_mutex);
494 
495 		for_each_cpu(j, policy->cpus) {
496 			struct cpu_dbs_info_s *j_dbs_info;
497 			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
498 			j_dbs_info->cur_policy = policy;
499 
500 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
501 						&j_dbs_info->prev_cpu_wall);
502 			if (dbs_tuners_ins.ignore_nice) {
503 				j_dbs_info->prev_cpu_nice =
504 						kstat_cpu(j).cpustat.nice;
505 			}
506 		}
507 		this_dbs_info->down_skip = 0;
508 		this_dbs_info->requested_freq = policy->cur;
509 
510 		mutex_init(&this_dbs_info->timer_mutex);
511 		dbs_enable++;
512 		/*
513 		 * Start the timerschedule work, when this governor
514 		 * is used for first time
515 		 */
516 		if (dbs_enable == 1) {
517 			unsigned int latency;
518 			/* policy latency is in nS. Convert it to uS first */
519 			latency = policy->cpuinfo.transition_latency / 1000;
520 			if (latency == 0)
521 				latency = 1;
522 
523 			rc = sysfs_create_group(cpufreq_global_kobject,
524 						&dbs_attr_group);
525 			if (rc) {
526 				mutex_unlock(&dbs_mutex);
527 				return rc;
528 			}
529 
530 			/*
531 			 * conservative does not implement micro like ondemand
532 			 * governor, thus we are bound to jiffes/HZ
533 			 */
534 			min_sampling_rate =
535 				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
536 			/* Bring kernel and HW constraints together */
537 			min_sampling_rate = max(min_sampling_rate,
538 					MIN_LATENCY_MULTIPLIER * latency);
539 			dbs_tuners_ins.sampling_rate =
540 				max(min_sampling_rate,
541 				    latency * LATENCY_MULTIPLIER);
542 
543 			cpufreq_register_notifier(
544 					&dbs_cpufreq_notifier_block,
545 					CPUFREQ_TRANSITION_NOTIFIER);
546 		}
547 		mutex_unlock(&dbs_mutex);
548 
549 		dbs_timer_init(this_dbs_info);
550 
551 		break;
552 
553 	case CPUFREQ_GOV_STOP:
554 		dbs_timer_exit(this_dbs_info);
555 
556 		mutex_lock(&dbs_mutex);
557 		dbs_enable--;
558 		mutex_destroy(&this_dbs_info->timer_mutex);
559 
560 		/*
561 		 * Stop the timerschedule work, when this governor
562 		 * is used for first time
563 		 */
564 		if (dbs_enable == 0)
565 			cpufreq_unregister_notifier(
566 					&dbs_cpufreq_notifier_block,
567 					CPUFREQ_TRANSITION_NOTIFIER);
568 
569 		mutex_unlock(&dbs_mutex);
570 		if (!dbs_enable)
571 			sysfs_remove_group(cpufreq_global_kobject,
572 					   &dbs_attr_group);
573 
574 		break;
575 
576 	case CPUFREQ_GOV_LIMITS:
577 		mutex_lock(&this_dbs_info->timer_mutex);
578 		if (policy->max < this_dbs_info->cur_policy->cur)
579 			__cpufreq_driver_target(
580 					this_dbs_info->cur_policy,
581 					policy->max, CPUFREQ_RELATION_H);
582 		else if (policy->min > this_dbs_info->cur_policy->cur)
583 			__cpufreq_driver_target(
584 					this_dbs_info->cur_policy,
585 					policy->min, CPUFREQ_RELATION_L);
586 		mutex_unlock(&this_dbs_info->timer_mutex);
587 
588 		break;
589 	}
590 	return 0;
591 }
592 
593 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
594 static
595 #endif
596 struct cpufreq_governor cpufreq_gov_conservative = {
597 	.name			= "conservative",
598 	.governor		= cpufreq_governor_dbs,
599 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
600 	.owner			= THIS_MODULE,
601 };
602 
603 static int __init cpufreq_gov_dbs_init(void)
604 {
605 	return cpufreq_register_governor(&cpufreq_gov_conservative);
606 }
607 
608 static void __exit cpufreq_gov_dbs_exit(void)
609 {
610 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
611 }
612 
613 
614 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
615 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
616 		"Low Latency Frequency Transition capable processors "
617 		"optimised for use in a battery environment");
618 MODULE_LICENSE("GPL");
619 
620 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
621 fs_initcall(cpufreq_gov_dbs_init);
622 #else
623 module_init(cpufreq_gov_dbs_init);
624 #endif
625 module_exit(cpufreq_gov_dbs_exit);
626