1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 #define for_each_policy(__policy) \ 46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 47 48 /* Iterate over governors */ 49 static LIST_HEAD(cpufreq_governor_list); 50 #define for_each_governor(__governor) \ 51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 52 53 /** 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 /* Flag to suspend/resume CPUFreq governors */ 63 static bool cpufreq_suspended; 64 65 static inline bool has_target(void) 66 { 67 return cpufreq_driver->target_index || cpufreq_driver->target; 68 } 69 70 /* internal prototypes */ 71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 72 static int cpufreq_init_governor(struct cpufreq_policy *policy); 73 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 74 static int cpufreq_start_governor(struct cpufreq_policy *policy); 75 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 76 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 77 static int cpufreq_set_policy(struct cpufreq_policy *policy, 78 struct cpufreq_governor *new_gov, 79 unsigned int new_pol); 80 81 /** 82 * Two notifier lists: the "policy" list is involved in the 83 * validation process for a new CPU frequency policy; the 84 * "transition" list for kernel code that needs to handle 85 * changes to devices when the CPU clock speed changes. 86 * The mutex locks both lists. 87 */ 88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 90 91 static int off __read_mostly; 92 static int cpufreq_disabled(void) 93 { 94 return off; 95 } 96 void disable_cpufreq(void) 97 { 98 off = 1; 99 } 100 static DEFINE_MUTEX(cpufreq_governor_mutex); 101 102 bool have_governor_per_policy(void) 103 { 104 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 105 } 106 EXPORT_SYMBOL_GPL(have_governor_per_policy); 107 108 static struct kobject *cpufreq_global_kobject; 109 110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 111 { 112 if (have_governor_per_policy()) 113 return &policy->kobj; 114 else 115 return cpufreq_global_kobject; 116 } 117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 118 119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 120 { 121 struct kernel_cpustat kcpustat; 122 u64 cur_wall_time; 123 u64 idle_time; 124 u64 busy_time; 125 126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 127 128 kcpustat_cpu_fetch(&kcpustat, cpu); 129 130 busy_time = kcpustat.cpustat[CPUTIME_USER]; 131 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 132 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 133 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 134 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 135 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 136 137 idle_time = cur_wall_time - busy_time; 138 if (wall) 139 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 140 141 return div_u64(idle_time, NSEC_PER_USEC); 142 } 143 144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 145 { 146 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 147 148 if (idle_time == -1ULL) 149 return get_cpu_idle_time_jiffy(cpu, wall); 150 else if (!io_busy) 151 idle_time += get_cpu_iowait_time_us(cpu, wall); 152 153 return idle_time; 154 } 155 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 156 157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 158 unsigned long max_freq) 159 { 160 } 161 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 162 163 /* 164 * This is a generic cpufreq init() routine which can be used by cpufreq 165 * drivers of SMP systems. It will do following: 166 * - validate & show freq table passed 167 * - set policies transition latency 168 * - policy->cpus with all possible CPUs 169 */ 170 void cpufreq_generic_init(struct cpufreq_policy *policy, 171 struct cpufreq_frequency_table *table, 172 unsigned int transition_latency) 173 { 174 policy->freq_table = table; 175 policy->cpuinfo.transition_latency = transition_latency; 176 177 /* 178 * The driver only supports the SMP configuration where all processors 179 * share the clock and voltage and clock. 180 */ 181 cpumask_setall(policy->cpus); 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 184 185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 188 189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 190 } 191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 192 193 unsigned int cpufreq_generic_get(unsigned int cpu) 194 { 195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 196 197 if (!policy || IS_ERR(policy->clk)) { 198 pr_err("%s: No %s associated to cpu: %d\n", 199 __func__, policy ? "clk" : "policy", cpu); 200 return 0; 201 } 202 203 return clk_get_rate(policy->clk) / 1000; 204 } 205 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 206 207 /** 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 209 * @cpu: CPU to find the policy for. 210 * 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 212 * the kobject reference counter of that policy. Return a valid policy on 213 * success or NULL on failure. 214 * 215 * The policy returned by this function has to be released with the help of 216 * cpufreq_cpu_put() to balance its kobject reference counter properly. 217 */ 218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 219 { 220 struct cpufreq_policy *policy = NULL; 221 unsigned long flags; 222 223 if (WARN_ON(cpu >= nr_cpu_ids)) 224 return NULL; 225 226 /* get the cpufreq driver */ 227 read_lock_irqsave(&cpufreq_driver_lock, flags); 228 229 if (cpufreq_driver) { 230 /* get the CPU */ 231 policy = cpufreq_cpu_get_raw(cpu); 232 if (policy) 233 kobject_get(&policy->kobj); 234 } 235 236 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 237 238 return policy; 239 } 240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 241 242 /** 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 244 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 245 */ 246 void cpufreq_cpu_put(struct cpufreq_policy *policy) 247 { 248 kobject_put(&policy->kobj); 249 } 250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 251 252 /** 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 255 */ 256 void cpufreq_cpu_release(struct cpufreq_policy *policy) 257 { 258 if (WARN_ON(!policy)) 259 return; 260 261 lockdep_assert_held(&policy->rwsem); 262 263 up_write(&policy->rwsem); 264 265 cpufreq_cpu_put(policy); 266 } 267 268 /** 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 270 * @cpu: CPU to find the policy for. 271 * 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 273 * if the policy returned by it is not NULL, acquire its rwsem for writing. 274 * Return the policy if it is active or release it and return NULL otherwise. 275 * 276 * The policy returned by this function has to be released with the help of 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 278 * counter properly. 279 */ 280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 281 { 282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 283 284 if (!policy) 285 return NULL; 286 287 down_write(&policy->rwsem); 288 289 if (policy_is_inactive(policy)) { 290 cpufreq_cpu_release(policy); 291 return NULL; 292 } 293 294 return policy; 295 } 296 297 /********************************************************************* 298 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 299 *********************************************************************/ 300 301 /** 302 * adjust_jiffies - adjust the system "loops_per_jiffy" 303 * 304 * This function alters the system "loops_per_jiffy" for the clock 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP 306 * systems as each CPU might be scaled differently. So, use the arch 307 * per-CPU loops_per_jiffy value wherever possible. 308 */ 309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 310 { 311 #ifndef CONFIG_SMP 312 static unsigned long l_p_j_ref; 313 static unsigned int l_p_j_ref_freq; 314 315 if (ci->flags & CPUFREQ_CONST_LOOPS) 316 return; 317 318 if (!l_p_j_ref_freq) { 319 l_p_j_ref = loops_per_jiffy; 320 l_p_j_ref_freq = ci->old; 321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 322 l_p_j_ref, l_p_j_ref_freq); 323 } 324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 326 ci->new); 327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 328 loops_per_jiffy, ci->new); 329 } 330 #endif 331 } 332 333 /** 334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 335 * @policy: cpufreq policy to enable fast frequency switching for. 336 * @freqs: contain details of the frequency update. 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 338 * 339 * This function calls the transition notifiers and the "adjust_jiffies" 340 * function. It is called twice on all CPU frequency changes that have 341 * external effects. 342 */ 343 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 344 struct cpufreq_freqs *freqs, 345 unsigned int state) 346 { 347 int cpu; 348 349 BUG_ON(irqs_disabled()); 350 351 if (cpufreq_disabled()) 352 return; 353 354 freqs->policy = policy; 355 freqs->flags = cpufreq_driver->flags; 356 pr_debug("notification %u of frequency transition to %u kHz\n", 357 state, freqs->new); 358 359 switch (state) { 360 case CPUFREQ_PRECHANGE: 361 /* 362 * Detect if the driver reported a value as "old frequency" 363 * which is not equal to what the cpufreq core thinks is 364 * "old frequency". 365 */ 366 if (policy->cur && policy->cur != freqs->old) { 367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 368 freqs->old, policy->cur); 369 freqs->old = policy->cur; 370 } 371 372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 373 CPUFREQ_PRECHANGE, freqs); 374 375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 376 break; 377 378 case CPUFREQ_POSTCHANGE: 379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 381 cpumask_pr_args(policy->cpus)); 382 383 for_each_cpu(cpu, policy->cpus) 384 trace_cpu_frequency(freqs->new, cpu); 385 386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 387 CPUFREQ_POSTCHANGE, freqs); 388 389 cpufreq_stats_record_transition(policy, freqs->new); 390 policy->cur = freqs->new; 391 } 392 } 393 394 /* Do post notifications when there are chances that transition has failed */ 395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 396 struct cpufreq_freqs *freqs, int transition_failed) 397 { 398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 399 if (!transition_failed) 400 return; 401 402 swap(freqs->old, freqs->new); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 } 406 407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 408 struct cpufreq_freqs *freqs) 409 { 410 411 /* 412 * Catch double invocations of _begin() which lead to self-deadlock. 413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 414 * doesn't invoke _begin() on their behalf, and hence the chances of 415 * double invocations are very low. Moreover, there are scenarios 416 * where these checks can emit false-positive warnings in these 417 * drivers; so we avoid that by skipping them altogether. 418 */ 419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 420 && current == policy->transition_task); 421 422 wait: 423 wait_event(policy->transition_wait, !policy->transition_ongoing); 424 425 spin_lock(&policy->transition_lock); 426 427 if (unlikely(policy->transition_ongoing)) { 428 spin_unlock(&policy->transition_lock); 429 goto wait; 430 } 431 432 policy->transition_ongoing = true; 433 policy->transition_task = current; 434 435 spin_unlock(&policy->transition_lock); 436 437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 438 } 439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 440 441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 442 struct cpufreq_freqs *freqs, int transition_failed) 443 { 444 if (WARN_ON(!policy->transition_ongoing)) 445 return; 446 447 cpufreq_notify_post_transition(policy, freqs, transition_failed); 448 449 policy->transition_ongoing = false; 450 policy->transition_task = NULL; 451 452 wake_up(&policy->transition_wait); 453 } 454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 455 456 /* 457 * Fast frequency switching status count. Positive means "enabled", negative 458 * means "disabled" and 0 means "not decided yet". 459 */ 460 static int cpufreq_fast_switch_count; 461 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 462 463 static void cpufreq_list_transition_notifiers(void) 464 { 465 struct notifier_block *nb; 466 467 pr_info("Registered transition notifiers:\n"); 468 469 mutex_lock(&cpufreq_transition_notifier_list.mutex); 470 471 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 472 pr_info("%pS\n", nb->notifier_call); 473 474 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 475 } 476 477 /** 478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 479 * @policy: cpufreq policy to enable fast frequency switching for. 480 * 481 * Try to enable fast frequency switching for @policy. 482 * 483 * The attempt will fail if there is at least one transition notifier registered 484 * at this point, as fast frequency switching is quite fundamentally at odds 485 * with transition notifiers. Thus if successful, it will make registration of 486 * transition notifiers fail going forward. 487 */ 488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 489 { 490 lockdep_assert_held(&policy->rwsem); 491 492 if (!policy->fast_switch_possible) 493 return; 494 495 mutex_lock(&cpufreq_fast_switch_lock); 496 if (cpufreq_fast_switch_count >= 0) { 497 cpufreq_fast_switch_count++; 498 policy->fast_switch_enabled = true; 499 } else { 500 pr_warn("CPU%u: Fast frequency switching not enabled\n", 501 policy->cpu); 502 cpufreq_list_transition_notifiers(); 503 } 504 mutex_unlock(&cpufreq_fast_switch_lock); 505 } 506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 507 508 /** 509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 510 * @policy: cpufreq policy to disable fast frequency switching for. 511 */ 512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 513 { 514 mutex_lock(&cpufreq_fast_switch_lock); 515 if (policy->fast_switch_enabled) { 516 policy->fast_switch_enabled = false; 517 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 518 cpufreq_fast_switch_count--; 519 } 520 mutex_unlock(&cpufreq_fast_switch_lock); 521 } 522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 523 524 /** 525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 526 * one. 527 * @target_freq: target frequency to resolve. 528 * 529 * The target to driver frequency mapping is cached in the policy. 530 * 531 * Return: Lowest driver-supported frequency greater than or equal to the 532 * given target_freq, subject to policy (min/max) and driver limitations. 533 */ 534 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 535 unsigned int target_freq) 536 { 537 target_freq = clamp_val(target_freq, policy->min, policy->max); 538 policy->cached_target_freq = target_freq; 539 540 if (cpufreq_driver->target_index) { 541 int idx; 542 543 idx = cpufreq_frequency_table_target(policy, target_freq, 544 CPUFREQ_RELATION_L); 545 policy->cached_resolved_idx = idx; 546 return policy->freq_table[idx].frequency; 547 } 548 549 if (cpufreq_driver->resolve_freq) 550 return cpufreq_driver->resolve_freq(policy, target_freq); 551 552 return target_freq; 553 } 554 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 555 556 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 557 { 558 unsigned int latency; 559 560 if (policy->transition_delay_us) 561 return policy->transition_delay_us; 562 563 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 564 if (latency) { 565 /* 566 * For platforms that can change the frequency very fast (< 10 567 * us), the above formula gives a decent transition delay. But 568 * for platforms where transition_latency is in milliseconds, it 569 * ends up giving unrealistic values. 570 * 571 * Cap the default transition delay to 10 ms, which seems to be 572 * a reasonable amount of time after which we should reevaluate 573 * the frequency. 574 */ 575 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 576 } 577 578 return LATENCY_MULTIPLIER; 579 } 580 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 581 582 /********************************************************************* 583 * SYSFS INTERFACE * 584 *********************************************************************/ 585 static ssize_t show_boost(struct kobject *kobj, 586 struct kobj_attribute *attr, char *buf) 587 { 588 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 589 } 590 591 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 592 const char *buf, size_t count) 593 { 594 int ret, enable; 595 596 ret = sscanf(buf, "%d", &enable); 597 if (ret != 1 || enable < 0 || enable > 1) 598 return -EINVAL; 599 600 if (cpufreq_boost_trigger_state(enable)) { 601 pr_err("%s: Cannot %s BOOST!\n", 602 __func__, enable ? "enable" : "disable"); 603 return -EINVAL; 604 } 605 606 pr_debug("%s: cpufreq BOOST %s\n", 607 __func__, enable ? "enabled" : "disabled"); 608 609 return count; 610 } 611 define_one_global_rw(boost); 612 613 static struct cpufreq_governor *find_governor(const char *str_governor) 614 { 615 struct cpufreq_governor *t; 616 617 for_each_governor(t) 618 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 619 return t; 620 621 return NULL; 622 } 623 624 static unsigned int cpufreq_parse_policy(char *str_governor) 625 { 626 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 627 return CPUFREQ_POLICY_PERFORMANCE; 628 629 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 630 return CPUFREQ_POLICY_POWERSAVE; 631 632 return CPUFREQ_POLICY_UNKNOWN; 633 } 634 635 /** 636 * cpufreq_parse_governor - parse a governor string only for has_target() 637 * @str_governor: Governor name. 638 */ 639 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 640 { 641 struct cpufreq_governor *t; 642 643 mutex_lock(&cpufreq_governor_mutex); 644 645 t = find_governor(str_governor); 646 if (!t) { 647 int ret; 648 649 mutex_unlock(&cpufreq_governor_mutex); 650 651 ret = request_module("cpufreq_%s", str_governor); 652 if (ret) 653 return NULL; 654 655 mutex_lock(&cpufreq_governor_mutex); 656 657 t = find_governor(str_governor); 658 } 659 if (t && !try_module_get(t->owner)) 660 t = NULL; 661 662 mutex_unlock(&cpufreq_governor_mutex); 663 664 return t; 665 } 666 667 /** 668 * cpufreq_per_cpu_attr_read() / show_##file_name() - 669 * print out cpufreq information 670 * 671 * Write out information from cpufreq_driver->policy[cpu]; object must be 672 * "unsigned int". 673 */ 674 675 #define show_one(file_name, object) \ 676 static ssize_t show_##file_name \ 677 (struct cpufreq_policy *policy, char *buf) \ 678 { \ 679 return sprintf(buf, "%u\n", policy->object); \ 680 } 681 682 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 683 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 685 show_one(scaling_min_freq, min); 686 show_one(scaling_max_freq, max); 687 688 __weak unsigned int arch_freq_get_on_cpu(int cpu) 689 { 690 return 0; 691 } 692 693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 694 { 695 ssize_t ret; 696 unsigned int freq; 697 698 freq = arch_freq_get_on_cpu(policy->cpu); 699 if (freq) 700 ret = sprintf(buf, "%u\n", freq); 701 else if (cpufreq_driver && cpufreq_driver->setpolicy && 702 cpufreq_driver->get) 703 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 704 else 705 ret = sprintf(buf, "%u\n", policy->cur); 706 return ret; 707 } 708 709 /** 710 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 711 */ 712 #define store_one(file_name, object) \ 713 static ssize_t store_##file_name \ 714 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 715 { \ 716 unsigned long val; \ 717 int ret; \ 718 \ 719 ret = sscanf(buf, "%lu", &val); \ 720 if (ret != 1) \ 721 return -EINVAL; \ 722 \ 723 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 724 return ret >= 0 ? count : ret; \ 725 } 726 727 store_one(scaling_min_freq, min); 728 store_one(scaling_max_freq, max); 729 730 /** 731 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 732 */ 733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 734 char *buf) 735 { 736 unsigned int cur_freq = __cpufreq_get(policy); 737 738 if (cur_freq) 739 return sprintf(buf, "%u\n", cur_freq); 740 741 return sprintf(buf, "<unknown>\n"); 742 } 743 744 /** 745 * show_scaling_governor - show the current policy for the specified CPU 746 */ 747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 748 { 749 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 750 return sprintf(buf, "powersave\n"); 751 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 752 return sprintf(buf, "performance\n"); 753 else if (policy->governor) 754 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 755 policy->governor->name); 756 return -EINVAL; 757 } 758 759 /** 760 * store_scaling_governor - store policy for the specified CPU 761 */ 762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 763 const char *buf, size_t count) 764 { 765 char str_governor[16]; 766 int ret; 767 768 ret = sscanf(buf, "%15s", str_governor); 769 if (ret != 1) 770 return -EINVAL; 771 772 if (cpufreq_driver->setpolicy) { 773 unsigned int new_pol; 774 775 new_pol = cpufreq_parse_policy(str_governor); 776 if (!new_pol) 777 return -EINVAL; 778 779 ret = cpufreq_set_policy(policy, NULL, new_pol); 780 } else { 781 struct cpufreq_governor *new_gov; 782 783 new_gov = cpufreq_parse_governor(str_governor); 784 if (!new_gov) 785 return -EINVAL; 786 787 ret = cpufreq_set_policy(policy, new_gov, 788 CPUFREQ_POLICY_UNKNOWN); 789 790 module_put(new_gov->owner); 791 } 792 793 return ret ? ret : count; 794 } 795 796 /** 797 * show_scaling_driver - show the cpufreq driver currently loaded 798 */ 799 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 800 { 801 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 802 } 803 804 /** 805 * show_scaling_available_governors - show the available CPUfreq governors 806 */ 807 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 808 char *buf) 809 { 810 ssize_t i = 0; 811 struct cpufreq_governor *t; 812 813 if (!has_target()) { 814 i += sprintf(buf, "performance powersave"); 815 goto out; 816 } 817 818 for_each_governor(t) { 819 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 820 - (CPUFREQ_NAME_LEN + 2))) 821 goto out; 822 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 823 } 824 out: 825 i += sprintf(&buf[i], "\n"); 826 return i; 827 } 828 829 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 830 { 831 ssize_t i = 0; 832 unsigned int cpu; 833 834 for_each_cpu(cpu, mask) { 835 if (i) 836 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 837 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 838 if (i >= (PAGE_SIZE - 5)) 839 break; 840 } 841 i += sprintf(&buf[i], "\n"); 842 return i; 843 } 844 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 845 846 /** 847 * show_related_cpus - show the CPUs affected by each transition even if 848 * hw coordination is in use 849 */ 850 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 851 { 852 return cpufreq_show_cpus(policy->related_cpus, buf); 853 } 854 855 /** 856 * show_affected_cpus - show the CPUs affected by each transition 857 */ 858 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 859 { 860 return cpufreq_show_cpus(policy->cpus, buf); 861 } 862 863 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 864 const char *buf, size_t count) 865 { 866 unsigned int freq = 0; 867 unsigned int ret; 868 869 if (!policy->governor || !policy->governor->store_setspeed) 870 return -EINVAL; 871 872 ret = sscanf(buf, "%u", &freq); 873 if (ret != 1) 874 return -EINVAL; 875 876 policy->governor->store_setspeed(policy, freq); 877 878 return count; 879 } 880 881 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 882 { 883 if (!policy->governor || !policy->governor->show_setspeed) 884 return sprintf(buf, "<unsupported>\n"); 885 886 return policy->governor->show_setspeed(policy, buf); 887 } 888 889 /** 890 * show_bios_limit - show the current cpufreq HW/BIOS limitation 891 */ 892 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 893 { 894 unsigned int limit; 895 int ret; 896 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 897 if (!ret) 898 return sprintf(buf, "%u\n", limit); 899 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 900 } 901 902 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 903 cpufreq_freq_attr_ro(cpuinfo_min_freq); 904 cpufreq_freq_attr_ro(cpuinfo_max_freq); 905 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 906 cpufreq_freq_attr_ro(scaling_available_governors); 907 cpufreq_freq_attr_ro(scaling_driver); 908 cpufreq_freq_attr_ro(scaling_cur_freq); 909 cpufreq_freq_attr_ro(bios_limit); 910 cpufreq_freq_attr_ro(related_cpus); 911 cpufreq_freq_attr_ro(affected_cpus); 912 cpufreq_freq_attr_rw(scaling_min_freq); 913 cpufreq_freq_attr_rw(scaling_max_freq); 914 cpufreq_freq_attr_rw(scaling_governor); 915 cpufreq_freq_attr_rw(scaling_setspeed); 916 917 static struct attribute *default_attrs[] = { 918 &cpuinfo_min_freq.attr, 919 &cpuinfo_max_freq.attr, 920 &cpuinfo_transition_latency.attr, 921 &scaling_min_freq.attr, 922 &scaling_max_freq.attr, 923 &affected_cpus.attr, 924 &related_cpus.attr, 925 &scaling_governor.attr, 926 &scaling_driver.attr, 927 &scaling_available_governors.attr, 928 &scaling_setspeed.attr, 929 NULL 930 }; 931 932 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 933 #define to_attr(a) container_of(a, struct freq_attr, attr) 934 935 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 936 { 937 struct cpufreq_policy *policy = to_policy(kobj); 938 struct freq_attr *fattr = to_attr(attr); 939 ssize_t ret; 940 941 if (!fattr->show) 942 return -EIO; 943 944 down_read(&policy->rwsem); 945 ret = fattr->show(policy, buf); 946 up_read(&policy->rwsem); 947 948 return ret; 949 } 950 951 static ssize_t store(struct kobject *kobj, struct attribute *attr, 952 const char *buf, size_t count) 953 { 954 struct cpufreq_policy *policy = to_policy(kobj); 955 struct freq_attr *fattr = to_attr(attr); 956 ssize_t ret = -EINVAL; 957 958 if (!fattr->store) 959 return -EIO; 960 961 /* 962 * cpus_read_trylock() is used here to work around a circular lock 963 * dependency problem with respect to the cpufreq_register_driver(). 964 */ 965 if (!cpus_read_trylock()) 966 return -EBUSY; 967 968 if (cpu_online(policy->cpu)) { 969 down_write(&policy->rwsem); 970 ret = fattr->store(policy, buf, count); 971 up_write(&policy->rwsem); 972 } 973 974 cpus_read_unlock(); 975 976 return ret; 977 } 978 979 static void cpufreq_sysfs_release(struct kobject *kobj) 980 { 981 struct cpufreq_policy *policy = to_policy(kobj); 982 pr_debug("last reference is dropped\n"); 983 complete(&policy->kobj_unregister); 984 } 985 986 static const struct sysfs_ops sysfs_ops = { 987 .show = show, 988 .store = store, 989 }; 990 991 static struct kobj_type ktype_cpufreq = { 992 .sysfs_ops = &sysfs_ops, 993 .default_attrs = default_attrs, 994 .release = cpufreq_sysfs_release, 995 }; 996 997 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 998 { 999 struct device *dev = get_cpu_device(cpu); 1000 1001 if (unlikely(!dev)) 1002 return; 1003 1004 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1005 return; 1006 1007 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1008 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1009 dev_err(dev, "cpufreq symlink creation failed\n"); 1010 } 1011 1012 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1013 struct device *dev) 1014 { 1015 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1016 sysfs_remove_link(&dev->kobj, "cpufreq"); 1017 } 1018 1019 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1020 { 1021 struct freq_attr **drv_attr; 1022 int ret = 0; 1023 1024 /* set up files for this cpu device */ 1025 drv_attr = cpufreq_driver->attr; 1026 while (drv_attr && *drv_attr) { 1027 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1028 if (ret) 1029 return ret; 1030 drv_attr++; 1031 } 1032 if (cpufreq_driver->get) { 1033 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1039 if (ret) 1040 return ret; 1041 1042 if (cpufreq_driver->bios_limit) { 1043 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 return 0; 1049 } 1050 1051 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1052 { 1053 return NULL; 1054 } 1055 1056 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1057 { 1058 struct cpufreq_governor *def_gov = cpufreq_default_governor(); 1059 struct cpufreq_governor *gov = NULL; 1060 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1061 1062 if (has_target()) { 1063 /* Update policy governor to the one used before hotplug. */ 1064 gov = find_governor(policy->last_governor); 1065 if (gov) { 1066 pr_debug("Restoring governor %s for cpu %d\n", 1067 policy->governor->name, policy->cpu); 1068 } else if (def_gov) { 1069 gov = def_gov; 1070 } else { 1071 return -ENODATA; 1072 } 1073 } else { 1074 /* Use the default policy if there is no last_policy. */ 1075 if (policy->last_policy) { 1076 pol = policy->last_policy; 1077 } else if (def_gov) { 1078 pol = cpufreq_parse_policy(def_gov->name); 1079 } else { 1080 return -ENODATA; 1081 } 1082 } 1083 1084 return cpufreq_set_policy(policy, gov, pol); 1085 } 1086 1087 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1088 { 1089 int ret = 0; 1090 1091 /* Has this CPU been taken care of already? */ 1092 if (cpumask_test_cpu(cpu, policy->cpus)) 1093 return 0; 1094 1095 down_write(&policy->rwsem); 1096 if (has_target()) 1097 cpufreq_stop_governor(policy); 1098 1099 cpumask_set_cpu(cpu, policy->cpus); 1100 1101 if (has_target()) { 1102 ret = cpufreq_start_governor(policy); 1103 if (ret) 1104 pr_err("%s: Failed to start governor\n", __func__); 1105 } 1106 up_write(&policy->rwsem); 1107 return ret; 1108 } 1109 1110 void refresh_frequency_limits(struct cpufreq_policy *policy) 1111 { 1112 if (!policy_is_inactive(policy)) { 1113 pr_debug("updating policy for CPU %u\n", policy->cpu); 1114 1115 cpufreq_set_policy(policy, policy->governor, policy->policy); 1116 } 1117 } 1118 EXPORT_SYMBOL(refresh_frequency_limits); 1119 1120 static void handle_update(struct work_struct *work) 1121 { 1122 struct cpufreq_policy *policy = 1123 container_of(work, struct cpufreq_policy, update); 1124 1125 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1126 down_write(&policy->rwsem); 1127 refresh_frequency_limits(policy); 1128 up_write(&policy->rwsem); 1129 } 1130 1131 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1132 void *data) 1133 { 1134 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1135 1136 schedule_work(&policy->update); 1137 return 0; 1138 } 1139 1140 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1141 void *data) 1142 { 1143 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1144 1145 schedule_work(&policy->update); 1146 return 0; 1147 } 1148 1149 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1150 { 1151 struct kobject *kobj; 1152 struct completion *cmp; 1153 1154 down_write(&policy->rwsem); 1155 cpufreq_stats_free_table(policy); 1156 kobj = &policy->kobj; 1157 cmp = &policy->kobj_unregister; 1158 up_write(&policy->rwsem); 1159 kobject_put(kobj); 1160 1161 /* 1162 * We need to make sure that the underlying kobj is 1163 * actually not referenced anymore by anybody before we 1164 * proceed with unloading. 1165 */ 1166 pr_debug("waiting for dropping of refcount\n"); 1167 wait_for_completion(cmp); 1168 pr_debug("wait complete\n"); 1169 } 1170 1171 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1172 { 1173 struct cpufreq_policy *policy; 1174 struct device *dev = get_cpu_device(cpu); 1175 int ret; 1176 1177 if (!dev) 1178 return NULL; 1179 1180 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1181 if (!policy) 1182 return NULL; 1183 1184 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1185 goto err_free_policy; 1186 1187 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1188 goto err_free_cpumask; 1189 1190 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1191 goto err_free_rcpumask; 1192 1193 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1194 cpufreq_global_kobject, "policy%u", cpu); 1195 if (ret) { 1196 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1197 /* 1198 * The entire policy object will be freed below, but the extra 1199 * memory allocated for the kobject name needs to be freed by 1200 * releasing the kobject. 1201 */ 1202 kobject_put(&policy->kobj); 1203 goto err_free_real_cpus; 1204 } 1205 1206 freq_constraints_init(&policy->constraints); 1207 1208 policy->nb_min.notifier_call = cpufreq_notifier_min; 1209 policy->nb_max.notifier_call = cpufreq_notifier_max; 1210 1211 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1212 &policy->nb_min); 1213 if (ret) { 1214 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1215 ret, cpumask_pr_args(policy->cpus)); 1216 goto err_kobj_remove; 1217 } 1218 1219 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1220 &policy->nb_max); 1221 if (ret) { 1222 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1223 ret, cpumask_pr_args(policy->cpus)); 1224 goto err_min_qos_notifier; 1225 } 1226 1227 INIT_LIST_HEAD(&policy->policy_list); 1228 init_rwsem(&policy->rwsem); 1229 spin_lock_init(&policy->transition_lock); 1230 init_waitqueue_head(&policy->transition_wait); 1231 init_completion(&policy->kobj_unregister); 1232 INIT_WORK(&policy->update, handle_update); 1233 1234 policy->cpu = cpu; 1235 return policy; 1236 1237 err_min_qos_notifier: 1238 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1239 &policy->nb_min); 1240 err_kobj_remove: 1241 cpufreq_policy_put_kobj(policy); 1242 err_free_real_cpus: 1243 free_cpumask_var(policy->real_cpus); 1244 err_free_rcpumask: 1245 free_cpumask_var(policy->related_cpus); 1246 err_free_cpumask: 1247 free_cpumask_var(policy->cpus); 1248 err_free_policy: 1249 kfree(policy); 1250 1251 return NULL; 1252 } 1253 1254 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1255 { 1256 unsigned long flags; 1257 int cpu; 1258 1259 /* Remove policy from list */ 1260 write_lock_irqsave(&cpufreq_driver_lock, flags); 1261 list_del(&policy->policy_list); 1262 1263 for_each_cpu(cpu, policy->related_cpus) 1264 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1265 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1266 1267 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1268 &policy->nb_max); 1269 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1270 &policy->nb_min); 1271 1272 /* Cancel any pending policy->update work before freeing the policy. */ 1273 cancel_work_sync(&policy->update); 1274 1275 if (policy->max_freq_req) { 1276 /* 1277 * CPUFREQ_CREATE_POLICY notification is sent only after 1278 * successfully adding max_freq_req request. 1279 */ 1280 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1281 CPUFREQ_REMOVE_POLICY, policy); 1282 freq_qos_remove_request(policy->max_freq_req); 1283 } 1284 1285 freq_qos_remove_request(policy->min_freq_req); 1286 kfree(policy->min_freq_req); 1287 1288 cpufreq_policy_put_kobj(policy); 1289 free_cpumask_var(policy->real_cpus); 1290 free_cpumask_var(policy->related_cpus); 1291 free_cpumask_var(policy->cpus); 1292 kfree(policy); 1293 } 1294 1295 static int cpufreq_online(unsigned int cpu) 1296 { 1297 struct cpufreq_policy *policy; 1298 bool new_policy; 1299 unsigned long flags; 1300 unsigned int j; 1301 int ret; 1302 1303 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1304 1305 /* Check if this CPU already has a policy to manage it */ 1306 policy = per_cpu(cpufreq_cpu_data, cpu); 1307 if (policy) { 1308 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1309 if (!policy_is_inactive(policy)) 1310 return cpufreq_add_policy_cpu(policy, cpu); 1311 1312 /* This is the only online CPU for the policy. Start over. */ 1313 new_policy = false; 1314 down_write(&policy->rwsem); 1315 policy->cpu = cpu; 1316 policy->governor = NULL; 1317 up_write(&policy->rwsem); 1318 } else { 1319 new_policy = true; 1320 policy = cpufreq_policy_alloc(cpu); 1321 if (!policy) 1322 return -ENOMEM; 1323 } 1324 1325 if (!new_policy && cpufreq_driver->online) { 1326 ret = cpufreq_driver->online(policy); 1327 if (ret) { 1328 pr_debug("%s: %d: initialization failed\n", __func__, 1329 __LINE__); 1330 goto out_exit_policy; 1331 } 1332 1333 /* Recover policy->cpus using related_cpus */ 1334 cpumask_copy(policy->cpus, policy->related_cpus); 1335 } else { 1336 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1337 1338 /* 1339 * Call driver. From then on the cpufreq must be able 1340 * to accept all calls to ->verify and ->setpolicy for this CPU. 1341 */ 1342 ret = cpufreq_driver->init(policy); 1343 if (ret) { 1344 pr_debug("%s: %d: initialization failed\n", __func__, 1345 __LINE__); 1346 goto out_free_policy; 1347 } 1348 1349 ret = cpufreq_table_validate_and_sort(policy); 1350 if (ret) 1351 goto out_exit_policy; 1352 1353 /* related_cpus should at least include policy->cpus. */ 1354 cpumask_copy(policy->related_cpus, policy->cpus); 1355 } 1356 1357 down_write(&policy->rwsem); 1358 /* 1359 * affected cpus must always be the one, which are online. We aren't 1360 * managing offline cpus here. 1361 */ 1362 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1363 1364 if (new_policy) { 1365 for_each_cpu(j, policy->related_cpus) { 1366 per_cpu(cpufreq_cpu_data, j) = policy; 1367 add_cpu_dev_symlink(policy, j); 1368 } 1369 1370 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1371 GFP_KERNEL); 1372 if (!policy->min_freq_req) 1373 goto out_destroy_policy; 1374 1375 ret = freq_qos_add_request(&policy->constraints, 1376 policy->min_freq_req, FREQ_QOS_MIN, 1377 policy->min); 1378 if (ret < 0) { 1379 /* 1380 * So we don't call freq_qos_remove_request() for an 1381 * uninitialized request. 1382 */ 1383 kfree(policy->min_freq_req); 1384 policy->min_freq_req = NULL; 1385 goto out_destroy_policy; 1386 } 1387 1388 /* 1389 * This must be initialized right here to avoid calling 1390 * freq_qos_remove_request() on uninitialized request in case 1391 * of errors. 1392 */ 1393 policy->max_freq_req = policy->min_freq_req + 1; 1394 1395 ret = freq_qos_add_request(&policy->constraints, 1396 policy->max_freq_req, FREQ_QOS_MAX, 1397 policy->max); 1398 if (ret < 0) { 1399 policy->max_freq_req = NULL; 1400 goto out_destroy_policy; 1401 } 1402 1403 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1404 CPUFREQ_CREATE_POLICY, policy); 1405 } 1406 1407 if (cpufreq_driver->get && has_target()) { 1408 policy->cur = cpufreq_driver->get(policy->cpu); 1409 if (!policy->cur) { 1410 pr_err("%s: ->get() failed\n", __func__); 1411 goto out_destroy_policy; 1412 } 1413 } 1414 1415 /* 1416 * Sometimes boot loaders set CPU frequency to a value outside of 1417 * frequency table present with cpufreq core. In such cases CPU might be 1418 * unstable if it has to run on that frequency for long duration of time 1419 * and so its better to set it to a frequency which is specified in 1420 * freq-table. This also makes cpufreq stats inconsistent as 1421 * cpufreq-stats would fail to register because current frequency of CPU 1422 * isn't found in freq-table. 1423 * 1424 * Because we don't want this change to effect boot process badly, we go 1425 * for the next freq which is >= policy->cur ('cur' must be set by now, 1426 * otherwise we will end up setting freq to lowest of the table as 'cur' 1427 * is initialized to zero). 1428 * 1429 * We are passing target-freq as "policy->cur - 1" otherwise 1430 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1431 * equal to target-freq. 1432 */ 1433 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1434 && has_target()) { 1435 /* Are we running at unknown frequency ? */ 1436 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1437 if (ret == -EINVAL) { 1438 /* Warn user and fix it */ 1439 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1440 __func__, policy->cpu, policy->cur); 1441 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1442 CPUFREQ_RELATION_L); 1443 1444 /* 1445 * Reaching here after boot in a few seconds may not 1446 * mean that system will remain stable at "unknown" 1447 * frequency for longer duration. Hence, a BUG_ON(). 1448 */ 1449 BUG_ON(ret); 1450 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1451 __func__, policy->cpu, policy->cur); 1452 } 1453 } 1454 1455 if (new_policy) { 1456 ret = cpufreq_add_dev_interface(policy); 1457 if (ret) 1458 goto out_destroy_policy; 1459 1460 cpufreq_stats_create_table(policy); 1461 1462 write_lock_irqsave(&cpufreq_driver_lock, flags); 1463 list_add(&policy->policy_list, &cpufreq_policy_list); 1464 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1465 } 1466 1467 ret = cpufreq_init_policy(policy); 1468 if (ret) { 1469 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1470 __func__, cpu, ret); 1471 goto out_destroy_policy; 1472 } 1473 1474 up_write(&policy->rwsem); 1475 1476 kobject_uevent(&policy->kobj, KOBJ_ADD); 1477 1478 /* Callback for handling stuff after policy is ready */ 1479 if (cpufreq_driver->ready) 1480 cpufreq_driver->ready(policy); 1481 1482 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1483 policy->cdev = of_cpufreq_cooling_register(policy); 1484 1485 pr_debug("initialization complete\n"); 1486 1487 return 0; 1488 1489 out_destroy_policy: 1490 for_each_cpu(j, policy->real_cpus) 1491 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1492 1493 up_write(&policy->rwsem); 1494 1495 out_exit_policy: 1496 if (cpufreq_driver->exit) 1497 cpufreq_driver->exit(policy); 1498 1499 out_free_policy: 1500 cpufreq_policy_free(policy); 1501 return ret; 1502 } 1503 1504 /** 1505 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1506 * @dev: CPU device. 1507 * @sif: Subsystem interface structure pointer (not used) 1508 */ 1509 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1510 { 1511 struct cpufreq_policy *policy; 1512 unsigned cpu = dev->id; 1513 int ret; 1514 1515 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1516 1517 if (cpu_online(cpu)) { 1518 ret = cpufreq_online(cpu); 1519 if (ret) 1520 return ret; 1521 } 1522 1523 /* Create sysfs link on CPU registration */ 1524 policy = per_cpu(cpufreq_cpu_data, cpu); 1525 if (policy) 1526 add_cpu_dev_symlink(policy, cpu); 1527 1528 return 0; 1529 } 1530 1531 static int cpufreq_offline(unsigned int cpu) 1532 { 1533 struct cpufreq_policy *policy; 1534 int ret; 1535 1536 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1537 1538 policy = cpufreq_cpu_get_raw(cpu); 1539 if (!policy) { 1540 pr_debug("%s: No cpu_data found\n", __func__); 1541 return 0; 1542 } 1543 1544 down_write(&policy->rwsem); 1545 if (has_target()) 1546 cpufreq_stop_governor(policy); 1547 1548 cpumask_clear_cpu(cpu, policy->cpus); 1549 1550 if (policy_is_inactive(policy)) { 1551 if (has_target()) 1552 strncpy(policy->last_governor, policy->governor->name, 1553 CPUFREQ_NAME_LEN); 1554 else 1555 policy->last_policy = policy->policy; 1556 } else if (cpu == policy->cpu) { 1557 /* Nominate new CPU */ 1558 policy->cpu = cpumask_any(policy->cpus); 1559 } 1560 1561 /* Start governor again for active policy */ 1562 if (!policy_is_inactive(policy)) { 1563 if (has_target()) { 1564 ret = cpufreq_start_governor(policy); 1565 if (ret) 1566 pr_err("%s: Failed to start governor\n", __func__); 1567 } 1568 1569 goto unlock; 1570 } 1571 1572 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1573 cpufreq_cooling_unregister(policy->cdev); 1574 policy->cdev = NULL; 1575 } 1576 1577 if (cpufreq_driver->stop_cpu) 1578 cpufreq_driver->stop_cpu(policy); 1579 1580 if (has_target()) 1581 cpufreq_exit_governor(policy); 1582 1583 /* 1584 * Perform the ->offline() during light-weight tear-down, as 1585 * that allows fast recovery when the CPU comes back. 1586 */ 1587 if (cpufreq_driver->offline) { 1588 cpufreq_driver->offline(policy); 1589 } else if (cpufreq_driver->exit) { 1590 cpufreq_driver->exit(policy); 1591 policy->freq_table = NULL; 1592 } 1593 1594 unlock: 1595 up_write(&policy->rwsem); 1596 return 0; 1597 } 1598 1599 /** 1600 * cpufreq_remove_dev - remove a CPU device 1601 * 1602 * Removes the cpufreq interface for a CPU device. 1603 */ 1604 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1605 { 1606 unsigned int cpu = dev->id; 1607 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1608 1609 if (!policy) 1610 return; 1611 1612 if (cpu_online(cpu)) 1613 cpufreq_offline(cpu); 1614 1615 cpumask_clear_cpu(cpu, policy->real_cpus); 1616 remove_cpu_dev_symlink(policy, dev); 1617 1618 if (cpumask_empty(policy->real_cpus)) { 1619 /* We did light-weight exit earlier, do full tear down now */ 1620 if (cpufreq_driver->offline) 1621 cpufreq_driver->exit(policy); 1622 1623 cpufreq_policy_free(policy); 1624 } 1625 } 1626 1627 /** 1628 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1629 * in deep trouble. 1630 * @policy: policy managing CPUs 1631 * @new_freq: CPU frequency the CPU actually runs at 1632 * 1633 * We adjust to current frequency first, and need to clean up later. 1634 * So either call to cpufreq_update_policy() or schedule handle_update()). 1635 */ 1636 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1637 unsigned int new_freq) 1638 { 1639 struct cpufreq_freqs freqs; 1640 1641 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1642 policy->cur, new_freq); 1643 1644 freqs.old = policy->cur; 1645 freqs.new = new_freq; 1646 1647 cpufreq_freq_transition_begin(policy, &freqs); 1648 cpufreq_freq_transition_end(policy, &freqs, 0); 1649 } 1650 1651 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1652 { 1653 unsigned int new_freq; 1654 1655 new_freq = cpufreq_driver->get(policy->cpu); 1656 if (!new_freq) 1657 return 0; 1658 1659 /* 1660 * If fast frequency switching is used with the given policy, the check 1661 * against policy->cur is pointless, so skip it in that case. 1662 */ 1663 if (policy->fast_switch_enabled || !has_target()) 1664 return new_freq; 1665 1666 if (policy->cur != new_freq) { 1667 cpufreq_out_of_sync(policy, new_freq); 1668 if (update) 1669 schedule_work(&policy->update); 1670 } 1671 1672 return new_freq; 1673 } 1674 1675 /** 1676 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1677 * @cpu: CPU number 1678 * 1679 * This is the last known freq, without actually getting it from the driver. 1680 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1681 */ 1682 unsigned int cpufreq_quick_get(unsigned int cpu) 1683 { 1684 struct cpufreq_policy *policy; 1685 unsigned int ret_freq = 0; 1686 unsigned long flags; 1687 1688 read_lock_irqsave(&cpufreq_driver_lock, flags); 1689 1690 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1691 ret_freq = cpufreq_driver->get(cpu); 1692 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1693 return ret_freq; 1694 } 1695 1696 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1697 1698 policy = cpufreq_cpu_get(cpu); 1699 if (policy) { 1700 ret_freq = policy->cur; 1701 cpufreq_cpu_put(policy); 1702 } 1703 1704 return ret_freq; 1705 } 1706 EXPORT_SYMBOL(cpufreq_quick_get); 1707 1708 /** 1709 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1710 * @cpu: CPU number 1711 * 1712 * Just return the max possible frequency for a given CPU. 1713 */ 1714 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1715 { 1716 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1717 unsigned int ret_freq = 0; 1718 1719 if (policy) { 1720 ret_freq = policy->max; 1721 cpufreq_cpu_put(policy); 1722 } 1723 1724 return ret_freq; 1725 } 1726 EXPORT_SYMBOL(cpufreq_quick_get_max); 1727 1728 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1729 { 1730 if (unlikely(policy_is_inactive(policy))) 1731 return 0; 1732 1733 return cpufreq_verify_current_freq(policy, true); 1734 } 1735 1736 /** 1737 * cpufreq_get - get the current CPU frequency (in kHz) 1738 * @cpu: CPU number 1739 * 1740 * Get the CPU current (static) CPU frequency 1741 */ 1742 unsigned int cpufreq_get(unsigned int cpu) 1743 { 1744 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1745 unsigned int ret_freq = 0; 1746 1747 if (policy) { 1748 down_read(&policy->rwsem); 1749 if (cpufreq_driver->get) 1750 ret_freq = __cpufreq_get(policy); 1751 up_read(&policy->rwsem); 1752 1753 cpufreq_cpu_put(policy); 1754 } 1755 1756 return ret_freq; 1757 } 1758 EXPORT_SYMBOL(cpufreq_get); 1759 1760 static struct subsys_interface cpufreq_interface = { 1761 .name = "cpufreq", 1762 .subsys = &cpu_subsys, 1763 .add_dev = cpufreq_add_dev, 1764 .remove_dev = cpufreq_remove_dev, 1765 }; 1766 1767 /* 1768 * In case platform wants some specific frequency to be configured 1769 * during suspend.. 1770 */ 1771 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1772 { 1773 int ret; 1774 1775 if (!policy->suspend_freq) { 1776 pr_debug("%s: suspend_freq not defined\n", __func__); 1777 return 0; 1778 } 1779 1780 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1781 policy->suspend_freq); 1782 1783 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1784 CPUFREQ_RELATION_H); 1785 if (ret) 1786 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1787 __func__, policy->suspend_freq, ret); 1788 1789 return ret; 1790 } 1791 EXPORT_SYMBOL(cpufreq_generic_suspend); 1792 1793 /** 1794 * cpufreq_suspend() - Suspend CPUFreq governors 1795 * 1796 * Called during system wide Suspend/Hibernate cycles for suspending governors 1797 * as some platforms can't change frequency after this point in suspend cycle. 1798 * Because some of the devices (like: i2c, regulators, etc) they use for 1799 * changing frequency are suspended quickly after this point. 1800 */ 1801 void cpufreq_suspend(void) 1802 { 1803 struct cpufreq_policy *policy; 1804 1805 if (!cpufreq_driver) 1806 return; 1807 1808 if (!has_target() && !cpufreq_driver->suspend) 1809 goto suspend; 1810 1811 pr_debug("%s: Suspending Governors\n", __func__); 1812 1813 for_each_active_policy(policy) { 1814 if (has_target()) { 1815 down_write(&policy->rwsem); 1816 cpufreq_stop_governor(policy); 1817 up_write(&policy->rwsem); 1818 } 1819 1820 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1821 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1822 cpufreq_driver->name); 1823 } 1824 1825 suspend: 1826 cpufreq_suspended = true; 1827 } 1828 1829 /** 1830 * cpufreq_resume() - Resume CPUFreq governors 1831 * 1832 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1833 * are suspended with cpufreq_suspend(). 1834 */ 1835 void cpufreq_resume(void) 1836 { 1837 struct cpufreq_policy *policy; 1838 int ret; 1839 1840 if (!cpufreq_driver) 1841 return; 1842 1843 if (unlikely(!cpufreq_suspended)) 1844 return; 1845 1846 cpufreq_suspended = false; 1847 1848 if (!has_target() && !cpufreq_driver->resume) 1849 return; 1850 1851 pr_debug("%s: Resuming Governors\n", __func__); 1852 1853 for_each_active_policy(policy) { 1854 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1855 pr_err("%s: Failed to resume driver: %p\n", __func__, 1856 policy); 1857 } else if (has_target()) { 1858 down_write(&policy->rwsem); 1859 ret = cpufreq_start_governor(policy); 1860 up_write(&policy->rwsem); 1861 1862 if (ret) 1863 pr_err("%s: Failed to start governor for policy: %p\n", 1864 __func__, policy); 1865 } 1866 } 1867 } 1868 1869 /** 1870 * cpufreq_get_current_driver - return current driver's name 1871 * 1872 * Return the name string of the currently loaded cpufreq driver 1873 * or NULL, if none. 1874 */ 1875 const char *cpufreq_get_current_driver(void) 1876 { 1877 if (cpufreq_driver) 1878 return cpufreq_driver->name; 1879 1880 return NULL; 1881 } 1882 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1883 1884 /** 1885 * cpufreq_get_driver_data - return current driver data 1886 * 1887 * Return the private data of the currently loaded cpufreq 1888 * driver, or NULL if no cpufreq driver is loaded. 1889 */ 1890 void *cpufreq_get_driver_data(void) 1891 { 1892 if (cpufreq_driver) 1893 return cpufreq_driver->driver_data; 1894 1895 return NULL; 1896 } 1897 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1898 1899 /********************************************************************* 1900 * NOTIFIER LISTS INTERFACE * 1901 *********************************************************************/ 1902 1903 /** 1904 * cpufreq_register_notifier - register a driver with cpufreq 1905 * @nb: notifier function to register 1906 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1907 * 1908 * Add a driver to one of two lists: either a list of drivers that 1909 * are notified about clock rate changes (once before and once after 1910 * the transition), or a list of drivers that are notified about 1911 * changes in cpufreq policy. 1912 * 1913 * This function may sleep, and has the same return conditions as 1914 * blocking_notifier_chain_register. 1915 */ 1916 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1917 { 1918 int ret; 1919 1920 if (cpufreq_disabled()) 1921 return -EINVAL; 1922 1923 switch (list) { 1924 case CPUFREQ_TRANSITION_NOTIFIER: 1925 mutex_lock(&cpufreq_fast_switch_lock); 1926 1927 if (cpufreq_fast_switch_count > 0) { 1928 mutex_unlock(&cpufreq_fast_switch_lock); 1929 return -EBUSY; 1930 } 1931 ret = srcu_notifier_chain_register( 1932 &cpufreq_transition_notifier_list, nb); 1933 if (!ret) 1934 cpufreq_fast_switch_count--; 1935 1936 mutex_unlock(&cpufreq_fast_switch_lock); 1937 break; 1938 case CPUFREQ_POLICY_NOTIFIER: 1939 ret = blocking_notifier_chain_register( 1940 &cpufreq_policy_notifier_list, nb); 1941 break; 1942 default: 1943 ret = -EINVAL; 1944 } 1945 1946 return ret; 1947 } 1948 EXPORT_SYMBOL(cpufreq_register_notifier); 1949 1950 /** 1951 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1952 * @nb: notifier block to be unregistered 1953 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1954 * 1955 * Remove a driver from the CPU frequency notifier list. 1956 * 1957 * This function may sleep, and has the same return conditions as 1958 * blocking_notifier_chain_unregister. 1959 */ 1960 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1961 { 1962 int ret; 1963 1964 if (cpufreq_disabled()) 1965 return -EINVAL; 1966 1967 switch (list) { 1968 case CPUFREQ_TRANSITION_NOTIFIER: 1969 mutex_lock(&cpufreq_fast_switch_lock); 1970 1971 ret = srcu_notifier_chain_unregister( 1972 &cpufreq_transition_notifier_list, nb); 1973 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1974 cpufreq_fast_switch_count++; 1975 1976 mutex_unlock(&cpufreq_fast_switch_lock); 1977 break; 1978 case CPUFREQ_POLICY_NOTIFIER: 1979 ret = blocking_notifier_chain_unregister( 1980 &cpufreq_policy_notifier_list, nb); 1981 break; 1982 default: 1983 ret = -EINVAL; 1984 } 1985 1986 return ret; 1987 } 1988 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1989 1990 1991 /********************************************************************* 1992 * GOVERNORS * 1993 *********************************************************************/ 1994 1995 /** 1996 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1997 * @policy: cpufreq policy to switch the frequency for. 1998 * @target_freq: New frequency to set (may be approximate). 1999 * 2000 * Carry out a fast frequency switch without sleeping. 2001 * 2002 * The driver's ->fast_switch() callback invoked by this function must be 2003 * suitable for being called from within RCU-sched read-side critical sections 2004 * and it is expected to select the minimum available frequency greater than or 2005 * equal to @target_freq (CPUFREQ_RELATION_L). 2006 * 2007 * This function must not be called if policy->fast_switch_enabled is unset. 2008 * 2009 * Governors calling this function must guarantee that it will never be invoked 2010 * twice in parallel for the same policy and that it will never be called in 2011 * parallel with either ->target() or ->target_index() for the same policy. 2012 * 2013 * Returns the actual frequency set for the CPU. 2014 * 2015 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2016 * error condition, the hardware configuration must be preserved. 2017 */ 2018 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2019 unsigned int target_freq) 2020 { 2021 target_freq = clamp_val(target_freq, policy->min, policy->max); 2022 2023 return cpufreq_driver->fast_switch(policy, target_freq); 2024 } 2025 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2026 2027 /* Must set freqs->new to intermediate frequency */ 2028 static int __target_intermediate(struct cpufreq_policy *policy, 2029 struct cpufreq_freqs *freqs, int index) 2030 { 2031 int ret; 2032 2033 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2034 2035 /* We don't need to switch to intermediate freq */ 2036 if (!freqs->new) 2037 return 0; 2038 2039 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2040 __func__, policy->cpu, freqs->old, freqs->new); 2041 2042 cpufreq_freq_transition_begin(policy, freqs); 2043 ret = cpufreq_driver->target_intermediate(policy, index); 2044 cpufreq_freq_transition_end(policy, freqs, ret); 2045 2046 if (ret) 2047 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2048 __func__, ret); 2049 2050 return ret; 2051 } 2052 2053 static int __target_index(struct cpufreq_policy *policy, int index) 2054 { 2055 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2056 unsigned int intermediate_freq = 0; 2057 unsigned int newfreq = policy->freq_table[index].frequency; 2058 int retval = -EINVAL; 2059 bool notify; 2060 2061 if (newfreq == policy->cur) 2062 return 0; 2063 2064 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2065 if (notify) { 2066 /* Handle switching to intermediate frequency */ 2067 if (cpufreq_driver->get_intermediate) { 2068 retval = __target_intermediate(policy, &freqs, index); 2069 if (retval) 2070 return retval; 2071 2072 intermediate_freq = freqs.new; 2073 /* Set old freq to intermediate */ 2074 if (intermediate_freq) 2075 freqs.old = freqs.new; 2076 } 2077 2078 freqs.new = newfreq; 2079 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2080 __func__, policy->cpu, freqs.old, freqs.new); 2081 2082 cpufreq_freq_transition_begin(policy, &freqs); 2083 } 2084 2085 retval = cpufreq_driver->target_index(policy, index); 2086 if (retval) 2087 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2088 retval); 2089 2090 if (notify) { 2091 cpufreq_freq_transition_end(policy, &freqs, retval); 2092 2093 /* 2094 * Failed after setting to intermediate freq? Driver should have 2095 * reverted back to initial frequency and so should we. Check 2096 * here for intermediate_freq instead of get_intermediate, in 2097 * case we haven't switched to intermediate freq at all. 2098 */ 2099 if (unlikely(retval && intermediate_freq)) { 2100 freqs.old = intermediate_freq; 2101 freqs.new = policy->restore_freq; 2102 cpufreq_freq_transition_begin(policy, &freqs); 2103 cpufreq_freq_transition_end(policy, &freqs, 0); 2104 } 2105 } 2106 2107 return retval; 2108 } 2109 2110 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2111 unsigned int target_freq, 2112 unsigned int relation) 2113 { 2114 unsigned int old_target_freq = target_freq; 2115 int index; 2116 2117 if (cpufreq_disabled()) 2118 return -ENODEV; 2119 2120 /* Make sure that target_freq is within supported range */ 2121 target_freq = clamp_val(target_freq, policy->min, policy->max); 2122 2123 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2124 policy->cpu, target_freq, relation, old_target_freq); 2125 2126 /* 2127 * This might look like a redundant call as we are checking it again 2128 * after finding index. But it is left intentionally for cases where 2129 * exactly same freq is called again and so we can save on few function 2130 * calls. 2131 */ 2132 if (target_freq == policy->cur) 2133 return 0; 2134 2135 /* Save last value to restore later on errors */ 2136 policy->restore_freq = policy->cur; 2137 2138 if (cpufreq_driver->target) 2139 return cpufreq_driver->target(policy, target_freq, relation); 2140 2141 if (!cpufreq_driver->target_index) 2142 return -EINVAL; 2143 2144 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2145 2146 return __target_index(policy, index); 2147 } 2148 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2149 2150 int cpufreq_driver_target(struct cpufreq_policy *policy, 2151 unsigned int target_freq, 2152 unsigned int relation) 2153 { 2154 int ret; 2155 2156 down_write(&policy->rwsem); 2157 2158 ret = __cpufreq_driver_target(policy, target_freq, relation); 2159 2160 up_write(&policy->rwsem); 2161 2162 return ret; 2163 } 2164 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2165 2166 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2167 { 2168 return NULL; 2169 } 2170 2171 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2172 { 2173 int ret; 2174 2175 /* Don't start any governor operations if we are entering suspend */ 2176 if (cpufreq_suspended) 2177 return 0; 2178 /* 2179 * Governor might not be initiated here if ACPI _PPC changed 2180 * notification happened, so check it. 2181 */ 2182 if (!policy->governor) 2183 return -EINVAL; 2184 2185 /* Platform doesn't want dynamic frequency switching ? */ 2186 if (policy->governor->dynamic_switching && 2187 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2188 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2189 2190 if (gov) { 2191 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2192 policy->governor->name, gov->name); 2193 policy->governor = gov; 2194 } else { 2195 return -EINVAL; 2196 } 2197 } 2198 2199 if (!try_module_get(policy->governor->owner)) 2200 return -EINVAL; 2201 2202 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2203 2204 if (policy->governor->init) { 2205 ret = policy->governor->init(policy); 2206 if (ret) { 2207 module_put(policy->governor->owner); 2208 return ret; 2209 } 2210 } 2211 2212 return 0; 2213 } 2214 2215 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2216 { 2217 if (cpufreq_suspended || !policy->governor) 2218 return; 2219 2220 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2221 2222 if (policy->governor->exit) 2223 policy->governor->exit(policy); 2224 2225 module_put(policy->governor->owner); 2226 } 2227 2228 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2229 { 2230 int ret; 2231 2232 if (cpufreq_suspended) 2233 return 0; 2234 2235 if (!policy->governor) 2236 return -EINVAL; 2237 2238 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2239 2240 if (cpufreq_driver->get) 2241 cpufreq_verify_current_freq(policy, false); 2242 2243 if (policy->governor->start) { 2244 ret = policy->governor->start(policy); 2245 if (ret) 2246 return ret; 2247 } 2248 2249 if (policy->governor->limits) 2250 policy->governor->limits(policy); 2251 2252 return 0; 2253 } 2254 2255 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2256 { 2257 if (cpufreq_suspended || !policy->governor) 2258 return; 2259 2260 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2261 2262 if (policy->governor->stop) 2263 policy->governor->stop(policy); 2264 } 2265 2266 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2267 { 2268 if (cpufreq_suspended || !policy->governor) 2269 return; 2270 2271 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2272 2273 if (policy->governor->limits) 2274 policy->governor->limits(policy); 2275 } 2276 2277 int cpufreq_register_governor(struct cpufreq_governor *governor) 2278 { 2279 int err; 2280 2281 if (!governor) 2282 return -EINVAL; 2283 2284 if (cpufreq_disabled()) 2285 return -ENODEV; 2286 2287 mutex_lock(&cpufreq_governor_mutex); 2288 2289 err = -EBUSY; 2290 if (!find_governor(governor->name)) { 2291 err = 0; 2292 list_add(&governor->governor_list, &cpufreq_governor_list); 2293 } 2294 2295 mutex_unlock(&cpufreq_governor_mutex); 2296 return err; 2297 } 2298 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2299 2300 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2301 { 2302 struct cpufreq_policy *policy; 2303 unsigned long flags; 2304 2305 if (!governor) 2306 return; 2307 2308 if (cpufreq_disabled()) 2309 return; 2310 2311 /* clear last_governor for all inactive policies */ 2312 read_lock_irqsave(&cpufreq_driver_lock, flags); 2313 for_each_inactive_policy(policy) { 2314 if (!strcmp(policy->last_governor, governor->name)) { 2315 policy->governor = NULL; 2316 strcpy(policy->last_governor, "\0"); 2317 } 2318 } 2319 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2320 2321 mutex_lock(&cpufreq_governor_mutex); 2322 list_del(&governor->governor_list); 2323 mutex_unlock(&cpufreq_governor_mutex); 2324 } 2325 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2326 2327 2328 /********************************************************************* 2329 * POLICY INTERFACE * 2330 *********************************************************************/ 2331 2332 /** 2333 * cpufreq_get_policy - get the current cpufreq_policy 2334 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2335 * is written 2336 * 2337 * Reads the current cpufreq policy. 2338 */ 2339 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2340 { 2341 struct cpufreq_policy *cpu_policy; 2342 if (!policy) 2343 return -EINVAL; 2344 2345 cpu_policy = cpufreq_cpu_get(cpu); 2346 if (!cpu_policy) 2347 return -EINVAL; 2348 2349 memcpy(policy, cpu_policy, sizeof(*policy)); 2350 2351 cpufreq_cpu_put(cpu_policy); 2352 return 0; 2353 } 2354 EXPORT_SYMBOL(cpufreq_get_policy); 2355 2356 /** 2357 * cpufreq_set_policy - Modify cpufreq policy parameters. 2358 * @policy: Policy object to modify. 2359 * @new_gov: Policy governor pointer. 2360 * @new_pol: Policy value (for drivers with built-in governors). 2361 * 2362 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2363 * limits to be set for the policy, update @policy with the verified limits 2364 * values and either invoke the driver's ->setpolicy() callback (if present) or 2365 * carry out a governor update for @policy. That is, run the current governor's 2366 * ->limits() callback (if @new_gov points to the same object as the one in 2367 * @policy) or replace the governor for @policy with @new_gov. 2368 * 2369 * The cpuinfo part of @policy is not updated by this function. 2370 */ 2371 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2372 struct cpufreq_governor *new_gov, 2373 unsigned int new_pol) 2374 { 2375 struct cpufreq_policy_data new_data; 2376 struct cpufreq_governor *old_gov; 2377 int ret; 2378 2379 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2380 new_data.freq_table = policy->freq_table; 2381 new_data.cpu = policy->cpu; 2382 /* 2383 * PM QoS framework collects all the requests from users and provide us 2384 * the final aggregated value here. 2385 */ 2386 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2387 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2388 2389 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2390 new_data.cpu, new_data.min, new_data.max); 2391 2392 /* 2393 * Verify that the CPU speed can be set within these limits and make sure 2394 * that min <= max. 2395 */ 2396 ret = cpufreq_driver->verify(&new_data); 2397 if (ret) 2398 return ret; 2399 2400 policy->min = new_data.min; 2401 policy->max = new_data.max; 2402 trace_cpu_frequency_limits(policy); 2403 2404 policy->cached_target_freq = UINT_MAX; 2405 2406 pr_debug("new min and max freqs are %u - %u kHz\n", 2407 policy->min, policy->max); 2408 2409 if (cpufreq_driver->setpolicy) { 2410 policy->policy = new_pol; 2411 pr_debug("setting range\n"); 2412 return cpufreq_driver->setpolicy(policy); 2413 } 2414 2415 if (new_gov == policy->governor) { 2416 pr_debug("governor limits update\n"); 2417 cpufreq_governor_limits(policy); 2418 return 0; 2419 } 2420 2421 pr_debug("governor switch\n"); 2422 2423 /* save old, working values */ 2424 old_gov = policy->governor; 2425 /* end old governor */ 2426 if (old_gov) { 2427 cpufreq_stop_governor(policy); 2428 cpufreq_exit_governor(policy); 2429 } 2430 2431 /* start new governor */ 2432 policy->governor = new_gov; 2433 ret = cpufreq_init_governor(policy); 2434 if (!ret) { 2435 ret = cpufreq_start_governor(policy); 2436 if (!ret) { 2437 pr_debug("governor change\n"); 2438 sched_cpufreq_governor_change(policy, old_gov); 2439 return 0; 2440 } 2441 cpufreq_exit_governor(policy); 2442 } 2443 2444 /* new governor failed, so re-start old one */ 2445 pr_debug("starting governor %s failed\n", policy->governor->name); 2446 if (old_gov) { 2447 policy->governor = old_gov; 2448 if (cpufreq_init_governor(policy)) 2449 policy->governor = NULL; 2450 else 2451 cpufreq_start_governor(policy); 2452 } 2453 2454 return ret; 2455 } 2456 2457 /** 2458 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2459 * @cpu: CPU to re-evaluate the policy for. 2460 * 2461 * Update the current frequency for the cpufreq policy of @cpu and use 2462 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2463 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2464 * for the policy in question, among other things. 2465 */ 2466 void cpufreq_update_policy(unsigned int cpu) 2467 { 2468 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2469 2470 if (!policy) 2471 return; 2472 2473 /* 2474 * BIOS might change freq behind our back 2475 * -> ask driver for current freq and notify governors about a change 2476 */ 2477 if (cpufreq_driver->get && has_target() && 2478 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2479 goto unlock; 2480 2481 refresh_frequency_limits(policy); 2482 2483 unlock: 2484 cpufreq_cpu_release(policy); 2485 } 2486 EXPORT_SYMBOL(cpufreq_update_policy); 2487 2488 /** 2489 * cpufreq_update_limits - Update policy limits for a given CPU. 2490 * @cpu: CPU to update the policy limits for. 2491 * 2492 * Invoke the driver's ->update_limits callback if present or call 2493 * cpufreq_update_policy() for @cpu. 2494 */ 2495 void cpufreq_update_limits(unsigned int cpu) 2496 { 2497 if (cpufreq_driver->update_limits) 2498 cpufreq_driver->update_limits(cpu); 2499 else 2500 cpufreq_update_policy(cpu); 2501 } 2502 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2503 2504 /********************************************************************* 2505 * BOOST * 2506 *********************************************************************/ 2507 static int cpufreq_boost_set_sw(int state) 2508 { 2509 struct cpufreq_policy *policy; 2510 int ret = -EINVAL; 2511 2512 for_each_active_policy(policy) { 2513 if (!policy->freq_table) 2514 continue; 2515 2516 ret = cpufreq_frequency_table_cpuinfo(policy, 2517 policy->freq_table); 2518 if (ret) { 2519 pr_err("%s: Policy frequency update failed\n", 2520 __func__); 2521 break; 2522 } 2523 2524 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2525 if (ret < 0) 2526 break; 2527 } 2528 2529 return ret; 2530 } 2531 2532 int cpufreq_boost_trigger_state(int state) 2533 { 2534 unsigned long flags; 2535 int ret = 0; 2536 2537 if (cpufreq_driver->boost_enabled == state) 2538 return 0; 2539 2540 write_lock_irqsave(&cpufreq_driver_lock, flags); 2541 cpufreq_driver->boost_enabled = state; 2542 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2543 2544 ret = cpufreq_driver->set_boost(state); 2545 if (ret) { 2546 write_lock_irqsave(&cpufreq_driver_lock, flags); 2547 cpufreq_driver->boost_enabled = !state; 2548 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2549 2550 pr_err("%s: Cannot %s BOOST\n", 2551 __func__, state ? "enable" : "disable"); 2552 } 2553 2554 return ret; 2555 } 2556 2557 static bool cpufreq_boost_supported(void) 2558 { 2559 return cpufreq_driver->set_boost; 2560 } 2561 2562 static int create_boost_sysfs_file(void) 2563 { 2564 int ret; 2565 2566 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2567 if (ret) 2568 pr_err("%s: cannot register global BOOST sysfs file\n", 2569 __func__); 2570 2571 return ret; 2572 } 2573 2574 static void remove_boost_sysfs_file(void) 2575 { 2576 if (cpufreq_boost_supported()) 2577 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2578 } 2579 2580 int cpufreq_enable_boost_support(void) 2581 { 2582 if (!cpufreq_driver) 2583 return -EINVAL; 2584 2585 if (cpufreq_boost_supported()) 2586 return 0; 2587 2588 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2589 2590 /* This will get removed on driver unregister */ 2591 return create_boost_sysfs_file(); 2592 } 2593 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2594 2595 int cpufreq_boost_enabled(void) 2596 { 2597 return cpufreq_driver->boost_enabled; 2598 } 2599 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2600 2601 /********************************************************************* 2602 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2603 *********************************************************************/ 2604 static enum cpuhp_state hp_online; 2605 2606 static int cpuhp_cpufreq_online(unsigned int cpu) 2607 { 2608 cpufreq_online(cpu); 2609 2610 return 0; 2611 } 2612 2613 static int cpuhp_cpufreq_offline(unsigned int cpu) 2614 { 2615 cpufreq_offline(cpu); 2616 2617 return 0; 2618 } 2619 2620 /** 2621 * cpufreq_register_driver - register a CPU Frequency driver 2622 * @driver_data: A struct cpufreq_driver containing the values# 2623 * submitted by the CPU Frequency driver. 2624 * 2625 * Registers a CPU Frequency driver to this core code. This code 2626 * returns zero on success, -EEXIST when another driver got here first 2627 * (and isn't unregistered in the meantime). 2628 * 2629 */ 2630 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2631 { 2632 unsigned long flags; 2633 int ret; 2634 2635 if (cpufreq_disabled()) 2636 return -ENODEV; 2637 2638 /* 2639 * The cpufreq core depends heavily on the availability of device 2640 * structure, make sure they are available before proceeding further. 2641 */ 2642 if (!get_cpu_device(0)) 2643 return -EPROBE_DEFER; 2644 2645 if (!driver_data || !driver_data->verify || !driver_data->init || 2646 !(driver_data->setpolicy || driver_data->target_index || 2647 driver_data->target) || 2648 (driver_data->setpolicy && (driver_data->target_index || 2649 driver_data->target)) || 2650 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2651 (!driver_data->online != !driver_data->offline)) 2652 return -EINVAL; 2653 2654 pr_debug("trying to register driver %s\n", driver_data->name); 2655 2656 /* Protect against concurrent CPU online/offline. */ 2657 cpus_read_lock(); 2658 2659 write_lock_irqsave(&cpufreq_driver_lock, flags); 2660 if (cpufreq_driver) { 2661 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2662 ret = -EEXIST; 2663 goto out; 2664 } 2665 cpufreq_driver = driver_data; 2666 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2667 2668 if (driver_data->setpolicy) 2669 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2670 2671 if (cpufreq_boost_supported()) { 2672 ret = create_boost_sysfs_file(); 2673 if (ret) 2674 goto err_null_driver; 2675 } 2676 2677 ret = subsys_interface_register(&cpufreq_interface); 2678 if (ret) 2679 goto err_boost_unreg; 2680 2681 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2682 list_empty(&cpufreq_policy_list)) { 2683 /* if all ->init() calls failed, unregister */ 2684 ret = -ENODEV; 2685 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2686 driver_data->name); 2687 goto err_if_unreg; 2688 } 2689 2690 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2691 "cpufreq:online", 2692 cpuhp_cpufreq_online, 2693 cpuhp_cpufreq_offline); 2694 if (ret < 0) 2695 goto err_if_unreg; 2696 hp_online = ret; 2697 ret = 0; 2698 2699 pr_debug("driver %s up and running\n", driver_data->name); 2700 goto out; 2701 2702 err_if_unreg: 2703 subsys_interface_unregister(&cpufreq_interface); 2704 err_boost_unreg: 2705 remove_boost_sysfs_file(); 2706 err_null_driver: 2707 write_lock_irqsave(&cpufreq_driver_lock, flags); 2708 cpufreq_driver = NULL; 2709 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2710 out: 2711 cpus_read_unlock(); 2712 return ret; 2713 } 2714 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2715 2716 /** 2717 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2718 * 2719 * Unregister the current CPUFreq driver. Only call this if you have 2720 * the right to do so, i.e. if you have succeeded in initialising before! 2721 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2722 * currently not initialised. 2723 */ 2724 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2725 { 2726 unsigned long flags; 2727 2728 if (!cpufreq_driver || (driver != cpufreq_driver)) 2729 return -EINVAL; 2730 2731 pr_debug("unregistering driver %s\n", driver->name); 2732 2733 /* Protect against concurrent cpu hotplug */ 2734 cpus_read_lock(); 2735 subsys_interface_unregister(&cpufreq_interface); 2736 remove_boost_sysfs_file(); 2737 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2738 2739 write_lock_irqsave(&cpufreq_driver_lock, flags); 2740 2741 cpufreq_driver = NULL; 2742 2743 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2744 cpus_read_unlock(); 2745 2746 return 0; 2747 } 2748 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2749 2750 static int __init cpufreq_core_init(void) 2751 { 2752 if (cpufreq_disabled()) 2753 return -ENODEV; 2754 2755 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2756 BUG_ON(!cpufreq_global_kobject); 2757 2758 return 0; 2759 } 2760 module_param(off, int, 0444); 2761 core_initcall(cpufreq_core_init); 2762