1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 bool has_target_index(void) 77 { 78 return !!cpufreq_driver->target_index; 79 } 80 81 /* internal prototypes */ 82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 83 static int cpufreq_init_governor(struct cpufreq_policy *policy); 84 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 85 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 86 static int cpufreq_set_policy(struct cpufreq_policy *policy, 87 struct cpufreq_governor *new_gov, 88 unsigned int new_pol); 89 static bool cpufreq_boost_supported(void); 90 91 /* 92 * Two notifier lists: the "policy" list is involved in the 93 * validation process for a new CPU frequency policy; the 94 * "transition" list for kernel code that needs to handle 95 * changes to devices when the CPU clock speed changes. 96 * The mutex locks both lists. 97 */ 98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 100 101 static int off __read_mostly; 102 static int cpufreq_disabled(void) 103 { 104 return off; 105 } 106 void disable_cpufreq(void) 107 { 108 off = 1; 109 } 110 static DEFINE_MUTEX(cpufreq_governor_mutex); 111 112 bool have_governor_per_policy(void) 113 { 114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 115 } 116 EXPORT_SYMBOL_GPL(have_governor_per_policy); 117 118 static struct kobject *cpufreq_global_kobject; 119 120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 121 { 122 if (have_governor_per_policy()) 123 return &policy->kobj; 124 else 125 return cpufreq_global_kobject; 126 } 127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 128 129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 130 { 131 struct kernel_cpustat kcpustat; 132 u64 cur_wall_time; 133 u64 idle_time; 134 u64 busy_time; 135 136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 137 138 kcpustat_cpu_fetch(&kcpustat, cpu); 139 140 busy_time = kcpustat.cpustat[CPUTIME_USER]; 141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 142 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 144 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 145 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 146 147 idle_time = cur_wall_time - busy_time; 148 if (wall) 149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 150 151 return div_u64(idle_time, NSEC_PER_USEC); 152 } 153 154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 155 { 156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 157 158 if (idle_time == -1ULL) 159 return get_cpu_idle_time_jiffy(cpu, wall); 160 else if (!io_busy) 161 idle_time += get_cpu_iowait_time_us(cpu, wall); 162 163 return idle_time; 164 } 165 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 166 167 /* 168 * This is a generic cpufreq init() routine which can be used by cpufreq 169 * drivers of SMP systems. It will do following: 170 * - validate & show freq table passed 171 * - set policies transition latency 172 * - policy->cpus with all possible CPUs 173 */ 174 void cpufreq_generic_init(struct cpufreq_policy *policy, 175 struct cpufreq_frequency_table *table, 176 unsigned int transition_latency) 177 { 178 policy->freq_table = table; 179 policy->cpuinfo.transition_latency = transition_latency; 180 181 /* 182 * The driver only supports the SMP configuration where all processors 183 * share the clock and voltage and clock. 184 */ 185 cpumask_setall(policy->cpus); 186 } 187 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 188 189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 190 { 191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 192 193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 194 } 195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 196 197 unsigned int cpufreq_generic_get(unsigned int cpu) 198 { 199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 200 201 if (!policy || IS_ERR(policy->clk)) { 202 pr_err("%s: No %s associated to cpu: %d\n", 203 __func__, policy ? "clk" : "policy", cpu); 204 return 0; 205 } 206 207 return clk_get_rate(policy->clk) / 1000; 208 } 209 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 210 211 /** 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 213 * @cpu: CPU to find the policy for. 214 * 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 216 * the kobject reference counter of that policy. Return a valid policy on 217 * success or NULL on failure. 218 * 219 * The policy returned by this function has to be released with the help of 220 * cpufreq_cpu_put() to balance its kobject reference counter properly. 221 */ 222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 223 { 224 struct cpufreq_policy *policy = NULL; 225 unsigned long flags; 226 227 if (WARN_ON(cpu >= nr_cpu_ids)) 228 return NULL; 229 230 /* get the cpufreq driver */ 231 read_lock_irqsave(&cpufreq_driver_lock, flags); 232 233 if (cpufreq_driver) { 234 /* get the CPU */ 235 policy = cpufreq_cpu_get_raw(cpu); 236 if (policy) 237 kobject_get(&policy->kobj); 238 } 239 240 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 241 242 return policy; 243 } 244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 245 246 /** 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 248 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 249 */ 250 void cpufreq_cpu_put(struct cpufreq_policy *policy) 251 { 252 kobject_put(&policy->kobj); 253 } 254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 255 256 /** 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 259 */ 260 void cpufreq_cpu_release(struct cpufreq_policy *policy) 261 { 262 if (WARN_ON(!policy)) 263 return; 264 265 lockdep_assert_held(&policy->rwsem); 266 267 up_write(&policy->rwsem); 268 269 cpufreq_cpu_put(policy); 270 } 271 272 /** 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 274 * @cpu: CPU to find the policy for. 275 * 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 277 * if the policy returned by it is not NULL, acquire its rwsem for writing. 278 * Return the policy if it is active or release it and return NULL otherwise. 279 * 280 * The policy returned by this function has to be released with the help of 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 282 * counter properly. 283 */ 284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 285 { 286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 287 288 if (!policy) 289 return NULL; 290 291 down_write(&policy->rwsem); 292 293 if (policy_is_inactive(policy)) { 294 cpufreq_cpu_release(policy); 295 return NULL; 296 } 297 298 return policy; 299 } 300 301 /********************************************************************* 302 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 303 *********************************************************************/ 304 305 /** 306 * adjust_jiffies - Adjust the system "loops_per_jiffy". 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 308 * @ci: Frequency change information. 309 * 310 * This function alters the system "loops_per_jiffy" for the clock 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP 312 * systems as each CPU might be scaled differently. So, use the arch 313 * per-CPU loops_per_jiffy value wherever possible. 314 */ 315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 316 { 317 #ifndef CONFIG_SMP 318 static unsigned long l_p_j_ref; 319 static unsigned int l_p_j_ref_freq; 320 321 if (ci->flags & CPUFREQ_CONST_LOOPS) 322 return; 323 324 if (!l_p_j_ref_freq) { 325 l_p_j_ref = loops_per_jiffy; 326 l_p_j_ref_freq = ci->old; 327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 328 l_p_j_ref, l_p_j_ref_freq); 329 } 330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 332 ci->new); 333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 334 loops_per_jiffy, ci->new); 335 } 336 #endif 337 } 338 339 /** 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 341 * @policy: cpufreq policy to enable fast frequency switching for. 342 * @freqs: contain details of the frequency update. 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 344 * 345 * This function calls the transition notifiers and adjust_jiffies(). 346 * 347 * It is called twice on all CPU frequency changes that have external effects. 348 */ 349 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 350 struct cpufreq_freqs *freqs, 351 unsigned int state) 352 { 353 int cpu; 354 355 BUG_ON(irqs_disabled()); 356 357 if (cpufreq_disabled()) 358 return; 359 360 freqs->policy = policy; 361 freqs->flags = cpufreq_driver->flags; 362 pr_debug("notification %u of frequency transition to %u kHz\n", 363 state, freqs->new); 364 365 switch (state) { 366 case CPUFREQ_PRECHANGE: 367 /* 368 * Detect if the driver reported a value as "old frequency" 369 * which is not equal to what the cpufreq core thinks is 370 * "old frequency". 371 */ 372 if (policy->cur && policy->cur != freqs->old) { 373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 374 freqs->old, policy->cur); 375 freqs->old = policy->cur; 376 } 377 378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 379 CPUFREQ_PRECHANGE, freqs); 380 381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 382 break; 383 384 case CPUFREQ_POSTCHANGE: 385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 387 cpumask_pr_args(policy->cpus)); 388 389 for_each_cpu(cpu, policy->cpus) 390 trace_cpu_frequency(freqs->new, cpu); 391 392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 393 CPUFREQ_POSTCHANGE, freqs); 394 395 cpufreq_stats_record_transition(policy, freqs->new); 396 policy->cur = freqs->new; 397 } 398 } 399 400 /* Do post notifications when there are chances that transition has failed */ 401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 402 struct cpufreq_freqs *freqs, int transition_failed) 403 { 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 if (!transition_failed) 406 return; 407 408 swap(freqs->old, freqs->new); 409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 411 } 412 413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 414 struct cpufreq_freqs *freqs) 415 { 416 417 /* 418 * Catch double invocations of _begin() which lead to self-deadlock. 419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 420 * doesn't invoke _begin() on their behalf, and hence the chances of 421 * double invocations are very low. Moreover, there are scenarios 422 * where these checks can emit false-positive warnings in these 423 * drivers; so we avoid that by skipping them altogether. 424 */ 425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 426 && current == policy->transition_task); 427 428 wait: 429 wait_event(policy->transition_wait, !policy->transition_ongoing); 430 431 spin_lock(&policy->transition_lock); 432 433 if (unlikely(policy->transition_ongoing)) { 434 spin_unlock(&policy->transition_lock); 435 goto wait; 436 } 437 438 policy->transition_ongoing = true; 439 policy->transition_task = current; 440 441 spin_unlock(&policy->transition_lock); 442 443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 444 } 445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 446 447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 448 struct cpufreq_freqs *freqs, int transition_failed) 449 { 450 if (WARN_ON(!policy->transition_ongoing)) 451 return; 452 453 cpufreq_notify_post_transition(policy, freqs, transition_failed); 454 455 arch_set_freq_scale(policy->related_cpus, 456 policy->cur, 457 policy->cpuinfo.max_freq); 458 459 spin_lock(&policy->transition_lock); 460 policy->transition_ongoing = false; 461 policy->transition_task = NULL; 462 spin_unlock(&policy->transition_lock); 463 464 wake_up(&policy->transition_wait); 465 } 466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 467 468 /* 469 * Fast frequency switching status count. Positive means "enabled", negative 470 * means "disabled" and 0 means "not decided yet". 471 */ 472 static int cpufreq_fast_switch_count; 473 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 474 475 static void cpufreq_list_transition_notifiers(void) 476 { 477 struct notifier_block *nb; 478 479 pr_info("Registered transition notifiers:\n"); 480 481 mutex_lock(&cpufreq_transition_notifier_list.mutex); 482 483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 484 pr_info("%pS\n", nb->notifier_call); 485 486 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 487 } 488 489 /** 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 491 * @policy: cpufreq policy to enable fast frequency switching for. 492 * 493 * Try to enable fast frequency switching for @policy. 494 * 495 * The attempt will fail if there is at least one transition notifier registered 496 * at this point, as fast frequency switching is quite fundamentally at odds 497 * with transition notifiers. Thus if successful, it will make registration of 498 * transition notifiers fail going forward. 499 */ 500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 501 { 502 lockdep_assert_held(&policy->rwsem); 503 504 if (!policy->fast_switch_possible) 505 return; 506 507 mutex_lock(&cpufreq_fast_switch_lock); 508 if (cpufreq_fast_switch_count >= 0) { 509 cpufreq_fast_switch_count++; 510 policy->fast_switch_enabled = true; 511 } else { 512 pr_warn("CPU%u: Fast frequency switching not enabled\n", 513 policy->cpu); 514 cpufreq_list_transition_notifiers(); 515 } 516 mutex_unlock(&cpufreq_fast_switch_lock); 517 } 518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 519 520 /** 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 522 * @policy: cpufreq policy to disable fast frequency switching for. 523 */ 524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 525 { 526 mutex_lock(&cpufreq_fast_switch_lock); 527 if (policy->fast_switch_enabled) { 528 policy->fast_switch_enabled = false; 529 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 530 cpufreq_fast_switch_count--; 531 } 532 mutex_unlock(&cpufreq_fast_switch_lock); 533 } 534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 535 536 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 537 unsigned int target_freq, unsigned int relation) 538 { 539 unsigned int idx; 540 541 target_freq = clamp_val(target_freq, policy->min, policy->max); 542 543 if (!policy->freq_table) 544 return target_freq; 545 546 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 547 policy->cached_resolved_idx = idx; 548 policy->cached_target_freq = target_freq; 549 return policy->freq_table[idx].frequency; 550 } 551 552 /** 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 554 * one. 555 * @policy: associated policy to interrogate 556 * @target_freq: target frequency to resolve. 557 * 558 * The target to driver frequency mapping is cached in the policy. 559 * 560 * Return: Lowest driver-supported frequency greater than or equal to the 561 * given target_freq, subject to policy (min/max) and driver limitations. 562 */ 563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 564 unsigned int target_freq) 565 { 566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 567 } 568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 569 570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 571 { 572 unsigned int latency; 573 574 if (policy->transition_delay_us) 575 return policy->transition_delay_us; 576 577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 578 if (latency) { 579 /* 580 * For platforms that can change the frequency very fast (< 10 581 * us), the above formula gives a decent transition delay. But 582 * for platforms where transition_latency is in milliseconds, it 583 * ends up giving unrealistic values. 584 * 585 * Cap the default transition delay to 10 ms, which seems to be 586 * a reasonable amount of time after which we should reevaluate 587 * the frequency. 588 */ 589 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 590 } 591 592 return LATENCY_MULTIPLIER; 593 } 594 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 595 596 /********************************************************************* 597 * SYSFS INTERFACE * 598 *********************************************************************/ 599 static ssize_t show_boost(struct kobject *kobj, 600 struct kobj_attribute *attr, char *buf) 601 { 602 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 603 } 604 605 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 606 const char *buf, size_t count) 607 { 608 int ret, enable; 609 610 ret = sscanf(buf, "%d", &enable); 611 if (ret != 1 || enable < 0 || enable > 1) 612 return -EINVAL; 613 614 if (cpufreq_boost_trigger_state(enable)) { 615 pr_err("%s: Cannot %s BOOST!\n", 616 __func__, enable ? "enable" : "disable"); 617 return -EINVAL; 618 } 619 620 pr_debug("%s: cpufreq BOOST %s\n", 621 __func__, enable ? "enabled" : "disabled"); 622 623 return count; 624 } 625 define_one_global_rw(boost); 626 627 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf) 628 { 629 return sysfs_emit(buf, "%d\n", policy->boost_enabled); 630 } 631 632 static ssize_t store_local_boost(struct cpufreq_policy *policy, 633 const char *buf, size_t count) 634 { 635 int ret, enable; 636 637 ret = kstrtoint(buf, 10, &enable); 638 if (ret || enable < 0 || enable > 1) 639 return -EINVAL; 640 641 if (!cpufreq_driver->boost_enabled) 642 return -EINVAL; 643 644 if (policy->boost_enabled == enable) 645 return count; 646 647 policy->boost_enabled = enable; 648 649 cpus_read_lock(); 650 ret = cpufreq_driver->set_boost(policy, enable); 651 cpus_read_unlock(); 652 653 if (ret) { 654 policy->boost_enabled = !policy->boost_enabled; 655 return ret; 656 } 657 658 return count; 659 } 660 661 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost); 662 663 static struct cpufreq_governor *find_governor(const char *str_governor) 664 { 665 struct cpufreq_governor *t; 666 667 for_each_governor(t) 668 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 669 return t; 670 671 return NULL; 672 } 673 674 static struct cpufreq_governor *get_governor(const char *str_governor) 675 { 676 struct cpufreq_governor *t; 677 678 mutex_lock(&cpufreq_governor_mutex); 679 t = find_governor(str_governor); 680 if (!t) 681 goto unlock; 682 683 if (!try_module_get(t->owner)) 684 t = NULL; 685 686 unlock: 687 mutex_unlock(&cpufreq_governor_mutex); 688 689 return t; 690 } 691 692 static unsigned int cpufreq_parse_policy(char *str_governor) 693 { 694 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 695 return CPUFREQ_POLICY_PERFORMANCE; 696 697 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 698 return CPUFREQ_POLICY_POWERSAVE; 699 700 return CPUFREQ_POLICY_UNKNOWN; 701 } 702 703 /** 704 * cpufreq_parse_governor - parse a governor string only for has_target() 705 * @str_governor: Governor name. 706 */ 707 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 708 { 709 struct cpufreq_governor *t; 710 711 t = get_governor(str_governor); 712 if (t) 713 return t; 714 715 if (request_module("cpufreq_%s", str_governor)) 716 return NULL; 717 718 return get_governor(str_governor); 719 } 720 721 /* 722 * cpufreq_per_cpu_attr_read() / show_##file_name() - 723 * print out cpufreq information 724 * 725 * Write out information from cpufreq_driver->policy[cpu]; object must be 726 * "unsigned int". 727 */ 728 729 #define show_one(file_name, object) \ 730 static ssize_t show_##file_name \ 731 (struct cpufreq_policy *policy, char *buf) \ 732 { \ 733 return sprintf(buf, "%u\n", policy->object); \ 734 } 735 736 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 737 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 738 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 739 show_one(scaling_min_freq, min); 740 show_one(scaling_max_freq, max); 741 742 __weak unsigned int arch_freq_get_on_cpu(int cpu) 743 { 744 return 0; 745 } 746 747 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 748 { 749 ssize_t ret; 750 unsigned int freq; 751 752 freq = arch_freq_get_on_cpu(policy->cpu); 753 if (freq) 754 ret = sprintf(buf, "%u\n", freq); 755 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 756 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 757 else 758 ret = sprintf(buf, "%u\n", policy->cur); 759 return ret; 760 } 761 762 /* 763 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 764 */ 765 #define store_one(file_name, object) \ 766 static ssize_t store_##file_name \ 767 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 768 { \ 769 unsigned long val; \ 770 int ret; \ 771 \ 772 ret = kstrtoul(buf, 0, &val); \ 773 if (ret) \ 774 return ret; \ 775 \ 776 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 777 return ret >= 0 ? count : ret; \ 778 } 779 780 store_one(scaling_min_freq, min); 781 store_one(scaling_max_freq, max); 782 783 /* 784 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 785 */ 786 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 787 char *buf) 788 { 789 unsigned int cur_freq = __cpufreq_get(policy); 790 791 if (cur_freq) 792 return sprintf(buf, "%u\n", cur_freq); 793 794 return sprintf(buf, "<unknown>\n"); 795 } 796 797 /* 798 * show_scaling_governor - show the current policy for the specified CPU 799 */ 800 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 801 { 802 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 803 return sprintf(buf, "powersave\n"); 804 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 805 return sprintf(buf, "performance\n"); 806 else if (policy->governor) 807 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 808 policy->governor->name); 809 return -EINVAL; 810 } 811 812 /* 813 * store_scaling_governor - store policy for the specified CPU 814 */ 815 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 816 const char *buf, size_t count) 817 { 818 char str_governor[16]; 819 int ret; 820 821 ret = sscanf(buf, "%15s", str_governor); 822 if (ret != 1) 823 return -EINVAL; 824 825 if (cpufreq_driver->setpolicy) { 826 unsigned int new_pol; 827 828 new_pol = cpufreq_parse_policy(str_governor); 829 if (!new_pol) 830 return -EINVAL; 831 832 ret = cpufreq_set_policy(policy, NULL, new_pol); 833 } else { 834 struct cpufreq_governor *new_gov; 835 836 new_gov = cpufreq_parse_governor(str_governor); 837 if (!new_gov) 838 return -EINVAL; 839 840 ret = cpufreq_set_policy(policy, new_gov, 841 CPUFREQ_POLICY_UNKNOWN); 842 843 module_put(new_gov->owner); 844 } 845 846 return ret ? ret : count; 847 } 848 849 /* 850 * show_scaling_driver - show the cpufreq driver currently loaded 851 */ 852 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 853 { 854 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 855 } 856 857 /* 858 * show_scaling_available_governors - show the available CPUfreq governors 859 */ 860 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 861 char *buf) 862 { 863 ssize_t i = 0; 864 struct cpufreq_governor *t; 865 866 if (!has_target()) { 867 i += sprintf(buf, "performance powersave"); 868 goto out; 869 } 870 871 mutex_lock(&cpufreq_governor_mutex); 872 for_each_governor(t) { 873 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 874 - (CPUFREQ_NAME_LEN + 2))) 875 break; 876 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 877 } 878 mutex_unlock(&cpufreq_governor_mutex); 879 out: 880 i += sprintf(&buf[i], "\n"); 881 return i; 882 } 883 884 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 885 { 886 ssize_t i = 0; 887 unsigned int cpu; 888 889 for_each_cpu(cpu, mask) { 890 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu); 891 if (i >= (PAGE_SIZE - 5)) 892 break; 893 } 894 895 /* Remove the extra space at the end */ 896 i--; 897 898 i += sprintf(&buf[i], "\n"); 899 return i; 900 } 901 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 902 903 /* 904 * show_related_cpus - show the CPUs affected by each transition even if 905 * hw coordination is in use 906 */ 907 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 908 { 909 return cpufreq_show_cpus(policy->related_cpus, buf); 910 } 911 912 /* 913 * show_affected_cpus - show the CPUs affected by each transition 914 */ 915 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 916 { 917 return cpufreq_show_cpus(policy->cpus, buf); 918 } 919 920 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 921 const char *buf, size_t count) 922 { 923 unsigned int freq = 0; 924 unsigned int ret; 925 926 if (!policy->governor || !policy->governor->store_setspeed) 927 return -EINVAL; 928 929 ret = sscanf(buf, "%u", &freq); 930 if (ret != 1) 931 return -EINVAL; 932 933 policy->governor->store_setspeed(policy, freq); 934 935 return count; 936 } 937 938 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 939 { 940 if (!policy->governor || !policy->governor->show_setspeed) 941 return sprintf(buf, "<unsupported>\n"); 942 943 return policy->governor->show_setspeed(policy, buf); 944 } 945 946 /* 947 * show_bios_limit - show the current cpufreq HW/BIOS limitation 948 */ 949 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 950 { 951 unsigned int limit; 952 int ret; 953 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 954 if (!ret) 955 return sprintf(buf, "%u\n", limit); 956 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 957 } 958 959 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 960 cpufreq_freq_attr_ro(cpuinfo_min_freq); 961 cpufreq_freq_attr_ro(cpuinfo_max_freq); 962 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 963 cpufreq_freq_attr_ro(scaling_available_governors); 964 cpufreq_freq_attr_ro(scaling_driver); 965 cpufreq_freq_attr_ro(scaling_cur_freq); 966 cpufreq_freq_attr_ro(bios_limit); 967 cpufreq_freq_attr_ro(related_cpus); 968 cpufreq_freq_attr_ro(affected_cpus); 969 cpufreq_freq_attr_rw(scaling_min_freq); 970 cpufreq_freq_attr_rw(scaling_max_freq); 971 cpufreq_freq_attr_rw(scaling_governor); 972 cpufreq_freq_attr_rw(scaling_setspeed); 973 974 static struct attribute *cpufreq_attrs[] = { 975 &cpuinfo_min_freq.attr, 976 &cpuinfo_max_freq.attr, 977 &cpuinfo_transition_latency.attr, 978 &scaling_min_freq.attr, 979 &scaling_max_freq.attr, 980 &affected_cpus.attr, 981 &related_cpus.attr, 982 &scaling_governor.attr, 983 &scaling_driver.attr, 984 &scaling_available_governors.attr, 985 &scaling_setspeed.attr, 986 NULL 987 }; 988 ATTRIBUTE_GROUPS(cpufreq); 989 990 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 991 #define to_attr(a) container_of(a, struct freq_attr, attr) 992 993 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 994 { 995 struct cpufreq_policy *policy = to_policy(kobj); 996 struct freq_attr *fattr = to_attr(attr); 997 ssize_t ret = -EBUSY; 998 999 if (!fattr->show) 1000 return -EIO; 1001 1002 down_read(&policy->rwsem); 1003 if (likely(!policy_is_inactive(policy))) 1004 ret = fattr->show(policy, buf); 1005 up_read(&policy->rwsem); 1006 1007 return ret; 1008 } 1009 1010 static ssize_t store(struct kobject *kobj, struct attribute *attr, 1011 const char *buf, size_t count) 1012 { 1013 struct cpufreq_policy *policy = to_policy(kobj); 1014 struct freq_attr *fattr = to_attr(attr); 1015 ssize_t ret = -EBUSY; 1016 1017 if (!fattr->store) 1018 return -EIO; 1019 1020 down_write(&policy->rwsem); 1021 if (likely(!policy_is_inactive(policy))) 1022 ret = fattr->store(policy, buf, count); 1023 up_write(&policy->rwsem); 1024 1025 return ret; 1026 } 1027 1028 static void cpufreq_sysfs_release(struct kobject *kobj) 1029 { 1030 struct cpufreq_policy *policy = to_policy(kobj); 1031 pr_debug("last reference is dropped\n"); 1032 complete(&policy->kobj_unregister); 1033 } 1034 1035 static const struct sysfs_ops sysfs_ops = { 1036 .show = show, 1037 .store = store, 1038 }; 1039 1040 static const struct kobj_type ktype_cpufreq = { 1041 .sysfs_ops = &sysfs_ops, 1042 .default_groups = cpufreq_groups, 1043 .release = cpufreq_sysfs_release, 1044 }; 1045 1046 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1047 struct device *dev) 1048 { 1049 if (unlikely(!dev)) 1050 return; 1051 1052 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1053 return; 1054 1055 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1056 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1057 dev_err(dev, "cpufreq symlink creation failed\n"); 1058 } 1059 1060 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1061 struct device *dev) 1062 { 1063 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1064 sysfs_remove_link(&dev->kobj, "cpufreq"); 1065 cpumask_clear_cpu(cpu, policy->real_cpus); 1066 } 1067 1068 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1069 { 1070 struct freq_attr **drv_attr; 1071 int ret = 0; 1072 1073 /* set up files for this cpu device */ 1074 drv_attr = cpufreq_driver->attr; 1075 while (drv_attr && *drv_attr) { 1076 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1077 if (ret) 1078 return ret; 1079 drv_attr++; 1080 } 1081 if (cpufreq_driver->get) { 1082 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1083 if (ret) 1084 return ret; 1085 } 1086 1087 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1088 if (ret) 1089 return ret; 1090 1091 if (cpufreq_driver->bios_limit) { 1092 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1093 if (ret) 1094 return ret; 1095 } 1096 1097 if (cpufreq_boost_supported()) { 1098 ret = sysfs_create_file(&policy->kobj, &local_boost.attr); 1099 if (ret) 1100 return ret; 1101 } 1102 1103 return 0; 1104 } 1105 1106 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1107 { 1108 struct cpufreq_governor *gov = NULL; 1109 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1110 int ret; 1111 1112 if (has_target()) { 1113 /* Update policy governor to the one used before hotplug. */ 1114 gov = get_governor(policy->last_governor); 1115 if (gov) { 1116 pr_debug("Restoring governor %s for cpu %d\n", 1117 gov->name, policy->cpu); 1118 } else { 1119 gov = get_governor(default_governor); 1120 } 1121 1122 if (!gov) { 1123 gov = cpufreq_default_governor(); 1124 __module_get(gov->owner); 1125 } 1126 1127 } else { 1128 1129 /* Use the default policy if there is no last_policy. */ 1130 if (policy->last_policy) { 1131 pol = policy->last_policy; 1132 } else { 1133 pol = cpufreq_parse_policy(default_governor); 1134 /* 1135 * In case the default governor is neither "performance" 1136 * nor "powersave", fall back to the initial policy 1137 * value set by the driver. 1138 */ 1139 if (pol == CPUFREQ_POLICY_UNKNOWN) 1140 pol = policy->policy; 1141 } 1142 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1143 pol != CPUFREQ_POLICY_POWERSAVE) 1144 return -ENODATA; 1145 } 1146 1147 ret = cpufreq_set_policy(policy, gov, pol); 1148 if (gov) 1149 module_put(gov->owner); 1150 1151 return ret; 1152 } 1153 1154 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1155 { 1156 int ret = 0; 1157 1158 /* Has this CPU been taken care of already? */ 1159 if (cpumask_test_cpu(cpu, policy->cpus)) 1160 return 0; 1161 1162 down_write(&policy->rwsem); 1163 if (has_target()) 1164 cpufreq_stop_governor(policy); 1165 1166 cpumask_set_cpu(cpu, policy->cpus); 1167 1168 if (has_target()) { 1169 ret = cpufreq_start_governor(policy); 1170 if (ret) 1171 pr_err("%s: Failed to start governor\n", __func__); 1172 } 1173 up_write(&policy->rwsem); 1174 return ret; 1175 } 1176 1177 void refresh_frequency_limits(struct cpufreq_policy *policy) 1178 { 1179 if (!policy_is_inactive(policy)) { 1180 pr_debug("updating policy for CPU %u\n", policy->cpu); 1181 1182 cpufreq_set_policy(policy, policy->governor, policy->policy); 1183 } 1184 } 1185 EXPORT_SYMBOL(refresh_frequency_limits); 1186 1187 static void handle_update(struct work_struct *work) 1188 { 1189 struct cpufreq_policy *policy = 1190 container_of(work, struct cpufreq_policy, update); 1191 1192 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1193 down_write(&policy->rwsem); 1194 refresh_frequency_limits(policy); 1195 up_write(&policy->rwsem); 1196 } 1197 1198 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1199 void *data) 1200 { 1201 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1202 1203 schedule_work(&policy->update); 1204 return 0; 1205 } 1206 1207 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1208 void *data) 1209 { 1210 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1211 1212 schedule_work(&policy->update); 1213 return 0; 1214 } 1215 1216 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1217 { 1218 struct kobject *kobj; 1219 struct completion *cmp; 1220 1221 down_write(&policy->rwsem); 1222 cpufreq_stats_free_table(policy); 1223 kobj = &policy->kobj; 1224 cmp = &policy->kobj_unregister; 1225 up_write(&policy->rwsem); 1226 kobject_put(kobj); 1227 1228 /* 1229 * We need to make sure that the underlying kobj is 1230 * actually not referenced anymore by anybody before we 1231 * proceed with unloading. 1232 */ 1233 pr_debug("waiting for dropping of refcount\n"); 1234 wait_for_completion(cmp); 1235 pr_debug("wait complete\n"); 1236 } 1237 1238 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1239 { 1240 struct cpufreq_policy *policy; 1241 struct device *dev = get_cpu_device(cpu); 1242 int ret; 1243 1244 if (!dev) 1245 return NULL; 1246 1247 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1248 if (!policy) 1249 return NULL; 1250 1251 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1252 goto err_free_policy; 1253 1254 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1255 goto err_free_cpumask; 1256 1257 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1258 goto err_free_rcpumask; 1259 1260 init_completion(&policy->kobj_unregister); 1261 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1262 cpufreq_global_kobject, "policy%u", cpu); 1263 if (ret) { 1264 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1265 /* 1266 * The entire policy object will be freed below, but the extra 1267 * memory allocated for the kobject name needs to be freed by 1268 * releasing the kobject. 1269 */ 1270 kobject_put(&policy->kobj); 1271 goto err_free_real_cpus; 1272 } 1273 1274 freq_constraints_init(&policy->constraints); 1275 1276 policy->nb_min.notifier_call = cpufreq_notifier_min; 1277 policy->nb_max.notifier_call = cpufreq_notifier_max; 1278 1279 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1280 &policy->nb_min); 1281 if (ret) { 1282 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n", 1283 ret, cpu); 1284 goto err_kobj_remove; 1285 } 1286 1287 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1288 &policy->nb_max); 1289 if (ret) { 1290 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n", 1291 ret, cpu); 1292 goto err_min_qos_notifier; 1293 } 1294 1295 INIT_LIST_HEAD(&policy->policy_list); 1296 init_rwsem(&policy->rwsem); 1297 spin_lock_init(&policy->transition_lock); 1298 init_waitqueue_head(&policy->transition_wait); 1299 INIT_WORK(&policy->update, handle_update); 1300 1301 policy->cpu = cpu; 1302 return policy; 1303 1304 err_min_qos_notifier: 1305 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1306 &policy->nb_min); 1307 err_kobj_remove: 1308 cpufreq_policy_put_kobj(policy); 1309 err_free_real_cpus: 1310 free_cpumask_var(policy->real_cpus); 1311 err_free_rcpumask: 1312 free_cpumask_var(policy->related_cpus); 1313 err_free_cpumask: 1314 free_cpumask_var(policy->cpus); 1315 err_free_policy: 1316 kfree(policy); 1317 1318 return NULL; 1319 } 1320 1321 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1322 { 1323 unsigned long flags; 1324 int cpu; 1325 1326 /* 1327 * The callers must ensure the policy is inactive by now, to avoid any 1328 * races with show()/store() callbacks. 1329 */ 1330 if (unlikely(!policy_is_inactive(policy))) 1331 pr_warn("%s: Freeing active policy\n", __func__); 1332 1333 /* Remove policy from list */ 1334 write_lock_irqsave(&cpufreq_driver_lock, flags); 1335 list_del(&policy->policy_list); 1336 1337 for_each_cpu(cpu, policy->related_cpus) 1338 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1339 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1340 1341 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1342 &policy->nb_max); 1343 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1344 &policy->nb_min); 1345 1346 /* Cancel any pending policy->update work before freeing the policy. */ 1347 cancel_work_sync(&policy->update); 1348 1349 if (policy->max_freq_req) { 1350 /* 1351 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1352 * notification, since CPUFREQ_CREATE_POLICY notification was 1353 * sent after adding max_freq_req earlier. 1354 */ 1355 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1356 CPUFREQ_REMOVE_POLICY, policy); 1357 freq_qos_remove_request(policy->max_freq_req); 1358 } 1359 1360 freq_qos_remove_request(policy->min_freq_req); 1361 kfree(policy->min_freq_req); 1362 1363 cpufreq_policy_put_kobj(policy); 1364 free_cpumask_var(policy->real_cpus); 1365 free_cpumask_var(policy->related_cpus); 1366 free_cpumask_var(policy->cpus); 1367 kfree(policy); 1368 } 1369 1370 static int cpufreq_online(unsigned int cpu) 1371 { 1372 struct cpufreq_policy *policy; 1373 bool new_policy; 1374 unsigned long flags; 1375 unsigned int j; 1376 int ret; 1377 1378 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1379 1380 /* Check if this CPU already has a policy to manage it */ 1381 policy = per_cpu(cpufreq_cpu_data, cpu); 1382 if (policy) { 1383 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1384 if (!policy_is_inactive(policy)) 1385 return cpufreq_add_policy_cpu(policy, cpu); 1386 1387 /* This is the only online CPU for the policy. Start over. */ 1388 new_policy = false; 1389 down_write(&policy->rwsem); 1390 policy->cpu = cpu; 1391 policy->governor = NULL; 1392 } else { 1393 new_policy = true; 1394 policy = cpufreq_policy_alloc(cpu); 1395 if (!policy) 1396 return -ENOMEM; 1397 down_write(&policy->rwsem); 1398 } 1399 1400 if (!new_policy && cpufreq_driver->online) { 1401 /* Recover policy->cpus using related_cpus */ 1402 cpumask_copy(policy->cpus, policy->related_cpus); 1403 1404 ret = cpufreq_driver->online(policy); 1405 if (ret) { 1406 pr_debug("%s: %d: initialization failed\n", __func__, 1407 __LINE__); 1408 goto out_exit_policy; 1409 } 1410 } else { 1411 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1412 1413 /* 1414 * Call driver. From then on the cpufreq must be able 1415 * to accept all calls to ->verify and ->setpolicy for this CPU. 1416 */ 1417 ret = cpufreq_driver->init(policy); 1418 if (ret) { 1419 pr_debug("%s: %d: initialization failed\n", __func__, 1420 __LINE__); 1421 goto out_free_policy; 1422 } 1423 1424 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */ 1425 policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy); 1426 1427 /* 1428 * The initialization has succeeded and the policy is online. 1429 * If there is a problem with its frequency table, take it 1430 * offline and drop it. 1431 */ 1432 ret = cpufreq_table_validate_and_sort(policy); 1433 if (ret) 1434 goto out_offline_policy; 1435 1436 /* related_cpus should at least include policy->cpus. */ 1437 cpumask_copy(policy->related_cpus, policy->cpus); 1438 } 1439 1440 /* 1441 * affected cpus must always be the one, which are online. We aren't 1442 * managing offline cpus here. 1443 */ 1444 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1445 1446 if (new_policy) { 1447 for_each_cpu(j, policy->related_cpus) { 1448 per_cpu(cpufreq_cpu_data, j) = policy; 1449 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1450 } 1451 1452 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1453 GFP_KERNEL); 1454 if (!policy->min_freq_req) { 1455 ret = -ENOMEM; 1456 goto out_destroy_policy; 1457 } 1458 1459 ret = freq_qos_add_request(&policy->constraints, 1460 policy->min_freq_req, FREQ_QOS_MIN, 1461 FREQ_QOS_MIN_DEFAULT_VALUE); 1462 if (ret < 0) { 1463 /* 1464 * So we don't call freq_qos_remove_request() for an 1465 * uninitialized request. 1466 */ 1467 kfree(policy->min_freq_req); 1468 policy->min_freq_req = NULL; 1469 goto out_destroy_policy; 1470 } 1471 1472 /* 1473 * This must be initialized right here to avoid calling 1474 * freq_qos_remove_request() on uninitialized request in case 1475 * of errors. 1476 */ 1477 policy->max_freq_req = policy->min_freq_req + 1; 1478 1479 ret = freq_qos_add_request(&policy->constraints, 1480 policy->max_freq_req, FREQ_QOS_MAX, 1481 FREQ_QOS_MAX_DEFAULT_VALUE); 1482 if (ret < 0) { 1483 policy->max_freq_req = NULL; 1484 goto out_destroy_policy; 1485 } 1486 1487 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1488 CPUFREQ_CREATE_POLICY, policy); 1489 } 1490 1491 if (cpufreq_driver->get && has_target()) { 1492 policy->cur = cpufreq_driver->get(policy->cpu); 1493 if (!policy->cur) { 1494 ret = -EIO; 1495 pr_err("%s: ->get() failed\n", __func__); 1496 goto out_destroy_policy; 1497 } 1498 } 1499 1500 /* 1501 * Sometimes boot loaders set CPU frequency to a value outside of 1502 * frequency table present with cpufreq core. In such cases CPU might be 1503 * unstable if it has to run on that frequency for long duration of time 1504 * and so its better to set it to a frequency which is specified in 1505 * freq-table. This also makes cpufreq stats inconsistent as 1506 * cpufreq-stats would fail to register because current frequency of CPU 1507 * isn't found in freq-table. 1508 * 1509 * Because we don't want this change to effect boot process badly, we go 1510 * for the next freq which is >= policy->cur ('cur' must be set by now, 1511 * otherwise we will end up setting freq to lowest of the table as 'cur' 1512 * is initialized to zero). 1513 * 1514 * We are passing target-freq as "policy->cur - 1" otherwise 1515 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1516 * equal to target-freq. 1517 */ 1518 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1519 && has_target()) { 1520 unsigned int old_freq = policy->cur; 1521 1522 /* Are we running at unknown frequency ? */ 1523 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1524 if (ret == -EINVAL) { 1525 ret = __cpufreq_driver_target(policy, old_freq - 1, 1526 CPUFREQ_RELATION_L); 1527 1528 /* 1529 * Reaching here after boot in a few seconds may not 1530 * mean that system will remain stable at "unknown" 1531 * frequency for longer duration. Hence, a BUG_ON(). 1532 */ 1533 BUG_ON(ret); 1534 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1535 __func__, policy->cpu, old_freq, policy->cur); 1536 } 1537 } 1538 1539 if (new_policy) { 1540 ret = cpufreq_add_dev_interface(policy); 1541 if (ret) 1542 goto out_destroy_policy; 1543 1544 cpufreq_stats_create_table(policy); 1545 1546 write_lock_irqsave(&cpufreq_driver_lock, flags); 1547 list_add(&policy->policy_list, &cpufreq_policy_list); 1548 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1549 1550 /* 1551 * Register with the energy model before 1552 * sched_cpufreq_governor_change() is called, which will result 1553 * in rebuilding of the sched domains, which should only be done 1554 * once the energy model is properly initialized for the policy 1555 * first. 1556 * 1557 * Also, this should be called before the policy is registered 1558 * with cooling framework. 1559 */ 1560 if (cpufreq_driver->register_em) 1561 cpufreq_driver->register_em(policy); 1562 } 1563 1564 ret = cpufreq_init_policy(policy); 1565 if (ret) { 1566 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1567 __func__, cpu, ret); 1568 goto out_destroy_policy; 1569 } 1570 1571 up_write(&policy->rwsem); 1572 1573 kobject_uevent(&policy->kobj, KOBJ_ADD); 1574 1575 /* Callback for handling stuff after policy is ready */ 1576 if (cpufreq_driver->ready) 1577 cpufreq_driver->ready(policy); 1578 1579 /* Register cpufreq cooling only for a new policy */ 1580 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver)) 1581 policy->cdev = of_cpufreq_cooling_register(policy); 1582 1583 pr_debug("initialization complete\n"); 1584 1585 return 0; 1586 1587 out_destroy_policy: 1588 for_each_cpu(j, policy->real_cpus) 1589 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1590 1591 out_offline_policy: 1592 if (cpufreq_driver->offline) 1593 cpufreq_driver->offline(policy); 1594 1595 out_exit_policy: 1596 if (cpufreq_driver->exit) 1597 cpufreq_driver->exit(policy); 1598 1599 out_free_policy: 1600 cpumask_clear(policy->cpus); 1601 up_write(&policy->rwsem); 1602 1603 cpufreq_policy_free(policy); 1604 return ret; 1605 } 1606 1607 /** 1608 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1609 * @dev: CPU device. 1610 * @sif: Subsystem interface structure pointer (not used) 1611 */ 1612 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1613 { 1614 struct cpufreq_policy *policy; 1615 unsigned cpu = dev->id; 1616 int ret; 1617 1618 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1619 1620 if (cpu_online(cpu)) { 1621 ret = cpufreq_online(cpu); 1622 if (ret) 1623 return ret; 1624 } 1625 1626 /* Create sysfs link on CPU registration */ 1627 policy = per_cpu(cpufreq_cpu_data, cpu); 1628 if (policy) 1629 add_cpu_dev_symlink(policy, cpu, dev); 1630 1631 return 0; 1632 } 1633 1634 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1635 { 1636 int ret; 1637 1638 if (has_target()) 1639 cpufreq_stop_governor(policy); 1640 1641 cpumask_clear_cpu(cpu, policy->cpus); 1642 1643 if (!policy_is_inactive(policy)) { 1644 /* Nominate a new CPU if necessary. */ 1645 if (cpu == policy->cpu) 1646 policy->cpu = cpumask_any(policy->cpus); 1647 1648 /* Start the governor again for the active policy. */ 1649 if (has_target()) { 1650 ret = cpufreq_start_governor(policy); 1651 if (ret) 1652 pr_err("%s: Failed to start governor\n", __func__); 1653 } 1654 1655 return; 1656 } 1657 1658 if (has_target()) 1659 strncpy(policy->last_governor, policy->governor->name, 1660 CPUFREQ_NAME_LEN); 1661 else 1662 policy->last_policy = policy->policy; 1663 1664 if (has_target()) 1665 cpufreq_exit_governor(policy); 1666 1667 /* 1668 * Perform the ->offline() during light-weight tear-down, as 1669 * that allows fast recovery when the CPU comes back. 1670 */ 1671 if (cpufreq_driver->offline) { 1672 cpufreq_driver->offline(policy); 1673 } else if (cpufreq_driver->exit) { 1674 cpufreq_driver->exit(policy); 1675 policy->freq_table = NULL; 1676 } 1677 } 1678 1679 static int cpufreq_offline(unsigned int cpu) 1680 { 1681 struct cpufreq_policy *policy; 1682 1683 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1684 1685 policy = cpufreq_cpu_get_raw(cpu); 1686 if (!policy) { 1687 pr_debug("%s: No cpu_data found\n", __func__); 1688 return 0; 1689 } 1690 1691 down_write(&policy->rwsem); 1692 1693 __cpufreq_offline(cpu, policy); 1694 1695 up_write(&policy->rwsem); 1696 return 0; 1697 } 1698 1699 /* 1700 * cpufreq_remove_dev - remove a CPU device 1701 * 1702 * Removes the cpufreq interface for a CPU device. 1703 */ 1704 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1705 { 1706 unsigned int cpu = dev->id; 1707 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1708 1709 if (!policy) 1710 return; 1711 1712 down_write(&policy->rwsem); 1713 1714 if (cpu_online(cpu)) 1715 __cpufreq_offline(cpu, policy); 1716 1717 remove_cpu_dev_symlink(policy, cpu, dev); 1718 1719 if (!cpumask_empty(policy->real_cpus)) { 1720 up_write(&policy->rwsem); 1721 return; 1722 } 1723 1724 /* 1725 * Unregister cpufreq cooling once all the CPUs of the policy are 1726 * removed. 1727 */ 1728 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1729 cpufreq_cooling_unregister(policy->cdev); 1730 policy->cdev = NULL; 1731 } 1732 1733 /* We did light-weight exit earlier, do full tear down now */ 1734 if (cpufreq_driver->offline) 1735 cpufreq_driver->exit(policy); 1736 1737 up_write(&policy->rwsem); 1738 1739 cpufreq_policy_free(policy); 1740 } 1741 1742 /** 1743 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1744 * @policy: Policy managing CPUs. 1745 * @new_freq: New CPU frequency. 1746 * 1747 * Adjust to the current frequency first and clean up later by either calling 1748 * cpufreq_update_policy(), or scheduling handle_update(). 1749 */ 1750 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1751 unsigned int new_freq) 1752 { 1753 struct cpufreq_freqs freqs; 1754 1755 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1756 policy->cur, new_freq); 1757 1758 freqs.old = policy->cur; 1759 freqs.new = new_freq; 1760 1761 cpufreq_freq_transition_begin(policy, &freqs); 1762 cpufreq_freq_transition_end(policy, &freqs, 0); 1763 } 1764 1765 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1766 { 1767 unsigned int new_freq; 1768 1769 new_freq = cpufreq_driver->get(policy->cpu); 1770 if (!new_freq) 1771 return 0; 1772 1773 /* 1774 * If fast frequency switching is used with the given policy, the check 1775 * against policy->cur is pointless, so skip it in that case. 1776 */ 1777 if (policy->fast_switch_enabled || !has_target()) 1778 return new_freq; 1779 1780 if (policy->cur != new_freq) { 1781 /* 1782 * For some platforms, the frequency returned by hardware may be 1783 * slightly different from what is provided in the frequency 1784 * table, for example hardware may return 499 MHz instead of 500 1785 * MHz. In such cases it is better to avoid getting into 1786 * unnecessary frequency updates. 1787 */ 1788 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1789 return policy->cur; 1790 1791 cpufreq_out_of_sync(policy, new_freq); 1792 if (update) 1793 schedule_work(&policy->update); 1794 } 1795 1796 return new_freq; 1797 } 1798 1799 /** 1800 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1801 * @cpu: CPU number 1802 * 1803 * This is the last known freq, without actually getting it from the driver. 1804 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1805 */ 1806 unsigned int cpufreq_quick_get(unsigned int cpu) 1807 { 1808 struct cpufreq_policy *policy; 1809 unsigned int ret_freq = 0; 1810 unsigned long flags; 1811 1812 read_lock_irqsave(&cpufreq_driver_lock, flags); 1813 1814 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1815 ret_freq = cpufreq_driver->get(cpu); 1816 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1817 return ret_freq; 1818 } 1819 1820 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1821 1822 policy = cpufreq_cpu_get(cpu); 1823 if (policy) { 1824 ret_freq = policy->cur; 1825 cpufreq_cpu_put(policy); 1826 } 1827 1828 return ret_freq; 1829 } 1830 EXPORT_SYMBOL(cpufreq_quick_get); 1831 1832 /** 1833 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1834 * @cpu: CPU number 1835 * 1836 * Just return the max possible frequency for a given CPU. 1837 */ 1838 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1839 { 1840 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1841 unsigned int ret_freq = 0; 1842 1843 if (policy) { 1844 ret_freq = policy->max; 1845 cpufreq_cpu_put(policy); 1846 } 1847 1848 return ret_freq; 1849 } 1850 EXPORT_SYMBOL(cpufreq_quick_get_max); 1851 1852 /** 1853 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1854 * @cpu: CPU number 1855 * 1856 * The default return value is the max_freq field of cpuinfo. 1857 */ 1858 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1859 { 1860 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1861 unsigned int ret_freq = 0; 1862 1863 if (policy) { 1864 ret_freq = policy->cpuinfo.max_freq; 1865 cpufreq_cpu_put(policy); 1866 } 1867 1868 return ret_freq; 1869 } 1870 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1871 1872 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1873 { 1874 if (unlikely(policy_is_inactive(policy))) 1875 return 0; 1876 1877 return cpufreq_verify_current_freq(policy, true); 1878 } 1879 1880 /** 1881 * cpufreq_get - get the current CPU frequency (in kHz) 1882 * @cpu: CPU number 1883 * 1884 * Get the CPU current (static) CPU frequency 1885 */ 1886 unsigned int cpufreq_get(unsigned int cpu) 1887 { 1888 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1889 unsigned int ret_freq = 0; 1890 1891 if (policy) { 1892 down_read(&policy->rwsem); 1893 if (cpufreq_driver->get) 1894 ret_freq = __cpufreq_get(policy); 1895 up_read(&policy->rwsem); 1896 1897 cpufreq_cpu_put(policy); 1898 } 1899 1900 return ret_freq; 1901 } 1902 EXPORT_SYMBOL(cpufreq_get); 1903 1904 static struct subsys_interface cpufreq_interface = { 1905 .name = "cpufreq", 1906 .subsys = &cpu_subsys, 1907 .add_dev = cpufreq_add_dev, 1908 .remove_dev = cpufreq_remove_dev, 1909 }; 1910 1911 /* 1912 * In case platform wants some specific frequency to be configured 1913 * during suspend.. 1914 */ 1915 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1916 { 1917 int ret; 1918 1919 if (!policy->suspend_freq) { 1920 pr_debug("%s: suspend_freq not defined\n", __func__); 1921 return 0; 1922 } 1923 1924 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1925 policy->suspend_freq); 1926 1927 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1928 CPUFREQ_RELATION_H); 1929 if (ret) 1930 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1931 __func__, policy->suspend_freq, ret); 1932 1933 return ret; 1934 } 1935 EXPORT_SYMBOL(cpufreq_generic_suspend); 1936 1937 /** 1938 * cpufreq_suspend() - Suspend CPUFreq governors. 1939 * 1940 * Called during system wide Suspend/Hibernate cycles for suspending governors 1941 * as some platforms can't change frequency after this point in suspend cycle. 1942 * Because some of the devices (like: i2c, regulators, etc) they use for 1943 * changing frequency are suspended quickly after this point. 1944 */ 1945 void cpufreq_suspend(void) 1946 { 1947 struct cpufreq_policy *policy; 1948 1949 if (!cpufreq_driver) 1950 return; 1951 1952 if (!has_target() && !cpufreq_driver->suspend) 1953 goto suspend; 1954 1955 pr_debug("%s: Suspending Governors\n", __func__); 1956 1957 for_each_active_policy(policy) { 1958 if (has_target()) { 1959 down_write(&policy->rwsem); 1960 cpufreq_stop_governor(policy); 1961 up_write(&policy->rwsem); 1962 } 1963 1964 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1965 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1966 cpufreq_driver->name); 1967 } 1968 1969 suspend: 1970 cpufreq_suspended = true; 1971 } 1972 1973 /** 1974 * cpufreq_resume() - Resume CPUFreq governors. 1975 * 1976 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1977 * are suspended with cpufreq_suspend(). 1978 */ 1979 void cpufreq_resume(void) 1980 { 1981 struct cpufreq_policy *policy; 1982 int ret; 1983 1984 if (!cpufreq_driver) 1985 return; 1986 1987 if (unlikely(!cpufreq_suspended)) 1988 return; 1989 1990 cpufreq_suspended = false; 1991 1992 if (!has_target() && !cpufreq_driver->resume) 1993 return; 1994 1995 pr_debug("%s: Resuming Governors\n", __func__); 1996 1997 for_each_active_policy(policy) { 1998 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1999 pr_err("%s: Failed to resume driver: %s\n", __func__, 2000 cpufreq_driver->name); 2001 } else if (has_target()) { 2002 down_write(&policy->rwsem); 2003 ret = cpufreq_start_governor(policy); 2004 up_write(&policy->rwsem); 2005 2006 if (ret) 2007 pr_err("%s: Failed to start governor for CPU%u's policy\n", 2008 __func__, policy->cpu); 2009 } 2010 } 2011 } 2012 2013 /** 2014 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 2015 * @flags: Flags to test against the current cpufreq driver's flags. 2016 * 2017 * Assumes that the driver is there, so callers must ensure that this is the 2018 * case. 2019 */ 2020 bool cpufreq_driver_test_flags(u16 flags) 2021 { 2022 return !!(cpufreq_driver->flags & flags); 2023 } 2024 2025 /** 2026 * cpufreq_get_current_driver - Return the current driver's name. 2027 * 2028 * Return the name string of the currently registered cpufreq driver or NULL if 2029 * none. 2030 */ 2031 const char *cpufreq_get_current_driver(void) 2032 { 2033 if (cpufreq_driver) 2034 return cpufreq_driver->name; 2035 2036 return NULL; 2037 } 2038 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 2039 2040 /** 2041 * cpufreq_get_driver_data - Return current driver data. 2042 * 2043 * Return the private data of the currently registered cpufreq driver, or NULL 2044 * if no cpufreq driver has been registered. 2045 */ 2046 void *cpufreq_get_driver_data(void) 2047 { 2048 if (cpufreq_driver) 2049 return cpufreq_driver->driver_data; 2050 2051 return NULL; 2052 } 2053 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2054 2055 /********************************************************************* 2056 * NOTIFIER LISTS INTERFACE * 2057 *********************************************************************/ 2058 2059 /** 2060 * cpufreq_register_notifier - Register a notifier with cpufreq. 2061 * @nb: notifier function to register. 2062 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2063 * 2064 * Add a notifier to one of two lists: either a list of notifiers that run on 2065 * clock rate changes (once before and once after every transition), or a list 2066 * of notifiers that ron on cpufreq policy changes. 2067 * 2068 * This function may sleep and it has the same return values as 2069 * blocking_notifier_chain_register(). 2070 */ 2071 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2072 { 2073 int ret; 2074 2075 if (cpufreq_disabled()) 2076 return -EINVAL; 2077 2078 switch (list) { 2079 case CPUFREQ_TRANSITION_NOTIFIER: 2080 mutex_lock(&cpufreq_fast_switch_lock); 2081 2082 if (cpufreq_fast_switch_count > 0) { 2083 mutex_unlock(&cpufreq_fast_switch_lock); 2084 return -EBUSY; 2085 } 2086 ret = srcu_notifier_chain_register( 2087 &cpufreq_transition_notifier_list, nb); 2088 if (!ret) 2089 cpufreq_fast_switch_count--; 2090 2091 mutex_unlock(&cpufreq_fast_switch_lock); 2092 break; 2093 case CPUFREQ_POLICY_NOTIFIER: 2094 ret = blocking_notifier_chain_register( 2095 &cpufreq_policy_notifier_list, nb); 2096 break; 2097 default: 2098 ret = -EINVAL; 2099 } 2100 2101 return ret; 2102 } 2103 EXPORT_SYMBOL(cpufreq_register_notifier); 2104 2105 /** 2106 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2107 * @nb: notifier block to be unregistered. 2108 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2109 * 2110 * Remove a notifier from one of the cpufreq notifier lists. 2111 * 2112 * This function may sleep and it has the same return values as 2113 * blocking_notifier_chain_unregister(). 2114 */ 2115 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2116 { 2117 int ret; 2118 2119 if (cpufreq_disabled()) 2120 return -EINVAL; 2121 2122 switch (list) { 2123 case CPUFREQ_TRANSITION_NOTIFIER: 2124 mutex_lock(&cpufreq_fast_switch_lock); 2125 2126 ret = srcu_notifier_chain_unregister( 2127 &cpufreq_transition_notifier_list, nb); 2128 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2129 cpufreq_fast_switch_count++; 2130 2131 mutex_unlock(&cpufreq_fast_switch_lock); 2132 break; 2133 case CPUFREQ_POLICY_NOTIFIER: 2134 ret = blocking_notifier_chain_unregister( 2135 &cpufreq_policy_notifier_list, nb); 2136 break; 2137 default: 2138 ret = -EINVAL; 2139 } 2140 2141 return ret; 2142 } 2143 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2144 2145 2146 /********************************************************************* 2147 * GOVERNORS * 2148 *********************************************************************/ 2149 2150 /** 2151 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2152 * @policy: cpufreq policy to switch the frequency for. 2153 * @target_freq: New frequency to set (may be approximate). 2154 * 2155 * Carry out a fast frequency switch without sleeping. 2156 * 2157 * The driver's ->fast_switch() callback invoked by this function must be 2158 * suitable for being called from within RCU-sched read-side critical sections 2159 * and it is expected to select the minimum available frequency greater than or 2160 * equal to @target_freq (CPUFREQ_RELATION_L). 2161 * 2162 * This function must not be called if policy->fast_switch_enabled is unset. 2163 * 2164 * Governors calling this function must guarantee that it will never be invoked 2165 * twice in parallel for the same policy and that it will never be called in 2166 * parallel with either ->target() or ->target_index() for the same policy. 2167 * 2168 * Returns the actual frequency set for the CPU. 2169 * 2170 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2171 * error condition, the hardware configuration must be preserved. 2172 */ 2173 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2174 unsigned int target_freq) 2175 { 2176 unsigned int freq; 2177 int cpu; 2178 2179 target_freq = clamp_val(target_freq, policy->min, policy->max); 2180 freq = cpufreq_driver->fast_switch(policy, target_freq); 2181 2182 if (!freq) 2183 return 0; 2184 2185 policy->cur = freq; 2186 arch_set_freq_scale(policy->related_cpus, freq, 2187 policy->cpuinfo.max_freq); 2188 cpufreq_stats_record_transition(policy, freq); 2189 2190 if (trace_cpu_frequency_enabled()) { 2191 for_each_cpu(cpu, policy->cpus) 2192 trace_cpu_frequency(freq, cpu); 2193 } 2194 2195 return freq; 2196 } 2197 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2198 2199 /** 2200 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2201 * @cpu: Target CPU. 2202 * @min_perf: Minimum (required) performance level (units of @capacity). 2203 * @target_perf: Target (desired) performance level (units of @capacity). 2204 * @capacity: Capacity of the target CPU. 2205 * 2206 * Carry out a fast performance level switch of @cpu without sleeping. 2207 * 2208 * The driver's ->adjust_perf() callback invoked by this function must be 2209 * suitable for being called from within RCU-sched read-side critical sections 2210 * and it is expected to select a suitable performance level equal to or above 2211 * @min_perf and preferably equal to or below @target_perf. 2212 * 2213 * This function must not be called if policy->fast_switch_enabled is unset. 2214 * 2215 * Governors calling this function must guarantee that it will never be invoked 2216 * twice in parallel for the same CPU and that it will never be called in 2217 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2218 * the same CPU. 2219 */ 2220 void cpufreq_driver_adjust_perf(unsigned int cpu, 2221 unsigned long min_perf, 2222 unsigned long target_perf, 2223 unsigned long capacity) 2224 { 2225 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2226 } 2227 2228 /** 2229 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2230 * 2231 * Return 'true' if the ->adjust_perf callback is present for the 2232 * current driver or 'false' otherwise. 2233 */ 2234 bool cpufreq_driver_has_adjust_perf(void) 2235 { 2236 return !!cpufreq_driver->adjust_perf; 2237 } 2238 2239 /* Must set freqs->new to intermediate frequency */ 2240 static int __target_intermediate(struct cpufreq_policy *policy, 2241 struct cpufreq_freqs *freqs, int index) 2242 { 2243 int ret; 2244 2245 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2246 2247 /* We don't need to switch to intermediate freq */ 2248 if (!freqs->new) 2249 return 0; 2250 2251 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2252 __func__, policy->cpu, freqs->old, freqs->new); 2253 2254 cpufreq_freq_transition_begin(policy, freqs); 2255 ret = cpufreq_driver->target_intermediate(policy, index); 2256 cpufreq_freq_transition_end(policy, freqs, ret); 2257 2258 if (ret) 2259 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2260 __func__, ret); 2261 2262 return ret; 2263 } 2264 2265 static int __target_index(struct cpufreq_policy *policy, int index) 2266 { 2267 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2268 unsigned int restore_freq, intermediate_freq = 0; 2269 unsigned int newfreq = policy->freq_table[index].frequency; 2270 int retval = -EINVAL; 2271 bool notify; 2272 2273 if (newfreq == policy->cur) 2274 return 0; 2275 2276 /* Save last value to restore later on errors */ 2277 restore_freq = policy->cur; 2278 2279 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2280 if (notify) { 2281 /* Handle switching to intermediate frequency */ 2282 if (cpufreq_driver->get_intermediate) { 2283 retval = __target_intermediate(policy, &freqs, index); 2284 if (retval) 2285 return retval; 2286 2287 intermediate_freq = freqs.new; 2288 /* Set old freq to intermediate */ 2289 if (intermediate_freq) 2290 freqs.old = freqs.new; 2291 } 2292 2293 freqs.new = newfreq; 2294 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2295 __func__, policy->cpu, freqs.old, freqs.new); 2296 2297 cpufreq_freq_transition_begin(policy, &freqs); 2298 } 2299 2300 retval = cpufreq_driver->target_index(policy, index); 2301 if (retval) 2302 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2303 retval); 2304 2305 if (notify) { 2306 cpufreq_freq_transition_end(policy, &freqs, retval); 2307 2308 /* 2309 * Failed after setting to intermediate freq? Driver should have 2310 * reverted back to initial frequency and so should we. Check 2311 * here for intermediate_freq instead of get_intermediate, in 2312 * case we haven't switched to intermediate freq at all. 2313 */ 2314 if (unlikely(retval && intermediate_freq)) { 2315 freqs.old = intermediate_freq; 2316 freqs.new = restore_freq; 2317 cpufreq_freq_transition_begin(policy, &freqs); 2318 cpufreq_freq_transition_end(policy, &freqs, 0); 2319 } 2320 } 2321 2322 return retval; 2323 } 2324 2325 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2326 unsigned int target_freq, 2327 unsigned int relation) 2328 { 2329 unsigned int old_target_freq = target_freq; 2330 2331 if (cpufreq_disabled()) 2332 return -ENODEV; 2333 2334 target_freq = __resolve_freq(policy, target_freq, relation); 2335 2336 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2337 policy->cpu, target_freq, relation, old_target_freq); 2338 2339 /* 2340 * This might look like a redundant call as we are checking it again 2341 * after finding index. But it is left intentionally for cases where 2342 * exactly same freq is called again and so we can save on few function 2343 * calls. 2344 */ 2345 if (target_freq == policy->cur && 2346 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2347 return 0; 2348 2349 if (cpufreq_driver->target) { 2350 /* 2351 * If the driver hasn't setup a single inefficient frequency, 2352 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2353 */ 2354 if (!policy->efficiencies_available) 2355 relation &= ~CPUFREQ_RELATION_E; 2356 2357 return cpufreq_driver->target(policy, target_freq, relation); 2358 } 2359 2360 if (!cpufreq_driver->target_index) 2361 return -EINVAL; 2362 2363 return __target_index(policy, policy->cached_resolved_idx); 2364 } 2365 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2366 2367 int cpufreq_driver_target(struct cpufreq_policy *policy, 2368 unsigned int target_freq, 2369 unsigned int relation) 2370 { 2371 int ret; 2372 2373 down_write(&policy->rwsem); 2374 2375 ret = __cpufreq_driver_target(policy, target_freq, relation); 2376 2377 up_write(&policy->rwsem); 2378 2379 return ret; 2380 } 2381 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2382 2383 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2384 { 2385 return NULL; 2386 } 2387 2388 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2389 { 2390 int ret; 2391 2392 /* Don't start any governor operations if we are entering suspend */ 2393 if (cpufreq_suspended) 2394 return 0; 2395 /* 2396 * Governor might not be initiated here if ACPI _PPC changed 2397 * notification happened, so check it. 2398 */ 2399 if (!policy->governor) 2400 return -EINVAL; 2401 2402 /* Platform doesn't want dynamic frequency switching ? */ 2403 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2404 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2405 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2406 2407 if (gov) { 2408 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2409 policy->governor->name, gov->name); 2410 policy->governor = gov; 2411 } else { 2412 return -EINVAL; 2413 } 2414 } 2415 2416 if (!try_module_get(policy->governor->owner)) 2417 return -EINVAL; 2418 2419 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2420 2421 if (policy->governor->init) { 2422 ret = policy->governor->init(policy); 2423 if (ret) { 2424 module_put(policy->governor->owner); 2425 return ret; 2426 } 2427 } 2428 2429 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2430 2431 return 0; 2432 } 2433 2434 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2435 { 2436 if (cpufreq_suspended || !policy->governor) 2437 return; 2438 2439 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2440 2441 if (policy->governor->exit) 2442 policy->governor->exit(policy); 2443 2444 module_put(policy->governor->owner); 2445 } 2446 2447 int cpufreq_start_governor(struct cpufreq_policy *policy) 2448 { 2449 int ret; 2450 2451 if (cpufreq_suspended) 2452 return 0; 2453 2454 if (!policy->governor) 2455 return -EINVAL; 2456 2457 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2458 2459 if (cpufreq_driver->get) 2460 cpufreq_verify_current_freq(policy, false); 2461 2462 if (policy->governor->start) { 2463 ret = policy->governor->start(policy); 2464 if (ret) 2465 return ret; 2466 } 2467 2468 if (policy->governor->limits) 2469 policy->governor->limits(policy); 2470 2471 return 0; 2472 } 2473 2474 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2475 { 2476 if (cpufreq_suspended || !policy->governor) 2477 return; 2478 2479 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2480 2481 if (policy->governor->stop) 2482 policy->governor->stop(policy); 2483 } 2484 2485 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2486 { 2487 if (cpufreq_suspended || !policy->governor) 2488 return; 2489 2490 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2491 2492 if (policy->governor->limits) 2493 policy->governor->limits(policy); 2494 } 2495 2496 int cpufreq_register_governor(struct cpufreq_governor *governor) 2497 { 2498 int err; 2499 2500 if (!governor) 2501 return -EINVAL; 2502 2503 if (cpufreq_disabled()) 2504 return -ENODEV; 2505 2506 mutex_lock(&cpufreq_governor_mutex); 2507 2508 err = -EBUSY; 2509 if (!find_governor(governor->name)) { 2510 err = 0; 2511 list_add(&governor->governor_list, &cpufreq_governor_list); 2512 } 2513 2514 mutex_unlock(&cpufreq_governor_mutex); 2515 return err; 2516 } 2517 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2518 2519 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2520 { 2521 struct cpufreq_policy *policy; 2522 unsigned long flags; 2523 2524 if (!governor) 2525 return; 2526 2527 if (cpufreq_disabled()) 2528 return; 2529 2530 /* clear last_governor for all inactive policies */ 2531 read_lock_irqsave(&cpufreq_driver_lock, flags); 2532 for_each_inactive_policy(policy) { 2533 if (!strcmp(policy->last_governor, governor->name)) { 2534 policy->governor = NULL; 2535 strcpy(policy->last_governor, "\0"); 2536 } 2537 } 2538 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2539 2540 mutex_lock(&cpufreq_governor_mutex); 2541 list_del(&governor->governor_list); 2542 mutex_unlock(&cpufreq_governor_mutex); 2543 } 2544 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2545 2546 2547 /********************************************************************* 2548 * POLICY INTERFACE * 2549 *********************************************************************/ 2550 2551 /** 2552 * cpufreq_get_policy - get the current cpufreq_policy 2553 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2554 * is written 2555 * @cpu: CPU to find the policy for 2556 * 2557 * Reads the current cpufreq policy. 2558 */ 2559 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2560 { 2561 struct cpufreq_policy *cpu_policy; 2562 if (!policy) 2563 return -EINVAL; 2564 2565 cpu_policy = cpufreq_cpu_get(cpu); 2566 if (!cpu_policy) 2567 return -EINVAL; 2568 2569 memcpy(policy, cpu_policy, sizeof(*policy)); 2570 2571 cpufreq_cpu_put(cpu_policy); 2572 return 0; 2573 } 2574 EXPORT_SYMBOL(cpufreq_get_policy); 2575 2576 /** 2577 * cpufreq_set_policy - Modify cpufreq policy parameters. 2578 * @policy: Policy object to modify. 2579 * @new_gov: Policy governor pointer. 2580 * @new_pol: Policy value (for drivers with built-in governors). 2581 * 2582 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2583 * limits to be set for the policy, update @policy with the verified limits 2584 * values and either invoke the driver's ->setpolicy() callback (if present) or 2585 * carry out a governor update for @policy. That is, run the current governor's 2586 * ->limits() callback (if @new_gov points to the same object as the one in 2587 * @policy) or replace the governor for @policy with @new_gov. 2588 * 2589 * The cpuinfo part of @policy is not updated by this function. 2590 */ 2591 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2592 struct cpufreq_governor *new_gov, 2593 unsigned int new_pol) 2594 { 2595 struct cpufreq_policy_data new_data; 2596 struct cpufreq_governor *old_gov; 2597 int ret; 2598 2599 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2600 new_data.freq_table = policy->freq_table; 2601 new_data.cpu = policy->cpu; 2602 /* 2603 * PM QoS framework collects all the requests from users and provide us 2604 * the final aggregated value here. 2605 */ 2606 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2607 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2608 2609 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2610 new_data.cpu, new_data.min, new_data.max); 2611 2612 /* 2613 * Verify that the CPU speed can be set within these limits and make sure 2614 * that min <= max. 2615 */ 2616 ret = cpufreq_driver->verify(&new_data); 2617 if (ret) 2618 return ret; 2619 2620 /* 2621 * Resolve policy min/max to available frequencies. It ensures 2622 * no frequency resolution will neither overshoot the requested maximum 2623 * nor undershoot the requested minimum. 2624 */ 2625 policy->min = new_data.min; 2626 policy->max = new_data.max; 2627 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2628 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2629 trace_cpu_frequency_limits(policy); 2630 2631 policy->cached_target_freq = UINT_MAX; 2632 2633 pr_debug("new min and max freqs are %u - %u kHz\n", 2634 policy->min, policy->max); 2635 2636 if (cpufreq_driver->setpolicy) { 2637 policy->policy = new_pol; 2638 pr_debug("setting range\n"); 2639 return cpufreq_driver->setpolicy(policy); 2640 } 2641 2642 if (new_gov == policy->governor) { 2643 pr_debug("governor limits update\n"); 2644 cpufreq_governor_limits(policy); 2645 return 0; 2646 } 2647 2648 pr_debug("governor switch\n"); 2649 2650 /* save old, working values */ 2651 old_gov = policy->governor; 2652 /* end old governor */ 2653 if (old_gov) { 2654 cpufreq_stop_governor(policy); 2655 cpufreq_exit_governor(policy); 2656 } 2657 2658 /* start new governor */ 2659 policy->governor = new_gov; 2660 ret = cpufreq_init_governor(policy); 2661 if (!ret) { 2662 ret = cpufreq_start_governor(policy); 2663 if (!ret) { 2664 pr_debug("governor change\n"); 2665 sched_cpufreq_governor_change(policy, old_gov); 2666 return 0; 2667 } 2668 cpufreq_exit_governor(policy); 2669 } 2670 2671 /* new governor failed, so re-start old one */ 2672 pr_debug("starting governor %s failed\n", policy->governor->name); 2673 if (old_gov) { 2674 policy->governor = old_gov; 2675 if (cpufreq_init_governor(policy)) 2676 policy->governor = NULL; 2677 else 2678 cpufreq_start_governor(policy); 2679 } 2680 2681 return ret; 2682 } 2683 2684 /** 2685 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2686 * @cpu: CPU to re-evaluate the policy for. 2687 * 2688 * Update the current frequency for the cpufreq policy of @cpu and use 2689 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2690 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2691 * for the policy in question, among other things. 2692 */ 2693 void cpufreq_update_policy(unsigned int cpu) 2694 { 2695 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2696 2697 if (!policy) 2698 return; 2699 2700 /* 2701 * BIOS might change freq behind our back 2702 * -> ask driver for current freq and notify governors about a change 2703 */ 2704 if (cpufreq_driver->get && has_target() && 2705 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2706 goto unlock; 2707 2708 refresh_frequency_limits(policy); 2709 2710 unlock: 2711 cpufreq_cpu_release(policy); 2712 } 2713 EXPORT_SYMBOL(cpufreq_update_policy); 2714 2715 /** 2716 * cpufreq_update_limits - Update policy limits for a given CPU. 2717 * @cpu: CPU to update the policy limits for. 2718 * 2719 * Invoke the driver's ->update_limits callback if present or call 2720 * cpufreq_update_policy() for @cpu. 2721 */ 2722 void cpufreq_update_limits(unsigned int cpu) 2723 { 2724 if (cpufreq_driver->update_limits) 2725 cpufreq_driver->update_limits(cpu); 2726 else 2727 cpufreq_update_policy(cpu); 2728 } 2729 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2730 2731 /********************************************************************* 2732 * BOOST * 2733 *********************************************************************/ 2734 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2735 { 2736 int ret; 2737 2738 if (!policy->freq_table) 2739 return -ENXIO; 2740 2741 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2742 if (ret) { 2743 pr_err("%s: Policy frequency update failed\n", __func__); 2744 return ret; 2745 } 2746 2747 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2748 if (ret < 0) 2749 return ret; 2750 2751 return 0; 2752 } 2753 2754 int cpufreq_boost_trigger_state(int state) 2755 { 2756 struct cpufreq_policy *policy; 2757 unsigned long flags; 2758 int ret = 0; 2759 2760 if (cpufreq_driver->boost_enabled == state) 2761 return 0; 2762 2763 write_lock_irqsave(&cpufreq_driver_lock, flags); 2764 cpufreq_driver->boost_enabled = state; 2765 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2766 2767 cpus_read_lock(); 2768 for_each_active_policy(policy) { 2769 policy->boost_enabled = state; 2770 ret = cpufreq_driver->set_boost(policy, state); 2771 if (ret) { 2772 policy->boost_enabled = !policy->boost_enabled; 2773 goto err_reset_state; 2774 } 2775 } 2776 cpus_read_unlock(); 2777 2778 return 0; 2779 2780 err_reset_state: 2781 cpus_read_unlock(); 2782 2783 write_lock_irqsave(&cpufreq_driver_lock, flags); 2784 cpufreq_driver->boost_enabled = !state; 2785 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2786 2787 pr_err("%s: Cannot %s BOOST\n", 2788 __func__, state ? "enable" : "disable"); 2789 2790 return ret; 2791 } 2792 2793 static bool cpufreq_boost_supported(void) 2794 { 2795 return cpufreq_driver->set_boost; 2796 } 2797 2798 static int create_boost_sysfs_file(void) 2799 { 2800 int ret; 2801 2802 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2803 if (ret) 2804 pr_err("%s: cannot register global BOOST sysfs file\n", 2805 __func__); 2806 2807 return ret; 2808 } 2809 2810 static void remove_boost_sysfs_file(void) 2811 { 2812 if (cpufreq_boost_supported()) 2813 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2814 } 2815 2816 int cpufreq_enable_boost_support(void) 2817 { 2818 if (!cpufreq_driver) 2819 return -EINVAL; 2820 2821 if (cpufreq_boost_supported()) 2822 return 0; 2823 2824 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2825 2826 /* This will get removed on driver unregister */ 2827 return create_boost_sysfs_file(); 2828 } 2829 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2830 2831 int cpufreq_boost_enabled(void) 2832 { 2833 return cpufreq_driver->boost_enabled; 2834 } 2835 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2836 2837 /********************************************************************* 2838 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2839 *********************************************************************/ 2840 static enum cpuhp_state hp_online; 2841 2842 static int cpuhp_cpufreq_online(unsigned int cpu) 2843 { 2844 cpufreq_online(cpu); 2845 2846 return 0; 2847 } 2848 2849 static int cpuhp_cpufreq_offline(unsigned int cpu) 2850 { 2851 cpufreq_offline(cpu); 2852 2853 return 0; 2854 } 2855 2856 /** 2857 * cpufreq_register_driver - register a CPU Frequency driver 2858 * @driver_data: A struct cpufreq_driver containing the values# 2859 * submitted by the CPU Frequency driver. 2860 * 2861 * Registers a CPU Frequency driver to this core code. This code 2862 * returns zero on success, -EEXIST when another driver got here first 2863 * (and isn't unregistered in the meantime). 2864 * 2865 */ 2866 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2867 { 2868 unsigned long flags; 2869 int ret; 2870 2871 if (cpufreq_disabled()) 2872 return -ENODEV; 2873 2874 /* 2875 * The cpufreq core depends heavily on the availability of device 2876 * structure, make sure they are available before proceeding further. 2877 */ 2878 if (!get_cpu_device(0)) 2879 return -EPROBE_DEFER; 2880 2881 if (!driver_data || !driver_data->verify || !driver_data->init || 2882 !(driver_data->setpolicy || driver_data->target_index || 2883 driver_data->target) || 2884 (driver_data->setpolicy && (driver_data->target_index || 2885 driver_data->target)) || 2886 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2887 (!driver_data->online != !driver_data->offline) || 2888 (driver_data->adjust_perf && !driver_data->fast_switch)) 2889 return -EINVAL; 2890 2891 pr_debug("trying to register driver %s\n", driver_data->name); 2892 2893 /* Protect against concurrent CPU online/offline. */ 2894 cpus_read_lock(); 2895 2896 write_lock_irqsave(&cpufreq_driver_lock, flags); 2897 if (cpufreq_driver) { 2898 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2899 ret = -EEXIST; 2900 goto out; 2901 } 2902 cpufreq_driver = driver_data; 2903 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2904 2905 /* 2906 * Mark support for the scheduler's frequency invariance engine for 2907 * drivers that implement target(), target_index() or fast_switch(). 2908 */ 2909 if (!cpufreq_driver->setpolicy) { 2910 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2911 pr_debug("supports frequency invariance"); 2912 } 2913 2914 if (driver_data->setpolicy) 2915 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2916 2917 if (cpufreq_boost_supported()) { 2918 ret = create_boost_sysfs_file(); 2919 if (ret) 2920 goto err_null_driver; 2921 } 2922 2923 ret = subsys_interface_register(&cpufreq_interface); 2924 if (ret) 2925 goto err_boost_unreg; 2926 2927 if (unlikely(list_empty(&cpufreq_policy_list))) { 2928 /* if all ->init() calls failed, unregister */ 2929 ret = -ENODEV; 2930 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2931 driver_data->name); 2932 goto err_if_unreg; 2933 } 2934 2935 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2936 "cpufreq:online", 2937 cpuhp_cpufreq_online, 2938 cpuhp_cpufreq_offline); 2939 if (ret < 0) 2940 goto err_if_unreg; 2941 hp_online = ret; 2942 ret = 0; 2943 2944 pr_debug("driver %s up and running\n", driver_data->name); 2945 goto out; 2946 2947 err_if_unreg: 2948 subsys_interface_unregister(&cpufreq_interface); 2949 err_boost_unreg: 2950 remove_boost_sysfs_file(); 2951 err_null_driver: 2952 write_lock_irqsave(&cpufreq_driver_lock, flags); 2953 cpufreq_driver = NULL; 2954 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2955 out: 2956 cpus_read_unlock(); 2957 return ret; 2958 } 2959 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2960 2961 /* 2962 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2963 * 2964 * Unregister the current CPUFreq driver. Only call this if you have 2965 * the right to do so, i.e. if you have succeeded in initialising before! 2966 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2967 * currently not initialised. 2968 */ 2969 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 2970 { 2971 unsigned long flags; 2972 2973 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 2974 return; 2975 2976 pr_debug("unregistering driver %s\n", driver->name); 2977 2978 /* Protect against concurrent cpu hotplug */ 2979 cpus_read_lock(); 2980 subsys_interface_unregister(&cpufreq_interface); 2981 remove_boost_sysfs_file(); 2982 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2983 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2984 2985 write_lock_irqsave(&cpufreq_driver_lock, flags); 2986 2987 cpufreq_driver = NULL; 2988 2989 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2990 cpus_read_unlock(); 2991 } 2992 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2993 2994 static int __init cpufreq_core_init(void) 2995 { 2996 struct cpufreq_governor *gov = cpufreq_default_governor(); 2997 struct device *dev_root; 2998 2999 if (cpufreq_disabled()) 3000 return -ENODEV; 3001 3002 dev_root = bus_get_dev_root(&cpu_subsys); 3003 if (dev_root) { 3004 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 3005 put_device(dev_root); 3006 } 3007 BUG_ON(!cpufreq_global_kobject); 3008 3009 if (!strlen(default_governor)) 3010 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 3011 3012 return 0; 3013 } 3014 module_param(off, int, 0444); 3015 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 3016 core_initcall(cpufreq_core_init); 3017