xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 static char default_governor[CPUFREQ_NAME_LEN];
54 
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 /* Flag to suspend/resume CPUFreq governors */
65 static bool cpufreq_suspended;
66 
67 static inline bool has_target(void)
68 {
69 	return cpufreq_driver->target_index || cpufreq_driver->target;
70 }
71 
72 /* internal prototypes */
73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74 static int cpufreq_init_governor(struct cpufreq_policy *policy);
75 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78 			      struct cpufreq_governor *new_gov,
79 			      unsigned int new_pol);
80 
81 /*
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90 
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94 	return off;
95 }
96 void disable_cpufreq(void)
97 {
98 	off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101 
102 bool have_governor_per_policy(void)
103 {
104 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107 
108 static struct kobject *cpufreq_global_kobject;
109 
110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111 {
112 	if (have_governor_per_policy())
113 		return &policy->kobj;
114 	else
115 		return cpufreq_global_kobject;
116 }
117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118 
119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120 {
121 	struct kernel_cpustat kcpustat;
122 	u64 cur_wall_time;
123 	u64 idle_time;
124 	u64 busy_time;
125 
126 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127 
128 	kcpustat_cpu_fetch(&kcpustat, cpu);
129 
130 	busy_time = kcpustat.cpustat[CPUTIME_USER];
131 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
136 
137 	idle_time = cur_wall_time - busy_time;
138 	if (wall)
139 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140 
141 	return div_u64(idle_time, NSEC_PER_USEC);
142 }
143 
144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145 {
146 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147 
148 	if (idle_time == -1ULL)
149 		return get_cpu_idle_time_jiffy(cpu, wall);
150 	else if (!io_busy)
151 		idle_time += get_cpu_iowait_time_us(cpu, wall);
152 
153 	return idle_time;
154 }
155 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156 
157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158 		unsigned long max_freq)
159 {
160 }
161 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162 
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 		struct cpufreq_frequency_table *table,
172 		unsigned int transition_latency)
173 {
174 	policy->freq_table = table;
175 	policy->cpuinfo.transition_latency = transition_latency;
176 
177 	/*
178 	 * The driver only supports the SMP configuration where all processors
179 	 * share the clock and voltage and clock.
180 	 */
181 	cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 	struct cpufreq_policy *policy = NULL;
221 	unsigned long flags;
222 
223 	if (WARN_ON(cpu >= nr_cpu_ids))
224 		return NULL;
225 
226 	/* get the cpufreq driver */
227 	read_lock_irqsave(&cpufreq_driver_lock, flags);
228 
229 	if (cpufreq_driver) {
230 		/* get the CPU */
231 		policy = cpufreq_cpu_get_raw(cpu);
232 		if (policy)
233 			kobject_get(&policy->kobj);
234 	}
235 
236 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237 
238 	return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241 
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 	kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251 
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 	if (WARN_ON(!policy))
259 		return;
260 
261 	lockdep_assert_held(&policy->rwsem);
262 
263 	up_write(&policy->rwsem);
264 
265 	cpufreq_cpu_put(policy);
266 }
267 
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283 
284 	if (!policy)
285 		return NULL;
286 
287 	down_write(&policy->rwsem);
288 
289 	if (policy_is_inactive(policy)) {
290 		cpufreq_cpu_release(policy);
291 		return NULL;
292 	}
293 
294 	return policy;
295 }
296 
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300 
301 /*
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 	static unsigned long l_p_j_ref;
313 	static unsigned int l_p_j_ref_freq;
314 
315 	if (ci->flags & CPUFREQ_CONST_LOOPS)
316 		return;
317 
318 	if (!l_p_j_ref_freq) {
319 		l_p_j_ref = loops_per_jiffy;
320 		l_p_j_ref_freq = ci->old;
321 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 			 l_p_j_ref, l_p_j_ref_freq);
323 	}
324 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 								ci->new);
327 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 			 loops_per_jiffy, ci->new);
329 	}
330 #endif
331 }
332 
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 				      struct cpufreq_freqs *freqs,
345 				      unsigned int state)
346 {
347 	int cpu;
348 
349 	BUG_ON(irqs_disabled());
350 
351 	if (cpufreq_disabled())
352 		return;
353 
354 	freqs->policy = policy;
355 	freqs->flags = cpufreq_driver->flags;
356 	pr_debug("notification %u of frequency transition to %u kHz\n",
357 		 state, freqs->new);
358 
359 	switch (state) {
360 	case CPUFREQ_PRECHANGE:
361 		/*
362 		 * Detect if the driver reported a value as "old frequency"
363 		 * which is not equal to what the cpufreq core thinks is
364 		 * "old frequency".
365 		 */
366 		if (policy->cur && policy->cur != freqs->old) {
367 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 				 freqs->old, policy->cur);
369 			freqs->old = policy->cur;
370 		}
371 
372 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 					 CPUFREQ_PRECHANGE, freqs);
374 
375 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 		break;
377 
378 	case CPUFREQ_POSTCHANGE:
379 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 			 cpumask_pr_args(policy->cpus));
382 
383 		for_each_cpu(cpu, policy->cpus)
384 			trace_cpu_frequency(freqs->new, cpu);
385 
386 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 					 CPUFREQ_POSTCHANGE, freqs);
388 
389 		cpufreq_stats_record_transition(policy, freqs->new);
390 		policy->cur = freqs->new;
391 	}
392 }
393 
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 		struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 	if (!transition_failed)
400 		return;
401 
402 	swap(freqs->old, freqs->new);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406 
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 		struct cpufreq_freqs *freqs)
409 {
410 
411 	/*
412 	 * Catch double invocations of _begin() which lead to self-deadlock.
413 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 	 * doesn't invoke _begin() on their behalf, and hence the chances of
415 	 * double invocations are very low. Moreover, there are scenarios
416 	 * where these checks can emit false-positive warnings in these
417 	 * drivers; so we avoid that by skipping them altogether.
418 	 */
419 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 				&& current == policy->transition_task);
421 
422 wait:
423 	wait_event(policy->transition_wait, !policy->transition_ongoing);
424 
425 	spin_lock(&policy->transition_lock);
426 
427 	if (unlikely(policy->transition_ongoing)) {
428 		spin_unlock(&policy->transition_lock);
429 		goto wait;
430 	}
431 
432 	policy->transition_ongoing = true;
433 	policy->transition_task = current;
434 
435 	spin_unlock(&policy->transition_lock);
436 
437 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440 
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 		struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 	if (WARN_ON(!policy->transition_ongoing))
445 		return;
446 
447 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
448 
449 	policy->transition_ongoing = false;
450 	policy->transition_task = NULL;
451 
452 	wake_up(&policy->transition_wait);
453 }
454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455 
456 /*
457  * Fast frequency switching status count.  Positive means "enabled", negative
458  * means "disabled" and 0 means "not decided yet".
459  */
460 static int cpufreq_fast_switch_count;
461 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462 
463 static void cpufreq_list_transition_notifiers(void)
464 {
465 	struct notifier_block *nb;
466 
467 	pr_info("Registered transition notifiers:\n");
468 
469 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
470 
471 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472 		pr_info("%pS\n", nb->notifier_call);
473 
474 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475 }
476 
477 /**
478  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479  * @policy: cpufreq policy to enable fast frequency switching for.
480  *
481  * Try to enable fast frequency switching for @policy.
482  *
483  * The attempt will fail if there is at least one transition notifier registered
484  * at this point, as fast frequency switching is quite fundamentally at odds
485  * with transition notifiers.  Thus if successful, it will make registration of
486  * transition notifiers fail going forward.
487  */
488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489 {
490 	lockdep_assert_held(&policy->rwsem);
491 
492 	if (!policy->fast_switch_possible)
493 		return;
494 
495 	mutex_lock(&cpufreq_fast_switch_lock);
496 	if (cpufreq_fast_switch_count >= 0) {
497 		cpufreq_fast_switch_count++;
498 		policy->fast_switch_enabled = true;
499 	} else {
500 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
501 			policy->cpu);
502 		cpufreq_list_transition_notifiers();
503 	}
504 	mutex_unlock(&cpufreq_fast_switch_lock);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507 
508 /**
509  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510  * @policy: cpufreq policy to disable fast frequency switching for.
511  */
512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513 {
514 	mutex_lock(&cpufreq_fast_switch_lock);
515 	if (policy->fast_switch_enabled) {
516 		policy->fast_switch_enabled = false;
517 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518 			cpufreq_fast_switch_count--;
519 	}
520 	mutex_unlock(&cpufreq_fast_switch_lock);
521 }
522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523 
524 /**
525  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526  * one.
527  * @policy: associated policy to interrogate
528  * @target_freq: target frequency to resolve.
529  *
530  * The target to driver frequency mapping is cached in the policy.
531  *
532  * Return: Lowest driver-supported frequency greater than or equal to the
533  * given target_freq, subject to policy (min/max) and driver limitations.
534  */
535 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
536 					 unsigned int target_freq)
537 {
538 	target_freq = clamp_val(target_freq, policy->min, policy->max);
539 	policy->cached_target_freq = target_freq;
540 
541 	if (cpufreq_driver->target_index) {
542 		unsigned int idx;
543 
544 		idx = cpufreq_frequency_table_target(policy, target_freq,
545 						     CPUFREQ_RELATION_L);
546 		policy->cached_resolved_idx = idx;
547 		return policy->freq_table[idx].frequency;
548 	}
549 
550 	if (cpufreq_driver->resolve_freq)
551 		return cpufreq_driver->resolve_freq(policy, target_freq);
552 
553 	return target_freq;
554 }
555 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
556 
557 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
558 {
559 	unsigned int latency;
560 
561 	if (policy->transition_delay_us)
562 		return policy->transition_delay_us;
563 
564 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
565 	if (latency) {
566 		/*
567 		 * For platforms that can change the frequency very fast (< 10
568 		 * us), the above formula gives a decent transition delay. But
569 		 * for platforms where transition_latency is in milliseconds, it
570 		 * ends up giving unrealistic values.
571 		 *
572 		 * Cap the default transition delay to 10 ms, which seems to be
573 		 * a reasonable amount of time after which we should reevaluate
574 		 * the frequency.
575 		 */
576 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
577 	}
578 
579 	return LATENCY_MULTIPLIER;
580 }
581 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
582 
583 /*********************************************************************
584  *                          SYSFS INTERFACE                          *
585  *********************************************************************/
586 static ssize_t show_boost(struct kobject *kobj,
587 			  struct kobj_attribute *attr, char *buf)
588 {
589 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
590 }
591 
592 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
593 			   const char *buf, size_t count)
594 {
595 	int ret, enable;
596 
597 	ret = sscanf(buf, "%d", &enable);
598 	if (ret != 1 || enable < 0 || enable > 1)
599 		return -EINVAL;
600 
601 	if (cpufreq_boost_trigger_state(enable)) {
602 		pr_err("%s: Cannot %s BOOST!\n",
603 		       __func__, enable ? "enable" : "disable");
604 		return -EINVAL;
605 	}
606 
607 	pr_debug("%s: cpufreq BOOST %s\n",
608 		 __func__, enable ? "enabled" : "disabled");
609 
610 	return count;
611 }
612 define_one_global_rw(boost);
613 
614 static struct cpufreq_governor *find_governor(const char *str_governor)
615 {
616 	struct cpufreq_governor *t;
617 
618 	for_each_governor(t)
619 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
620 			return t;
621 
622 	return NULL;
623 }
624 
625 static struct cpufreq_governor *get_governor(const char *str_governor)
626 {
627 	struct cpufreq_governor *t;
628 
629 	mutex_lock(&cpufreq_governor_mutex);
630 	t = find_governor(str_governor);
631 	if (!t)
632 		goto unlock;
633 
634 	if (!try_module_get(t->owner))
635 		t = NULL;
636 
637 unlock:
638 	mutex_unlock(&cpufreq_governor_mutex);
639 
640 	return t;
641 }
642 
643 static unsigned int cpufreq_parse_policy(char *str_governor)
644 {
645 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
646 		return CPUFREQ_POLICY_PERFORMANCE;
647 
648 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
649 		return CPUFREQ_POLICY_POWERSAVE;
650 
651 	return CPUFREQ_POLICY_UNKNOWN;
652 }
653 
654 /**
655  * cpufreq_parse_governor - parse a governor string only for has_target()
656  * @str_governor: Governor name.
657  */
658 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
659 {
660 	struct cpufreq_governor *t;
661 
662 	t = get_governor(str_governor);
663 	if (t)
664 		return t;
665 
666 	if (request_module("cpufreq_%s", str_governor))
667 		return NULL;
668 
669 	return get_governor(str_governor);
670 }
671 
672 /*
673  * cpufreq_per_cpu_attr_read() / show_##file_name() -
674  * print out cpufreq information
675  *
676  * Write out information from cpufreq_driver->policy[cpu]; object must be
677  * "unsigned int".
678  */
679 
680 #define show_one(file_name, object)			\
681 static ssize_t show_##file_name				\
682 (struct cpufreq_policy *policy, char *buf)		\
683 {							\
684 	return sprintf(buf, "%u\n", policy->object);	\
685 }
686 
687 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
688 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
689 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
690 show_one(scaling_min_freq, min);
691 show_one(scaling_max_freq, max);
692 
693 __weak unsigned int arch_freq_get_on_cpu(int cpu)
694 {
695 	return 0;
696 }
697 
698 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
699 {
700 	ssize_t ret;
701 	unsigned int freq;
702 
703 	freq = arch_freq_get_on_cpu(policy->cpu);
704 	if (freq)
705 		ret = sprintf(buf, "%u\n", freq);
706 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
707 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
708 	else
709 		ret = sprintf(buf, "%u\n", policy->cur);
710 	return ret;
711 }
712 
713 /*
714  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
715  */
716 #define store_one(file_name, object)			\
717 static ssize_t store_##file_name					\
718 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
719 {									\
720 	unsigned long val;						\
721 	int ret;							\
722 									\
723 	ret = sscanf(buf, "%lu", &val);					\
724 	if (ret != 1)							\
725 		return -EINVAL;						\
726 									\
727 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
728 	return ret >= 0 ? count : ret;					\
729 }
730 
731 store_one(scaling_min_freq, min);
732 store_one(scaling_max_freq, max);
733 
734 /*
735  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
736  */
737 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
738 					char *buf)
739 {
740 	unsigned int cur_freq = __cpufreq_get(policy);
741 
742 	if (cur_freq)
743 		return sprintf(buf, "%u\n", cur_freq);
744 
745 	return sprintf(buf, "<unknown>\n");
746 }
747 
748 /*
749  * show_scaling_governor - show the current policy for the specified CPU
750  */
751 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
752 {
753 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
754 		return sprintf(buf, "powersave\n");
755 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
756 		return sprintf(buf, "performance\n");
757 	else if (policy->governor)
758 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
759 				policy->governor->name);
760 	return -EINVAL;
761 }
762 
763 /*
764  * store_scaling_governor - store policy for the specified CPU
765  */
766 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
767 					const char *buf, size_t count)
768 {
769 	char str_governor[16];
770 	int ret;
771 
772 	ret = sscanf(buf, "%15s", str_governor);
773 	if (ret != 1)
774 		return -EINVAL;
775 
776 	if (cpufreq_driver->setpolicy) {
777 		unsigned int new_pol;
778 
779 		new_pol = cpufreq_parse_policy(str_governor);
780 		if (!new_pol)
781 			return -EINVAL;
782 
783 		ret = cpufreq_set_policy(policy, NULL, new_pol);
784 	} else {
785 		struct cpufreq_governor *new_gov;
786 
787 		new_gov = cpufreq_parse_governor(str_governor);
788 		if (!new_gov)
789 			return -EINVAL;
790 
791 		ret = cpufreq_set_policy(policy, new_gov,
792 					 CPUFREQ_POLICY_UNKNOWN);
793 
794 		module_put(new_gov->owner);
795 	}
796 
797 	return ret ? ret : count;
798 }
799 
800 /*
801  * show_scaling_driver - show the cpufreq driver currently loaded
802  */
803 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
804 {
805 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
806 }
807 
808 /*
809  * show_scaling_available_governors - show the available CPUfreq governors
810  */
811 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
812 						char *buf)
813 {
814 	ssize_t i = 0;
815 	struct cpufreq_governor *t;
816 
817 	if (!has_target()) {
818 		i += sprintf(buf, "performance powersave");
819 		goto out;
820 	}
821 
822 	mutex_lock(&cpufreq_governor_mutex);
823 	for_each_governor(t) {
824 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
825 		    - (CPUFREQ_NAME_LEN + 2)))
826 			break;
827 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
828 	}
829 	mutex_unlock(&cpufreq_governor_mutex);
830 out:
831 	i += sprintf(&buf[i], "\n");
832 	return i;
833 }
834 
835 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
836 {
837 	ssize_t i = 0;
838 	unsigned int cpu;
839 
840 	for_each_cpu(cpu, mask) {
841 		if (i)
842 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
843 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
844 		if (i >= (PAGE_SIZE - 5))
845 			break;
846 	}
847 	i += sprintf(&buf[i], "\n");
848 	return i;
849 }
850 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
851 
852 /*
853  * show_related_cpus - show the CPUs affected by each transition even if
854  * hw coordination is in use
855  */
856 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
857 {
858 	return cpufreq_show_cpus(policy->related_cpus, buf);
859 }
860 
861 /*
862  * show_affected_cpus - show the CPUs affected by each transition
863  */
864 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
865 {
866 	return cpufreq_show_cpus(policy->cpus, buf);
867 }
868 
869 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
870 					const char *buf, size_t count)
871 {
872 	unsigned int freq = 0;
873 	unsigned int ret;
874 
875 	if (!policy->governor || !policy->governor->store_setspeed)
876 		return -EINVAL;
877 
878 	ret = sscanf(buf, "%u", &freq);
879 	if (ret != 1)
880 		return -EINVAL;
881 
882 	policy->governor->store_setspeed(policy, freq);
883 
884 	return count;
885 }
886 
887 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
888 {
889 	if (!policy->governor || !policy->governor->show_setspeed)
890 		return sprintf(buf, "<unsupported>\n");
891 
892 	return policy->governor->show_setspeed(policy, buf);
893 }
894 
895 /*
896  * show_bios_limit - show the current cpufreq HW/BIOS limitation
897  */
898 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
899 {
900 	unsigned int limit;
901 	int ret;
902 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
903 	if (!ret)
904 		return sprintf(buf, "%u\n", limit);
905 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
906 }
907 
908 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
909 cpufreq_freq_attr_ro(cpuinfo_min_freq);
910 cpufreq_freq_attr_ro(cpuinfo_max_freq);
911 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
912 cpufreq_freq_attr_ro(scaling_available_governors);
913 cpufreq_freq_attr_ro(scaling_driver);
914 cpufreq_freq_attr_ro(scaling_cur_freq);
915 cpufreq_freq_attr_ro(bios_limit);
916 cpufreq_freq_attr_ro(related_cpus);
917 cpufreq_freq_attr_ro(affected_cpus);
918 cpufreq_freq_attr_rw(scaling_min_freq);
919 cpufreq_freq_attr_rw(scaling_max_freq);
920 cpufreq_freq_attr_rw(scaling_governor);
921 cpufreq_freq_attr_rw(scaling_setspeed);
922 
923 static struct attribute *default_attrs[] = {
924 	&cpuinfo_min_freq.attr,
925 	&cpuinfo_max_freq.attr,
926 	&cpuinfo_transition_latency.attr,
927 	&scaling_min_freq.attr,
928 	&scaling_max_freq.attr,
929 	&affected_cpus.attr,
930 	&related_cpus.attr,
931 	&scaling_governor.attr,
932 	&scaling_driver.attr,
933 	&scaling_available_governors.attr,
934 	&scaling_setspeed.attr,
935 	NULL
936 };
937 
938 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
939 #define to_attr(a) container_of(a, struct freq_attr, attr)
940 
941 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
942 {
943 	struct cpufreq_policy *policy = to_policy(kobj);
944 	struct freq_attr *fattr = to_attr(attr);
945 	ssize_t ret;
946 
947 	if (!fattr->show)
948 		return -EIO;
949 
950 	down_read(&policy->rwsem);
951 	ret = fattr->show(policy, buf);
952 	up_read(&policy->rwsem);
953 
954 	return ret;
955 }
956 
957 static ssize_t store(struct kobject *kobj, struct attribute *attr,
958 		     const char *buf, size_t count)
959 {
960 	struct cpufreq_policy *policy = to_policy(kobj);
961 	struct freq_attr *fattr = to_attr(attr);
962 	ssize_t ret = -EINVAL;
963 
964 	if (!fattr->store)
965 		return -EIO;
966 
967 	/*
968 	 * cpus_read_trylock() is used here to work around a circular lock
969 	 * dependency problem with respect to the cpufreq_register_driver().
970 	 */
971 	if (!cpus_read_trylock())
972 		return -EBUSY;
973 
974 	if (cpu_online(policy->cpu)) {
975 		down_write(&policy->rwsem);
976 		ret = fattr->store(policy, buf, count);
977 		up_write(&policy->rwsem);
978 	}
979 
980 	cpus_read_unlock();
981 
982 	return ret;
983 }
984 
985 static void cpufreq_sysfs_release(struct kobject *kobj)
986 {
987 	struct cpufreq_policy *policy = to_policy(kobj);
988 	pr_debug("last reference is dropped\n");
989 	complete(&policy->kobj_unregister);
990 }
991 
992 static const struct sysfs_ops sysfs_ops = {
993 	.show	= show,
994 	.store	= store,
995 };
996 
997 static struct kobj_type ktype_cpufreq = {
998 	.sysfs_ops	= &sysfs_ops,
999 	.default_attrs	= default_attrs,
1000 	.release	= cpufreq_sysfs_release,
1001 };
1002 
1003 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1004 {
1005 	struct device *dev = get_cpu_device(cpu);
1006 
1007 	if (unlikely(!dev))
1008 		return;
1009 
1010 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1011 		return;
1012 
1013 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1014 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1015 		dev_err(dev, "cpufreq symlink creation failed\n");
1016 }
1017 
1018 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1019 				   struct device *dev)
1020 {
1021 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1022 	sysfs_remove_link(&dev->kobj, "cpufreq");
1023 }
1024 
1025 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1026 {
1027 	struct freq_attr **drv_attr;
1028 	int ret = 0;
1029 
1030 	/* set up files for this cpu device */
1031 	drv_attr = cpufreq_driver->attr;
1032 	while (drv_attr && *drv_attr) {
1033 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1034 		if (ret)
1035 			return ret;
1036 		drv_attr++;
1037 	}
1038 	if (cpufreq_driver->get) {
1039 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1040 		if (ret)
1041 			return ret;
1042 	}
1043 
1044 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1045 	if (ret)
1046 		return ret;
1047 
1048 	if (cpufreq_driver->bios_limit) {
1049 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1050 		if (ret)
1051 			return ret;
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1058 {
1059 	struct cpufreq_governor *gov = NULL;
1060 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061 	int ret;
1062 
1063 	if (has_target()) {
1064 		/* Update policy governor to the one used before hotplug. */
1065 		gov = get_governor(policy->last_governor);
1066 		if (gov) {
1067 			pr_debug("Restoring governor %s for cpu %d\n",
1068 				 gov->name, policy->cpu);
1069 		} else {
1070 			gov = get_governor(default_governor);
1071 		}
1072 
1073 		if (!gov) {
1074 			gov = cpufreq_default_governor();
1075 			__module_get(gov->owner);
1076 		}
1077 
1078 	} else {
1079 
1080 		/* Use the default policy if there is no last_policy. */
1081 		if (policy->last_policy) {
1082 			pol = policy->last_policy;
1083 		} else {
1084 			pol = cpufreq_parse_policy(default_governor);
1085 			/*
1086 			 * In case the default governor is neither "performance"
1087 			 * nor "powersave", fall back to the initial policy
1088 			 * value set by the driver.
1089 			 */
1090 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1091 				pol = policy->policy;
1092 		}
1093 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1094 		    pol != CPUFREQ_POLICY_POWERSAVE)
1095 			return -ENODATA;
1096 	}
1097 
1098 	ret = cpufreq_set_policy(policy, gov, pol);
1099 	if (gov)
1100 		module_put(gov->owner);
1101 
1102 	return ret;
1103 }
1104 
1105 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1106 {
1107 	int ret = 0;
1108 
1109 	/* Has this CPU been taken care of already? */
1110 	if (cpumask_test_cpu(cpu, policy->cpus))
1111 		return 0;
1112 
1113 	down_write(&policy->rwsem);
1114 	if (has_target())
1115 		cpufreq_stop_governor(policy);
1116 
1117 	cpumask_set_cpu(cpu, policy->cpus);
1118 
1119 	if (has_target()) {
1120 		ret = cpufreq_start_governor(policy);
1121 		if (ret)
1122 			pr_err("%s: Failed to start governor\n", __func__);
1123 	}
1124 	up_write(&policy->rwsem);
1125 	return ret;
1126 }
1127 
1128 void refresh_frequency_limits(struct cpufreq_policy *policy)
1129 {
1130 	if (!policy_is_inactive(policy)) {
1131 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1132 
1133 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1134 	}
1135 }
1136 EXPORT_SYMBOL(refresh_frequency_limits);
1137 
1138 static void handle_update(struct work_struct *work)
1139 {
1140 	struct cpufreq_policy *policy =
1141 		container_of(work, struct cpufreq_policy, update);
1142 
1143 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1144 	down_write(&policy->rwsem);
1145 	refresh_frequency_limits(policy);
1146 	up_write(&policy->rwsem);
1147 }
1148 
1149 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1150 				void *data)
1151 {
1152 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1153 
1154 	schedule_work(&policy->update);
1155 	return 0;
1156 }
1157 
1158 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1159 				void *data)
1160 {
1161 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1162 
1163 	schedule_work(&policy->update);
1164 	return 0;
1165 }
1166 
1167 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1168 {
1169 	struct kobject *kobj;
1170 	struct completion *cmp;
1171 
1172 	down_write(&policy->rwsem);
1173 	cpufreq_stats_free_table(policy);
1174 	kobj = &policy->kobj;
1175 	cmp = &policy->kobj_unregister;
1176 	up_write(&policy->rwsem);
1177 	kobject_put(kobj);
1178 
1179 	/*
1180 	 * We need to make sure that the underlying kobj is
1181 	 * actually not referenced anymore by anybody before we
1182 	 * proceed with unloading.
1183 	 */
1184 	pr_debug("waiting for dropping of refcount\n");
1185 	wait_for_completion(cmp);
1186 	pr_debug("wait complete\n");
1187 }
1188 
1189 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1190 {
1191 	struct cpufreq_policy *policy;
1192 	struct device *dev = get_cpu_device(cpu);
1193 	int ret;
1194 
1195 	if (!dev)
1196 		return NULL;
1197 
1198 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1199 	if (!policy)
1200 		return NULL;
1201 
1202 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1203 		goto err_free_policy;
1204 
1205 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1206 		goto err_free_cpumask;
1207 
1208 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1209 		goto err_free_rcpumask;
1210 
1211 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1212 				   cpufreq_global_kobject, "policy%u", cpu);
1213 	if (ret) {
1214 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1215 		/*
1216 		 * The entire policy object will be freed below, but the extra
1217 		 * memory allocated for the kobject name needs to be freed by
1218 		 * releasing the kobject.
1219 		 */
1220 		kobject_put(&policy->kobj);
1221 		goto err_free_real_cpus;
1222 	}
1223 
1224 	freq_constraints_init(&policy->constraints);
1225 
1226 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1227 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1228 
1229 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1230 				    &policy->nb_min);
1231 	if (ret) {
1232 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1233 			ret, cpumask_pr_args(policy->cpus));
1234 		goto err_kobj_remove;
1235 	}
1236 
1237 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1238 				    &policy->nb_max);
1239 	if (ret) {
1240 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1241 			ret, cpumask_pr_args(policy->cpus));
1242 		goto err_min_qos_notifier;
1243 	}
1244 
1245 	INIT_LIST_HEAD(&policy->policy_list);
1246 	init_rwsem(&policy->rwsem);
1247 	spin_lock_init(&policy->transition_lock);
1248 	init_waitqueue_head(&policy->transition_wait);
1249 	init_completion(&policy->kobj_unregister);
1250 	INIT_WORK(&policy->update, handle_update);
1251 
1252 	policy->cpu = cpu;
1253 	return policy;
1254 
1255 err_min_qos_notifier:
1256 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1257 				 &policy->nb_min);
1258 err_kobj_remove:
1259 	cpufreq_policy_put_kobj(policy);
1260 err_free_real_cpus:
1261 	free_cpumask_var(policy->real_cpus);
1262 err_free_rcpumask:
1263 	free_cpumask_var(policy->related_cpus);
1264 err_free_cpumask:
1265 	free_cpumask_var(policy->cpus);
1266 err_free_policy:
1267 	kfree(policy);
1268 
1269 	return NULL;
1270 }
1271 
1272 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1273 {
1274 	unsigned long flags;
1275 	int cpu;
1276 
1277 	/* Remove policy from list */
1278 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1279 	list_del(&policy->policy_list);
1280 
1281 	for_each_cpu(cpu, policy->related_cpus)
1282 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1283 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1284 
1285 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1286 				 &policy->nb_max);
1287 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1288 				 &policy->nb_min);
1289 
1290 	/* Cancel any pending policy->update work before freeing the policy. */
1291 	cancel_work_sync(&policy->update);
1292 
1293 	if (policy->max_freq_req) {
1294 		/*
1295 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1296 		 * successfully adding max_freq_req request.
1297 		 */
1298 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1299 					     CPUFREQ_REMOVE_POLICY, policy);
1300 		freq_qos_remove_request(policy->max_freq_req);
1301 	}
1302 
1303 	freq_qos_remove_request(policy->min_freq_req);
1304 	kfree(policy->min_freq_req);
1305 
1306 	cpufreq_policy_put_kobj(policy);
1307 	free_cpumask_var(policy->real_cpus);
1308 	free_cpumask_var(policy->related_cpus);
1309 	free_cpumask_var(policy->cpus);
1310 	kfree(policy);
1311 }
1312 
1313 static int cpufreq_online(unsigned int cpu)
1314 {
1315 	struct cpufreq_policy *policy;
1316 	bool new_policy;
1317 	unsigned long flags;
1318 	unsigned int j;
1319 	int ret;
1320 
1321 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1322 
1323 	/* Check if this CPU already has a policy to manage it */
1324 	policy = per_cpu(cpufreq_cpu_data, cpu);
1325 	if (policy) {
1326 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1327 		if (!policy_is_inactive(policy))
1328 			return cpufreq_add_policy_cpu(policy, cpu);
1329 
1330 		/* This is the only online CPU for the policy.  Start over. */
1331 		new_policy = false;
1332 		down_write(&policy->rwsem);
1333 		policy->cpu = cpu;
1334 		policy->governor = NULL;
1335 		up_write(&policy->rwsem);
1336 	} else {
1337 		new_policy = true;
1338 		policy = cpufreq_policy_alloc(cpu);
1339 		if (!policy)
1340 			return -ENOMEM;
1341 	}
1342 
1343 	if (!new_policy && cpufreq_driver->online) {
1344 		ret = cpufreq_driver->online(policy);
1345 		if (ret) {
1346 			pr_debug("%s: %d: initialization failed\n", __func__,
1347 				 __LINE__);
1348 			goto out_exit_policy;
1349 		}
1350 
1351 		/* Recover policy->cpus using related_cpus */
1352 		cpumask_copy(policy->cpus, policy->related_cpus);
1353 	} else {
1354 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1355 
1356 		/*
1357 		 * Call driver. From then on the cpufreq must be able
1358 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1359 		 */
1360 		ret = cpufreq_driver->init(policy);
1361 		if (ret) {
1362 			pr_debug("%s: %d: initialization failed\n", __func__,
1363 				 __LINE__);
1364 			goto out_free_policy;
1365 		}
1366 
1367 		ret = cpufreq_table_validate_and_sort(policy);
1368 		if (ret)
1369 			goto out_exit_policy;
1370 
1371 		/* related_cpus should at least include policy->cpus. */
1372 		cpumask_copy(policy->related_cpus, policy->cpus);
1373 	}
1374 
1375 	down_write(&policy->rwsem);
1376 	/*
1377 	 * affected cpus must always be the one, which are online. We aren't
1378 	 * managing offline cpus here.
1379 	 */
1380 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1381 
1382 	if (new_policy) {
1383 		for_each_cpu(j, policy->related_cpus) {
1384 			per_cpu(cpufreq_cpu_data, j) = policy;
1385 			add_cpu_dev_symlink(policy, j);
1386 		}
1387 
1388 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1389 					       GFP_KERNEL);
1390 		if (!policy->min_freq_req)
1391 			goto out_destroy_policy;
1392 
1393 		ret = freq_qos_add_request(&policy->constraints,
1394 					   policy->min_freq_req, FREQ_QOS_MIN,
1395 					   policy->min);
1396 		if (ret < 0) {
1397 			/*
1398 			 * So we don't call freq_qos_remove_request() for an
1399 			 * uninitialized request.
1400 			 */
1401 			kfree(policy->min_freq_req);
1402 			policy->min_freq_req = NULL;
1403 			goto out_destroy_policy;
1404 		}
1405 
1406 		/*
1407 		 * This must be initialized right here to avoid calling
1408 		 * freq_qos_remove_request() on uninitialized request in case
1409 		 * of errors.
1410 		 */
1411 		policy->max_freq_req = policy->min_freq_req + 1;
1412 
1413 		ret = freq_qos_add_request(&policy->constraints,
1414 					   policy->max_freq_req, FREQ_QOS_MAX,
1415 					   policy->max);
1416 		if (ret < 0) {
1417 			policy->max_freq_req = NULL;
1418 			goto out_destroy_policy;
1419 		}
1420 
1421 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1422 				CPUFREQ_CREATE_POLICY, policy);
1423 	}
1424 
1425 	if (cpufreq_driver->get && has_target()) {
1426 		policy->cur = cpufreq_driver->get(policy->cpu);
1427 		if (!policy->cur) {
1428 			pr_err("%s: ->get() failed\n", __func__);
1429 			goto out_destroy_policy;
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * Sometimes boot loaders set CPU frequency to a value outside of
1435 	 * frequency table present with cpufreq core. In such cases CPU might be
1436 	 * unstable if it has to run on that frequency for long duration of time
1437 	 * and so its better to set it to a frequency which is specified in
1438 	 * freq-table. This also makes cpufreq stats inconsistent as
1439 	 * cpufreq-stats would fail to register because current frequency of CPU
1440 	 * isn't found in freq-table.
1441 	 *
1442 	 * Because we don't want this change to effect boot process badly, we go
1443 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1444 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1445 	 * is initialized to zero).
1446 	 *
1447 	 * We are passing target-freq as "policy->cur - 1" otherwise
1448 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1449 	 * equal to target-freq.
1450 	 */
1451 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1452 	    && has_target()) {
1453 		/* Are we running at unknown frequency ? */
1454 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1455 		if (ret == -EINVAL) {
1456 			/* Warn user and fix it */
1457 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1458 				__func__, policy->cpu, policy->cur);
1459 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1460 				CPUFREQ_RELATION_L);
1461 
1462 			/*
1463 			 * Reaching here after boot in a few seconds may not
1464 			 * mean that system will remain stable at "unknown"
1465 			 * frequency for longer duration. Hence, a BUG_ON().
1466 			 */
1467 			BUG_ON(ret);
1468 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1469 				__func__, policy->cpu, policy->cur);
1470 		}
1471 	}
1472 
1473 	if (new_policy) {
1474 		ret = cpufreq_add_dev_interface(policy);
1475 		if (ret)
1476 			goto out_destroy_policy;
1477 
1478 		cpufreq_stats_create_table(policy);
1479 
1480 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1481 		list_add(&policy->policy_list, &cpufreq_policy_list);
1482 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1483 	}
1484 
1485 	ret = cpufreq_init_policy(policy);
1486 	if (ret) {
1487 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1488 		       __func__, cpu, ret);
1489 		goto out_destroy_policy;
1490 	}
1491 
1492 	up_write(&policy->rwsem);
1493 
1494 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1495 
1496 	/* Callback for handling stuff after policy is ready */
1497 	if (cpufreq_driver->ready)
1498 		cpufreq_driver->ready(policy);
1499 
1500 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1501 		policy->cdev = of_cpufreq_cooling_register(policy);
1502 
1503 	pr_debug("initialization complete\n");
1504 
1505 	return 0;
1506 
1507 out_destroy_policy:
1508 	for_each_cpu(j, policy->real_cpus)
1509 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1510 
1511 	up_write(&policy->rwsem);
1512 
1513 out_exit_policy:
1514 	if (cpufreq_driver->exit)
1515 		cpufreq_driver->exit(policy);
1516 
1517 out_free_policy:
1518 	cpufreq_policy_free(policy);
1519 	return ret;
1520 }
1521 
1522 /**
1523  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1524  * @dev: CPU device.
1525  * @sif: Subsystem interface structure pointer (not used)
1526  */
1527 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1528 {
1529 	struct cpufreq_policy *policy;
1530 	unsigned cpu = dev->id;
1531 	int ret;
1532 
1533 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1534 
1535 	if (cpu_online(cpu)) {
1536 		ret = cpufreq_online(cpu);
1537 		if (ret)
1538 			return ret;
1539 	}
1540 
1541 	/* Create sysfs link on CPU registration */
1542 	policy = per_cpu(cpufreq_cpu_data, cpu);
1543 	if (policy)
1544 		add_cpu_dev_symlink(policy, cpu);
1545 
1546 	return 0;
1547 }
1548 
1549 static int cpufreq_offline(unsigned int cpu)
1550 {
1551 	struct cpufreq_policy *policy;
1552 	int ret;
1553 
1554 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1555 
1556 	policy = cpufreq_cpu_get_raw(cpu);
1557 	if (!policy) {
1558 		pr_debug("%s: No cpu_data found\n", __func__);
1559 		return 0;
1560 	}
1561 
1562 	down_write(&policy->rwsem);
1563 	if (has_target())
1564 		cpufreq_stop_governor(policy);
1565 
1566 	cpumask_clear_cpu(cpu, policy->cpus);
1567 
1568 	if (policy_is_inactive(policy)) {
1569 		if (has_target())
1570 			strncpy(policy->last_governor, policy->governor->name,
1571 				CPUFREQ_NAME_LEN);
1572 		else
1573 			policy->last_policy = policy->policy;
1574 	} else if (cpu == policy->cpu) {
1575 		/* Nominate new CPU */
1576 		policy->cpu = cpumask_any(policy->cpus);
1577 	}
1578 
1579 	/* Start governor again for active policy */
1580 	if (!policy_is_inactive(policy)) {
1581 		if (has_target()) {
1582 			ret = cpufreq_start_governor(policy);
1583 			if (ret)
1584 				pr_err("%s: Failed to start governor\n", __func__);
1585 		}
1586 
1587 		goto unlock;
1588 	}
1589 
1590 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1591 		cpufreq_cooling_unregister(policy->cdev);
1592 		policy->cdev = NULL;
1593 	}
1594 
1595 	if (cpufreq_driver->stop_cpu)
1596 		cpufreq_driver->stop_cpu(policy);
1597 
1598 	if (has_target())
1599 		cpufreq_exit_governor(policy);
1600 
1601 	/*
1602 	 * Perform the ->offline() during light-weight tear-down, as
1603 	 * that allows fast recovery when the CPU comes back.
1604 	 */
1605 	if (cpufreq_driver->offline) {
1606 		cpufreq_driver->offline(policy);
1607 	} else if (cpufreq_driver->exit) {
1608 		cpufreq_driver->exit(policy);
1609 		policy->freq_table = NULL;
1610 	}
1611 
1612 unlock:
1613 	up_write(&policy->rwsem);
1614 	return 0;
1615 }
1616 
1617 /*
1618  * cpufreq_remove_dev - remove a CPU device
1619  *
1620  * Removes the cpufreq interface for a CPU device.
1621  */
1622 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1623 {
1624 	unsigned int cpu = dev->id;
1625 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1626 
1627 	if (!policy)
1628 		return;
1629 
1630 	if (cpu_online(cpu))
1631 		cpufreq_offline(cpu);
1632 
1633 	cpumask_clear_cpu(cpu, policy->real_cpus);
1634 	remove_cpu_dev_symlink(policy, dev);
1635 
1636 	if (cpumask_empty(policy->real_cpus)) {
1637 		/* We did light-weight exit earlier, do full tear down now */
1638 		if (cpufreq_driver->offline)
1639 			cpufreq_driver->exit(policy);
1640 
1641 		cpufreq_policy_free(policy);
1642 	}
1643 }
1644 
1645 /**
1646  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1647  *	in deep trouble.
1648  *	@policy: policy managing CPUs
1649  *	@new_freq: CPU frequency the CPU actually runs at
1650  *
1651  *	We adjust to current frequency first, and need to clean up later.
1652  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1653  */
1654 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1655 				unsigned int new_freq)
1656 {
1657 	struct cpufreq_freqs freqs;
1658 
1659 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1660 		 policy->cur, new_freq);
1661 
1662 	freqs.old = policy->cur;
1663 	freqs.new = new_freq;
1664 
1665 	cpufreq_freq_transition_begin(policy, &freqs);
1666 	cpufreq_freq_transition_end(policy, &freqs, 0);
1667 }
1668 
1669 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1670 {
1671 	unsigned int new_freq;
1672 
1673 	new_freq = cpufreq_driver->get(policy->cpu);
1674 	if (!new_freq)
1675 		return 0;
1676 
1677 	/*
1678 	 * If fast frequency switching is used with the given policy, the check
1679 	 * against policy->cur is pointless, so skip it in that case.
1680 	 */
1681 	if (policy->fast_switch_enabled || !has_target())
1682 		return new_freq;
1683 
1684 	if (policy->cur != new_freq) {
1685 		cpufreq_out_of_sync(policy, new_freq);
1686 		if (update)
1687 			schedule_work(&policy->update);
1688 	}
1689 
1690 	return new_freq;
1691 }
1692 
1693 /**
1694  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1695  * @cpu: CPU number
1696  *
1697  * This is the last known freq, without actually getting it from the driver.
1698  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1699  */
1700 unsigned int cpufreq_quick_get(unsigned int cpu)
1701 {
1702 	struct cpufreq_policy *policy;
1703 	unsigned int ret_freq = 0;
1704 	unsigned long flags;
1705 
1706 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1707 
1708 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1709 		ret_freq = cpufreq_driver->get(cpu);
1710 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1711 		return ret_freq;
1712 	}
1713 
1714 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1715 
1716 	policy = cpufreq_cpu_get(cpu);
1717 	if (policy) {
1718 		ret_freq = policy->cur;
1719 		cpufreq_cpu_put(policy);
1720 	}
1721 
1722 	return ret_freq;
1723 }
1724 EXPORT_SYMBOL(cpufreq_quick_get);
1725 
1726 /**
1727  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1728  * @cpu: CPU number
1729  *
1730  * Just return the max possible frequency for a given CPU.
1731  */
1732 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1733 {
1734 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1735 	unsigned int ret_freq = 0;
1736 
1737 	if (policy) {
1738 		ret_freq = policy->max;
1739 		cpufreq_cpu_put(policy);
1740 	}
1741 
1742 	return ret_freq;
1743 }
1744 EXPORT_SYMBOL(cpufreq_quick_get_max);
1745 
1746 /**
1747  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1748  * @cpu: CPU number
1749  *
1750  * The default return value is the max_freq field of cpuinfo.
1751  */
1752 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1753 {
1754 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1755 	unsigned int ret_freq = 0;
1756 
1757 	if (policy) {
1758 		ret_freq = policy->cpuinfo.max_freq;
1759 		cpufreq_cpu_put(policy);
1760 	}
1761 
1762 	return ret_freq;
1763 }
1764 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1765 
1766 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1767 {
1768 	if (unlikely(policy_is_inactive(policy)))
1769 		return 0;
1770 
1771 	return cpufreq_verify_current_freq(policy, true);
1772 }
1773 
1774 /**
1775  * cpufreq_get - get the current CPU frequency (in kHz)
1776  * @cpu: CPU number
1777  *
1778  * Get the CPU current (static) CPU frequency
1779  */
1780 unsigned int cpufreq_get(unsigned int cpu)
1781 {
1782 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1783 	unsigned int ret_freq = 0;
1784 
1785 	if (policy) {
1786 		down_read(&policy->rwsem);
1787 		if (cpufreq_driver->get)
1788 			ret_freq = __cpufreq_get(policy);
1789 		up_read(&policy->rwsem);
1790 
1791 		cpufreq_cpu_put(policy);
1792 	}
1793 
1794 	return ret_freq;
1795 }
1796 EXPORT_SYMBOL(cpufreq_get);
1797 
1798 static struct subsys_interface cpufreq_interface = {
1799 	.name		= "cpufreq",
1800 	.subsys		= &cpu_subsys,
1801 	.add_dev	= cpufreq_add_dev,
1802 	.remove_dev	= cpufreq_remove_dev,
1803 };
1804 
1805 /*
1806  * In case platform wants some specific frequency to be configured
1807  * during suspend..
1808  */
1809 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1810 {
1811 	int ret;
1812 
1813 	if (!policy->suspend_freq) {
1814 		pr_debug("%s: suspend_freq not defined\n", __func__);
1815 		return 0;
1816 	}
1817 
1818 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1819 			policy->suspend_freq);
1820 
1821 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1822 			CPUFREQ_RELATION_H);
1823 	if (ret)
1824 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1825 				__func__, policy->suspend_freq, ret);
1826 
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL(cpufreq_generic_suspend);
1830 
1831 /**
1832  * cpufreq_suspend() - Suspend CPUFreq governors
1833  *
1834  * Called during system wide Suspend/Hibernate cycles for suspending governors
1835  * as some platforms can't change frequency after this point in suspend cycle.
1836  * Because some of the devices (like: i2c, regulators, etc) they use for
1837  * changing frequency are suspended quickly after this point.
1838  */
1839 void cpufreq_suspend(void)
1840 {
1841 	struct cpufreq_policy *policy;
1842 
1843 	if (!cpufreq_driver)
1844 		return;
1845 
1846 	if (!has_target() && !cpufreq_driver->suspend)
1847 		goto suspend;
1848 
1849 	pr_debug("%s: Suspending Governors\n", __func__);
1850 
1851 	for_each_active_policy(policy) {
1852 		if (has_target()) {
1853 			down_write(&policy->rwsem);
1854 			cpufreq_stop_governor(policy);
1855 			up_write(&policy->rwsem);
1856 		}
1857 
1858 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1859 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1860 				cpufreq_driver->name);
1861 	}
1862 
1863 suspend:
1864 	cpufreq_suspended = true;
1865 }
1866 
1867 /**
1868  * cpufreq_resume() - Resume CPUFreq governors
1869  *
1870  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1871  * are suspended with cpufreq_suspend().
1872  */
1873 void cpufreq_resume(void)
1874 {
1875 	struct cpufreq_policy *policy;
1876 	int ret;
1877 
1878 	if (!cpufreq_driver)
1879 		return;
1880 
1881 	if (unlikely(!cpufreq_suspended))
1882 		return;
1883 
1884 	cpufreq_suspended = false;
1885 
1886 	if (!has_target() && !cpufreq_driver->resume)
1887 		return;
1888 
1889 	pr_debug("%s: Resuming Governors\n", __func__);
1890 
1891 	for_each_active_policy(policy) {
1892 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1893 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1894 				policy);
1895 		} else if (has_target()) {
1896 			down_write(&policy->rwsem);
1897 			ret = cpufreq_start_governor(policy);
1898 			up_write(&policy->rwsem);
1899 
1900 			if (ret)
1901 				pr_err("%s: Failed to start governor for policy: %p\n",
1902 				       __func__, policy);
1903 		}
1904 	}
1905 }
1906 
1907 /**
1908  *	cpufreq_get_current_driver - return current driver's name
1909  *
1910  *	Return the name string of the currently loaded cpufreq driver
1911  *	or NULL, if none.
1912  */
1913 const char *cpufreq_get_current_driver(void)
1914 {
1915 	if (cpufreq_driver)
1916 		return cpufreq_driver->name;
1917 
1918 	return NULL;
1919 }
1920 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1921 
1922 /**
1923  *	cpufreq_get_driver_data - return current driver data
1924  *
1925  *	Return the private data of the currently loaded cpufreq
1926  *	driver, or NULL if no cpufreq driver is loaded.
1927  */
1928 void *cpufreq_get_driver_data(void)
1929 {
1930 	if (cpufreq_driver)
1931 		return cpufreq_driver->driver_data;
1932 
1933 	return NULL;
1934 }
1935 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1936 
1937 /*********************************************************************
1938  *                     NOTIFIER LISTS INTERFACE                      *
1939  *********************************************************************/
1940 
1941 /**
1942  *	cpufreq_register_notifier - register a driver with cpufreq
1943  *	@nb: notifier function to register
1944  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1945  *
1946  *	Add a driver to one of two lists: either a list of drivers that
1947  *      are notified about clock rate changes (once before and once after
1948  *      the transition), or a list of drivers that are notified about
1949  *      changes in cpufreq policy.
1950  *
1951  *	This function may sleep, and has the same return conditions as
1952  *	blocking_notifier_chain_register.
1953  */
1954 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1955 {
1956 	int ret;
1957 
1958 	if (cpufreq_disabled())
1959 		return -EINVAL;
1960 
1961 	switch (list) {
1962 	case CPUFREQ_TRANSITION_NOTIFIER:
1963 		mutex_lock(&cpufreq_fast_switch_lock);
1964 
1965 		if (cpufreq_fast_switch_count > 0) {
1966 			mutex_unlock(&cpufreq_fast_switch_lock);
1967 			return -EBUSY;
1968 		}
1969 		ret = srcu_notifier_chain_register(
1970 				&cpufreq_transition_notifier_list, nb);
1971 		if (!ret)
1972 			cpufreq_fast_switch_count--;
1973 
1974 		mutex_unlock(&cpufreq_fast_switch_lock);
1975 		break;
1976 	case CPUFREQ_POLICY_NOTIFIER:
1977 		ret = blocking_notifier_chain_register(
1978 				&cpufreq_policy_notifier_list, nb);
1979 		break;
1980 	default:
1981 		ret = -EINVAL;
1982 	}
1983 
1984 	return ret;
1985 }
1986 EXPORT_SYMBOL(cpufreq_register_notifier);
1987 
1988 /**
1989  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1990  *	@nb: notifier block to be unregistered
1991  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1992  *
1993  *	Remove a driver from the CPU frequency notifier list.
1994  *
1995  *	This function may sleep, and has the same return conditions as
1996  *	blocking_notifier_chain_unregister.
1997  */
1998 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1999 {
2000 	int ret;
2001 
2002 	if (cpufreq_disabled())
2003 		return -EINVAL;
2004 
2005 	switch (list) {
2006 	case CPUFREQ_TRANSITION_NOTIFIER:
2007 		mutex_lock(&cpufreq_fast_switch_lock);
2008 
2009 		ret = srcu_notifier_chain_unregister(
2010 				&cpufreq_transition_notifier_list, nb);
2011 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2012 			cpufreq_fast_switch_count++;
2013 
2014 		mutex_unlock(&cpufreq_fast_switch_lock);
2015 		break;
2016 	case CPUFREQ_POLICY_NOTIFIER:
2017 		ret = blocking_notifier_chain_unregister(
2018 				&cpufreq_policy_notifier_list, nb);
2019 		break;
2020 	default:
2021 		ret = -EINVAL;
2022 	}
2023 
2024 	return ret;
2025 }
2026 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2027 
2028 
2029 /*********************************************************************
2030  *                              GOVERNORS                            *
2031  *********************************************************************/
2032 
2033 /**
2034  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2035  * @policy: cpufreq policy to switch the frequency for.
2036  * @target_freq: New frequency to set (may be approximate).
2037  *
2038  * Carry out a fast frequency switch without sleeping.
2039  *
2040  * The driver's ->fast_switch() callback invoked by this function must be
2041  * suitable for being called from within RCU-sched read-side critical sections
2042  * and it is expected to select the minimum available frequency greater than or
2043  * equal to @target_freq (CPUFREQ_RELATION_L).
2044  *
2045  * This function must not be called if policy->fast_switch_enabled is unset.
2046  *
2047  * Governors calling this function must guarantee that it will never be invoked
2048  * twice in parallel for the same policy and that it will never be called in
2049  * parallel with either ->target() or ->target_index() for the same policy.
2050  *
2051  * Returns the actual frequency set for the CPU.
2052  *
2053  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2054  * error condition, the hardware configuration must be preserved.
2055  */
2056 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2057 					unsigned int target_freq)
2058 {
2059 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2060 
2061 	return cpufreq_driver->fast_switch(policy, target_freq);
2062 }
2063 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2064 
2065 /* Must set freqs->new to intermediate frequency */
2066 static int __target_intermediate(struct cpufreq_policy *policy,
2067 				 struct cpufreq_freqs *freqs, int index)
2068 {
2069 	int ret;
2070 
2071 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2072 
2073 	/* We don't need to switch to intermediate freq */
2074 	if (!freqs->new)
2075 		return 0;
2076 
2077 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2078 		 __func__, policy->cpu, freqs->old, freqs->new);
2079 
2080 	cpufreq_freq_transition_begin(policy, freqs);
2081 	ret = cpufreq_driver->target_intermediate(policy, index);
2082 	cpufreq_freq_transition_end(policy, freqs, ret);
2083 
2084 	if (ret)
2085 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2086 		       __func__, ret);
2087 
2088 	return ret;
2089 }
2090 
2091 static int __target_index(struct cpufreq_policy *policy, int index)
2092 {
2093 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2094 	unsigned int intermediate_freq = 0;
2095 	unsigned int newfreq = policy->freq_table[index].frequency;
2096 	int retval = -EINVAL;
2097 	bool notify;
2098 
2099 	if (newfreq == policy->cur)
2100 		return 0;
2101 
2102 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2103 	if (notify) {
2104 		/* Handle switching to intermediate frequency */
2105 		if (cpufreq_driver->get_intermediate) {
2106 			retval = __target_intermediate(policy, &freqs, index);
2107 			if (retval)
2108 				return retval;
2109 
2110 			intermediate_freq = freqs.new;
2111 			/* Set old freq to intermediate */
2112 			if (intermediate_freq)
2113 				freqs.old = freqs.new;
2114 		}
2115 
2116 		freqs.new = newfreq;
2117 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2118 			 __func__, policy->cpu, freqs.old, freqs.new);
2119 
2120 		cpufreq_freq_transition_begin(policy, &freqs);
2121 	}
2122 
2123 	retval = cpufreq_driver->target_index(policy, index);
2124 	if (retval)
2125 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2126 		       retval);
2127 
2128 	if (notify) {
2129 		cpufreq_freq_transition_end(policy, &freqs, retval);
2130 
2131 		/*
2132 		 * Failed after setting to intermediate freq? Driver should have
2133 		 * reverted back to initial frequency and so should we. Check
2134 		 * here for intermediate_freq instead of get_intermediate, in
2135 		 * case we haven't switched to intermediate freq at all.
2136 		 */
2137 		if (unlikely(retval && intermediate_freq)) {
2138 			freqs.old = intermediate_freq;
2139 			freqs.new = policy->restore_freq;
2140 			cpufreq_freq_transition_begin(policy, &freqs);
2141 			cpufreq_freq_transition_end(policy, &freqs, 0);
2142 		}
2143 	}
2144 
2145 	return retval;
2146 }
2147 
2148 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2149 			    unsigned int target_freq,
2150 			    unsigned int relation)
2151 {
2152 	unsigned int old_target_freq = target_freq;
2153 	int index;
2154 
2155 	if (cpufreq_disabled())
2156 		return -ENODEV;
2157 
2158 	/* Make sure that target_freq is within supported range */
2159 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2160 
2161 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2162 		 policy->cpu, target_freq, relation, old_target_freq);
2163 
2164 	/*
2165 	 * This might look like a redundant call as we are checking it again
2166 	 * after finding index. But it is left intentionally for cases where
2167 	 * exactly same freq is called again and so we can save on few function
2168 	 * calls.
2169 	 */
2170 	if (target_freq == policy->cur)
2171 		return 0;
2172 
2173 	/* Save last value to restore later on errors */
2174 	policy->restore_freq = policy->cur;
2175 
2176 	if (cpufreq_driver->target)
2177 		return cpufreq_driver->target(policy, target_freq, relation);
2178 
2179 	if (!cpufreq_driver->target_index)
2180 		return -EINVAL;
2181 
2182 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2183 
2184 	return __target_index(policy, index);
2185 }
2186 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2187 
2188 int cpufreq_driver_target(struct cpufreq_policy *policy,
2189 			  unsigned int target_freq,
2190 			  unsigned int relation)
2191 {
2192 	int ret;
2193 
2194 	down_write(&policy->rwsem);
2195 
2196 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2197 
2198 	up_write(&policy->rwsem);
2199 
2200 	return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2203 
2204 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2205 {
2206 	return NULL;
2207 }
2208 
2209 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2210 {
2211 	int ret;
2212 
2213 	/* Don't start any governor operations if we are entering suspend */
2214 	if (cpufreq_suspended)
2215 		return 0;
2216 	/*
2217 	 * Governor might not be initiated here if ACPI _PPC changed
2218 	 * notification happened, so check it.
2219 	 */
2220 	if (!policy->governor)
2221 		return -EINVAL;
2222 
2223 	/* Platform doesn't want dynamic frequency switching ? */
2224 	if (policy->governor->dynamic_switching &&
2225 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2226 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2227 
2228 		if (gov) {
2229 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2230 				policy->governor->name, gov->name);
2231 			policy->governor = gov;
2232 		} else {
2233 			return -EINVAL;
2234 		}
2235 	}
2236 
2237 	if (!try_module_get(policy->governor->owner))
2238 		return -EINVAL;
2239 
2240 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2241 
2242 	if (policy->governor->init) {
2243 		ret = policy->governor->init(policy);
2244 		if (ret) {
2245 			module_put(policy->governor->owner);
2246 			return ret;
2247 		}
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2254 {
2255 	if (cpufreq_suspended || !policy->governor)
2256 		return;
2257 
2258 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2259 
2260 	if (policy->governor->exit)
2261 		policy->governor->exit(policy);
2262 
2263 	module_put(policy->governor->owner);
2264 }
2265 
2266 int cpufreq_start_governor(struct cpufreq_policy *policy)
2267 {
2268 	int ret;
2269 
2270 	if (cpufreq_suspended)
2271 		return 0;
2272 
2273 	if (!policy->governor)
2274 		return -EINVAL;
2275 
2276 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2277 
2278 	if (cpufreq_driver->get)
2279 		cpufreq_verify_current_freq(policy, false);
2280 
2281 	if (policy->governor->start) {
2282 		ret = policy->governor->start(policy);
2283 		if (ret)
2284 			return ret;
2285 	}
2286 
2287 	if (policy->governor->limits)
2288 		policy->governor->limits(policy);
2289 
2290 	return 0;
2291 }
2292 
2293 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2294 {
2295 	if (cpufreq_suspended || !policy->governor)
2296 		return;
2297 
2298 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2299 
2300 	if (policy->governor->stop)
2301 		policy->governor->stop(policy);
2302 }
2303 
2304 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2305 {
2306 	if (cpufreq_suspended || !policy->governor)
2307 		return;
2308 
2309 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2310 
2311 	if (policy->governor->limits)
2312 		policy->governor->limits(policy);
2313 }
2314 
2315 int cpufreq_register_governor(struct cpufreq_governor *governor)
2316 {
2317 	int err;
2318 
2319 	if (!governor)
2320 		return -EINVAL;
2321 
2322 	if (cpufreq_disabled())
2323 		return -ENODEV;
2324 
2325 	mutex_lock(&cpufreq_governor_mutex);
2326 
2327 	err = -EBUSY;
2328 	if (!find_governor(governor->name)) {
2329 		err = 0;
2330 		list_add(&governor->governor_list, &cpufreq_governor_list);
2331 	}
2332 
2333 	mutex_unlock(&cpufreq_governor_mutex);
2334 	return err;
2335 }
2336 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2337 
2338 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2339 {
2340 	struct cpufreq_policy *policy;
2341 	unsigned long flags;
2342 
2343 	if (!governor)
2344 		return;
2345 
2346 	if (cpufreq_disabled())
2347 		return;
2348 
2349 	/* clear last_governor for all inactive policies */
2350 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2351 	for_each_inactive_policy(policy) {
2352 		if (!strcmp(policy->last_governor, governor->name)) {
2353 			policy->governor = NULL;
2354 			strcpy(policy->last_governor, "\0");
2355 		}
2356 	}
2357 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2358 
2359 	mutex_lock(&cpufreq_governor_mutex);
2360 	list_del(&governor->governor_list);
2361 	mutex_unlock(&cpufreq_governor_mutex);
2362 }
2363 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2364 
2365 
2366 /*********************************************************************
2367  *                          POLICY INTERFACE                         *
2368  *********************************************************************/
2369 
2370 /**
2371  * cpufreq_get_policy - get the current cpufreq_policy
2372  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2373  *	is written
2374  * @cpu: CPU to find the policy for
2375  *
2376  * Reads the current cpufreq policy.
2377  */
2378 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2379 {
2380 	struct cpufreq_policy *cpu_policy;
2381 	if (!policy)
2382 		return -EINVAL;
2383 
2384 	cpu_policy = cpufreq_cpu_get(cpu);
2385 	if (!cpu_policy)
2386 		return -EINVAL;
2387 
2388 	memcpy(policy, cpu_policy, sizeof(*policy));
2389 
2390 	cpufreq_cpu_put(cpu_policy);
2391 	return 0;
2392 }
2393 EXPORT_SYMBOL(cpufreq_get_policy);
2394 
2395 /**
2396  * cpufreq_set_policy - Modify cpufreq policy parameters.
2397  * @policy: Policy object to modify.
2398  * @new_gov: Policy governor pointer.
2399  * @new_pol: Policy value (for drivers with built-in governors).
2400  *
2401  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2402  * limits to be set for the policy, update @policy with the verified limits
2403  * values and either invoke the driver's ->setpolicy() callback (if present) or
2404  * carry out a governor update for @policy.  That is, run the current governor's
2405  * ->limits() callback (if @new_gov points to the same object as the one in
2406  * @policy) or replace the governor for @policy with @new_gov.
2407  *
2408  * The cpuinfo part of @policy is not updated by this function.
2409  */
2410 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2411 			      struct cpufreq_governor *new_gov,
2412 			      unsigned int new_pol)
2413 {
2414 	struct cpufreq_policy_data new_data;
2415 	struct cpufreq_governor *old_gov;
2416 	int ret;
2417 
2418 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2419 	new_data.freq_table = policy->freq_table;
2420 	new_data.cpu = policy->cpu;
2421 	/*
2422 	 * PM QoS framework collects all the requests from users and provide us
2423 	 * the final aggregated value here.
2424 	 */
2425 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2426 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2427 
2428 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2429 		 new_data.cpu, new_data.min, new_data.max);
2430 
2431 	/*
2432 	 * Verify that the CPU speed can be set within these limits and make sure
2433 	 * that min <= max.
2434 	 */
2435 	ret = cpufreq_driver->verify(&new_data);
2436 	if (ret)
2437 		return ret;
2438 
2439 	policy->min = new_data.min;
2440 	policy->max = new_data.max;
2441 	trace_cpu_frequency_limits(policy);
2442 
2443 	policy->cached_target_freq = UINT_MAX;
2444 
2445 	pr_debug("new min and max freqs are %u - %u kHz\n",
2446 		 policy->min, policy->max);
2447 
2448 	if (cpufreq_driver->setpolicy) {
2449 		policy->policy = new_pol;
2450 		pr_debug("setting range\n");
2451 		return cpufreq_driver->setpolicy(policy);
2452 	}
2453 
2454 	if (new_gov == policy->governor) {
2455 		pr_debug("governor limits update\n");
2456 		cpufreq_governor_limits(policy);
2457 		return 0;
2458 	}
2459 
2460 	pr_debug("governor switch\n");
2461 
2462 	/* save old, working values */
2463 	old_gov = policy->governor;
2464 	/* end old governor */
2465 	if (old_gov) {
2466 		cpufreq_stop_governor(policy);
2467 		cpufreq_exit_governor(policy);
2468 	}
2469 
2470 	/* start new governor */
2471 	policy->governor = new_gov;
2472 	ret = cpufreq_init_governor(policy);
2473 	if (!ret) {
2474 		ret = cpufreq_start_governor(policy);
2475 		if (!ret) {
2476 			pr_debug("governor change\n");
2477 			sched_cpufreq_governor_change(policy, old_gov);
2478 			return 0;
2479 		}
2480 		cpufreq_exit_governor(policy);
2481 	}
2482 
2483 	/* new governor failed, so re-start old one */
2484 	pr_debug("starting governor %s failed\n", policy->governor->name);
2485 	if (old_gov) {
2486 		policy->governor = old_gov;
2487 		if (cpufreq_init_governor(policy))
2488 			policy->governor = NULL;
2489 		else
2490 			cpufreq_start_governor(policy);
2491 	}
2492 
2493 	return ret;
2494 }
2495 
2496 /**
2497  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2498  * @cpu: CPU to re-evaluate the policy for.
2499  *
2500  * Update the current frequency for the cpufreq policy of @cpu and use
2501  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2502  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2503  * for the policy in question, among other things.
2504  */
2505 void cpufreq_update_policy(unsigned int cpu)
2506 {
2507 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2508 
2509 	if (!policy)
2510 		return;
2511 
2512 	/*
2513 	 * BIOS might change freq behind our back
2514 	 * -> ask driver for current freq and notify governors about a change
2515 	 */
2516 	if (cpufreq_driver->get && has_target() &&
2517 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2518 		goto unlock;
2519 
2520 	refresh_frequency_limits(policy);
2521 
2522 unlock:
2523 	cpufreq_cpu_release(policy);
2524 }
2525 EXPORT_SYMBOL(cpufreq_update_policy);
2526 
2527 /**
2528  * cpufreq_update_limits - Update policy limits for a given CPU.
2529  * @cpu: CPU to update the policy limits for.
2530  *
2531  * Invoke the driver's ->update_limits callback if present or call
2532  * cpufreq_update_policy() for @cpu.
2533  */
2534 void cpufreq_update_limits(unsigned int cpu)
2535 {
2536 	if (cpufreq_driver->update_limits)
2537 		cpufreq_driver->update_limits(cpu);
2538 	else
2539 		cpufreq_update_policy(cpu);
2540 }
2541 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2542 
2543 /*********************************************************************
2544  *               BOOST						     *
2545  *********************************************************************/
2546 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2547 {
2548 	int ret;
2549 
2550 	if (!policy->freq_table)
2551 		return -ENXIO;
2552 
2553 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2554 	if (ret) {
2555 		pr_err("%s: Policy frequency update failed\n", __func__);
2556 		return ret;
2557 	}
2558 
2559 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2560 	if (ret < 0)
2561 		return ret;
2562 
2563 	return 0;
2564 }
2565 
2566 int cpufreq_boost_trigger_state(int state)
2567 {
2568 	struct cpufreq_policy *policy;
2569 	unsigned long flags;
2570 	int ret = 0;
2571 
2572 	if (cpufreq_driver->boost_enabled == state)
2573 		return 0;
2574 
2575 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2576 	cpufreq_driver->boost_enabled = state;
2577 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578 
2579 	get_online_cpus();
2580 	for_each_active_policy(policy) {
2581 		ret = cpufreq_driver->set_boost(policy, state);
2582 		if (ret)
2583 			goto err_reset_state;
2584 	}
2585 	put_online_cpus();
2586 
2587 	return 0;
2588 
2589 err_reset_state:
2590 	put_online_cpus();
2591 
2592 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2593 	cpufreq_driver->boost_enabled = !state;
2594 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2595 
2596 	pr_err("%s: Cannot %s BOOST\n",
2597 	       __func__, state ? "enable" : "disable");
2598 
2599 	return ret;
2600 }
2601 
2602 static bool cpufreq_boost_supported(void)
2603 {
2604 	return cpufreq_driver->set_boost;
2605 }
2606 
2607 static int create_boost_sysfs_file(void)
2608 {
2609 	int ret;
2610 
2611 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2612 	if (ret)
2613 		pr_err("%s: cannot register global BOOST sysfs file\n",
2614 		       __func__);
2615 
2616 	return ret;
2617 }
2618 
2619 static void remove_boost_sysfs_file(void)
2620 {
2621 	if (cpufreq_boost_supported())
2622 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2623 }
2624 
2625 int cpufreq_enable_boost_support(void)
2626 {
2627 	if (!cpufreq_driver)
2628 		return -EINVAL;
2629 
2630 	if (cpufreq_boost_supported())
2631 		return 0;
2632 
2633 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2634 
2635 	/* This will get removed on driver unregister */
2636 	return create_boost_sysfs_file();
2637 }
2638 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2639 
2640 int cpufreq_boost_enabled(void)
2641 {
2642 	return cpufreq_driver->boost_enabled;
2643 }
2644 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2645 
2646 /*********************************************************************
2647  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2648  *********************************************************************/
2649 static enum cpuhp_state hp_online;
2650 
2651 static int cpuhp_cpufreq_online(unsigned int cpu)
2652 {
2653 	cpufreq_online(cpu);
2654 
2655 	return 0;
2656 }
2657 
2658 static int cpuhp_cpufreq_offline(unsigned int cpu)
2659 {
2660 	cpufreq_offline(cpu);
2661 
2662 	return 0;
2663 }
2664 
2665 /**
2666  * cpufreq_register_driver - register a CPU Frequency driver
2667  * @driver_data: A struct cpufreq_driver containing the values#
2668  * submitted by the CPU Frequency driver.
2669  *
2670  * Registers a CPU Frequency driver to this core code. This code
2671  * returns zero on success, -EEXIST when another driver got here first
2672  * (and isn't unregistered in the meantime).
2673  *
2674  */
2675 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2676 {
2677 	unsigned long flags;
2678 	int ret;
2679 
2680 	if (cpufreq_disabled())
2681 		return -ENODEV;
2682 
2683 	/*
2684 	 * The cpufreq core depends heavily on the availability of device
2685 	 * structure, make sure they are available before proceeding further.
2686 	 */
2687 	if (!get_cpu_device(0))
2688 		return -EPROBE_DEFER;
2689 
2690 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2691 	    !(driver_data->setpolicy || driver_data->target_index ||
2692 		    driver_data->target) ||
2693 	     (driver_data->setpolicy && (driver_data->target_index ||
2694 		    driver_data->target)) ||
2695 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2696 	     (!driver_data->online != !driver_data->offline))
2697 		return -EINVAL;
2698 
2699 	pr_debug("trying to register driver %s\n", driver_data->name);
2700 
2701 	/* Protect against concurrent CPU online/offline. */
2702 	cpus_read_lock();
2703 
2704 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2705 	if (cpufreq_driver) {
2706 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2707 		ret = -EEXIST;
2708 		goto out;
2709 	}
2710 	cpufreq_driver = driver_data;
2711 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2712 
2713 	if (driver_data->setpolicy)
2714 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2715 
2716 	if (cpufreq_boost_supported()) {
2717 		ret = create_boost_sysfs_file();
2718 		if (ret)
2719 			goto err_null_driver;
2720 	}
2721 
2722 	ret = subsys_interface_register(&cpufreq_interface);
2723 	if (ret)
2724 		goto err_boost_unreg;
2725 
2726 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2727 	    list_empty(&cpufreq_policy_list)) {
2728 		/* if all ->init() calls failed, unregister */
2729 		ret = -ENODEV;
2730 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2731 			 driver_data->name);
2732 		goto err_if_unreg;
2733 	}
2734 
2735 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2736 						   "cpufreq:online",
2737 						   cpuhp_cpufreq_online,
2738 						   cpuhp_cpufreq_offline);
2739 	if (ret < 0)
2740 		goto err_if_unreg;
2741 	hp_online = ret;
2742 	ret = 0;
2743 
2744 	pr_debug("driver %s up and running\n", driver_data->name);
2745 	goto out;
2746 
2747 err_if_unreg:
2748 	subsys_interface_unregister(&cpufreq_interface);
2749 err_boost_unreg:
2750 	remove_boost_sysfs_file();
2751 err_null_driver:
2752 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2753 	cpufreq_driver = NULL;
2754 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755 out:
2756 	cpus_read_unlock();
2757 	return ret;
2758 }
2759 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2760 
2761 /*
2762  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2763  *
2764  * Unregister the current CPUFreq driver. Only call this if you have
2765  * the right to do so, i.e. if you have succeeded in initialising before!
2766  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2767  * currently not initialised.
2768  */
2769 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2770 {
2771 	unsigned long flags;
2772 
2773 	if (!cpufreq_driver || (driver != cpufreq_driver))
2774 		return -EINVAL;
2775 
2776 	pr_debug("unregistering driver %s\n", driver->name);
2777 
2778 	/* Protect against concurrent cpu hotplug */
2779 	cpus_read_lock();
2780 	subsys_interface_unregister(&cpufreq_interface);
2781 	remove_boost_sysfs_file();
2782 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2783 
2784 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2785 
2786 	cpufreq_driver = NULL;
2787 
2788 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2789 	cpus_read_unlock();
2790 
2791 	return 0;
2792 }
2793 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2794 
2795 static int __init cpufreq_core_init(void)
2796 {
2797 	struct cpufreq_governor *gov = cpufreq_default_governor();
2798 
2799 	if (cpufreq_disabled())
2800 		return -ENODEV;
2801 
2802 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2803 	BUG_ON(!cpufreq_global_kobject);
2804 
2805 	if (!strlen(default_governor))
2806 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2807 
2808 	return 0;
2809 }
2810 module_param(off, int, 0444);
2811 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2812 core_initcall(cpufreq_core_init);
2813