1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26 
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31 
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
34 
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 #define MIN_SAMPLING_RATE_RATIO			(2)
46 
47 static unsigned int min_sampling_rate;
48 
49 #define LATENCY_MULTIPLIER			(1000)
50 #define MIN_LATENCY_MULTIPLIER			(100)
51 #define DEF_SAMPLING_DOWN_FACTOR		(1)
52 #define MAX_SAMPLING_DOWN_FACTOR		(10)
53 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54 
55 static void do_dbs_timer(struct work_struct *work);
56 
57 struct cpu_dbs_info_s {
58 	cputime64_t prev_cpu_idle;
59 	cputime64_t prev_cpu_wall;
60 	cputime64_t prev_cpu_nice;
61 	struct cpufreq_policy *cur_policy;
62 	struct delayed_work work;
63 	unsigned int down_skip;
64 	unsigned int requested_freq;
65 	int cpu;
66 	unsigned int enable:1;
67 	/*
68 	 * percpu mutex that serializes governor limit change with
69 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 	 * when user is changing the governor or limits.
71 	 */
72 	struct mutex timer_mutex;
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 
76 static unsigned int dbs_enable;	/* number of CPUs using this policy */
77 
78 /*
79  * dbs_mutex protects dbs_enable in governor start/stop.
80  */
81 static DEFINE_MUTEX(dbs_mutex);
82 
83 static struct dbs_tuners {
84 	unsigned int sampling_rate;
85 	unsigned int sampling_down_factor;
86 	unsigned int up_threshold;
87 	unsigned int down_threshold;
88 	unsigned int ignore_nice;
89 	unsigned int freq_step;
90 } dbs_tuners_ins = {
91 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94 	.ignore_nice = 0,
95 	.freq_step = 5,
96 };
97 
98 /* keep track of frequency transitions */
99 static int
100 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
101 		     void *data)
102 {
103 	struct cpufreq_freqs *freq = data;
104 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
105 							freq->cpu);
106 
107 	struct cpufreq_policy *policy;
108 
109 	if (!this_dbs_info->enable)
110 		return 0;
111 
112 	policy = this_dbs_info->cur_policy;
113 
114 	/*
115 	 * we only care if our internally tracked freq moves outside
116 	 * the 'valid' ranges of freqency available to us otherwise
117 	 * we do not change it
118 	*/
119 	if (this_dbs_info->requested_freq > policy->max
120 			|| this_dbs_info->requested_freq < policy->min)
121 		this_dbs_info->requested_freq = freq->new;
122 
123 	return 0;
124 }
125 
126 static struct notifier_block dbs_cpufreq_notifier_block = {
127 	.notifier_call = dbs_cpufreq_notifier
128 };
129 
130 /************************** sysfs interface ************************/
131 static ssize_t show_sampling_rate_min(struct kobject *kobj,
132 				      struct attribute *attr, char *buf)
133 {
134 	return sprintf(buf, "%u\n", min_sampling_rate);
135 }
136 
137 define_one_global_ro(sampling_rate_min);
138 
139 /* cpufreq_conservative Governor Tunables */
140 #define show_one(file_name, object)					\
141 static ssize_t show_##file_name						\
142 (struct kobject *kobj, struct attribute *attr, char *buf)		\
143 {									\
144 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
145 }
146 show_one(sampling_rate, sampling_rate);
147 show_one(sampling_down_factor, sampling_down_factor);
148 show_one(up_threshold, up_threshold);
149 show_one(down_threshold, down_threshold);
150 show_one(ignore_nice_load, ignore_nice);
151 show_one(freq_step, freq_step);
152 
153 static ssize_t store_sampling_down_factor(struct kobject *a,
154 					  struct attribute *b,
155 					  const char *buf, size_t count)
156 {
157 	unsigned int input;
158 	int ret;
159 	ret = sscanf(buf, "%u", &input);
160 
161 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
162 		return -EINVAL;
163 
164 	dbs_tuners_ins.sampling_down_factor = input;
165 	return count;
166 }
167 
168 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
169 				   const char *buf, size_t count)
170 {
171 	unsigned int input;
172 	int ret;
173 	ret = sscanf(buf, "%u", &input);
174 
175 	if (ret != 1)
176 		return -EINVAL;
177 
178 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
179 	return count;
180 }
181 
182 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
183 				  const char *buf, size_t count)
184 {
185 	unsigned int input;
186 	int ret;
187 	ret = sscanf(buf, "%u", &input);
188 
189 	if (ret != 1 || input > 100 ||
190 			input <= dbs_tuners_ins.down_threshold)
191 		return -EINVAL;
192 
193 	dbs_tuners_ins.up_threshold = input;
194 	return count;
195 }
196 
197 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
198 				    const char *buf, size_t count)
199 {
200 	unsigned int input;
201 	int ret;
202 	ret = sscanf(buf, "%u", &input);
203 
204 	/* cannot be lower than 11 otherwise freq will not fall */
205 	if (ret != 1 || input < 11 || input > 100 ||
206 			input >= dbs_tuners_ins.up_threshold)
207 		return -EINVAL;
208 
209 	dbs_tuners_ins.down_threshold = input;
210 	return count;
211 }
212 
213 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
214 				      const char *buf, size_t count)
215 {
216 	unsigned int input;
217 	int ret;
218 
219 	unsigned int j;
220 
221 	ret = sscanf(buf, "%u", &input);
222 	if (ret != 1)
223 		return -EINVAL;
224 
225 	if (input > 1)
226 		input = 1;
227 
228 	if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
229 		return count;
230 
231 	dbs_tuners_ins.ignore_nice = input;
232 
233 	/* we need to re-evaluate prev_cpu_idle */
234 	for_each_online_cpu(j) {
235 		struct cpu_dbs_info_s *dbs_info;
236 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
237 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
238 						&dbs_info->prev_cpu_wall);
239 		if (dbs_tuners_ins.ignore_nice)
240 			dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
241 	}
242 	return count;
243 }
244 
245 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
246 			       const char *buf, size_t count)
247 {
248 	unsigned int input;
249 	int ret;
250 	ret = sscanf(buf, "%u", &input);
251 
252 	if (ret != 1)
253 		return -EINVAL;
254 
255 	if (input > 100)
256 		input = 100;
257 
258 	/* no need to test here if freq_step is zero as the user might actually
259 	 * want this, they would be crazy though :) */
260 	dbs_tuners_ins.freq_step = input;
261 	return count;
262 }
263 
264 define_one_global_rw(sampling_rate);
265 define_one_global_rw(sampling_down_factor);
266 define_one_global_rw(up_threshold);
267 define_one_global_rw(down_threshold);
268 define_one_global_rw(ignore_nice_load);
269 define_one_global_rw(freq_step);
270 
271 static struct attribute *dbs_attributes[] = {
272 	&sampling_rate_min.attr,
273 	&sampling_rate.attr,
274 	&sampling_down_factor.attr,
275 	&up_threshold.attr,
276 	&down_threshold.attr,
277 	&ignore_nice_load.attr,
278 	&freq_step.attr,
279 	NULL
280 };
281 
282 static struct attribute_group dbs_attr_group = {
283 	.attrs = dbs_attributes,
284 	.name = "conservative",
285 };
286 
287 /************************** sysfs end ************************/
288 
289 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
290 {
291 	unsigned int load = 0;
292 	unsigned int max_load = 0;
293 	unsigned int freq_target;
294 
295 	struct cpufreq_policy *policy;
296 	unsigned int j;
297 
298 	policy = this_dbs_info->cur_policy;
299 
300 	/*
301 	 * Every sampling_rate, we check, if current idle time is less
302 	 * than 20% (default), then we try to increase frequency
303 	 * Every sampling_rate*sampling_down_factor, we check, if current
304 	 * idle time is more than 80%, then we try to decrease frequency
305 	 *
306 	 * Any frequency increase takes it to the maximum frequency.
307 	 * Frequency reduction happens at minimum steps of
308 	 * 5% (default) of maximum frequency
309 	 */
310 
311 	/* Get Absolute Load */
312 	for_each_cpu(j, policy->cpus) {
313 		struct cpu_dbs_info_s *j_dbs_info;
314 		cputime64_t cur_wall_time, cur_idle_time;
315 		unsigned int idle_time, wall_time;
316 
317 		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
318 
319 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
320 
321 		wall_time = (unsigned int)
322 			(cur_wall_time - j_dbs_info->prev_cpu_wall);
323 		j_dbs_info->prev_cpu_wall = cur_wall_time;
324 
325 		idle_time = (unsigned int)
326 			(cur_idle_time - j_dbs_info->prev_cpu_idle);
327 		j_dbs_info->prev_cpu_idle = cur_idle_time;
328 
329 		if (dbs_tuners_ins.ignore_nice) {
330 			u64 cur_nice;
331 			unsigned long cur_nice_jiffies;
332 
333 			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
334 					 j_dbs_info->prev_cpu_nice;
335 			/*
336 			 * Assumption: nice time between sampling periods will
337 			 * be less than 2^32 jiffies for 32 bit sys
338 			 */
339 			cur_nice_jiffies = (unsigned long)
340 					cputime64_to_jiffies64(cur_nice);
341 
342 			j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
343 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
344 		}
345 
346 		if (unlikely(!wall_time || wall_time < idle_time))
347 			continue;
348 
349 		load = 100 * (wall_time - idle_time) / wall_time;
350 
351 		if (load > max_load)
352 			max_load = load;
353 	}
354 
355 	/*
356 	 * break out if we 'cannot' reduce the speed as the user might
357 	 * want freq_step to be zero
358 	 */
359 	if (dbs_tuners_ins.freq_step == 0)
360 		return;
361 
362 	/* Check for frequency increase */
363 	if (max_load > dbs_tuners_ins.up_threshold) {
364 		this_dbs_info->down_skip = 0;
365 
366 		/* if we are already at full speed then break out early */
367 		if (this_dbs_info->requested_freq == policy->max)
368 			return;
369 
370 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
371 
372 		/* max freq cannot be less than 100. But who knows.... */
373 		if (unlikely(freq_target == 0))
374 			freq_target = 5;
375 
376 		this_dbs_info->requested_freq += freq_target;
377 		if (this_dbs_info->requested_freq > policy->max)
378 			this_dbs_info->requested_freq = policy->max;
379 
380 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
381 			CPUFREQ_RELATION_H);
382 		return;
383 	}
384 
385 	/*
386 	 * The optimal frequency is the frequency that is the lowest that
387 	 * can support the current CPU usage without triggering the up
388 	 * policy. To be safe, we focus 10 points under the threshold.
389 	 */
390 	if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
391 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
392 
393 		this_dbs_info->requested_freq -= freq_target;
394 		if (this_dbs_info->requested_freq < policy->min)
395 			this_dbs_info->requested_freq = policy->min;
396 
397 		/*
398 		 * if we cannot reduce the frequency anymore, break out early
399 		 */
400 		if (policy->cur == policy->min)
401 			return;
402 
403 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
404 				CPUFREQ_RELATION_H);
405 		return;
406 	}
407 }
408 
409 static void do_dbs_timer(struct work_struct *work)
410 {
411 	struct cpu_dbs_info_s *dbs_info =
412 		container_of(work, struct cpu_dbs_info_s, work.work);
413 	unsigned int cpu = dbs_info->cpu;
414 
415 	/* We want all CPUs to do sampling nearly on same jiffy */
416 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
417 
418 	delay -= jiffies % delay;
419 
420 	mutex_lock(&dbs_info->timer_mutex);
421 
422 	dbs_check_cpu(dbs_info);
423 
424 	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
425 	mutex_unlock(&dbs_info->timer_mutex);
426 }
427 
428 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
429 {
430 	/* We want all CPUs to do sampling nearly on same jiffy */
431 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
432 	delay -= jiffies % delay;
433 
434 	dbs_info->enable = 1;
435 	INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
436 	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
437 }
438 
439 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
440 {
441 	dbs_info->enable = 0;
442 	cancel_delayed_work_sync(&dbs_info->work);
443 }
444 
445 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
446 				   unsigned int event)
447 {
448 	unsigned int cpu = policy->cpu;
449 	struct cpu_dbs_info_s *this_dbs_info;
450 	unsigned int j;
451 	int rc;
452 
453 	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
454 
455 	switch (event) {
456 	case CPUFREQ_GOV_START:
457 		if ((!cpu_online(cpu)) || (!policy->cur))
458 			return -EINVAL;
459 
460 		mutex_lock(&dbs_mutex);
461 
462 		for_each_cpu(j, policy->cpus) {
463 			struct cpu_dbs_info_s *j_dbs_info;
464 			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
465 			j_dbs_info->cur_policy = policy;
466 
467 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
468 						&j_dbs_info->prev_cpu_wall);
469 			if (dbs_tuners_ins.ignore_nice)
470 				j_dbs_info->prev_cpu_nice =
471 						kcpustat_cpu(j).cpustat[CPUTIME_NICE];
472 		}
473 		this_dbs_info->cpu = cpu;
474 		this_dbs_info->down_skip = 0;
475 		this_dbs_info->requested_freq = policy->cur;
476 
477 		mutex_init(&this_dbs_info->timer_mutex);
478 		dbs_enable++;
479 		/*
480 		 * Start the timerschedule work, when this governor
481 		 * is used for first time
482 		 */
483 		if (dbs_enable == 1) {
484 			unsigned int latency;
485 			/* policy latency is in nS. Convert it to uS first */
486 			latency = policy->cpuinfo.transition_latency / 1000;
487 			if (latency == 0)
488 				latency = 1;
489 
490 			rc = sysfs_create_group(cpufreq_global_kobject,
491 						&dbs_attr_group);
492 			if (rc) {
493 				mutex_unlock(&dbs_mutex);
494 				return rc;
495 			}
496 
497 			/*
498 			 * conservative does not implement micro like ondemand
499 			 * governor, thus we are bound to jiffes/HZ
500 			 */
501 			min_sampling_rate =
502 				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
503 			/* Bring kernel and HW constraints together */
504 			min_sampling_rate = max(min_sampling_rate,
505 					MIN_LATENCY_MULTIPLIER * latency);
506 			dbs_tuners_ins.sampling_rate =
507 				max(min_sampling_rate,
508 				    latency * LATENCY_MULTIPLIER);
509 
510 			cpufreq_register_notifier(
511 					&dbs_cpufreq_notifier_block,
512 					CPUFREQ_TRANSITION_NOTIFIER);
513 		}
514 		mutex_unlock(&dbs_mutex);
515 
516 		dbs_timer_init(this_dbs_info);
517 
518 		break;
519 
520 	case CPUFREQ_GOV_STOP:
521 		dbs_timer_exit(this_dbs_info);
522 
523 		mutex_lock(&dbs_mutex);
524 		dbs_enable--;
525 		mutex_destroy(&this_dbs_info->timer_mutex);
526 
527 		/*
528 		 * Stop the timerschedule work, when this governor
529 		 * is used for first time
530 		 */
531 		if (dbs_enable == 0)
532 			cpufreq_unregister_notifier(
533 					&dbs_cpufreq_notifier_block,
534 					CPUFREQ_TRANSITION_NOTIFIER);
535 
536 		mutex_unlock(&dbs_mutex);
537 		if (!dbs_enable)
538 			sysfs_remove_group(cpufreq_global_kobject,
539 					   &dbs_attr_group);
540 
541 		break;
542 
543 	case CPUFREQ_GOV_LIMITS:
544 		mutex_lock(&this_dbs_info->timer_mutex);
545 		if (policy->max < this_dbs_info->cur_policy->cur)
546 			__cpufreq_driver_target(
547 					this_dbs_info->cur_policy,
548 					policy->max, CPUFREQ_RELATION_H);
549 		else if (policy->min > this_dbs_info->cur_policy->cur)
550 			__cpufreq_driver_target(
551 					this_dbs_info->cur_policy,
552 					policy->min, CPUFREQ_RELATION_L);
553 		dbs_check_cpu(this_dbs_info);
554 		mutex_unlock(&this_dbs_info->timer_mutex);
555 
556 		break;
557 	}
558 	return 0;
559 }
560 
561 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
562 static
563 #endif
564 struct cpufreq_governor cpufreq_gov_conservative = {
565 	.name			= "conservative",
566 	.governor		= cpufreq_governor_dbs,
567 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
568 	.owner			= THIS_MODULE,
569 };
570 
571 static int __init cpufreq_gov_dbs_init(void)
572 {
573 	return cpufreq_register_governor(&cpufreq_gov_conservative);
574 }
575 
576 static void __exit cpufreq_gov_dbs_exit(void)
577 {
578 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
579 }
580 
581 
582 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
583 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
584 		"Low Latency Frequency Transition capable processors "
585 		"optimised for use in a battery environment");
586 MODULE_LICENSE("GPL");
587 
588 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
589 fs_initcall(cpufreq_gov_dbs_init);
590 #else
591 module_init(cpufreq_gov_dbs_init);
592 #endif
593 module_exit(cpufreq_gov_dbs_exit);
594