xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision fb8d6c8d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64 
65 static inline bool has_target(void)
66 {
67 	return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69 
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 
78 /**
79  * Two notifier lists: the "policy" list is involved in the
80  * validation process for a new CPU frequency policy; the
81  * "transition" list for kernel code that needs to handle
82  * changes to devices when the CPU clock speed changes.
83  * The mutex locks both lists.
84  */
85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
87 
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91 	return off;
92 }
93 void disable_cpufreq(void)
94 {
95 	off = 1;
96 }
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98 
99 bool have_governor_per_policy(void)
100 {
101 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104 
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 	if (have_governor_per_policy())
108 		return &policy->kobj;
109 	else
110 		return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113 
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 	u64 idle_time;
117 	u64 cur_wall_time;
118 	u64 busy_time;
119 
120 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
121 
122 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128 
129 	idle_time = cur_wall_time - busy_time;
130 	if (wall)
131 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
132 
133 	return div_u64(idle_time, NSEC_PER_USEC);
134 }
135 
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139 
140 	if (idle_time == -1ULL)
141 		return get_cpu_idle_time_jiffy(cpu, wall);
142 	else if (!io_busy)
143 		idle_time += get_cpu_iowait_time_us(cpu, wall);
144 
145 	return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148 
149 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
150 		unsigned long max_freq)
151 {
152 }
153 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
154 
155 /*
156  * This is a generic cpufreq init() routine which can be used by cpufreq
157  * drivers of SMP systems. It will do following:
158  * - validate & show freq table passed
159  * - set policies transition latency
160  * - policy->cpus with all possible CPUs
161  */
162 void cpufreq_generic_init(struct cpufreq_policy *policy,
163 		struct cpufreq_frequency_table *table,
164 		unsigned int transition_latency)
165 {
166 	policy->freq_table = table;
167 	policy->cpuinfo.transition_latency = transition_latency;
168 
169 	/*
170 	 * The driver only supports the SMP configuration where all processors
171 	 * share the clock and voltage and clock.
172 	 */
173 	cpumask_setall(policy->cpus);
174 }
175 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
176 
177 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
178 {
179 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
180 
181 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
184 
185 unsigned int cpufreq_generic_get(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
188 
189 	if (!policy || IS_ERR(policy->clk)) {
190 		pr_err("%s: No %s associated to cpu: %d\n",
191 		       __func__, policy ? "clk" : "policy", cpu);
192 		return 0;
193 	}
194 
195 	return clk_get_rate(policy->clk) / 1000;
196 }
197 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
198 
199 /**
200  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
201  * @cpu: CPU to find the policy for.
202  *
203  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
204  * the kobject reference counter of that policy.  Return a valid policy on
205  * success or NULL on failure.
206  *
207  * The policy returned by this function has to be released with the help of
208  * cpufreq_cpu_put() to balance its kobject reference counter properly.
209  */
210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
211 {
212 	struct cpufreq_policy *policy = NULL;
213 	unsigned long flags;
214 
215 	if (WARN_ON(cpu >= nr_cpu_ids))
216 		return NULL;
217 
218 	/* get the cpufreq driver */
219 	read_lock_irqsave(&cpufreq_driver_lock, flags);
220 
221 	if (cpufreq_driver) {
222 		/* get the CPU */
223 		policy = cpufreq_cpu_get_raw(cpu);
224 		if (policy)
225 			kobject_get(&policy->kobj);
226 	}
227 
228 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
229 
230 	return policy;
231 }
232 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
233 
234 /**
235  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
236  * @policy: cpufreq policy returned by cpufreq_cpu_get().
237  */
238 void cpufreq_cpu_put(struct cpufreq_policy *policy)
239 {
240 	kobject_put(&policy->kobj);
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
243 
244 /**
245  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
246  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
247  */
248 void cpufreq_cpu_release(struct cpufreq_policy *policy)
249 {
250 	if (WARN_ON(!policy))
251 		return;
252 
253 	lockdep_assert_held(&policy->rwsem);
254 
255 	up_write(&policy->rwsem);
256 
257 	cpufreq_cpu_put(policy);
258 }
259 
260 /**
261  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
262  * @cpu: CPU to find the policy for.
263  *
264  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
265  * if the policy returned by it is not NULL, acquire its rwsem for writing.
266  * Return the policy if it is active or release it and return NULL otherwise.
267  *
268  * The policy returned by this function has to be released with the help of
269  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
270  * counter properly.
271  */
272 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
273 {
274 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
275 
276 	if (!policy)
277 		return NULL;
278 
279 	down_write(&policy->rwsem);
280 
281 	if (policy_is_inactive(policy)) {
282 		cpufreq_cpu_release(policy);
283 		return NULL;
284 	}
285 
286 	return policy;
287 }
288 
289 /*********************************************************************
290  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
291  *********************************************************************/
292 
293 /**
294  * adjust_jiffies - adjust the system "loops_per_jiffy"
295  *
296  * This function alters the system "loops_per_jiffy" for the clock
297  * speed change. Note that loops_per_jiffy cannot be updated on SMP
298  * systems as each CPU might be scaled differently. So, use the arch
299  * per-CPU loops_per_jiffy value wherever possible.
300  */
301 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
302 {
303 #ifndef CONFIG_SMP
304 	static unsigned long l_p_j_ref;
305 	static unsigned int l_p_j_ref_freq;
306 
307 	if (ci->flags & CPUFREQ_CONST_LOOPS)
308 		return;
309 
310 	if (!l_p_j_ref_freq) {
311 		l_p_j_ref = loops_per_jiffy;
312 		l_p_j_ref_freq = ci->old;
313 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
314 			 l_p_j_ref, l_p_j_ref_freq);
315 	}
316 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
317 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
318 								ci->new);
319 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
320 			 loops_per_jiffy, ci->new);
321 	}
322 #endif
323 }
324 
325 /**
326  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
327  * @policy: cpufreq policy to enable fast frequency switching for.
328  * @freqs: contain details of the frequency update.
329  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
330  *
331  * This function calls the transition notifiers and the "adjust_jiffies"
332  * function. It is called twice on all CPU frequency changes that have
333  * external effects.
334  */
335 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
336 				      struct cpufreq_freqs *freqs,
337 				      unsigned int state)
338 {
339 	int cpu;
340 
341 	BUG_ON(irqs_disabled());
342 
343 	if (cpufreq_disabled())
344 		return;
345 
346 	freqs->policy = policy;
347 	freqs->flags = cpufreq_driver->flags;
348 	pr_debug("notification %u of frequency transition to %u kHz\n",
349 		 state, freqs->new);
350 
351 	switch (state) {
352 	case CPUFREQ_PRECHANGE:
353 		/*
354 		 * Detect if the driver reported a value as "old frequency"
355 		 * which is not equal to what the cpufreq core thinks is
356 		 * "old frequency".
357 		 */
358 		if (policy->cur && policy->cur != freqs->old) {
359 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
360 				 freqs->old, policy->cur);
361 			freqs->old = policy->cur;
362 		}
363 
364 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
365 					 CPUFREQ_PRECHANGE, freqs);
366 
367 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
368 		break;
369 
370 	case CPUFREQ_POSTCHANGE:
371 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
372 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
373 			 cpumask_pr_args(policy->cpus));
374 
375 		for_each_cpu(cpu, policy->cpus)
376 			trace_cpu_frequency(freqs->new, cpu);
377 
378 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 					 CPUFREQ_POSTCHANGE, freqs);
380 
381 		cpufreq_stats_record_transition(policy, freqs->new);
382 		policy->cur = freqs->new;
383 	}
384 }
385 
386 /* Do post notifications when there are chances that transition has failed */
387 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
388 		struct cpufreq_freqs *freqs, int transition_failed)
389 {
390 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
391 	if (!transition_failed)
392 		return;
393 
394 	swap(freqs->old, freqs->new);
395 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
396 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397 }
398 
399 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
400 		struct cpufreq_freqs *freqs)
401 {
402 
403 	/*
404 	 * Catch double invocations of _begin() which lead to self-deadlock.
405 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
406 	 * doesn't invoke _begin() on their behalf, and hence the chances of
407 	 * double invocations are very low. Moreover, there are scenarios
408 	 * where these checks can emit false-positive warnings in these
409 	 * drivers; so we avoid that by skipping them altogether.
410 	 */
411 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
412 				&& current == policy->transition_task);
413 
414 wait:
415 	wait_event(policy->transition_wait, !policy->transition_ongoing);
416 
417 	spin_lock(&policy->transition_lock);
418 
419 	if (unlikely(policy->transition_ongoing)) {
420 		spin_unlock(&policy->transition_lock);
421 		goto wait;
422 	}
423 
424 	policy->transition_ongoing = true;
425 	policy->transition_task = current;
426 
427 	spin_unlock(&policy->transition_lock);
428 
429 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
430 }
431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
432 
433 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
434 		struct cpufreq_freqs *freqs, int transition_failed)
435 {
436 	if (WARN_ON(!policy->transition_ongoing))
437 		return;
438 
439 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
440 
441 	policy->transition_ongoing = false;
442 	policy->transition_task = NULL;
443 
444 	wake_up(&policy->transition_wait);
445 }
446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
447 
448 /*
449  * Fast frequency switching status count.  Positive means "enabled", negative
450  * means "disabled" and 0 means "not decided yet".
451  */
452 static int cpufreq_fast_switch_count;
453 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
454 
455 static void cpufreq_list_transition_notifiers(void)
456 {
457 	struct notifier_block *nb;
458 
459 	pr_info("Registered transition notifiers:\n");
460 
461 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
462 
463 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
464 		pr_info("%pS\n", nb->notifier_call);
465 
466 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
467 }
468 
469 /**
470  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
471  * @policy: cpufreq policy to enable fast frequency switching for.
472  *
473  * Try to enable fast frequency switching for @policy.
474  *
475  * The attempt will fail if there is at least one transition notifier registered
476  * at this point, as fast frequency switching is quite fundamentally at odds
477  * with transition notifiers.  Thus if successful, it will make registration of
478  * transition notifiers fail going forward.
479  */
480 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
481 {
482 	lockdep_assert_held(&policy->rwsem);
483 
484 	if (!policy->fast_switch_possible)
485 		return;
486 
487 	mutex_lock(&cpufreq_fast_switch_lock);
488 	if (cpufreq_fast_switch_count >= 0) {
489 		cpufreq_fast_switch_count++;
490 		policy->fast_switch_enabled = true;
491 	} else {
492 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
493 			policy->cpu);
494 		cpufreq_list_transition_notifiers();
495 	}
496 	mutex_unlock(&cpufreq_fast_switch_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
499 
500 /**
501  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
502  * @policy: cpufreq policy to disable fast frequency switching for.
503  */
504 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
505 {
506 	mutex_lock(&cpufreq_fast_switch_lock);
507 	if (policy->fast_switch_enabled) {
508 		policy->fast_switch_enabled = false;
509 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
510 			cpufreq_fast_switch_count--;
511 	}
512 	mutex_unlock(&cpufreq_fast_switch_lock);
513 }
514 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
515 
516 /**
517  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
518  * one.
519  * @target_freq: target frequency to resolve.
520  *
521  * The target to driver frequency mapping is cached in the policy.
522  *
523  * Return: Lowest driver-supported frequency greater than or equal to the
524  * given target_freq, subject to policy (min/max) and driver limitations.
525  */
526 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
527 					 unsigned int target_freq)
528 {
529 	target_freq = clamp_val(target_freq, policy->min, policy->max);
530 	policy->cached_target_freq = target_freq;
531 
532 	if (cpufreq_driver->target_index) {
533 		int idx;
534 
535 		idx = cpufreq_frequency_table_target(policy, target_freq,
536 						     CPUFREQ_RELATION_L);
537 		policy->cached_resolved_idx = idx;
538 		return policy->freq_table[idx].frequency;
539 	}
540 
541 	if (cpufreq_driver->resolve_freq)
542 		return cpufreq_driver->resolve_freq(policy, target_freq);
543 
544 	return target_freq;
545 }
546 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
547 
548 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
549 {
550 	unsigned int latency;
551 
552 	if (policy->transition_delay_us)
553 		return policy->transition_delay_us;
554 
555 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
556 	if (latency) {
557 		/*
558 		 * For platforms that can change the frequency very fast (< 10
559 		 * us), the above formula gives a decent transition delay. But
560 		 * for platforms where transition_latency is in milliseconds, it
561 		 * ends up giving unrealistic values.
562 		 *
563 		 * Cap the default transition delay to 10 ms, which seems to be
564 		 * a reasonable amount of time after which we should reevaluate
565 		 * the frequency.
566 		 */
567 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
568 	}
569 
570 	return LATENCY_MULTIPLIER;
571 }
572 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
573 
574 /*********************************************************************
575  *                          SYSFS INTERFACE                          *
576  *********************************************************************/
577 static ssize_t show_boost(struct kobject *kobj,
578 			  struct kobj_attribute *attr, char *buf)
579 {
580 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
581 }
582 
583 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
584 			   const char *buf, size_t count)
585 {
586 	int ret, enable;
587 
588 	ret = sscanf(buf, "%d", &enable);
589 	if (ret != 1 || enable < 0 || enable > 1)
590 		return -EINVAL;
591 
592 	if (cpufreq_boost_trigger_state(enable)) {
593 		pr_err("%s: Cannot %s BOOST!\n",
594 		       __func__, enable ? "enable" : "disable");
595 		return -EINVAL;
596 	}
597 
598 	pr_debug("%s: cpufreq BOOST %s\n",
599 		 __func__, enable ? "enabled" : "disabled");
600 
601 	return count;
602 }
603 define_one_global_rw(boost);
604 
605 static struct cpufreq_governor *find_governor(const char *str_governor)
606 {
607 	struct cpufreq_governor *t;
608 
609 	for_each_governor(t)
610 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
611 			return t;
612 
613 	return NULL;
614 }
615 
616 static int cpufreq_parse_policy(char *str_governor,
617 				struct cpufreq_policy *policy)
618 {
619 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
620 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
621 		return 0;
622 	}
623 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
624 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
625 		return 0;
626 	}
627 	return -EINVAL;
628 }
629 
630 /**
631  * cpufreq_parse_governor - parse a governor string only for has_target()
632  */
633 static int cpufreq_parse_governor(char *str_governor,
634 				  struct cpufreq_policy *policy)
635 {
636 	struct cpufreq_governor *t;
637 
638 	mutex_lock(&cpufreq_governor_mutex);
639 
640 	t = find_governor(str_governor);
641 	if (!t) {
642 		int ret;
643 
644 		mutex_unlock(&cpufreq_governor_mutex);
645 
646 		ret = request_module("cpufreq_%s", str_governor);
647 		if (ret)
648 			return -EINVAL;
649 
650 		mutex_lock(&cpufreq_governor_mutex);
651 
652 		t = find_governor(str_governor);
653 	}
654 	if (t && !try_module_get(t->owner))
655 		t = NULL;
656 
657 	mutex_unlock(&cpufreq_governor_mutex);
658 
659 	if (t) {
660 		policy->governor = t;
661 		return 0;
662 	}
663 
664 	return -EINVAL;
665 }
666 
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674 
675 #define show_one(file_name, object)			\
676 static ssize_t show_##file_name				\
677 (struct cpufreq_policy *policy, char *buf)		\
678 {							\
679 	return sprintf(buf, "%u\n", policy->object);	\
680 }
681 
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687 
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690 	return 0;
691 }
692 
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695 	ssize_t ret;
696 	unsigned int freq;
697 
698 	freq = arch_freq_get_on_cpu(policy->cpu);
699 	if (freq)
700 		ret = sprintf(buf, "%u\n", freq);
701 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702 			cpufreq_driver->get)
703 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704 	else
705 		ret = sprintf(buf, "%u\n", policy->cur);
706 	return ret;
707 }
708 
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)			\
713 static ssize_t store_##file_name					\
714 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
715 {									\
716 	unsigned long val;						\
717 	int ret;							\
718 									\
719 	ret = sscanf(buf, "%lu", &val);					\
720 	if (ret != 1)							\
721 		return -EINVAL;						\
722 									\
723 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
724 	return ret >= 0 ? count : ret;					\
725 }
726 
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729 
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734 					char *buf)
735 {
736 	unsigned int cur_freq = __cpufreq_get(policy);
737 
738 	if (cur_freq)
739 		return sprintf(buf, "%u\n", cur_freq);
740 
741 	return sprintf(buf, "<unknown>\n");
742 }
743 
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750 		return sprintf(buf, "powersave\n");
751 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752 		return sprintf(buf, "performance\n");
753 	else if (policy->governor)
754 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755 				policy->governor->name);
756 	return -EINVAL;
757 }
758 
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763 					const char *buf, size_t count)
764 {
765 	int ret;
766 	char	str_governor[16];
767 	struct cpufreq_policy new_policy;
768 
769 	memcpy(&new_policy, policy, sizeof(*policy));
770 
771 	ret = sscanf(buf, "%15s", str_governor);
772 	if (ret != 1)
773 		return -EINVAL;
774 
775 	if (cpufreq_driver->setpolicy) {
776 		if (cpufreq_parse_policy(str_governor, &new_policy))
777 			return -EINVAL;
778 	} else {
779 		if (cpufreq_parse_governor(str_governor, &new_policy))
780 			return -EINVAL;
781 	}
782 
783 	ret = cpufreq_set_policy(policy, &new_policy);
784 
785 	if (new_policy.governor)
786 		module_put(new_policy.governor->owner);
787 
788 	return ret ? ret : count;
789 }
790 
791 /**
792  * show_scaling_driver - show the cpufreq driver currently loaded
793  */
794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
795 {
796 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
797 }
798 
799 /**
800  * show_scaling_available_governors - show the available CPUfreq governors
801  */
802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
803 						char *buf)
804 {
805 	ssize_t i = 0;
806 	struct cpufreq_governor *t;
807 
808 	if (!has_target()) {
809 		i += sprintf(buf, "performance powersave");
810 		goto out;
811 	}
812 
813 	for_each_governor(t) {
814 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
815 		    - (CPUFREQ_NAME_LEN + 2)))
816 			goto out;
817 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
818 	}
819 out:
820 	i += sprintf(&buf[i], "\n");
821 	return i;
822 }
823 
824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
825 {
826 	ssize_t i = 0;
827 	unsigned int cpu;
828 
829 	for_each_cpu(cpu, mask) {
830 		if (i)
831 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
832 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
833 		if (i >= (PAGE_SIZE - 5))
834 			break;
835 	}
836 	i += sprintf(&buf[i], "\n");
837 	return i;
838 }
839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
840 
841 /**
842  * show_related_cpus - show the CPUs affected by each transition even if
843  * hw coordination is in use
844  */
845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
846 {
847 	return cpufreq_show_cpus(policy->related_cpus, buf);
848 }
849 
850 /**
851  * show_affected_cpus - show the CPUs affected by each transition
852  */
853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
854 {
855 	return cpufreq_show_cpus(policy->cpus, buf);
856 }
857 
858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
859 					const char *buf, size_t count)
860 {
861 	unsigned int freq = 0;
862 	unsigned int ret;
863 
864 	if (!policy->governor || !policy->governor->store_setspeed)
865 		return -EINVAL;
866 
867 	ret = sscanf(buf, "%u", &freq);
868 	if (ret != 1)
869 		return -EINVAL;
870 
871 	policy->governor->store_setspeed(policy, freq);
872 
873 	return count;
874 }
875 
876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
877 {
878 	if (!policy->governor || !policy->governor->show_setspeed)
879 		return sprintf(buf, "<unsupported>\n");
880 
881 	return policy->governor->show_setspeed(policy, buf);
882 }
883 
884 /**
885  * show_bios_limit - show the current cpufreq HW/BIOS limitation
886  */
887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
888 {
889 	unsigned int limit;
890 	int ret;
891 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
892 	if (!ret)
893 		return sprintf(buf, "%u\n", limit);
894 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
895 }
896 
897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
898 cpufreq_freq_attr_ro(cpuinfo_min_freq);
899 cpufreq_freq_attr_ro(cpuinfo_max_freq);
900 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
901 cpufreq_freq_attr_ro(scaling_available_governors);
902 cpufreq_freq_attr_ro(scaling_driver);
903 cpufreq_freq_attr_ro(scaling_cur_freq);
904 cpufreq_freq_attr_ro(bios_limit);
905 cpufreq_freq_attr_ro(related_cpus);
906 cpufreq_freq_attr_ro(affected_cpus);
907 cpufreq_freq_attr_rw(scaling_min_freq);
908 cpufreq_freq_attr_rw(scaling_max_freq);
909 cpufreq_freq_attr_rw(scaling_governor);
910 cpufreq_freq_attr_rw(scaling_setspeed);
911 
912 static struct attribute *default_attrs[] = {
913 	&cpuinfo_min_freq.attr,
914 	&cpuinfo_max_freq.attr,
915 	&cpuinfo_transition_latency.attr,
916 	&scaling_min_freq.attr,
917 	&scaling_max_freq.attr,
918 	&affected_cpus.attr,
919 	&related_cpus.attr,
920 	&scaling_governor.attr,
921 	&scaling_driver.attr,
922 	&scaling_available_governors.attr,
923 	&scaling_setspeed.attr,
924 	NULL
925 };
926 
927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
928 #define to_attr(a) container_of(a, struct freq_attr, attr)
929 
930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
931 {
932 	struct cpufreq_policy *policy = to_policy(kobj);
933 	struct freq_attr *fattr = to_attr(attr);
934 	ssize_t ret;
935 
936 	down_read(&policy->rwsem);
937 	ret = fattr->show(policy, buf);
938 	up_read(&policy->rwsem);
939 
940 	return ret;
941 }
942 
943 static ssize_t store(struct kobject *kobj, struct attribute *attr,
944 		     const char *buf, size_t count)
945 {
946 	struct cpufreq_policy *policy = to_policy(kobj);
947 	struct freq_attr *fattr = to_attr(attr);
948 	ssize_t ret = -EINVAL;
949 
950 	/*
951 	 * cpus_read_trylock() is used here to work around a circular lock
952 	 * dependency problem with respect to the cpufreq_register_driver().
953 	 */
954 	if (!cpus_read_trylock())
955 		return -EBUSY;
956 
957 	if (cpu_online(policy->cpu)) {
958 		down_write(&policy->rwsem);
959 		ret = fattr->store(policy, buf, count);
960 		up_write(&policy->rwsem);
961 	}
962 
963 	cpus_read_unlock();
964 
965 	return ret;
966 }
967 
968 static void cpufreq_sysfs_release(struct kobject *kobj)
969 {
970 	struct cpufreq_policy *policy = to_policy(kobj);
971 	pr_debug("last reference is dropped\n");
972 	complete(&policy->kobj_unregister);
973 }
974 
975 static const struct sysfs_ops sysfs_ops = {
976 	.show	= show,
977 	.store	= store,
978 };
979 
980 static struct kobj_type ktype_cpufreq = {
981 	.sysfs_ops	= &sysfs_ops,
982 	.default_attrs	= default_attrs,
983 	.release	= cpufreq_sysfs_release,
984 };
985 
986 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
987 {
988 	struct device *dev = get_cpu_device(cpu);
989 
990 	if (unlikely(!dev))
991 		return;
992 
993 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
994 		return;
995 
996 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
997 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
998 		dev_err(dev, "cpufreq symlink creation failed\n");
999 }
1000 
1001 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1002 				   struct device *dev)
1003 {
1004 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1005 	sysfs_remove_link(&dev->kobj, "cpufreq");
1006 }
1007 
1008 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1009 {
1010 	struct freq_attr **drv_attr;
1011 	int ret = 0;
1012 
1013 	/* set up files for this cpu device */
1014 	drv_attr = cpufreq_driver->attr;
1015 	while (drv_attr && *drv_attr) {
1016 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1017 		if (ret)
1018 			return ret;
1019 		drv_attr++;
1020 	}
1021 	if (cpufreq_driver->get) {
1022 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1023 		if (ret)
1024 			return ret;
1025 	}
1026 
1027 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1028 	if (ret)
1029 		return ret;
1030 
1031 	if (cpufreq_driver->bios_limit) {
1032 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1033 		if (ret)
1034 			return ret;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1041 {
1042 	return NULL;
1043 }
1044 
1045 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1046 {
1047 	struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1048 	struct cpufreq_policy new_policy;
1049 
1050 	memcpy(&new_policy, policy, sizeof(*policy));
1051 
1052 	def_gov = cpufreq_default_governor();
1053 
1054 	if (has_target()) {
1055 		/*
1056 		 * Update governor of new_policy to the governor used before
1057 		 * hotplug
1058 		 */
1059 		gov = find_governor(policy->last_governor);
1060 		if (gov) {
1061 			pr_debug("Restoring governor %s for cpu %d\n",
1062 				policy->governor->name, policy->cpu);
1063 		} else {
1064 			if (!def_gov)
1065 				return -ENODATA;
1066 			gov = def_gov;
1067 		}
1068 		new_policy.governor = gov;
1069 	} else {
1070 		/* Use the default policy if there is no last_policy. */
1071 		if (policy->last_policy) {
1072 			new_policy.policy = policy->last_policy;
1073 		} else {
1074 			if (!def_gov)
1075 				return -ENODATA;
1076 			cpufreq_parse_policy(def_gov->name, &new_policy);
1077 		}
1078 	}
1079 
1080 	return cpufreq_set_policy(policy, &new_policy);
1081 }
1082 
1083 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1084 {
1085 	int ret = 0;
1086 
1087 	/* Has this CPU been taken care of already? */
1088 	if (cpumask_test_cpu(cpu, policy->cpus))
1089 		return 0;
1090 
1091 	down_write(&policy->rwsem);
1092 	if (has_target())
1093 		cpufreq_stop_governor(policy);
1094 
1095 	cpumask_set_cpu(cpu, policy->cpus);
1096 
1097 	if (has_target()) {
1098 		ret = cpufreq_start_governor(policy);
1099 		if (ret)
1100 			pr_err("%s: Failed to start governor\n", __func__);
1101 	}
1102 	up_write(&policy->rwsem);
1103 	return ret;
1104 }
1105 
1106 void refresh_frequency_limits(struct cpufreq_policy *policy)
1107 {
1108 	struct cpufreq_policy new_policy;
1109 
1110 	if (!policy_is_inactive(policy)) {
1111 		new_policy = *policy;
1112 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1113 
1114 		cpufreq_set_policy(policy, &new_policy);
1115 	}
1116 }
1117 EXPORT_SYMBOL(refresh_frequency_limits);
1118 
1119 static void handle_update(struct work_struct *work)
1120 {
1121 	struct cpufreq_policy *policy =
1122 		container_of(work, struct cpufreq_policy, update);
1123 
1124 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1125 	down_write(&policy->rwsem);
1126 	refresh_frequency_limits(policy);
1127 	up_write(&policy->rwsem);
1128 }
1129 
1130 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1131 				void *data)
1132 {
1133 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1134 
1135 	schedule_work(&policy->update);
1136 	return 0;
1137 }
1138 
1139 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1140 				void *data)
1141 {
1142 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1143 
1144 	schedule_work(&policy->update);
1145 	return 0;
1146 }
1147 
1148 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1149 {
1150 	struct kobject *kobj;
1151 	struct completion *cmp;
1152 
1153 	down_write(&policy->rwsem);
1154 	cpufreq_stats_free_table(policy);
1155 	kobj = &policy->kobj;
1156 	cmp = &policy->kobj_unregister;
1157 	up_write(&policy->rwsem);
1158 	kobject_put(kobj);
1159 
1160 	/*
1161 	 * We need to make sure that the underlying kobj is
1162 	 * actually not referenced anymore by anybody before we
1163 	 * proceed with unloading.
1164 	 */
1165 	pr_debug("waiting for dropping of refcount\n");
1166 	wait_for_completion(cmp);
1167 	pr_debug("wait complete\n");
1168 }
1169 
1170 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1171 {
1172 	struct cpufreq_policy *policy;
1173 	struct device *dev = get_cpu_device(cpu);
1174 	int ret;
1175 
1176 	if (!dev)
1177 		return NULL;
1178 
1179 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1180 	if (!policy)
1181 		return NULL;
1182 
1183 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1184 		goto err_free_policy;
1185 
1186 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1187 		goto err_free_cpumask;
1188 
1189 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1190 		goto err_free_rcpumask;
1191 
1192 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1193 				   cpufreq_global_kobject, "policy%u", cpu);
1194 	if (ret) {
1195 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1196 		/*
1197 		 * The entire policy object will be freed below, but the extra
1198 		 * memory allocated for the kobject name needs to be freed by
1199 		 * releasing the kobject.
1200 		 */
1201 		kobject_put(&policy->kobj);
1202 		goto err_free_real_cpus;
1203 	}
1204 
1205 	freq_constraints_init(&policy->constraints);
1206 
1207 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1208 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1209 
1210 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1211 				    &policy->nb_min);
1212 	if (ret) {
1213 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1214 			ret, cpumask_pr_args(policy->cpus));
1215 		goto err_kobj_remove;
1216 	}
1217 
1218 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1219 				    &policy->nb_max);
1220 	if (ret) {
1221 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1222 			ret, cpumask_pr_args(policy->cpus));
1223 		goto err_min_qos_notifier;
1224 	}
1225 
1226 	INIT_LIST_HEAD(&policy->policy_list);
1227 	init_rwsem(&policy->rwsem);
1228 	spin_lock_init(&policy->transition_lock);
1229 	init_waitqueue_head(&policy->transition_wait);
1230 	init_completion(&policy->kobj_unregister);
1231 	INIT_WORK(&policy->update, handle_update);
1232 
1233 	policy->cpu = cpu;
1234 	return policy;
1235 
1236 err_min_qos_notifier:
1237 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1238 				 &policy->nb_min);
1239 err_kobj_remove:
1240 	cpufreq_policy_put_kobj(policy);
1241 err_free_real_cpus:
1242 	free_cpumask_var(policy->real_cpus);
1243 err_free_rcpumask:
1244 	free_cpumask_var(policy->related_cpus);
1245 err_free_cpumask:
1246 	free_cpumask_var(policy->cpus);
1247 err_free_policy:
1248 	kfree(policy);
1249 
1250 	return NULL;
1251 }
1252 
1253 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1254 {
1255 	unsigned long flags;
1256 	int cpu;
1257 
1258 	/* Remove policy from list */
1259 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1260 	list_del(&policy->policy_list);
1261 
1262 	for_each_cpu(cpu, policy->related_cpus)
1263 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1264 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265 
1266 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1267 				 &policy->nb_max);
1268 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1269 				 &policy->nb_min);
1270 
1271 	/* Cancel any pending policy->update work before freeing the policy. */
1272 	cancel_work_sync(&policy->update);
1273 
1274 	if (policy->max_freq_req) {
1275 		/*
1276 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1277 		 * successfully adding max_freq_req request.
1278 		 */
1279 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1280 					     CPUFREQ_REMOVE_POLICY, policy);
1281 		freq_qos_remove_request(policy->max_freq_req);
1282 	}
1283 
1284 	freq_qos_remove_request(policy->min_freq_req);
1285 	kfree(policy->min_freq_req);
1286 
1287 	cpufreq_policy_put_kobj(policy);
1288 	free_cpumask_var(policy->real_cpus);
1289 	free_cpumask_var(policy->related_cpus);
1290 	free_cpumask_var(policy->cpus);
1291 	kfree(policy);
1292 }
1293 
1294 static int cpufreq_online(unsigned int cpu)
1295 {
1296 	struct cpufreq_policy *policy;
1297 	bool new_policy;
1298 	unsigned long flags;
1299 	unsigned int j;
1300 	int ret;
1301 
1302 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1303 
1304 	/* Check if this CPU already has a policy to manage it */
1305 	policy = per_cpu(cpufreq_cpu_data, cpu);
1306 	if (policy) {
1307 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1308 		if (!policy_is_inactive(policy))
1309 			return cpufreq_add_policy_cpu(policy, cpu);
1310 
1311 		/* This is the only online CPU for the policy.  Start over. */
1312 		new_policy = false;
1313 		down_write(&policy->rwsem);
1314 		policy->cpu = cpu;
1315 		policy->governor = NULL;
1316 		up_write(&policy->rwsem);
1317 	} else {
1318 		new_policy = true;
1319 		policy = cpufreq_policy_alloc(cpu);
1320 		if (!policy)
1321 			return -ENOMEM;
1322 	}
1323 
1324 	if (!new_policy && cpufreq_driver->online) {
1325 		ret = cpufreq_driver->online(policy);
1326 		if (ret) {
1327 			pr_debug("%s: %d: initialization failed\n", __func__,
1328 				 __LINE__);
1329 			goto out_exit_policy;
1330 		}
1331 
1332 		/* Recover policy->cpus using related_cpus */
1333 		cpumask_copy(policy->cpus, policy->related_cpus);
1334 	} else {
1335 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1336 
1337 		/*
1338 		 * Call driver. From then on the cpufreq must be able
1339 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1340 		 */
1341 		ret = cpufreq_driver->init(policy);
1342 		if (ret) {
1343 			pr_debug("%s: %d: initialization failed\n", __func__,
1344 				 __LINE__);
1345 			goto out_free_policy;
1346 		}
1347 
1348 		ret = cpufreq_table_validate_and_sort(policy);
1349 		if (ret)
1350 			goto out_exit_policy;
1351 
1352 		/* related_cpus should at least include policy->cpus. */
1353 		cpumask_copy(policy->related_cpus, policy->cpus);
1354 	}
1355 
1356 	down_write(&policy->rwsem);
1357 	/*
1358 	 * affected cpus must always be the one, which are online. We aren't
1359 	 * managing offline cpus here.
1360 	 */
1361 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1362 
1363 	if (new_policy) {
1364 		for_each_cpu(j, policy->related_cpus) {
1365 			per_cpu(cpufreq_cpu_data, j) = policy;
1366 			add_cpu_dev_symlink(policy, j);
1367 		}
1368 
1369 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1370 					       GFP_KERNEL);
1371 		if (!policy->min_freq_req)
1372 			goto out_destroy_policy;
1373 
1374 		ret = freq_qos_add_request(&policy->constraints,
1375 					   policy->min_freq_req, FREQ_QOS_MIN,
1376 					   policy->min);
1377 		if (ret < 0) {
1378 			/*
1379 			 * So we don't call freq_qos_remove_request() for an
1380 			 * uninitialized request.
1381 			 */
1382 			kfree(policy->min_freq_req);
1383 			policy->min_freq_req = NULL;
1384 			goto out_destroy_policy;
1385 		}
1386 
1387 		/*
1388 		 * This must be initialized right here to avoid calling
1389 		 * freq_qos_remove_request() on uninitialized request in case
1390 		 * of errors.
1391 		 */
1392 		policy->max_freq_req = policy->min_freq_req + 1;
1393 
1394 		ret = freq_qos_add_request(&policy->constraints,
1395 					   policy->max_freq_req, FREQ_QOS_MAX,
1396 					   policy->max);
1397 		if (ret < 0) {
1398 			policy->max_freq_req = NULL;
1399 			goto out_destroy_policy;
1400 		}
1401 
1402 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1403 				CPUFREQ_CREATE_POLICY, policy);
1404 	}
1405 
1406 	if (cpufreq_driver->get && has_target()) {
1407 		policy->cur = cpufreq_driver->get(policy->cpu);
1408 		if (!policy->cur) {
1409 			pr_err("%s: ->get() failed\n", __func__);
1410 			goto out_destroy_policy;
1411 		}
1412 	}
1413 
1414 	/*
1415 	 * Sometimes boot loaders set CPU frequency to a value outside of
1416 	 * frequency table present with cpufreq core. In such cases CPU might be
1417 	 * unstable if it has to run on that frequency for long duration of time
1418 	 * and so its better to set it to a frequency which is specified in
1419 	 * freq-table. This also makes cpufreq stats inconsistent as
1420 	 * cpufreq-stats would fail to register because current frequency of CPU
1421 	 * isn't found in freq-table.
1422 	 *
1423 	 * Because we don't want this change to effect boot process badly, we go
1424 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1425 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1426 	 * is initialized to zero).
1427 	 *
1428 	 * We are passing target-freq as "policy->cur - 1" otherwise
1429 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1430 	 * equal to target-freq.
1431 	 */
1432 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1433 	    && has_target()) {
1434 		/* Are we running at unknown frequency ? */
1435 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1436 		if (ret == -EINVAL) {
1437 			/* Warn user and fix it */
1438 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1439 				__func__, policy->cpu, policy->cur);
1440 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1441 				CPUFREQ_RELATION_L);
1442 
1443 			/*
1444 			 * Reaching here after boot in a few seconds may not
1445 			 * mean that system will remain stable at "unknown"
1446 			 * frequency for longer duration. Hence, a BUG_ON().
1447 			 */
1448 			BUG_ON(ret);
1449 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1450 				__func__, policy->cpu, policy->cur);
1451 		}
1452 	}
1453 
1454 	if (new_policy) {
1455 		ret = cpufreq_add_dev_interface(policy);
1456 		if (ret)
1457 			goto out_destroy_policy;
1458 
1459 		cpufreq_stats_create_table(policy);
1460 
1461 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1462 		list_add(&policy->policy_list, &cpufreq_policy_list);
1463 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1464 	}
1465 
1466 	ret = cpufreq_init_policy(policy);
1467 	if (ret) {
1468 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1469 		       __func__, cpu, ret);
1470 		goto out_destroy_policy;
1471 	}
1472 
1473 	up_write(&policy->rwsem);
1474 
1475 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1476 
1477 	/* Callback for handling stuff after policy is ready */
1478 	if (cpufreq_driver->ready)
1479 		cpufreq_driver->ready(policy);
1480 
1481 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1482 		policy->cdev = of_cpufreq_cooling_register(policy);
1483 
1484 	pr_debug("initialization complete\n");
1485 
1486 	return 0;
1487 
1488 out_destroy_policy:
1489 	for_each_cpu(j, policy->real_cpus)
1490 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1491 
1492 	up_write(&policy->rwsem);
1493 
1494 out_exit_policy:
1495 	if (cpufreq_driver->exit)
1496 		cpufreq_driver->exit(policy);
1497 
1498 out_free_policy:
1499 	cpufreq_policy_free(policy);
1500 	return ret;
1501 }
1502 
1503 /**
1504  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1505  * @dev: CPU device.
1506  * @sif: Subsystem interface structure pointer (not used)
1507  */
1508 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1509 {
1510 	struct cpufreq_policy *policy;
1511 	unsigned cpu = dev->id;
1512 	int ret;
1513 
1514 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1515 
1516 	if (cpu_online(cpu)) {
1517 		ret = cpufreq_online(cpu);
1518 		if (ret)
1519 			return ret;
1520 	}
1521 
1522 	/* Create sysfs link on CPU registration */
1523 	policy = per_cpu(cpufreq_cpu_data, cpu);
1524 	if (policy)
1525 		add_cpu_dev_symlink(policy, cpu);
1526 
1527 	return 0;
1528 }
1529 
1530 static int cpufreq_offline(unsigned int cpu)
1531 {
1532 	struct cpufreq_policy *policy;
1533 	int ret;
1534 
1535 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1536 
1537 	policy = cpufreq_cpu_get_raw(cpu);
1538 	if (!policy) {
1539 		pr_debug("%s: No cpu_data found\n", __func__);
1540 		return 0;
1541 	}
1542 
1543 	down_write(&policy->rwsem);
1544 	if (has_target())
1545 		cpufreq_stop_governor(policy);
1546 
1547 	cpumask_clear_cpu(cpu, policy->cpus);
1548 
1549 	if (policy_is_inactive(policy)) {
1550 		if (has_target())
1551 			strncpy(policy->last_governor, policy->governor->name,
1552 				CPUFREQ_NAME_LEN);
1553 		else
1554 			policy->last_policy = policy->policy;
1555 	} else if (cpu == policy->cpu) {
1556 		/* Nominate new CPU */
1557 		policy->cpu = cpumask_any(policy->cpus);
1558 	}
1559 
1560 	/* Start governor again for active policy */
1561 	if (!policy_is_inactive(policy)) {
1562 		if (has_target()) {
1563 			ret = cpufreq_start_governor(policy);
1564 			if (ret)
1565 				pr_err("%s: Failed to start governor\n", __func__);
1566 		}
1567 
1568 		goto unlock;
1569 	}
1570 
1571 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1572 		cpufreq_cooling_unregister(policy->cdev);
1573 		policy->cdev = NULL;
1574 	}
1575 
1576 	if (cpufreq_driver->stop_cpu)
1577 		cpufreq_driver->stop_cpu(policy);
1578 
1579 	if (has_target())
1580 		cpufreq_exit_governor(policy);
1581 
1582 	/*
1583 	 * Perform the ->offline() during light-weight tear-down, as
1584 	 * that allows fast recovery when the CPU comes back.
1585 	 */
1586 	if (cpufreq_driver->offline) {
1587 		cpufreq_driver->offline(policy);
1588 	} else if (cpufreq_driver->exit) {
1589 		cpufreq_driver->exit(policy);
1590 		policy->freq_table = NULL;
1591 	}
1592 
1593 unlock:
1594 	up_write(&policy->rwsem);
1595 	return 0;
1596 }
1597 
1598 /**
1599  * cpufreq_remove_dev - remove a CPU device
1600  *
1601  * Removes the cpufreq interface for a CPU device.
1602  */
1603 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1604 {
1605 	unsigned int cpu = dev->id;
1606 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1607 
1608 	if (!policy)
1609 		return;
1610 
1611 	if (cpu_online(cpu))
1612 		cpufreq_offline(cpu);
1613 
1614 	cpumask_clear_cpu(cpu, policy->real_cpus);
1615 	remove_cpu_dev_symlink(policy, dev);
1616 
1617 	if (cpumask_empty(policy->real_cpus)) {
1618 		/* We did light-weight exit earlier, do full tear down now */
1619 		if (cpufreq_driver->offline)
1620 			cpufreq_driver->exit(policy);
1621 
1622 		cpufreq_policy_free(policy);
1623 	}
1624 }
1625 
1626 /**
1627  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1628  *	in deep trouble.
1629  *	@policy: policy managing CPUs
1630  *	@new_freq: CPU frequency the CPU actually runs at
1631  *
1632  *	We adjust to current frequency first, and need to clean up later.
1633  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1634  */
1635 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1636 				unsigned int new_freq)
1637 {
1638 	struct cpufreq_freqs freqs;
1639 
1640 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1641 		 policy->cur, new_freq);
1642 
1643 	freqs.old = policy->cur;
1644 	freqs.new = new_freq;
1645 
1646 	cpufreq_freq_transition_begin(policy, &freqs);
1647 	cpufreq_freq_transition_end(policy, &freqs, 0);
1648 }
1649 
1650 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1651 {
1652 	unsigned int new_freq;
1653 
1654 	new_freq = cpufreq_driver->get(policy->cpu);
1655 	if (!new_freq)
1656 		return 0;
1657 
1658 	/*
1659 	 * If fast frequency switching is used with the given policy, the check
1660 	 * against policy->cur is pointless, so skip it in that case.
1661 	 */
1662 	if (policy->fast_switch_enabled || !has_target())
1663 		return new_freq;
1664 
1665 	if (policy->cur != new_freq) {
1666 		cpufreq_out_of_sync(policy, new_freq);
1667 		if (update)
1668 			schedule_work(&policy->update);
1669 	}
1670 
1671 	return new_freq;
1672 }
1673 
1674 /**
1675  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1676  * @cpu: CPU number
1677  *
1678  * This is the last known freq, without actually getting it from the driver.
1679  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1680  */
1681 unsigned int cpufreq_quick_get(unsigned int cpu)
1682 {
1683 	struct cpufreq_policy *policy;
1684 	unsigned int ret_freq = 0;
1685 	unsigned long flags;
1686 
1687 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1688 
1689 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1690 		ret_freq = cpufreq_driver->get(cpu);
1691 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1692 		return ret_freq;
1693 	}
1694 
1695 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1696 
1697 	policy = cpufreq_cpu_get(cpu);
1698 	if (policy) {
1699 		ret_freq = policy->cur;
1700 		cpufreq_cpu_put(policy);
1701 	}
1702 
1703 	return ret_freq;
1704 }
1705 EXPORT_SYMBOL(cpufreq_quick_get);
1706 
1707 /**
1708  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1709  * @cpu: CPU number
1710  *
1711  * Just return the max possible frequency for a given CPU.
1712  */
1713 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1714 {
1715 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1716 	unsigned int ret_freq = 0;
1717 
1718 	if (policy) {
1719 		ret_freq = policy->max;
1720 		cpufreq_cpu_put(policy);
1721 	}
1722 
1723 	return ret_freq;
1724 }
1725 EXPORT_SYMBOL(cpufreq_quick_get_max);
1726 
1727 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1728 {
1729 	if (unlikely(policy_is_inactive(policy)))
1730 		return 0;
1731 
1732 	return cpufreq_verify_current_freq(policy, true);
1733 }
1734 
1735 /**
1736  * cpufreq_get - get the current CPU frequency (in kHz)
1737  * @cpu: CPU number
1738  *
1739  * Get the CPU current (static) CPU frequency
1740  */
1741 unsigned int cpufreq_get(unsigned int cpu)
1742 {
1743 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1744 	unsigned int ret_freq = 0;
1745 
1746 	if (policy) {
1747 		down_read(&policy->rwsem);
1748 		if (cpufreq_driver->get)
1749 			ret_freq = __cpufreq_get(policy);
1750 		up_read(&policy->rwsem);
1751 
1752 		cpufreq_cpu_put(policy);
1753 	}
1754 
1755 	return ret_freq;
1756 }
1757 EXPORT_SYMBOL(cpufreq_get);
1758 
1759 static struct subsys_interface cpufreq_interface = {
1760 	.name		= "cpufreq",
1761 	.subsys		= &cpu_subsys,
1762 	.add_dev	= cpufreq_add_dev,
1763 	.remove_dev	= cpufreq_remove_dev,
1764 };
1765 
1766 /*
1767  * In case platform wants some specific frequency to be configured
1768  * during suspend..
1769  */
1770 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1771 {
1772 	int ret;
1773 
1774 	if (!policy->suspend_freq) {
1775 		pr_debug("%s: suspend_freq not defined\n", __func__);
1776 		return 0;
1777 	}
1778 
1779 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1780 			policy->suspend_freq);
1781 
1782 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1783 			CPUFREQ_RELATION_H);
1784 	if (ret)
1785 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1786 				__func__, policy->suspend_freq, ret);
1787 
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL(cpufreq_generic_suspend);
1791 
1792 /**
1793  * cpufreq_suspend() - Suspend CPUFreq governors
1794  *
1795  * Called during system wide Suspend/Hibernate cycles for suspending governors
1796  * as some platforms can't change frequency after this point in suspend cycle.
1797  * Because some of the devices (like: i2c, regulators, etc) they use for
1798  * changing frequency are suspended quickly after this point.
1799  */
1800 void cpufreq_suspend(void)
1801 {
1802 	struct cpufreq_policy *policy;
1803 
1804 	if (!cpufreq_driver)
1805 		return;
1806 
1807 	if (!has_target() && !cpufreq_driver->suspend)
1808 		goto suspend;
1809 
1810 	pr_debug("%s: Suspending Governors\n", __func__);
1811 
1812 	for_each_active_policy(policy) {
1813 		if (has_target()) {
1814 			down_write(&policy->rwsem);
1815 			cpufreq_stop_governor(policy);
1816 			up_write(&policy->rwsem);
1817 		}
1818 
1819 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1820 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1821 				cpufreq_driver->name);
1822 	}
1823 
1824 suspend:
1825 	cpufreq_suspended = true;
1826 }
1827 
1828 /**
1829  * cpufreq_resume() - Resume CPUFreq governors
1830  *
1831  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1832  * are suspended with cpufreq_suspend().
1833  */
1834 void cpufreq_resume(void)
1835 {
1836 	struct cpufreq_policy *policy;
1837 	int ret;
1838 
1839 	if (!cpufreq_driver)
1840 		return;
1841 
1842 	if (unlikely(!cpufreq_suspended))
1843 		return;
1844 
1845 	cpufreq_suspended = false;
1846 
1847 	if (!has_target() && !cpufreq_driver->resume)
1848 		return;
1849 
1850 	pr_debug("%s: Resuming Governors\n", __func__);
1851 
1852 	for_each_active_policy(policy) {
1853 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1854 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1855 				policy);
1856 		} else if (has_target()) {
1857 			down_write(&policy->rwsem);
1858 			ret = cpufreq_start_governor(policy);
1859 			up_write(&policy->rwsem);
1860 
1861 			if (ret)
1862 				pr_err("%s: Failed to start governor for policy: %p\n",
1863 				       __func__, policy);
1864 		}
1865 	}
1866 }
1867 
1868 /**
1869  *	cpufreq_get_current_driver - return current driver's name
1870  *
1871  *	Return the name string of the currently loaded cpufreq driver
1872  *	or NULL, if none.
1873  */
1874 const char *cpufreq_get_current_driver(void)
1875 {
1876 	if (cpufreq_driver)
1877 		return cpufreq_driver->name;
1878 
1879 	return NULL;
1880 }
1881 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1882 
1883 /**
1884  *	cpufreq_get_driver_data - return current driver data
1885  *
1886  *	Return the private data of the currently loaded cpufreq
1887  *	driver, or NULL if no cpufreq driver is loaded.
1888  */
1889 void *cpufreq_get_driver_data(void)
1890 {
1891 	if (cpufreq_driver)
1892 		return cpufreq_driver->driver_data;
1893 
1894 	return NULL;
1895 }
1896 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1897 
1898 /*********************************************************************
1899  *                     NOTIFIER LISTS INTERFACE                      *
1900  *********************************************************************/
1901 
1902 /**
1903  *	cpufreq_register_notifier - register a driver with cpufreq
1904  *	@nb: notifier function to register
1905  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1906  *
1907  *	Add a driver to one of two lists: either a list of drivers that
1908  *      are notified about clock rate changes (once before and once after
1909  *      the transition), or a list of drivers that are notified about
1910  *      changes in cpufreq policy.
1911  *
1912  *	This function may sleep, and has the same return conditions as
1913  *	blocking_notifier_chain_register.
1914  */
1915 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1916 {
1917 	int ret;
1918 
1919 	if (cpufreq_disabled())
1920 		return -EINVAL;
1921 
1922 	switch (list) {
1923 	case CPUFREQ_TRANSITION_NOTIFIER:
1924 		mutex_lock(&cpufreq_fast_switch_lock);
1925 
1926 		if (cpufreq_fast_switch_count > 0) {
1927 			mutex_unlock(&cpufreq_fast_switch_lock);
1928 			return -EBUSY;
1929 		}
1930 		ret = srcu_notifier_chain_register(
1931 				&cpufreq_transition_notifier_list, nb);
1932 		if (!ret)
1933 			cpufreq_fast_switch_count--;
1934 
1935 		mutex_unlock(&cpufreq_fast_switch_lock);
1936 		break;
1937 	case CPUFREQ_POLICY_NOTIFIER:
1938 		ret = blocking_notifier_chain_register(
1939 				&cpufreq_policy_notifier_list, nb);
1940 		break;
1941 	default:
1942 		ret = -EINVAL;
1943 	}
1944 
1945 	return ret;
1946 }
1947 EXPORT_SYMBOL(cpufreq_register_notifier);
1948 
1949 /**
1950  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1951  *	@nb: notifier block to be unregistered
1952  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1953  *
1954  *	Remove a driver from the CPU frequency notifier list.
1955  *
1956  *	This function may sleep, and has the same return conditions as
1957  *	blocking_notifier_chain_unregister.
1958  */
1959 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1960 {
1961 	int ret;
1962 
1963 	if (cpufreq_disabled())
1964 		return -EINVAL;
1965 
1966 	switch (list) {
1967 	case CPUFREQ_TRANSITION_NOTIFIER:
1968 		mutex_lock(&cpufreq_fast_switch_lock);
1969 
1970 		ret = srcu_notifier_chain_unregister(
1971 				&cpufreq_transition_notifier_list, nb);
1972 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1973 			cpufreq_fast_switch_count++;
1974 
1975 		mutex_unlock(&cpufreq_fast_switch_lock);
1976 		break;
1977 	case CPUFREQ_POLICY_NOTIFIER:
1978 		ret = blocking_notifier_chain_unregister(
1979 				&cpufreq_policy_notifier_list, nb);
1980 		break;
1981 	default:
1982 		ret = -EINVAL;
1983 	}
1984 
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1988 
1989 
1990 /*********************************************************************
1991  *                              GOVERNORS                            *
1992  *********************************************************************/
1993 
1994 /**
1995  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1996  * @policy: cpufreq policy to switch the frequency for.
1997  * @target_freq: New frequency to set (may be approximate).
1998  *
1999  * Carry out a fast frequency switch without sleeping.
2000  *
2001  * The driver's ->fast_switch() callback invoked by this function must be
2002  * suitable for being called from within RCU-sched read-side critical sections
2003  * and it is expected to select the minimum available frequency greater than or
2004  * equal to @target_freq (CPUFREQ_RELATION_L).
2005  *
2006  * This function must not be called if policy->fast_switch_enabled is unset.
2007  *
2008  * Governors calling this function must guarantee that it will never be invoked
2009  * twice in parallel for the same policy and that it will never be called in
2010  * parallel with either ->target() or ->target_index() for the same policy.
2011  *
2012  * Returns the actual frequency set for the CPU.
2013  *
2014  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2015  * error condition, the hardware configuration must be preserved.
2016  */
2017 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2018 					unsigned int target_freq)
2019 {
2020 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2021 
2022 	return cpufreq_driver->fast_switch(policy, target_freq);
2023 }
2024 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2025 
2026 /* Must set freqs->new to intermediate frequency */
2027 static int __target_intermediate(struct cpufreq_policy *policy,
2028 				 struct cpufreq_freqs *freqs, int index)
2029 {
2030 	int ret;
2031 
2032 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2033 
2034 	/* We don't need to switch to intermediate freq */
2035 	if (!freqs->new)
2036 		return 0;
2037 
2038 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2039 		 __func__, policy->cpu, freqs->old, freqs->new);
2040 
2041 	cpufreq_freq_transition_begin(policy, freqs);
2042 	ret = cpufreq_driver->target_intermediate(policy, index);
2043 	cpufreq_freq_transition_end(policy, freqs, ret);
2044 
2045 	if (ret)
2046 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2047 		       __func__, ret);
2048 
2049 	return ret;
2050 }
2051 
2052 static int __target_index(struct cpufreq_policy *policy, int index)
2053 {
2054 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2055 	unsigned int intermediate_freq = 0;
2056 	unsigned int newfreq = policy->freq_table[index].frequency;
2057 	int retval = -EINVAL;
2058 	bool notify;
2059 
2060 	if (newfreq == policy->cur)
2061 		return 0;
2062 
2063 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2064 	if (notify) {
2065 		/* Handle switching to intermediate frequency */
2066 		if (cpufreq_driver->get_intermediate) {
2067 			retval = __target_intermediate(policy, &freqs, index);
2068 			if (retval)
2069 				return retval;
2070 
2071 			intermediate_freq = freqs.new;
2072 			/* Set old freq to intermediate */
2073 			if (intermediate_freq)
2074 				freqs.old = freqs.new;
2075 		}
2076 
2077 		freqs.new = newfreq;
2078 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2079 			 __func__, policy->cpu, freqs.old, freqs.new);
2080 
2081 		cpufreq_freq_transition_begin(policy, &freqs);
2082 	}
2083 
2084 	retval = cpufreq_driver->target_index(policy, index);
2085 	if (retval)
2086 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2087 		       retval);
2088 
2089 	if (notify) {
2090 		cpufreq_freq_transition_end(policy, &freqs, retval);
2091 
2092 		/*
2093 		 * Failed after setting to intermediate freq? Driver should have
2094 		 * reverted back to initial frequency and so should we. Check
2095 		 * here for intermediate_freq instead of get_intermediate, in
2096 		 * case we haven't switched to intermediate freq at all.
2097 		 */
2098 		if (unlikely(retval && intermediate_freq)) {
2099 			freqs.old = intermediate_freq;
2100 			freqs.new = policy->restore_freq;
2101 			cpufreq_freq_transition_begin(policy, &freqs);
2102 			cpufreq_freq_transition_end(policy, &freqs, 0);
2103 		}
2104 	}
2105 
2106 	return retval;
2107 }
2108 
2109 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2110 			    unsigned int target_freq,
2111 			    unsigned int relation)
2112 {
2113 	unsigned int old_target_freq = target_freq;
2114 	int index;
2115 
2116 	if (cpufreq_disabled())
2117 		return -ENODEV;
2118 
2119 	/* Make sure that target_freq is within supported range */
2120 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2121 
2122 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2123 		 policy->cpu, target_freq, relation, old_target_freq);
2124 
2125 	/*
2126 	 * This might look like a redundant call as we are checking it again
2127 	 * after finding index. But it is left intentionally for cases where
2128 	 * exactly same freq is called again and so we can save on few function
2129 	 * calls.
2130 	 */
2131 	if (target_freq == policy->cur)
2132 		return 0;
2133 
2134 	/* Save last value to restore later on errors */
2135 	policy->restore_freq = policy->cur;
2136 
2137 	if (cpufreq_driver->target)
2138 		return cpufreq_driver->target(policy, target_freq, relation);
2139 
2140 	if (!cpufreq_driver->target_index)
2141 		return -EINVAL;
2142 
2143 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2144 
2145 	return __target_index(policy, index);
2146 }
2147 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2148 
2149 int cpufreq_driver_target(struct cpufreq_policy *policy,
2150 			  unsigned int target_freq,
2151 			  unsigned int relation)
2152 {
2153 	int ret;
2154 
2155 	down_write(&policy->rwsem);
2156 
2157 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2158 
2159 	up_write(&policy->rwsem);
2160 
2161 	return ret;
2162 }
2163 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2164 
2165 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2166 {
2167 	return NULL;
2168 }
2169 
2170 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2171 {
2172 	int ret;
2173 
2174 	/* Don't start any governor operations if we are entering suspend */
2175 	if (cpufreq_suspended)
2176 		return 0;
2177 	/*
2178 	 * Governor might not be initiated here if ACPI _PPC changed
2179 	 * notification happened, so check it.
2180 	 */
2181 	if (!policy->governor)
2182 		return -EINVAL;
2183 
2184 	/* Platform doesn't want dynamic frequency switching ? */
2185 	if (policy->governor->dynamic_switching &&
2186 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2187 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2188 
2189 		if (gov) {
2190 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2191 				policy->governor->name, gov->name);
2192 			policy->governor = gov;
2193 		} else {
2194 			return -EINVAL;
2195 		}
2196 	}
2197 
2198 	if (!try_module_get(policy->governor->owner))
2199 		return -EINVAL;
2200 
2201 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2202 
2203 	if (policy->governor->init) {
2204 		ret = policy->governor->init(policy);
2205 		if (ret) {
2206 			module_put(policy->governor->owner);
2207 			return ret;
2208 		}
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2215 {
2216 	if (cpufreq_suspended || !policy->governor)
2217 		return;
2218 
2219 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2220 
2221 	if (policy->governor->exit)
2222 		policy->governor->exit(policy);
2223 
2224 	module_put(policy->governor->owner);
2225 }
2226 
2227 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2228 {
2229 	int ret;
2230 
2231 	if (cpufreq_suspended)
2232 		return 0;
2233 
2234 	if (!policy->governor)
2235 		return -EINVAL;
2236 
2237 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2238 
2239 	if (cpufreq_driver->get)
2240 		cpufreq_verify_current_freq(policy, false);
2241 
2242 	if (policy->governor->start) {
2243 		ret = policy->governor->start(policy);
2244 		if (ret)
2245 			return ret;
2246 	}
2247 
2248 	if (policy->governor->limits)
2249 		policy->governor->limits(policy);
2250 
2251 	return 0;
2252 }
2253 
2254 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2255 {
2256 	if (cpufreq_suspended || !policy->governor)
2257 		return;
2258 
2259 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2260 
2261 	if (policy->governor->stop)
2262 		policy->governor->stop(policy);
2263 }
2264 
2265 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2266 {
2267 	if (cpufreq_suspended || !policy->governor)
2268 		return;
2269 
2270 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2271 
2272 	if (policy->governor->limits)
2273 		policy->governor->limits(policy);
2274 }
2275 
2276 int cpufreq_register_governor(struct cpufreq_governor *governor)
2277 {
2278 	int err;
2279 
2280 	if (!governor)
2281 		return -EINVAL;
2282 
2283 	if (cpufreq_disabled())
2284 		return -ENODEV;
2285 
2286 	mutex_lock(&cpufreq_governor_mutex);
2287 
2288 	err = -EBUSY;
2289 	if (!find_governor(governor->name)) {
2290 		err = 0;
2291 		list_add(&governor->governor_list, &cpufreq_governor_list);
2292 	}
2293 
2294 	mutex_unlock(&cpufreq_governor_mutex);
2295 	return err;
2296 }
2297 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2298 
2299 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2300 {
2301 	struct cpufreq_policy *policy;
2302 	unsigned long flags;
2303 
2304 	if (!governor)
2305 		return;
2306 
2307 	if (cpufreq_disabled())
2308 		return;
2309 
2310 	/* clear last_governor for all inactive policies */
2311 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2312 	for_each_inactive_policy(policy) {
2313 		if (!strcmp(policy->last_governor, governor->name)) {
2314 			policy->governor = NULL;
2315 			strcpy(policy->last_governor, "\0");
2316 		}
2317 	}
2318 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2319 
2320 	mutex_lock(&cpufreq_governor_mutex);
2321 	list_del(&governor->governor_list);
2322 	mutex_unlock(&cpufreq_governor_mutex);
2323 }
2324 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2325 
2326 
2327 /*********************************************************************
2328  *                          POLICY INTERFACE                         *
2329  *********************************************************************/
2330 
2331 /**
2332  * cpufreq_get_policy - get the current cpufreq_policy
2333  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2334  *	is written
2335  *
2336  * Reads the current cpufreq policy.
2337  */
2338 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2339 {
2340 	struct cpufreq_policy *cpu_policy;
2341 	if (!policy)
2342 		return -EINVAL;
2343 
2344 	cpu_policy = cpufreq_cpu_get(cpu);
2345 	if (!cpu_policy)
2346 		return -EINVAL;
2347 
2348 	memcpy(policy, cpu_policy, sizeof(*policy));
2349 
2350 	cpufreq_cpu_put(cpu_policy);
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(cpufreq_get_policy);
2354 
2355 /**
2356  * cpufreq_set_policy - Modify cpufreq policy parameters.
2357  * @policy: Policy object to modify.
2358  * @new_policy: New policy data.
2359  *
2360  * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the
2361  * min and max parameters of @new_policy to @policy and either invoke the
2362  * driver's ->setpolicy() callback (if present) or carry out a governor update
2363  * for @policy.  That is, run the current governor's ->limits() callback (if the
2364  * governor field in @new_policy points to the same object as the one in
2365  * @policy) or replace the governor for @policy with the new one stored in
2366  * @new_policy.
2367  *
2368  * The cpuinfo part of @policy is not updated by this function.
2369  */
2370 int cpufreq_set_policy(struct cpufreq_policy *policy,
2371 		       struct cpufreq_policy *new_policy)
2372 {
2373 	struct cpufreq_governor *old_gov;
2374 	int ret;
2375 
2376 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2377 		 new_policy->cpu, new_policy->min, new_policy->max);
2378 
2379 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2380 
2381 	/*
2382 	 * PM QoS framework collects all the requests from users and provide us
2383 	 * the final aggregated value here.
2384 	 */
2385 	new_policy->min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2386 	new_policy->max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2387 
2388 	/* verify the cpu speed can be set within this limit */
2389 	ret = cpufreq_driver->verify(new_policy);
2390 	if (ret)
2391 		return ret;
2392 
2393 	policy->min = new_policy->min;
2394 	policy->max = new_policy->max;
2395 	trace_cpu_frequency_limits(policy);
2396 
2397 	policy->cached_target_freq = UINT_MAX;
2398 
2399 	pr_debug("new min and max freqs are %u - %u kHz\n",
2400 		 policy->min, policy->max);
2401 
2402 	if (cpufreq_driver->setpolicy) {
2403 		policy->policy = new_policy->policy;
2404 		pr_debug("setting range\n");
2405 		return cpufreq_driver->setpolicy(policy);
2406 	}
2407 
2408 	if (new_policy->governor == policy->governor) {
2409 		pr_debug("governor limits update\n");
2410 		cpufreq_governor_limits(policy);
2411 		return 0;
2412 	}
2413 
2414 	pr_debug("governor switch\n");
2415 
2416 	/* save old, working values */
2417 	old_gov = policy->governor;
2418 	/* end old governor */
2419 	if (old_gov) {
2420 		cpufreq_stop_governor(policy);
2421 		cpufreq_exit_governor(policy);
2422 	}
2423 
2424 	/* start new governor */
2425 	policy->governor = new_policy->governor;
2426 	ret = cpufreq_init_governor(policy);
2427 	if (!ret) {
2428 		ret = cpufreq_start_governor(policy);
2429 		if (!ret) {
2430 			pr_debug("governor change\n");
2431 			sched_cpufreq_governor_change(policy, old_gov);
2432 			return 0;
2433 		}
2434 		cpufreq_exit_governor(policy);
2435 	}
2436 
2437 	/* new governor failed, so re-start old one */
2438 	pr_debug("starting governor %s failed\n", policy->governor->name);
2439 	if (old_gov) {
2440 		policy->governor = old_gov;
2441 		if (cpufreq_init_governor(policy))
2442 			policy->governor = NULL;
2443 		else
2444 			cpufreq_start_governor(policy);
2445 	}
2446 
2447 	return ret;
2448 }
2449 
2450 /**
2451  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2452  * @cpu: CPU to re-evaluate the policy for.
2453  *
2454  * Update the current frequency for the cpufreq policy of @cpu and use
2455  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2456  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2457  * for the policy in question, among other things.
2458  */
2459 void cpufreq_update_policy(unsigned int cpu)
2460 {
2461 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2462 
2463 	if (!policy)
2464 		return;
2465 
2466 	/*
2467 	 * BIOS might change freq behind our back
2468 	 * -> ask driver for current freq and notify governors about a change
2469 	 */
2470 	if (cpufreq_driver->get && has_target() &&
2471 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2472 		goto unlock;
2473 
2474 	refresh_frequency_limits(policy);
2475 
2476 unlock:
2477 	cpufreq_cpu_release(policy);
2478 }
2479 EXPORT_SYMBOL(cpufreq_update_policy);
2480 
2481 /**
2482  * cpufreq_update_limits - Update policy limits for a given CPU.
2483  * @cpu: CPU to update the policy limits for.
2484  *
2485  * Invoke the driver's ->update_limits callback if present or call
2486  * cpufreq_update_policy() for @cpu.
2487  */
2488 void cpufreq_update_limits(unsigned int cpu)
2489 {
2490 	if (cpufreq_driver->update_limits)
2491 		cpufreq_driver->update_limits(cpu);
2492 	else
2493 		cpufreq_update_policy(cpu);
2494 }
2495 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2496 
2497 /*********************************************************************
2498  *               BOOST						     *
2499  *********************************************************************/
2500 static int cpufreq_boost_set_sw(int state)
2501 {
2502 	struct cpufreq_policy *policy;
2503 	int ret = -EINVAL;
2504 
2505 	for_each_active_policy(policy) {
2506 		if (!policy->freq_table)
2507 			continue;
2508 
2509 		ret = cpufreq_frequency_table_cpuinfo(policy,
2510 						      policy->freq_table);
2511 		if (ret) {
2512 			pr_err("%s: Policy frequency update failed\n",
2513 			       __func__);
2514 			break;
2515 		}
2516 
2517 		ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2518 		if (ret < 0)
2519 			break;
2520 	}
2521 
2522 	return ret;
2523 }
2524 
2525 int cpufreq_boost_trigger_state(int state)
2526 {
2527 	unsigned long flags;
2528 	int ret = 0;
2529 
2530 	if (cpufreq_driver->boost_enabled == state)
2531 		return 0;
2532 
2533 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2534 	cpufreq_driver->boost_enabled = state;
2535 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2536 
2537 	ret = cpufreq_driver->set_boost(state);
2538 	if (ret) {
2539 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2540 		cpufreq_driver->boost_enabled = !state;
2541 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2542 
2543 		pr_err("%s: Cannot %s BOOST\n",
2544 		       __func__, state ? "enable" : "disable");
2545 	}
2546 
2547 	return ret;
2548 }
2549 
2550 static bool cpufreq_boost_supported(void)
2551 {
2552 	return cpufreq_driver->set_boost;
2553 }
2554 
2555 static int create_boost_sysfs_file(void)
2556 {
2557 	int ret;
2558 
2559 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2560 	if (ret)
2561 		pr_err("%s: cannot register global BOOST sysfs file\n",
2562 		       __func__);
2563 
2564 	return ret;
2565 }
2566 
2567 static void remove_boost_sysfs_file(void)
2568 {
2569 	if (cpufreq_boost_supported())
2570 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2571 }
2572 
2573 int cpufreq_enable_boost_support(void)
2574 {
2575 	if (!cpufreq_driver)
2576 		return -EINVAL;
2577 
2578 	if (cpufreq_boost_supported())
2579 		return 0;
2580 
2581 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2582 
2583 	/* This will get removed on driver unregister */
2584 	return create_boost_sysfs_file();
2585 }
2586 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2587 
2588 int cpufreq_boost_enabled(void)
2589 {
2590 	return cpufreq_driver->boost_enabled;
2591 }
2592 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2593 
2594 /*********************************************************************
2595  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2596  *********************************************************************/
2597 static enum cpuhp_state hp_online;
2598 
2599 static int cpuhp_cpufreq_online(unsigned int cpu)
2600 {
2601 	cpufreq_online(cpu);
2602 
2603 	return 0;
2604 }
2605 
2606 static int cpuhp_cpufreq_offline(unsigned int cpu)
2607 {
2608 	cpufreq_offline(cpu);
2609 
2610 	return 0;
2611 }
2612 
2613 /**
2614  * cpufreq_register_driver - register a CPU Frequency driver
2615  * @driver_data: A struct cpufreq_driver containing the values#
2616  * submitted by the CPU Frequency driver.
2617  *
2618  * Registers a CPU Frequency driver to this core code. This code
2619  * returns zero on success, -EEXIST when another driver got here first
2620  * (and isn't unregistered in the meantime).
2621  *
2622  */
2623 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2624 {
2625 	unsigned long flags;
2626 	int ret;
2627 
2628 	if (cpufreq_disabled())
2629 		return -ENODEV;
2630 
2631 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2632 	    !(driver_data->setpolicy || driver_data->target_index ||
2633 		    driver_data->target) ||
2634 	     (driver_data->setpolicy && (driver_data->target_index ||
2635 		    driver_data->target)) ||
2636 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2637 	     (!driver_data->online != !driver_data->offline))
2638 		return -EINVAL;
2639 
2640 	pr_debug("trying to register driver %s\n", driver_data->name);
2641 
2642 	/* Protect against concurrent CPU online/offline. */
2643 	cpus_read_lock();
2644 
2645 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2646 	if (cpufreq_driver) {
2647 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2648 		ret = -EEXIST;
2649 		goto out;
2650 	}
2651 	cpufreq_driver = driver_data;
2652 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2653 
2654 	if (driver_data->setpolicy)
2655 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2656 
2657 	if (cpufreq_boost_supported()) {
2658 		ret = create_boost_sysfs_file();
2659 		if (ret)
2660 			goto err_null_driver;
2661 	}
2662 
2663 	ret = subsys_interface_register(&cpufreq_interface);
2664 	if (ret)
2665 		goto err_boost_unreg;
2666 
2667 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2668 	    list_empty(&cpufreq_policy_list)) {
2669 		/* if all ->init() calls failed, unregister */
2670 		ret = -ENODEV;
2671 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2672 			 driver_data->name);
2673 		goto err_if_unreg;
2674 	}
2675 
2676 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2677 						   "cpufreq:online",
2678 						   cpuhp_cpufreq_online,
2679 						   cpuhp_cpufreq_offline);
2680 	if (ret < 0)
2681 		goto err_if_unreg;
2682 	hp_online = ret;
2683 	ret = 0;
2684 
2685 	pr_debug("driver %s up and running\n", driver_data->name);
2686 	goto out;
2687 
2688 err_if_unreg:
2689 	subsys_interface_unregister(&cpufreq_interface);
2690 err_boost_unreg:
2691 	remove_boost_sysfs_file();
2692 err_null_driver:
2693 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2694 	cpufreq_driver = NULL;
2695 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2696 out:
2697 	cpus_read_unlock();
2698 	return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2701 
2702 /**
2703  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2704  *
2705  * Unregister the current CPUFreq driver. Only call this if you have
2706  * the right to do so, i.e. if you have succeeded in initialising before!
2707  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2708  * currently not initialised.
2709  */
2710 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2711 {
2712 	unsigned long flags;
2713 
2714 	if (!cpufreq_driver || (driver != cpufreq_driver))
2715 		return -EINVAL;
2716 
2717 	pr_debug("unregistering driver %s\n", driver->name);
2718 
2719 	/* Protect against concurrent cpu hotplug */
2720 	cpus_read_lock();
2721 	subsys_interface_unregister(&cpufreq_interface);
2722 	remove_boost_sysfs_file();
2723 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2724 
2725 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2726 
2727 	cpufreq_driver = NULL;
2728 
2729 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2730 	cpus_read_unlock();
2731 
2732 	return 0;
2733 }
2734 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2735 
2736 struct kobject *cpufreq_global_kobject;
2737 EXPORT_SYMBOL(cpufreq_global_kobject);
2738 
2739 static int __init cpufreq_core_init(void)
2740 {
2741 	if (cpufreq_disabled())
2742 		return -ENODEV;
2743 
2744 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2745 	BUG_ON(!cpufreq_global_kobject);
2746 
2747 	return 0;
2748 }
2749 module_param(off, int, 0444);
2750 core_initcall(cpufreq_core_init);
2751