1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/sched.h>
27 #include <linux/kmod.h>
28 #include <linux/workqueue.h>
29 #include <linux/jiffies.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/percpu.h>
32 #include <linux/mutex.h>
33 /*
34  * dbs is used in this file as a shortform for demandbased switching
35  * It helps to keep variable names smaller, simpler
36  */
37 
38 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
39 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
40 
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48  * this governor will not work.
49  * All times here are in uS.
50  */
51 static unsigned int 				def_sampling_rate;
52 #define MIN_SAMPLING_RATE_RATIO			(2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
56 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
57 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
58 #define DEF_SAMPLING_DOWN_FACTOR		(1)
59 #define MAX_SAMPLING_DOWN_FACTOR		(10)
60 #define TRANSITION_LATENCY_LIMIT		(10 * 1000)
61 
62 static void do_dbs_timer(void *data);
63 
64 struct cpu_dbs_info_s {
65 	struct cpufreq_policy 	*cur_policy;
66 	unsigned int 		prev_cpu_idle_up;
67 	unsigned int 		prev_cpu_idle_down;
68 	unsigned int 		enable;
69 	unsigned int		down_skip;
70 	unsigned int		requested_freq;
71 };
72 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
73 
74 static unsigned int dbs_enable;	/* number of CPUs using this policy */
75 
76 /*
77  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
78  * lock and dbs_mutex. cpu_hotplug lock should always be held before
79  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
80  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
81  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
82  * is recursive for the same process. -Venki
83  */
84 static DEFINE_MUTEX 	(dbs_mutex);
85 static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);
86 
87 struct dbs_tuners {
88 	unsigned int 		sampling_rate;
89 	unsigned int		sampling_down_factor;
90 	unsigned int		up_threshold;
91 	unsigned int		down_threshold;
92 	unsigned int		ignore_nice;
93 	unsigned int		freq_step;
94 };
95 
96 static struct dbs_tuners dbs_tuners_ins = {
97 	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
98 	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
99 	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
100 	.ignore_nice		= 0,
101 	.freq_step		= 5,
102 };
103 
104 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
105 {
106 	return	kstat_cpu(cpu).cpustat.idle +
107 		kstat_cpu(cpu).cpustat.iowait +
108 		( dbs_tuners_ins.ignore_nice ?
109 		  kstat_cpu(cpu).cpustat.nice :
110 		  0);
111 }
112 
113 /************************** sysfs interface ************************/
114 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
115 {
116 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
117 }
118 
119 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
120 {
121 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
122 }
123 
124 #define define_one_ro(_name) 					\
125 static struct freq_attr _name =  				\
126 __ATTR(_name, 0444, show_##_name, NULL)
127 
128 define_one_ro(sampling_rate_max);
129 define_one_ro(sampling_rate_min);
130 
131 /* cpufreq_conservative Governor Tunables */
132 #define show_one(file_name, object)					\
133 static ssize_t show_##file_name						\
134 (struct cpufreq_policy *unused, char *buf)				\
135 {									\
136 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
137 }
138 show_one(sampling_rate, sampling_rate);
139 show_one(sampling_down_factor, sampling_down_factor);
140 show_one(up_threshold, up_threshold);
141 show_one(down_threshold, down_threshold);
142 show_one(ignore_nice_load, ignore_nice);
143 show_one(freq_step, freq_step);
144 
145 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
146 		const char *buf, size_t count)
147 {
148 	unsigned int input;
149 	int ret;
150 	ret = sscanf (buf, "%u", &input);
151 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
152 		return -EINVAL;
153 
154 	mutex_lock(&dbs_mutex);
155 	dbs_tuners_ins.sampling_down_factor = input;
156 	mutex_unlock(&dbs_mutex);
157 
158 	return count;
159 }
160 
161 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
162 		const char *buf, size_t count)
163 {
164 	unsigned int input;
165 	int ret;
166 	ret = sscanf (buf, "%u", &input);
167 
168 	mutex_lock(&dbs_mutex);
169 	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
170 		mutex_unlock(&dbs_mutex);
171 		return -EINVAL;
172 	}
173 
174 	dbs_tuners_ins.sampling_rate = input;
175 	mutex_unlock(&dbs_mutex);
176 
177 	return count;
178 }
179 
180 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
181 		const char *buf, size_t count)
182 {
183 	unsigned int input;
184 	int ret;
185 	ret = sscanf (buf, "%u", &input);
186 
187 	mutex_lock(&dbs_mutex);
188 	if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
189 		mutex_unlock(&dbs_mutex);
190 		return -EINVAL;
191 	}
192 
193 	dbs_tuners_ins.up_threshold = input;
194 	mutex_unlock(&dbs_mutex);
195 
196 	return count;
197 }
198 
199 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
200 		const char *buf, size_t count)
201 {
202 	unsigned int input;
203 	int ret;
204 	ret = sscanf (buf, "%u", &input);
205 
206 	mutex_lock(&dbs_mutex);
207 	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
208 		mutex_unlock(&dbs_mutex);
209 		return -EINVAL;
210 	}
211 
212 	dbs_tuners_ins.down_threshold = input;
213 	mutex_unlock(&dbs_mutex);
214 
215 	return count;
216 }
217 
218 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
219 		const char *buf, size_t count)
220 {
221 	unsigned int input;
222 	int ret;
223 
224 	unsigned int j;
225 
226 	ret = sscanf (buf, "%u", &input);
227 	if ( ret != 1 )
228 		return -EINVAL;
229 
230 	if ( input > 1 )
231 		input = 1;
232 
233 	mutex_lock(&dbs_mutex);
234 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
235 		mutex_unlock(&dbs_mutex);
236 		return count;
237 	}
238 	dbs_tuners_ins.ignore_nice = input;
239 
240 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
241 	for_each_online_cpu(j) {
242 		struct cpu_dbs_info_s *j_dbs_info;
243 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
244 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
245 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
246 	}
247 	mutex_unlock(&dbs_mutex);
248 
249 	return count;
250 }
251 
252 static ssize_t store_freq_step(struct cpufreq_policy *policy,
253 		const char *buf, size_t count)
254 {
255 	unsigned int input;
256 	int ret;
257 
258 	ret = sscanf (buf, "%u", &input);
259 
260 	if ( ret != 1 )
261 		return -EINVAL;
262 
263 	if ( input > 100 )
264 		input = 100;
265 
266 	/* no need to test here if freq_step is zero as the user might actually
267 	 * want this, they would be crazy though :) */
268 	mutex_lock(&dbs_mutex);
269 	dbs_tuners_ins.freq_step = input;
270 	mutex_unlock(&dbs_mutex);
271 
272 	return count;
273 }
274 
275 #define define_one_rw(_name) \
276 static struct freq_attr _name = \
277 __ATTR(_name, 0644, show_##_name, store_##_name)
278 
279 define_one_rw(sampling_rate);
280 define_one_rw(sampling_down_factor);
281 define_one_rw(up_threshold);
282 define_one_rw(down_threshold);
283 define_one_rw(ignore_nice_load);
284 define_one_rw(freq_step);
285 
286 static struct attribute * dbs_attributes[] = {
287 	&sampling_rate_max.attr,
288 	&sampling_rate_min.attr,
289 	&sampling_rate.attr,
290 	&sampling_down_factor.attr,
291 	&up_threshold.attr,
292 	&down_threshold.attr,
293 	&ignore_nice_load.attr,
294 	&freq_step.attr,
295 	NULL
296 };
297 
298 static struct attribute_group dbs_attr_group = {
299 	.attrs = dbs_attributes,
300 	.name = "conservative",
301 };
302 
303 /************************** sysfs end ************************/
304 
305 static void dbs_check_cpu(int cpu)
306 {
307 	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
308 	unsigned int tmp_idle_ticks, total_idle_ticks;
309 	unsigned int freq_step;
310 	unsigned int freq_down_sampling_rate;
311 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
312 	struct cpufreq_policy *policy;
313 
314 	if (!this_dbs_info->enable)
315 		return;
316 
317 	policy = this_dbs_info->cur_policy;
318 
319 	/*
320 	 * The default safe range is 20% to 80%
321 	 * Every sampling_rate, we check
322 	 * 	- If current idle time is less than 20%, then we try to
323 	 * 	  increase frequency
324 	 * Every sampling_rate*sampling_down_factor, we check
325 	 * 	- If current idle time is more than 80%, then we try to
326 	 * 	  decrease frequency
327 	 *
328 	 * Any frequency increase takes it to the maximum frequency.
329 	 * Frequency reduction happens at minimum steps of
330 	 * 5% (default) of max_frequency
331 	 */
332 
333 	/* Check for frequency increase */
334 	idle_ticks = UINT_MAX;
335 
336 	/* Check for frequency increase */
337 	total_idle_ticks = get_cpu_idle_time(cpu);
338 	tmp_idle_ticks = total_idle_ticks -
339 		this_dbs_info->prev_cpu_idle_up;
340 	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
341 
342 	if (tmp_idle_ticks < idle_ticks)
343 		idle_ticks = tmp_idle_ticks;
344 
345 	/* Scale idle ticks by 100 and compare with up and down ticks */
346 	idle_ticks *= 100;
347 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
348 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
349 
350 	if (idle_ticks < up_idle_ticks) {
351 		this_dbs_info->down_skip = 0;
352 		this_dbs_info->prev_cpu_idle_down =
353 			this_dbs_info->prev_cpu_idle_up;
354 
355 		/* if we are already at full speed then break out early */
356 		if (this_dbs_info->requested_freq == policy->max)
357 			return;
358 
359 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
360 
361 		/* max freq cannot be less than 100. But who knows.... */
362 		if (unlikely(freq_step == 0))
363 			freq_step = 5;
364 
365 		this_dbs_info->requested_freq += freq_step;
366 		if (this_dbs_info->requested_freq > policy->max)
367 			this_dbs_info->requested_freq = policy->max;
368 
369 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
370 			CPUFREQ_RELATION_H);
371 		return;
372 	}
373 
374 	/* Check for frequency decrease */
375 	this_dbs_info->down_skip++;
376 	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
377 		return;
378 
379 	/* Check for frequency decrease */
380 	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
381 	tmp_idle_ticks = total_idle_ticks -
382 		this_dbs_info->prev_cpu_idle_down;
383 	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
384 
385 	if (tmp_idle_ticks < idle_ticks)
386 		idle_ticks = tmp_idle_ticks;
387 
388 	/* Scale idle ticks by 100 and compare with up and down ticks */
389 	idle_ticks *= 100;
390 	this_dbs_info->down_skip = 0;
391 
392 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
393 		dbs_tuners_ins.sampling_down_factor;
394 	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
395 		usecs_to_jiffies(freq_down_sampling_rate);
396 
397 	if (idle_ticks > down_idle_ticks) {
398 		/*
399 		 * if we are already at the lowest speed then break out early
400 		 * or if we 'cannot' reduce the speed as the user might want
401 		 * freq_step to be zero
402 		 */
403 		if (this_dbs_info->requested_freq == policy->min
404 				|| dbs_tuners_ins.freq_step == 0)
405 			return;
406 
407 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
408 
409 		/* max freq cannot be less than 100. But who knows.... */
410 		if (unlikely(freq_step == 0))
411 			freq_step = 5;
412 
413 		this_dbs_info->requested_freq -= freq_step;
414 		if (this_dbs_info->requested_freq < policy->min)
415 			this_dbs_info->requested_freq = policy->min;
416 
417 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
418 				CPUFREQ_RELATION_H);
419 		return;
420 	}
421 }
422 
423 static void do_dbs_timer(void *data)
424 {
425 	int i;
426 	lock_cpu_hotplug();
427 	mutex_lock(&dbs_mutex);
428 	for_each_online_cpu(i)
429 		dbs_check_cpu(i);
430 	schedule_delayed_work(&dbs_work,
431 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
432 	mutex_unlock(&dbs_mutex);
433 	unlock_cpu_hotplug();
434 }
435 
436 static inline void dbs_timer_init(void)
437 {
438 	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
439 	schedule_delayed_work(&dbs_work,
440 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
441 	return;
442 }
443 
444 static inline void dbs_timer_exit(void)
445 {
446 	cancel_delayed_work(&dbs_work);
447 	return;
448 }
449 
450 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
451 				   unsigned int event)
452 {
453 	unsigned int cpu = policy->cpu;
454 	struct cpu_dbs_info_s *this_dbs_info;
455 	unsigned int j;
456 
457 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
458 
459 	switch (event) {
460 	case CPUFREQ_GOV_START:
461 		if ((!cpu_online(cpu)) ||
462 		    (!policy->cur))
463 			return -EINVAL;
464 
465 		if (policy->cpuinfo.transition_latency >
466 				(TRANSITION_LATENCY_LIMIT * 1000))
467 			return -EINVAL;
468 		if (this_dbs_info->enable) /* Already enabled */
469 			break;
470 
471 		mutex_lock(&dbs_mutex);
472 		for_each_cpu_mask(j, policy->cpus) {
473 			struct cpu_dbs_info_s *j_dbs_info;
474 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
475 			j_dbs_info->cur_policy = policy;
476 
477 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
478 			j_dbs_info->prev_cpu_idle_down
479 				= j_dbs_info->prev_cpu_idle_up;
480 		}
481 		this_dbs_info->enable = 1;
482 		this_dbs_info->down_skip = 0;
483 		this_dbs_info->requested_freq = policy->cur;
484 		sysfs_create_group(&policy->kobj, &dbs_attr_group);
485 		dbs_enable++;
486 		/*
487 		 * Start the timerschedule work, when this governor
488 		 * is used for first time
489 		 */
490 		if (dbs_enable == 1) {
491 			unsigned int latency;
492 			/* policy latency is in nS. Convert it to uS first */
493 			latency = policy->cpuinfo.transition_latency / 1000;
494 			if (latency == 0)
495 				latency = 1;
496 
497 			def_sampling_rate = 10 * latency *
498 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
499 
500 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
501 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
502 
503 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
504 
505 			dbs_timer_init();
506 		}
507 
508 		mutex_unlock(&dbs_mutex);
509 		break;
510 
511 	case CPUFREQ_GOV_STOP:
512 		mutex_lock(&dbs_mutex);
513 		this_dbs_info->enable = 0;
514 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
515 		dbs_enable--;
516 		/*
517 		 * Stop the timerschedule work, when this governor
518 		 * is used for first time
519 		 */
520 		if (dbs_enable == 0)
521 			dbs_timer_exit();
522 
523 		mutex_unlock(&dbs_mutex);
524 
525 		break;
526 
527 	case CPUFREQ_GOV_LIMITS:
528 		lock_cpu_hotplug();
529 		mutex_lock(&dbs_mutex);
530 		if (policy->max < this_dbs_info->cur_policy->cur)
531 			__cpufreq_driver_target(
532 					this_dbs_info->cur_policy,
533 				       	policy->max, CPUFREQ_RELATION_H);
534 		else if (policy->min > this_dbs_info->cur_policy->cur)
535 			__cpufreq_driver_target(
536 					this_dbs_info->cur_policy,
537 				       	policy->min, CPUFREQ_RELATION_L);
538 		mutex_unlock(&dbs_mutex);
539 		unlock_cpu_hotplug();
540 		break;
541 	}
542 	return 0;
543 }
544 
545 static struct cpufreq_governor cpufreq_gov_dbs = {
546 	.name		= "conservative",
547 	.governor	= cpufreq_governor_dbs,
548 	.owner		= THIS_MODULE,
549 };
550 
551 static int __init cpufreq_gov_dbs_init(void)
552 {
553 	return cpufreq_register_governor(&cpufreq_gov_dbs);
554 }
555 
556 static void __exit cpufreq_gov_dbs_exit(void)
557 {
558 	/* Make sure that the scheduled work is indeed not running */
559 	flush_scheduled_work();
560 
561 	cpufreq_unregister_governor(&cpufreq_gov_dbs);
562 }
563 
564 
565 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
566 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
567 		"Low Latency Frequency Transition capable processors "
568 		"optimised for use in a battery environment");
569 MODULE_LICENSE ("GPL");
570 
571 module_init(cpufreq_gov_dbs_init);
572 module_exit(cpufreq_gov_dbs_exit);
573