1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 static bool suitable_policy(struct cpufreq_policy *policy, bool active) 42 { 43 return active == !policy_is_inactive(policy); 44 } 45 46 /* Finds Next Acive/Inactive policy */ 47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy, 48 bool active) 49 { 50 do { 51 policy = list_next_entry(policy, policy_list); 52 53 /* No more policies in the list */ 54 if (&policy->policy_list == &cpufreq_policy_list) 55 return NULL; 56 } while (!suitable_policy(policy, active)); 57 58 return policy; 59 } 60 61 static struct cpufreq_policy *first_policy(bool active) 62 { 63 struct cpufreq_policy *policy; 64 65 /* No policies in the list */ 66 if (list_empty(&cpufreq_policy_list)) 67 return NULL; 68 69 policy = list_first_entry(&cpufreq_policy_list, typeof(*policy), 70 policy_list); 71 72 if (!suitable_policy(policy, active)) 73 policy = next_policy(policy, active); 74 75 return policy; 76 } 77 78 /* Macros to iterate over CPU policies */ 79 #define for_each_suitable_policy(__policy, __active) \ 80 for (__policy = first_policy(__active); \ 81 __policy; \ 82 __policy = next_policy(__policy, __active)) 83 84 #define for_each_active_policy(__policy) \ 85 for_each_suitable_policy(__policy, true) 86 #define for_each_inactive_policy(__policy) \ 87 for_each_suitable_policy(__policy, false) 88 89 #define for_each_policy(__policy) \ 90 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 91 92 /* Iterate over governors */ 93 static LIST_HEAD(cpufreq_governor_list); 94 #define for_each_governor(__governor) \ 95 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 96 97 /** 98 * The "cpufreq driver" - the arch- or hardware-dependent low 99 * level driver of CPUFreq support, and its spinlock. This lock 100 * also protects the cpufreq_cpu_data array. 101 */ 102 static struct cpufreq_driver *cpufreq_driver; 103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 104 static DEFINE_RWLOCK(cpufreq_driver_lock); 105 DEFINE_MUTEX(cpufreq_governor_lock); 106 107 /* Flag to suspend/resume CPUFreq governors */ 108 static bool cpufreq_suspended; 109 110 static inline bool has_target(void) 111 { 112 return cpufreq_driver->target_index || cpufreq_driver->target; 113 } 114 115 /* internal prototypes */ 116 static int __cpufreq_governor(struct cpufreq_policy *policy, 117 unsigned int event); 118 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 119 static void handle_update(struct work_struct *work); 120 121 /** 122 * Two notifier lists: the "policy" list is involved in the 123 * validation process for a new CPU frequency policy; the 124 * "transition" list for kernel code that needs to handle 125 * changes to devices when the CPU clock speed changes. 126 * The mutex locks both lists. 127 */ 128 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 129 static struct srcu_notifier_head cpufreq_transition_notifier_list; 130 131 static bool init_cpufreq_transition_notifier_list_called; 132 static int __init init_cpufreq_transition_notifier_list(void) 133 { 134 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 135 init_cpufreq_transition_notifier_list_called = true; 136 return 0; 137 } 138 pure_initcall(init_cpufreq_transition_notifier_list); 139 140 static int off __read_mostly; 141 static int cpufreq_disabled(void) 142 { 143 return off; 144 } 145 void disable_cpufreq(void) 146 { 147 off = 1; 148 } 149 static DEFINE_MUTEX(cpufreq_governor_mutex); 150 151 bool have_governor_per_policy(void) 152 { 153 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 154 } 155 EXPORT_SYMBOL_GPL(have_governor_per_policy); 156 157 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 158 { 159 if (have_governor_per_policy()) 160 return &policy->kobj; 161 else 162 return cpufreq_global_kobject; 163 } 164 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 165 166 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu) 167 { 168 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 169 170 return policy && !policy_is_inactive(policy) ? 171 policy->freq_table : NULL; 172 } 173 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table); 174 175 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 176 { 177 u64 idle_time; 178 u64 cur_wall_time; 179 u64 busy_time; 180 181 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 182 183 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 184 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 185 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 186 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 187 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 188 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 189 190 idle_time = cur_wall_time - busy_time; 191 if (wall) 192 *wall = cputime_to_usecs(cur_wall_time); 193 194 return cputime_to_usecs(idle_time); 195 } 196 197 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 198 { 199 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 200 201 if (idle_time == -1ULL) 202 return get_cpu_idle_time_jiffy(cpu, wall); 203 else if (!io_busy) 204 idle_time += get_cpu_iowait_time_us(cpu, wall); 205 206 return idle_time; 207 } 208 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 209 210 /* 211 * This is a generic cpufreq init() routine which can be used by cpufreq 212 * drivers of SMP systems. It will do following: 213 * - validate & show freq table passed 214 * - set policies transition latency 215 * - policy->cpus with all possible CPUs 216 */ 217 int cpufreq_generic_init(struct cpufreq_policy *policy, 218 struct cpufreq_frequency_table *table, 219 unsigned int transition_latency) 220 { 221 int ret; 222 223 ret = cpufreq_table_validate_and_show(policy, table); 224 if (ret) { 225 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 226 return ret; 227 } 228 229 policy->cpuinfo.transition_latency = transition_latency; 230 231 /* 232 * The driver only supports the SMP configuration where all processors 233 * share the clock and voltage and clock. 234 */ 235 cpumask_setall(policy->cpus); 236 237 return 0; 238 } 239 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 240 241 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 242 { 243 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 244 245 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 246 } 247 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 248 249 unsigned int cpufreq_generic_get(unsigned int cpu) 250 { 251 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 252 253 if (!policy || IS_ERR(policy->clk)) { 254 pr_err("%s: No %s associated to cpu: %d\n", 255 __func__, policy ? "clk" : "policy", cpu); 256 return 0; 257 } 258 259 return clk_get_rate(policy->clk) / 1000; 260 } 261 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 262 263 /** 264 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 265 * 266 * @cpu: cpu to find policy for. 267 * 268 * This returns policy for 'cpu', returns NULL if it doesn't exist. 269 * It also increments the kobject reference count to mark it busy and so would 270 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 271 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 272 * freed as that depends on the kobj count. 273 * 274 * Return: A valid policy on success, otherwise NULL on failure. 275 */ 276 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 277 { 278 struct cpufreq_policy *policy = NULL; 279 unsigned long flags; 280 281 if (WARN_ON(cpu >= nr_cpu_ids)) 282 return NULL; 283 284 /* get the cpufreq driver */ 285 read_lock_irqsave(&cpufreq_driver_lock, flags); 286 287 if (cpufreq_driver) { 288 /* get the CPU */ 289 policy = cpufreq_cpu_get_raw(cpu); 290 if (policy) 291 kobject_get(&policy->kobj); 292 } 293 294 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 295 296 return policy; 297 } 298 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 299 300 /** 301 * cpufreq_cpu_put: Decrements the usage count of a policy 302 * 303 * @policy: policy earlier returned by cpufreq_cpu_get(). 304 * 305 * This decrements the kobject reference count incremented earlier by calling 306 * cpufreq_cpu_get(). 307 */ 308 void cpufreq_cpu_put(struct cpufreq_policy *policy) 309 { 310 kobject_put(&policy->kobj); 311 } 312 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 313 314 /********************************************************************* 315 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 316 *********************************************************************/ 317 318 /** 319 * adjust_jiffies - adjust the system "loops_per_jiffy" 320 * 321 * This function alters the system "loops_per_jiffy" for the clock 322 * speed change. Note that loops_per_jiffy cannot be updated on SMP 323 * systems as each CPU might be scaled differently. So, use the arch 324 * per-CPU loops_per_jiffy value wherever possible. 325 */ 326 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 327 { 328 #ifndef CONFIG_SMP 329 static unsigned long l_p_j_ref; 330 static unsigned int l_p_j_ref_freq; 331 332 if (ci->flags & CPUFREQ_CONST_LOOPS) 333 return; 334 335 if (!l_p_j_ref_freq) { 336 l_p_j_ref = loops_per_jiffy; 337 l_p_j_ref_freq = ci->old; 338 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 339 l_p_j_ref, l_p_j_ref_freq); 340 } 341 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 342 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 343 ci->new); 344 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 345 loops_per_jiffy, ci->new); 346 } 347 #endif 348 } 349 350 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 351 struct cpufreq_freqs *freqs, unsigned int state) 352 { 353 BUG_ON(irqs_disabled()); 354 355 if (cpufreq_disabled()) 356 return; 357 358 freqs->flags = cpufreq_driver->flags; 359 pr_debug("notification %u of frequency transition to %u kHz\n", 360 state, freqs->new); 361 362 switch (state) { 363 364 case CPUFREQ_PRECHANGE: 365 /* detect if the driver reported a value as "old frequency" 366 * which is not equal to what the cpufreq core thinks is 367 * "old frequency". 368 */ 369 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 370 if ((policy) && (policy->cpu == freqs->cpu) && 371 (policy->cur) && (policy->cur != freqs->old)) { 372 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 373 freqs->old, policy->cur); 374 freqs->old = policy->cur; 375 } 376 } 377 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 378 CPUFREQ_PRECHANGE, freqs); 379 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 380 break; 381 382 case CPUFREQ_POSTCHANGE: 383 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 384 pr_debug("FREQ: %lu - CPU: %lu\n", 385 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 386 trace_cpu_frequency(freqs->new, freqs->cpu); 387 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 388 CPUFREQ_POSTCHANGE, freqs); 389 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 390 policy->cur = freqs->new; 391 break; 392 } 393 } 394 395 /** 396 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 397 * on frequency transition. 398 * 399 * This function calls the transition notifiers and the "adjust_jiffies" 400 * function. It is called twice on all CPU frequency changes that have 401 * external effects. 402 */ 403 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 404 struct cpufreq_freqs *freqs, unsigned int state) 405 { 406 for_each_cpu(freqs->cpu, policy->cpus) 407 __cpufreq_notify_transition(policy, freqs, state); 408 } 409 410 /* Do post notifications when there are chances that transition has failed */ 411 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 412 struct cpufreq_freqs *freqs, int transition_failed) 413 { 414 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 415 if (!transition_failed) 416 return; 417 418 swap(freqs->old, freqs->new); 419 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 420 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 421 } 422 423 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 424 struct cpufreq_freqs *freqs) 425 { 426 427 /* 428 * Catch double invocations of _begin() which lead to self-deadlock. 429 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 430 * doesn't invoke _begin() on their behalf, and hence the chances of 431 * double invocations are very low. Moreover, there are scenarios 432 * where these checks can emit false-positive warnings in these 433 * drivers; so we avoid that by skipping them altogether. 434 */ 435 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 436 && current == policy->transition_task); 437 438 wait: 439 wait_event(policy->transition_wait, !policy->transition_ongoing); 440 441 spin_lock(&policy->transition_lock); 442 443 if (unlikely(policy->transition_ongoing)) { 444 spin_unlock(&policy->transition_lock); 445 goto wait; 446 } 447 448 policy->transition_ongoing = true; 449 policy->transition_task = current; 450 451 spin_unlock(&policy->transition_lock); 452 453 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 454 } 455 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 456 457 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 458 struct cpufreq_freqs *freqs, int transition_failed) 459 { 460 if (unlikely(WARN_ON(!policy->transition_ongoing))) 461 return; 462 463 cpufreq_notify_post_transition(policy, freqs, transition_failed); 464 465 policy->transition_ongoing = false; 466 policy->transition_task = NULL; 467 468 wake_up(&policy->transition_wait); 469 } 470 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 471 472 473 /********************************************************************* 474 * SYSFS INTERFACE * 475 *********************************************************************/ 476 static ssize_t show_boost(struct kobject *kobj, 477 struct attribute *attr, char *buf) 478 { 479 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 480 } 481 482 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 483 const char *buf, size_t count) 484 { 485 int ret, enable; 486 487 ret = sscanf(buf, "%d", &enable); 488 if (ret != 1 || enable < 0 || enable > 1) 489 return -EINVAL; 490 491 if (cpufreq_boost_trigger_state(enable)) { 492 pr_err("%s: Cannot %s BOOST!\n", 493 __func__, enable ? "enable" : "disable"); 494 return -EINVAL; 495 } 496 497 pr_debug("%s: cpufreq BOOST %s\n", 498 __func__, enable ? "enabled" : "disabled"); 499 500 return count; 501 } 502 define_one_global_rw(boost); 503 504 static struct cpufreq_governor *find_governor(const char *str_governor) 505 { 506 struct cpufreq_governor *t; 507 508 for_each_governor(t) 509 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 510 return t; 511 512 return NULL; 513 } 514 515 /** 516 * cpufreq_parse_governor - parse a governor string 517 */ 518 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 519 struct cpufreq_governor **governor) 520 { 521 int err = -EINVAL; 522 523 if (cpufreq_driver->setpolicy) { 524 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 525 *policy = CPUFREQ_POLICY_PERFORMANCE; 526 err = 0; 527 } else if (!strncasecmp(str_governor, "powersave", 528 CPUFREQ_NAME_LEN)) { 529 *policy = CPUFREQ_POLICY_POWERSAVE; 530 err = 0; 531 } 532 } else { 533 struct cpufreq_governor *t; 534 535 mutex_lock(&cpufreq_governor_mutex); 536 537 t = find_governor(str_governor); 538 539 if (t == NULL) { 540 int ret; 541 542 mutex_unlock(&cpufreq_governor_mutex); 543 ret = request_module("cpufreq_%s", str_governor); 544 mutex_lock(&cpufreq_governor_mutex); 545 546 if (ret == 0) 547 t = find_governor(str_governor); 548 } 549 550 if (t != NULL) { 551 *governor = t; 552 err = 0; 553 } 554 555 mutex_unlock(&cpufreq_governor_mutex); 556 } 557 return err; 558 } 559 560 /** 561 * cpufreq_per_cpu_attr_read() / show_##file_name() - 562 * print out cpufreq information 563 * 564 * Write out information from cpufreq_driver->policy[cpu]; object must be 565 * "unsigned int". 566 */ 567 568 #define show_one(file_name, object) \ 569 static ssize_t show_##file_name \ 570 (struct cpufreq_policy *policy, char *buf) \ 571 { \ 572 return sprintf(buf, "%u\n", policy->object); \ 573 } 574 575 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 576 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 577 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 578 show_one(scaling_min_freq, min); 579 show_one(scaling_max_freq, max); 580 581 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 582 { 583 ssize_t ret; 584 585 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 586 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 587 else 588 ret = sprintf(buf, "%u\n", policy->cur); 589 return ret; 590 } 591 592 static int cpufreq_set_policy(struct cpufreq_policy *policy, 593 struct cpufreq_policy *new_policy); 594 595 /** 596 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 597 */ 598 #define store_one(file_name, object) \ 599 static ssize_t store_##file_name \ 600 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 601 { \ 602 int ret, temp; \ 603 struct cpufreq_policy new_policy; \ 604 \ 605 memcpy(&new_policy, policy, sizeof(*policy)); \ 606 \ 607 ret = sscanf(buf, "%u", &new_policy.object); \ 608 if (ret != 1) \ 609 return -EINVAL; \ 610 \ 611 temp = new_policy.object; \ 612 ret = cpufreq_set_policy(policy, &new_policy); \ 613 if (!ret) \ 614 policy->user_policy.object = temp; \ 615 \ 616 return ret ? ret : count; \ 617 } 618 619 store_one(scaling_min_freq, min); 620 store_one(scaling_max_freq, max); 621 622 /** 623 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 624 */ 625 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 626 char *buf) 627 { 628 unsigned int cur_freq = __cpufreq_get(policy); 629 if (!cur_freq) 630 return sprintf(buf, "<unknown>"); 631 return sprintf(buf, "%u\n", cur_freq); 632 } 633 634 /** 635 * show_scaling_governor - show the current policy for the specified CPU 636 */ 637 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 638 { 639 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 640 return sprintf(buf, "powersave\n"); 641 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 642 return sprintf(buf, "performance\n"); 643 else if (policy->governor) 644 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 645 policy->governor->name); 646 return -EINVAL; 647 } 648 649 /** 650 * store_scaling_governor - store policy for the specified CPU 651 */ 652 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 653 const char *buf, size_t count) 654 { 655 int ret; 656 char str_governor[16]; 657 struct cpufreq_policy new_policy; 658 659 memcpy(&new_policy, policy, sizeof(*policy)); 660 661 ret = sscanf(buf, "%15s", str_governor); 662 if (ret != 1) 663 return -EINVAL; 664 665 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 666 &new_policy.governor)) 667 return -EINVAL; 668 669 ret = cpufreq_set_policy(policy, &new_policy); 670 return ret ? ret : count; 671 } 672 673 /** 674 * show_scaling_driver - show the cpufreq driver currently loaded 675 */ 676 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 677 { 678 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 679 } 680 681 /** 682 * show_scaling_available_governors - show the available CPUfreq governors 683 */ 684 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 685 char *buf) 686 { 687 ssize_t i = 0; 688 struct cpufreq_governor *t; 689 690 if (!has_target()) { 691 i += sprintf(buf, "performance powersave"); 692 goto out; 693 } 694 695 for_each_governor(t) { 696 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 697 - (CPUFREQ_NAME_LEN + 2))) 698 goto out; 699 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 700 } 701 out: 702 i += sprintf(&buf[i], "\n"); 703 return i; 704 } 705 706 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 707 { 708 ssize_t i = 0; 709 unsigned int cpu; 710 711 for_each_cpu(cpu, mask) { 712 if (i) 713 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 714 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 715 if (i >= (PAGE_SIZE - 5)) 716 break; 717 } 718 i += sprintf(&buf[i], "\n"); 719 return i; 720 } 721 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 722 723 /** 724 * show_related_cpus - show the CPUs affected by each transition even if 725 * hw coordination is in use 726 */ 727 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 728 { 729 return cpufreq_show_cpus(policy->related_cpus, buf); 730 } 731 732 /** 733 * show_affected_cpus - show the CPUs affected by each transition 734 */ 735 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 736 { 737 return cpufreq_show_cpus(policy->cpus, buf); 738 } 739 740 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 741 const char *buf, size_t count) 742 { 743 unsigned int freq = 0; 744 unsigned int ret; 745 746 if (!policy->governor || !policy->governor->store_setspeed) 747 return -EINVAL; 748 749 ret = sscanf(buf, "%u", &freq); 750 if (ret != 1) 751 return -EINVAL; 752 753 policy->governor->store_setspeed(policy, freq); 754 755 return count; 756 } 757 758 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 759 { 760 if (!policy->governor || !policy->governor->show_setspeed) 761 return sprintf(buf, "<unsupported>\n"); 762 763 return policy->governor->show_setspeed(policy, buf); 764 } 765 766 /** 767 * show_bios_limit - show the current cpufreq HW/BIOS limitation 768 */ 769 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 770 { 771 unsigned int limit; 772 int ret; 773 if (cpufreq_driver->bios_limit) { 774 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 775 if (!ret) 776 return sprintf(buf, "%u\n", limit); 777 } 778 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 779 } 780 781 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 782 cpufreq_freq_attr_ro(cpuinfo_min_freq); 783 cpufreq_freq_attr_ro(cpuinfo_max_freq); 784 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 785 cpufreq_freq_attr_ro(scaling_available_governors); 786 cpufreq_freq_attr_ro(scaling_driver); 787 cpufreq_freq_attr_ro(scaling_cur_freq); 788 cpufreq_freq_attr_ro(bios_limit); 789 cpufreq_freq_attr_ro(related_cpus); 790 cpufreq_freq_attr_ro(affected_cpus); 791 cpufreq_freq_attr_rw(scaling_min_freq); 792 cpufreq_freq_attr_rw(scaling_max_freq); 793 cpufreq_freq_attr_rw(scaling_governor); 794 cpufreq_freq_attr_rw(scaling_setspeed); 795 796 static struct attribute *default_attrs[] = { 797 &cpuinfo_min_freq.attr, 798 &cpuinfo_max_freq.attr, 799 &cpuinfo_transition_latency.attr, 800 &scaling_min_freq.attr, 801 &scaling_max_freq.attr, 802 &affected_cpus.attr, 803 &related_cpus.attr, 804 &scaling_governor.attr, 805 &scaling_driver.attr, 806 &scaling_available_governors.attr, 807 &scaling_setspeed.attr, 808 NULL 809 }; 810 811 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 812 #define to_attr(a) container_of(a, struct freq_attr, attr) 813 814 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 815 { 816 struct cpufreq_policy *policy = to_policy(kobj); 817 struct freq_attr *fattr = to_attr(attr); 818 ssize_t ret; 819 820 down_read(&policy->rwsem); 821 822 if (fattr->show) 823 ret = fattr->show(policy, buf); 824 else 825 ret = -EIO; 826 827 up_read(&policy->rwsem); 828 829 return ret; 830 } 831 832 static ssize_t store(struct kobject *kobj, struct attribute *attr, 833 const char *buf, size_t count) 834 { 835 struct cpufreq_policy *policy = to_policy(kobj); 836 struct freq_attr *fattr = to_attr(attr); 837 ssize_t ret = -EINVAL; 838 839 get_online_cpus(); 840 841 if (!cpu_online(policy->cpu)) 842 goto unlock; 843 844 down_write(&policy->rwsem); 845 846 /* Updating inactive policies is invalid, so avoid doing that. */ 847 if (unlikely(policy_is_inactive(policy))) { 848 ret = -EBUSY; 849 goto unlock_policy_rwsem; 850 } 851 852 if (fattr->store) 853 ret = fattr->store(policy, buf, count); 854 else 855 ret = -EIO; 856 857 unlock_policy_rwsem: 858 up_write(&policy->rwsem); 859 unlock: 860 put_online_cpus(); 861 862 return ret; 863 } 864 865 static void cpufreq_sysfs_release(struct kobject *kobj) 866 { 867 struct cpufreq_policy *policy = to_policy(kobj); 868 pr_debug("last reference is dropped\n"); 869 complete(&policy->kobj_unregister); 870 } 871 872 static const struct sysfs_ops sysfs_ops = { 873 .show = show, 874 .store = store, 875 }; 876 877 static struct kobj_type ktype_cpufreq = { 878 .sysfs_ops = &sysfs_ops, 879 .default_attrs = default_attrs, 880 .release = cpufreq_sysfs_release, 881 }; 882 883 struct kobject *cpufreq_global_kobject; 884 EXPORT_SYMBOL(cpufreq_global_kobject); 885 886 static int cpufreq_global_kobject_usage; 887 888 int cpufreq_get_global_kobject(void) 889 { 890 if (!cpufreq_global_kobject_usage++) 891 return kobject_add(cpufreq_global_kobject, 892 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 893 894 return 0; 895 } 896 EXPORT_SYMBOL(cpufreq_get_global_kobject); 897 898 void cpufreq_put_global_kobject(void) 899 { 900 if (!--cpufreq_global_kobject_usage) 901 kobject_del(cpufreq_global_kobject); 902 } 903 EXPORT_SYMBOL(cpufreq_put_global_kobject); 904 905 int cpufreq_sysfs_create_file(const struct attribute *attr) 906 { 907 int ret = cpufreq_get_global_kobject(); 908 909 if (!ret) { 910 ret = sysfs_create_file(cpufreq_global_kobject, attr); 911 if (ret) 912 cpufreq_put_global_kobject(); 913 } 914 915 return ret; 916 } 917 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 918 919 void cpufreq_sysfs_remove_file(const struct attribute *attr) 920 { 921 sysfs_remove_file(cpufreq_global_kobject, attr); 922 cpufreq_put_global_kobject(); 923 } 924 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 925 926 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 927 { 928 struct device *cpu_dev; 929 930 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu); 931 932 if (!policy) 933 return 0; 934 935 cpu_dev = get_cpu_device(cpu); 936 if (WARN_ON(!cpu_dev)) 937 return 0; 938 939 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq"); 940 } 941 942 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 943 { 944 struct device *cpu_dev; 945 946 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu); 947 948 cpu_dev = get_cpu_device(cpu); 949 if (WARN_ON(!cpu_dev)) 950 return; 951 952 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 953 } 954 955 /* Add/remove symlinks for all related CPUs */ 956 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 957 { 958 unsigned int j; 959 int ret = 0; 960 961 /* Some related CPUs might not be present (physically hotplugged) */ 962 for_each_cpu(j, policy->real_cpus) { 963 if (j == policy->kobj_cpu) 964 continue; 965 966 ret = add_cpu_dev_symlink(policy, j); 967 if (ret) 968 break; 969 } 970 971 return ret; 972 } 973 974 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy) 975 { 976 unsigned int j; 977 978 /* Some related CPUs might not be present (physically hotplugged) */ 979 for_each_cpu(j, policy->real_cpus) { 980 if (j == policy->kobj_cpu) 981 continue; 982 983 remove_cpu_dev_symlink(policy, j); 984 } 985 } 986 987 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 988 { 989 struct freq_attr **drv_attr; 990 int ret = 0; 991 992 /* set up files for this cpu device */ 993 drv_attr = cpufreq_driver->attr; 994 while (drv_attr && *drv_attr) { 995 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 996 if (ret) 997 return ret; 998 drv_attr++; 999 } 1000 if (cpufreq_driver->get) { 1001 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1002 if (ret) 1003 return ret; 1004 } 1005 1006 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1007 if (ret) 1008 return ret; 1009 1010 if (cpufreq_driver->bios_limit) { 1011 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1012 if (ret) 1013 return ret; 1014 } 1015 1016 return cpufreq_add_dev_symlink(policy); 1017 } 1018 1019 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1020 { 1021 struct cpufreq_governor *gov = NULL; 1022 struct cpufreq_policy new_policy; 1023 1024 memcpy(&new_policy, policy, sizeof(*policy)); 1025 1026 /* Update governor of new_policy to the governor used before hotplug */ 1027 gov = find_governor(policy->last_governor); 1028 if (gov) 1029 pr_debug("Restoring governor %s for cpu %d\n", 1030 policy->governor->name, policy->cpu); 1031 else 1032 gov = CPUFREQ_DEFAULT_GOVERNOR; 1033 1034 new_policy.governor = gov; 1035 1036 /* Use the default policy if its valid. */ 1037 if (cpufreq_driver->setpolicy) 1038 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL); 1039 1040 /* set default policy */ 1041 return cpufreq_set_policy(policy, &new_policy); 1042 } 1043 1044 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1045 { 1046 int ret = 0; 1047 1048 /* Has this CPU been taken care of already? */ 1049 if (cpumask_test_cpu(cpu, policy->cpus)) 1050 return 0; 1051 1052 if (has_target()) { 1053 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1054 if (ret) { 1055 pr_err("%s: Failed to stop governor\n", __func__); 1056 return ret; 1057 } 1058 } 1059 1060 down_write(&policy->rwsem); 1061 cpumask_set_cpu(cpu, policy->cpus); 1062 up_write(&policy->rwsem); 1063 1064 if (has_target()) { 1065 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1066 if (!ret) 1067 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1068 1069 if (ret) { 1070 pr_err("%s: Failed to start governor\n", __func__); 1071 return ret; 1072 } 1073 } 1074 1075 return 0; 1076 } 1077 1078 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1079 { 1080 struct device *dev = get_cpu_device(cpu); 1081 struct cpufreq_policy *policy; 1082 int ret; 1083 1084 if (WARN_ON(!dev)) 1085 return NULL; 1086 1087 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1088 if (!policy) 1089 return NULL; 1090 1091 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1092 goto err_free_policy; 1093 1094 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1095 goto err_free_cpumask; 1096 1097 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1098 goto err_free_rcpumask; 1099 1100 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &dev->kobj, 1101 "cpufreq"); 1102 if (ret) { 1103 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1104 goto err_free_real_cpus; 1105 } 1106 1107 INIT_LIST_HEAD(&policy->policy_list); 1108 init_rwsem(&policy->rwsem); 1109 spin_lock_init(&policy->transition_lock); 1110 init_waitqueue_head(&policy->transition_wait); 1111 init_completion(&policy->kobj_unregister); 1112 INIT_WORK(&policy->update, handle_update); 1113 1114 policy->cpu = cpu; 1115 1116 /* Set this once on allocation */ 1117 policy->kobj_cpu = cpu; 1118 1119 return policy; 1120 1121 err_free_real_cpus: 1122 free_cpumask_var(policy->real_cpus); 1123 err_free_rcpumask: 1124 free_cpumask_var(policy->related_cpus); 1125 err_free_cpumask: 1126 free_cpumask_var(policy->cpus); 1127 err_free_policy: 1128 kfree(policy); 1129 1130 return NULL; 1131 } 1132 1133 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify) 1134 { 1135 struct kobject *kobj; 1136 struct completion *cmp; 1137 1138 if (notify) 1139 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1140 CPUFREQ_REMOVE_POLICY, policy); 1141 1142 down_write(&policy->rwsem); 1143 cpufreq_remove_dev_symlink(policy); 1144 kobj = &policy->kobj; 1145 cmp = &policy->kobj_unregister; 1146 up_write(&policy->rwsem); 1147 kobject_put(kobj); 1148 1149 /* 1150 * We need to make sure that the underlying kobj is 1151 * actually not referenced anymore by anybody before we 1152 * proceed with unloading. 1153 */ 1154 pr_debug("waiting for dropping of refcount\n"); 1155 wait_for_completion(cmp); 1156 pr_debug("wait complete\n"); 1157 } 1158 1159 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify) 1160 { 1161 unsigned long flags; 1162 int cpu; 1163 1164 /* Remove policy from list */ 1165 write_lock_irqsave(&cpufreq_driver_lock, flags); 1166 list_del(&policy->policy_list); 1167 1168 for_each_cpu(cpu, policy->related_cpus) 1169 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1170 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1171 1172 cpufreq_policy_put_kobj(policy, notify); 1173 free_cpumask_var(policy->real_cpus); 1174 free_cpumask_var(policy->related_cpus); 1175 free_cpumask_var(policy->cpus); 1176 kfree(policy); 1177 } 1178 1179 static int cpufreq_online(unsigned int cpu) 1180 { 1181 struct cpufreq_policy *policy; 1182 bool new_policy; 1183 unsigned long flags; 1184 unsigned int j; 1185 int ret; 1186 1187 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1188 1189 /* Check if this CPU already has a policy to manage it */ 1190 policy = per_cpu(cpufreq_cpu_data, cpu); 1191 if (policy) { 1192 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1193 if (!policy_is_inactive(policy)) 1194 return cpufreq_add_policy_cpu(policy, cpu); 1195 1196 /* This is the only online CPU for the policy. Start over. */ 1197 new_policy = false; 1198 down_write(&policy->rwsem); 1199 policy->cpu = cpu; 1200 policy->governor = NULL; 1201 up_write(&policy->rwsem); 1202 } else { 1203 new_policy = true; 1204 policy = cpufreq_policy_alloc(cpu); 1205 if (!policy) 1206 return -ENOMEM; 1207 } 1208 1209 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1210 1211 /* call driver. From then on the cpufreq must be able 1212 * to accept all calls to ->verify and ->setpolicy for this CPU 1213 */ 1214 ret = cpufreq_driver->init(policy); 1215 if (ret) { 1216 pr_debug("initialization failed\n"); 1217 goto out_free_policy; 1218 } 1219 1220 down_write(&policy->rwsem); 1221 1222 if (new_policy) { 1223 /* related_cpus should at least include policy->cpus. */ 1224 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1225 /* Remember CPUs present at the policy creation time. */ 1226 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask); 1227 } 1228 1229 /* 1230 * affected cpus must always be the one, which are online. We aren't 1231 * managing offline cpus here. 1232 */ 1233 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1234 1235 if (new_policy) { 1236 policy->user_policy.min = policy->min; 1237 policy->user_policy.max = policy->max; 1238 1239 write_lock_irqsave(&cpufreq_driver_lock, flags); 1240 for_each_cpu(j, policy->related_cpus) 1241 per_cpu(cpufreq_cpu_data, j) = policy; 1242 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1243 } 1244 1245 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1246 policy->cur = cpufreq_driver->get(policy->cpu); 1247 if (!policy->cur) { 1248 pr_err("%s: ->get() failed\n", __func__); 1249 goto out_exit_policy; 1250 } 1251 } 1252 1253 /* 1254 * Sometimes boot loaders set CPU frequency to a value outside of 1255 * frequency table present with cpufreq core. In such cases CPU might be 1256 * unstable if it has to run on that frequency for long duration of time 1257 * and so its better to set it to a frequency which is specified in 1258 * freq-table. This also makes cpufreq stats inconsistent as 1259 * cpufreq-stats would fail to register because current frequency of CPU 1260 * isn't found in freq-table. 1261 * 1262 * Because we don't want this change to effect boot process badly, we go 1263 * for the next freq which is >= policy->cur ('cur' must be set by now, 1264 * otherwise we will end up setting freq to lowest of the table as 'cur' 1265 * is initialized to zero). 1266 * 1267 * We are passing target-freq as "policy->cur - 1" otherwise 1268 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1269 * equal to target-freq. 1270 */ 1271 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1272 && has_target()) { 1273 /* Are we running at unknown frequency ? */ 1274 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1275 if (ret == -EINVAL) { 1276 /* Warn user and fix it */ 1277 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1278 __func__, policy->cpu, policy->cur); 1279 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1280 CPUFREQ_RELATION_L); 1281 1282 /* 1283 * Reaching here after boot in a few seconds may not 1284 * mean that system will remain stable at "unknown" 1285 * frequency for longer duration. Hence, a BUG_ON(). 1286 */ 1287 BUG_ON(ret); 1288 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1289 __func__, policy->cpu, policy->cur); 1290 } 1291 } 1292 1293 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1294 CPUFREQ_START, policy); 1295 1296 if (new_policy) { 1297 ret = cpufreq_add_dev_interface(policy); 1298 if (ret) 1299 goto out_exit_policy; 1300 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1301 CPUFREQ_CREATE_POLICY, policy); 1302 1303 write_lock_irqsave(&cpufreq_driver_lock, flags); 1304 list_add(&policy->policy_list, &cpufreq_policy_list); 1305 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1306 } 1307 1308 ret = cpufreq_init_policy(policy); 1309 if (ret) { 1310 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1311 __func__, cpu, ret); 1312 /* cpufreq_policy_free() will notify based on this */ 1313 new_policy = false; 1314 goto out_exit_policy; 1315 } 1316 1317 up_write(&policy->rwsem); 1318 1319 kobject_uevent(&policy->kobj, KOBJ_ADD); 1320 1321 /* Callback for handling stuff after policy is ready */ 1322 if (cpufreq_driver->ready) 1323 cpufreq_driver->ready(policy); 1324 1325 pr_debug("initialization complete\n"); 1326 1327 return 0; 1328 1329 out_exit_policy: 1330 up_write(&policy->rwsem); 1331 1332 if (cpufreq_driver->exit) 1333 cpufreq_driver->exit(policy); 1334 out_free_policy: 1335 cpufreq_policy_free(policy, !new_policy); 1336 return ret; 1337 } 1338 1339 /** 1340 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1341 * @dev: CPU device. 1342 * @sif: Subsystem interface structure pointer (not used) 1343 */ 1344 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1345 { 1346 unsigned cpu = dev->id; 1347 int ret; 1348 1349 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1350 1351 if (cpu_online(cpu)) { 1352 ret = cpufreq_online(cpu); 1353 } else { 1354 /* 1355 * A hotplug notifier will follow and we will handle it as CPU 1356 * online then. For now, just create the sysfs link, unless 1357 * there is no policy or the link is already present. 1358 */ 1359 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1360 1361 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus) 1362 ? add_cpu_dev_symlink(policy, cpu) : 0; 1363 } 1364 1365 return ret; 1366 } 1367 1368 static void cpufreq_offline_prepare(unsigned int cpu) 1369 { 1370 struct cpufreq_policy *policy; 1371 1372 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1373 1374 policy = cpufreq_cpu_get_raw(cpu); 1375 if (!policy) { 1376 pr_debug("%s: No cpu_data found\n", __func__); 1377 return; 1378 } 1379 1380 if (has_target()) { 1381 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1382 if (ret) 1383 pr_err("%s: Failed to stop governor\n", __func__); 1384 } 1385 1386 down_write(&policy->rwsem); 1387 cpumask_clear_cpu(cpu, policy->cpus); 1388 1389 if (policy_is_inactive(policy)) { 1390 if (has_target()) 1391 strncpy(policy->last_governor, policy->governor->name, 1392 CPUFREQ_NAME_LEN); 1393 } else if (cpu == policy->cpu) { 1394 /* Nominate new CPU */ 1395 policy->cpu = cpumask_any(policy->cpus); 1396 } 1397 up_write(&policy->rwsem); 1398 1399 /* Start governor again for active policy */ 1400 if (!policy_is_inactive(policy)) { 1401 if (has_target()) { 1402 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1403 if (!ret) 1404 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1405 1406 if (ret) 1407 pr_err("%s: Failed to start governor\n", __func__); 1408 } 1409 } else if (cpufreq_driver->stop_cpu) { 1410 cpufreq_driver->stop_cpu(policy); 1411 } 1412 } 1413 1414 static void cpufreq_offline_finish(unsigned int cpu) 1415 { 1416 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1417 1418 if (!policy) { 1419 pr_debug("%s: No cpu_data found\n", __func__); 1420 return; 1421 } 1422 1423 /* Only proceed for inactive policies */ 1424 if (!policy_is_inactive(policy)) 1425 return; 1426 1427 /* If cpu is last user of policy, free policy */ 1428 if (has_target()) { 1429 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 1430 if (ret) 1431 pr_err("%s: Failed to exit governor\n", __func__); 1432 } 1433 1434 /* 1435 * Perform the ->exit() even during light-weight tear-down, 1436 * since this is a core component, and is essential for the 1437 * subsequent light-weight ->init() to succeed. 1438 */ 1439 if (cpufreq_driver->exit) 1440 cpufreq_driver->exit(policy); 1441 } 1442 1443 /** 1444 * cpufreq_remove_dev - remove a CPU device 1445 * 1446 * Removes the cpufreq interface for a CPU device. 1447 */ 1448 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1449 { 1450 unsigned int cpu = dev->id; 1451 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1452 1453 if (!policy) 1454 return; 1455 1456 if (cpu_online(cpu)) { 1457 cpufreq_offline_prepare(cpu); 1458 cpufreq_offline_finish(cpu); 1459 } 1460 1461 cpumask_clear_cpu(cpu, policy->real_cpus); 1462 1463 if (cpumask_empty(policy->real_cpus)) { 1464 cpufreq_policy_free(policy, true); 1465 return; 1466 } 1467 1468 if (cpu != policy->kobj_cpu) { 1469 remove_cpu_dev_symlink(policy, cpu); 1470 } else { 1471 /* 1472 * The CPU owning the policy object is going away. Move it to 1473 * another suitable CPU. 1474 */ 1475 unsigned int new_cpu = cpumask_first(policy->real_cpus); 1476 struct device *new_dev = get_cpu_device(new_cpu); 1477 1478 dev_dbg(dev, "%s: Moving policy object to CPU%u\n", __func__, new_cpu); 1479 1480 sysfs_remove_link(&new_dev->kobj, "cpufreq"); 1481 policy->kobj_cpu = new_cpu; 1482 WARN_ON(kobject_move(&policy->kobj, &new_dev->kobj)); 1483 } 1484 } 1485 1486 static void handle_update(struct work_struct *work) 1487 { 1488 struct cpufreq_policy *policy = 1489 container_of(work, struct cpufreq_policy, update); 1490 unsigned int cpu = policy->cpu; 1491 pr_debug("handle_update for cpu %u called\n", cpu); 1492 cpufreq_update_policy(cpu); 1493 } 1494 1495 /** 1496 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1497 * in deep trouble. 1498 * @policy: policy managing CPUs 1499 * @new_freq: CPU frequency the CPU actually runs at 1500 * 1501 * We adjust to current frequency first, and need to clean up later. 1502 * So either call to cpufreq_update_policy() or schedule handle_update()). 1503 */ 1504 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1505 unsigned int new_freq) 1506 { 1507 struct cpufreq_freqs freqs; 1508 1509 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1510 policy->cur, new_freq); 1511 1512 freqs.old = policy->cur; 1513 freqs.new = new_freq; 1514 1515 cpufreq_freq_transition_begin(policy, &freqs); 1516 cpufreq_freq_transition_end(policy, &freqs, 0); 1517 } 1518 1519 /** 1520 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1521 * @cpu: CPU number 1522 * 1523 * This is the last known freq, without actually getting it from the driver. 1524 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1525 */ 1526 unsigned int cpufreq_quick_get(unsigned int cpu) 1527 { 1528 struct cpufreq_policy *policy; 1529 unsigned int ret_freq = 0; 1530 1531 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1532 return cpufreq_driver->get(cpu); 1533 1534 policy = cpufreq_cpu_get(cpu); 1535 if (policy) { 1536 ret_freq = policy->cur; 1537 cpufreq_cpu_put(policy); 1538 } 1539 1540 return ret_freq; 1541 } 1542 EXPORT_SYMBOL(cpufreq_quick_get); 1543 1544 /** 1545 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1546 * @cpu: CPU number 1547 * 1548 * Just return the max possible frequency for a given CPU. 1549 */ 1550 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1551 { 1552 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1553 unsigned int ret_freq = 0; 1554 1555 if (policy) { 1556 ret_freq = policy->max; 1557 cpufreq_cpu_put(policy); 1558 } 1559 1560 return ret_freq; 1561 } 1562 EXPORT_SYMBOL(cpufreq_quick_get_max); 1563 1564 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1565 { 1566 unsigned int ret_freq = 0; 1567 1568 if (!cpufreq_driver->get) 1569 return ret_freq; 1570 1571 ret_freq = cpufreq_driver->get(policy->cpu); 1572 1573 /* Updating inactive policies is invalid, so avoid doing that. */ 1574 if (unlikely(policy_is_inactive(policy))) 1575 return ret_freq; 1576 1577 if (ret_freq && policy->cur && 1578 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1579 /* verify no discrepancy between actual and 1580 saved value exists */ 1581 if (unlikely(ret_freq != policy->cur)) { 1582 cpufreq_out_of_sync(policy, ret_freq); 1583 schedule_work(&policy->update); 1584 } 1585 } 1586 1587 return ret_freq; 1588 } 1589 1590 /** 1591 * cpufreq_get - get the current CPU frequency (in kHz) 1592 * @cpu: CPU number 1593 * 1594 * Get the CPU current (static) CPU frequency 1595 */ 1596 unsigned int cpufreq_get(unsigned int cpu) 1597 { 1598 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1599 unsigned int ret_freq = 0; 1600 1601 if (policy) { 1602 down_read(&policy->rwsem); 1603 ret_freq = __cpufreq_get(policy); 1604 up_read(&policy->rwsem); 1605 1606 cpufreq_cpu_put(policy); 1607 } 1608 1609 return ret_freq; 1610 } 1611 EXPORT_SYMBOL(cpufreq_get); 1612 1613 static struct subsys_interface cpufreq_interface = { 1614 .name = "cpufreq", 1615 .subsys = &cpu_subsys, 1616 .add_dev = cpufreq_add_dev, 1617 .remove_dev = cpufreq_remove_dev, 1618 }; 1619 1620 /* 1621 * In case platform wants some specific frequency to be configured 1622 * during suspend.. 1623 */ 1624 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1625 { 1626 int ret; 1627 1628 if (!policy->suspend_freq) { 1629 pr_debug("%s: suspend_freq not defined\n", __func__); 1630 return 0; 1631 } 1632 1633 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1634 policy->suspend_freq); 1635 1636 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1637 CPUFREQ_RELATION_H); 1638 if (ret) 1639 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1640 __func__, policy->suspend_freq, ret); 1641 1642 return ret; 1643 } 1644 EXPORT_SYMBOL(cpufreq_generic_suspend); 1645 1646 /** 1647 * cpufreq_suspend() - Suspend CPUFreq governors 1648 * 1649 * Called during system wide Suspend/Hibernate cycles for suspending governors 1650 * as some platforms can't change frequency after this point in suspend cycle. 1651 * Because some of the devices (like: i2c, regulators, etc) they use for 1652 * changing frequency are suspended quickly after this point. 1653 */ 1654 void cpufreq_suspend(void) 1655 { 1656 struct cpufreq_policy *policy; 1657 1658 if (!cpufreq_driver) 1659 return; 1660 1661 if (!has_target()) 1662 goto suspend; 1663 1664 pr_debug("%s: Suspending Governors\n", __func__); 1665 1666 for_each_active_policy(policy) { 1667 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1668 pr_err("%s: Failed to stop governor for policy: %p\n", 1669 __func__, policy); 1670 else if (cpufreq_driver->suspend 1671 && cpufreq_driver->suspend(policy)) 1672 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1673 policy); 1674 } 1675 1676 suspend: 1677 cpufreq_suspended = true; 1678 } 1679 1680 /** 1681 * cpufreq_resume() - Resume CPUFreq governors 1682 * 1683 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1684 * are suspended with cpufreq_suspend(). 1685 */ 1686 void cpufreq_resume(void) 1687 { 1688 struct cpufreq_policy *policy; 1689 1690 if (!cpufreq_driver) 1691 return; 1692 1693 cpufreq_suspended = false; 1694 1695 if (!has_target()) 1696 return; 1697 1698 pr_debug("%s: Resuming Governors\n", __func__); 1699 1700 for_each_active_policy(policy) { 1701 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1702 pr_err("%s: Failed to resume driver: %p\n", __func__, 1703 policy); 1704 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1705 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1706 pr_err("%s: Failed to start governor for policy: %p\n", 1707 __func__, policy); 1708 } 1709 1710 /* 1711 * schedule call cpufreq_update_policy() for first-online CPU, as that 1712 * wouldn't be hotplugged-out on suspend. It will verify that the 1713 * current freq is in sync with what we believe it to be. 1714 */ 1715 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask)); 1716 if (WARN_ON(!policy)) 1717 return; 1718 1719 schedule_work(&policy->update); 1720 } 1721 1722 /** 1723 * cpufreq_get_current_driver - return current driver's name 1724 * 1725 * Return the name string of the currently loaded cpufreq driver 1726 * or NULL, if none. 1727 */ 1728 const char *cpufreq_get_current_driver(void) 1729 { 1730 if (cpufreq_driver) 1731 return cpufreq_driver->name; 1732 1733 return NULL; 1734 } 1735 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1736 1737 /** 1738 * cpufreq_get_driver_data - return current driver data 1739 * 1740 * Return the private data of the currently loaded cpufreq 1741 * driver, or NULL if no cpufreq driver is loaded. 1742 */ 1743 void *cpufreq_get_driver_data(void) 1744 { 1745 if (cpufreq_driver) 1746 return cpufreq_driver->driver_data; 1747 1748 return NULL; 1749 } 1750 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1751 1752 /********************************************************************* 1753 * NOTIFIER LISTS INTERFACE * 1754 *********************************************************************/ 1755 1756 /** 1757 * cpufreq_register_notifier - register a driver with cpufreq 1758 * @nb: notifier function to register 1759 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1760 * 1761 * Add a driver to one of two lists: either a list of drivers that 1762 * are notified about clock rate changes (once before and once after 1763 * the transition), or a list of drivers that are notified about 1764 * changes in cpufreq policy. 1765 * 1766 * This function may sleep, and has the same return conditions as 1767 * blocking_notifier_chain_register. 1768 */ 1769 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1770 { 1771 int ret; 1772 1773 if (cpufreq_disabled()) 1774 return -EINVAL; 1775 1776 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1777 1778 switch (list) { 1779 case CPUFREQ_TRANSITION_NOTIFIER: 1780 ret = srcu_notifier_chain_register( 1781 &cpufreq_transition_notifier_list, nb); 1782 break; 1783 case CPUFREQ_POLICY_NOTIFIER: 1784 ret = blocking_notifier_chain_register( 1785 &cpufreq_policy_notifier_list, nb); 1786 break; 1787 default: 1788 ret = -EINVAL; 1789 } 1790 1791 return ret; 1792 } 1793 EXPORT_SYMBOL(cpufreq_register_notifier); 1794 1795 /** 1796 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1797 * @nb: notifier block to be unregistered 1798 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1799 * 1800 * Remove a driver from the CPU frequency notifier list. 1801 * 1802 * This function may sleep, and has the same return conditions as 1803 * blocking_notifier_chain_unregister. 1804 */ 1805 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1806 { 1807 int ret; 1808 1809 if (cpufreq_disabled()) 1810 return -EINVAL; 1811 1812 switch (list) { 1813 case CPUFREQ_TRANSITION_NOTIFIER: 1814 ret = srcu_notifier_chain_unregister( 1815 &cpufreq_transition_notifier_list, nb); 1816 break; 1817 case CPUFREQ_POLICY_NOTIFIER: 1818 ret = blocking_notifier_chain_unregister( 1819 &cpufreq_policy_notifier_list, nb); 1820 break; 1821 default: 1822 ret = -EINVAL; 1823 } 1824 1825 return ret; 1826 } 1827 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1828 1829 1830 /********************************************************************* 1831 * GOVERNORS * 1832 *********************************************************************/ 1833 1834 /* Must set freqs->new to intermediate frequency */ 1835 static int __target_intermediate(struct cpufreq_policy *policy, 1836 struct cpufreq_freqs *freqs, int index) 1837 { 1838 int ret; 1839 1840 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1841 1842 /* We don't need to switch to intermediate freq */ 1843 if (!freqs->new) 1844 return 0; 1845 1846 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1847 __func__, policy->cpu, freqs->old, freqs->new); 1848 1849 cpufreq_freq_transition_begin(policy, freqs); 1850 ret = cpufreq_driver->target_intermediate(policy, index); 1851 cpufreq_freq_transition_end(policy, freqs, ret); 1852 1853 if (ret) 1854 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1855 __func__, ret); 1856 1857 return ret; 1858 } 1859 1860 static int __target_index(struct cpufreq_policy *policy, 1861 struct cpufreq_frequency_table *freq_table, int index) 1862 { 1863 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1864 unsigned int intermediate_freq = 0; 1865 int retval = -EINVAL; 1866 bool notify; 1867 1868 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1869 if (notify) { 1870 /* Handle switching to intermediate frequency */ 1871 if (cpufreq_driver->get_intermediate) { 1872 retval = __target_intermediate(policy, &freqs, index); 1873 if (retval) 1874 return retval; 1875 1876 intermediate_freq = freqs.new; 1877 /* Set old freq to intermediate */ 1878 if (intermediate_freq) 1879 freqs.old = freqs.new; 1880 } 1881 1882 freqs.new = freq_table[index].frequency; 1883 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1884 __func__, policy->cpu, freqs.old, freqs.new); 1885 1886 cpufreq_freq_transition_begin(policy, &freqs); 1887 } 1888 1889 retval = cpufreq_driver->target_index(policy, index); 1890 if (retval) 1891 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1892 retval); 1893 1894 if (notify) { 1895 cpufreq_freq_transition_end(policy, &freqs, retval); 1896 1897 /* 1898 * Failed after setting to intermediate freq? Driver should have 1899 * reverted back to initial frequency and so should we. Check 1900 * here for intermediate_freq instead of get_intermediate, in 1901 * case we haven't switched to intermediate freq at all. 1902 */ 1903 if (unlikely(retval && intermediate_freq)) { 1904 freqs.old = intermediate_freq; 1905 freqs.new = policy->restore_freq; 1906 cpufreq_freq_transition_begin(policy, &freqs); 1907 cpufreq_freq_transition_end(policy, &freqs, 0); 1908 } 1909 } 1910 1911 return retval; 1912 } 1913 1914 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1915 unsigned int target_freq, 1916 unsigned int relation) 1917 { 1918 unsigned int old_target_freq = target_freq; 1919 int retval = -EINVAL; 1920 1921 if (cpufreq_disabled()) 1922 return -ENODEV; 1923 1924 /* Make sure that target_freq is within supported range */ 1925 if (target_freq > policy->max) 1926 target_freq = policy->max; 1927 if (target_freq < policy->min) 1928 target_freq = policy->min; 1929 1930 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1931 policy->cpu, target_freq, relation, old_target_freq); 1932 1933 /* 1934 * This might look like a redundant call as we are checking it again 1935 * after finding index. But it is left intentionally for cases where 1936 * exactly same freq is called again and so we can save on few function 1937 * calls. 1938 */ 1939 if (target_freq == policy->cur) 1940 return 0; 1941 1942 /* Save last value to restore later on errors */ 1943 policy->restore_freq = policy->cur; 1944 1945 if (cpufreq_driver->target) 1946 retval = cpufreq_driver->target(policy, target_freq, relation); 1947 else if (cpufreq_driver->target_index) { 1948 struct cpufreq_frequency_table *freq_table; 1949 int index; 1950 1951 freq_table = cpufreq_frequency_get_table(policy->cpu); 1952 if (unlikely(!freq_table)) { 1953 pr_err("%s: Unable to find freq_table\n", __func__); 1954 goto out; 1955 } 1956 1957 retval = cpufreq_frequency_table_target(policy, freq_table, 1958 target_freq, relation, &index); 1959 if (unlikely(retval)) { 1960 pr_err("%s: Unable to find matching freq\n", __func__); 1961 goto out; 1962 } 1963 1964 if (freq_table[index].frequency == policy->cur) { 1965 retval = 0; 1966 goto out; 1967 } 1968 1969 retval = __target_index(policy, freq_table, index); 1970 } 1971 1972 out: 1973 return retval; 1974 } 1975 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1976 1977 int cpufreq_driver_target(struct cpufreq_policy *policy, 1978 unsigned int target_freq, 1979 unsigned int relation) 1980 { 1981 int ret = -EINVAL; 1982 1983 down_write(&policy->rwsem); 1984 1985 ret = __cpufreq_driver_target(policy, target_freq, relation); 1986 1987 up_write(&policy->rwsem); 1988 1989 return ret; 1990 } 1991 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1992 1993 static int __cpufreq_governor(struct cpufreq_policy *policy, 1994 unsigned int event) 1995 { 1996 int ret; 1997 1998 /* Only must be defined when default governor is known to have latency 1999 restrictions, like e.g. conservative or ondemand. 2000 That this is the case is already ensured in Kconfig 2001 */ 2002 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 2003 struct cpufreq_governor *gov = &cpufreq_gov_performance; 2004 #else 2005 struct cpufreq_governor *gov = NULL; 2006 #endif 2007 2008 /* Don't start any governor operations if we are entering suspend */ 2009 if (cpufreq_suspended) 2010 return 0; 2011 /* 2012 * Governor might not be initiated here if ACPI _PPC changed 2013 * notification happened, so check it. 2014 */ 2015 if (!policy->governor) 2016 return -EINVAL; 2017 2018 if (policy->governor->max_transition_latency && 2019 policy->cpuinfo.transition_latency > 2020 policy->governor->max_transition_latency) { 2021 if (!gov) 2022 return -EINVAL; 2023 else { 2024 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2025 policy->governor->name, gov->name); 2026 policy->governor = gov; 2027 } 2028 } 2029 2030 if (event == CPUFREQ_GOV_POLICY_INIT) 2031 if (!try_module_get(policy->governor->owner)) 2032 return -EINVAL; 2033 2034 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event); 2035 2036 mutex_lock(&cpufreq_governor_lock); 2037 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 2038 || (!policy->governor_enabled 2039 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 2040 mutex_unlock(&cpufreq_governor_lock); 2041 return -EBUSY; 2042 } 2043 2044 if (event == CPUFREQ_GOV_STOP) 2045 policy->governor_enabled = false; 2046 else if (event == CPUFREQ_GOV_START) 2047 policy->governor_enabled = true; 2048 2049 mutex_unlock(&cpufreq_governor_lock); 2050 2051 ret = policy->governor->governor(policy, event); 2052 2053 if (!ret) { 2054 if (event == CPUFREQ_GOV_POLICY_INIT) 2055 policy->governor->initialized++; 2056 else if (event == CPUFREQ_GOV_POLICY_EXIT) 2057 policy->governor->initialized--; 2058 } else { 2059 /* Restore original values */ 2060 mutex_lock(&cpufreq_governor_lock); 2061 if (event == CPUFREQ_GOV_STOP) 2062 policy->governor_enabled = true; 2063 else if (event == CPUFREQ_GOV_START) 2064 policy->governor_enabled = false; 2065 mutex_unlock(&cpufreq_governor_lock); 2066 } 2067 2068 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 2069 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2070 module_put(policy->governor->owner); 2071 2072 return ret; 2073 } 2074 2075 int cpufreq_register_governor(struct cpufreq_governor *governor) 2076 { 2077 int err; 2078 2079 if (!governor) 2080 return -EINVAL; 2081 2082 if (cpufreq_disabled()) 2083 return -ENODEV; 2084 2085 mutex_lock(&cpufreq_governor_mutex); 2086 2087 governor->initialized = 0; 2088 err = -EBUSY; 2089 if (!find_governor(governor->name)) { 2090 err = 0; 2091 list_add(&governor->governor_list, &cpufreq_governor_list); 2092 } 2093 2094 mutex_unlock(&cpufreq_governor_mutex); 2095 return err; 2096 } 2097 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2098 2099 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2100 { 2101 struct cpufreq_policy *policy; 2102 unsigned long flags; 2103 2104 if (!governor) 2105 return; 2106 2107 if (cpufreq_disabled()) 2108 return; 2109 2110 /* clear last_governor for all inactive policies */ 2111 read_lock_irqsave(&cpufreq_driver_lock, flags); 2112 for_each_inactive_policy(policy) { 2113 if (!strcmp(policy->last_governor, governor->name)) { 2114 policy->governor = NULL; 2115 strcpy(policy->last_governor, "\0"); 2116 } 2117 } 2118 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2119 2120 mutex_lock(&cpufreq_governor_mutex); 2121 list_del(&governor->governor_list); 2122 mutex_unlock(&cpufreq_governor_mutex); 2123 return; 2124 } 2125 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2126 2127 2128 /********************************************************************* 2129 * POLICY INTERFACE * 2130 *********************************************************************/ 2131 2132 /** 2133 * cpufreq_get_policy - get the current cpufreq_policy 2134 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2135 * is written 2136 * 2137 * Reads the current cpufreq policy. 2138 */ 2139 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2140 { 2141 struct cpufreq_policy *cpu_policy; 2142 if (!policy) 2143 return -EINVAL; 2144 2145 cpu_policy = cpufreq_cpu_get(cpu); 2146 if (!cpu_policy) 2147 return -EINVAL; 2148 2149 memcpy(policy, cpu_policy, sizeof(*policy)); 2150 2151 cpufreq_cpu_put(cpu_policy); 2152 return 0; 2153 } 2154 EXPORT_SYMBOL(cpufreq_get_policy); 2155 2156 /* 2157 * policy : current policy. 2158 * new_policy: policy to be set. 2159 */ 2160 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2161 struct cpufreq_policy *new_policy) 2162 { 2163 struct cpufreq_governor *old_gov; 2164 int ret; 2165 2166 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2167 new_policy->cpu, new_policy->min, new_policy->max); 2168 2169 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2170 2171 /* 2172 * This check works well when we store new min/max freq attributes, 2173 * because new_policy is a copy of policy with one field updated. 2174 */ 2175 if (new_policy->min > new_policy->max) 2176 return -EINVAL; 2177 2178 /* verify the cpu speed can be set within this limit */ 2179 ret = cpufreq_driver->verify(new_policy); 2180 if (ret) 2181 return ret; 2182 2183 /* adjust if necessary - all reasons */ 2184 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2185 CPUFREQ_ADJUST, new_policy); 2186 2187 /* 2188 * verify the cpu speed can be set within this limit, which might be 2189 * different to the first one 2190 */ 2191 ret = cpufreq_driver->verify(new_policy); 2192 if (ret) 2193 return ret; 2194 2195 /* notification of the new policy */ 2196 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2197 CPUFREQ_NOTIFY, new_policy); 2198 2199 policy->min = new_policy->min; 2200 policy->max = new_policy->max; 2201 2202 pr_debug("new min and max freqs are %u - %u kHz\n", 2203 policy->min, policy->max); 2204 2205 if (cpufreq_driver->setpolicy) { 2206 policy->policy = new_policy->policy; 2207 pr_debug("setting range\n"); 2208 return cpufreq_driver->setpolicy(new_policy); 2209 } 2210 2211 if (new_policy->governor == policy->governor) 2212 goto out; 2213 2214 pr_debug("governor switch\n"); 2215 2216 /* save old, working values */ 2217 old_gov = policy->governor; 2218 /* end old governor */ 2219 if (old_gov) { 2220 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2221 if (ret) { 2222 /* This can happen due to race with other operations */ 2223 pr_debug("%s: Failed to Stop Governor: %s (%d)\n", 2224 __func__, old_gov->name, ret); 2225 return ret; 2226 } 2227 2228 up_write(&policy->rwsem); 2229 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2230 down_write(&policy->rwsem); 2231 2232 if (ret) { 2233 pr_err("%s: Failed to Exit Governor: %s (%d)\n", 2234 __func__, old_gov->name, ret); 2235 return ret; 2236 } 2237 } 2238 2239 /* start new governor */ 2240 policy->governor = new_policy->governor; 2241 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2242 if (!ret) { 2243 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 2244 if (!ret) 2245 goto out; 2246 2247 up_write(&policy->rwsem); 2248 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2249 down_write(&policy->rwsem); 2250 } 2251 2252 /* new governor failed, so re-start old one */ 2253 pr_debug("starting governor %s failed\n", policy->governor->name); 2254 if (old_gov) { 2255 policy->governor = old_gov; 2256 if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) 2257 policy->governor = NULL; 2258 else 2259 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2260 } 2261 2262 return ret; 2263 2264 out: 2265 pr_debug("governor: change or update limits\n"); 2266 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2267 } 2268 2269 /** 2270 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2271 * @cpu: CPU which shall be re-evaluated 2272 * 2273 * Useful for policy notifiers which have different necessities 2274 * at different times. 2275 */ 2276 int cpufreq_update_policy(unsigned int cpu) 2277 { 2278 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2279 struct cpufreq_policy new_policy; 2280 int ret; 2281 2282 if (!policy) 2283 return -ENODEV; 2284 2285 down_write(&policy->rwsem); 2286 2287 pr_debug("updating policy for CPU %u\n", cpu); 2288 memcpy(&new_policy, policy, sizeof(*policy)); 2289 new_policy.min = policy->user_policy.min; 2290 new_policy.max = policy->user_policy.max; 2291 2292 /* 2293 * BIOS might change freq behind our back 2294 * -> ask driver for current freq and notify governors about a change 2295 */ 2296 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2297 new_policy.cur = cpufreq_driver->get(cpu); 2298 if (WARN_ON(!new_policy.cur)) { 2299 ret = -EIO; 2300 goto unlock; 2301 } 2302 2303 if (!policy->cur) { 2304 pr_debug("Driver did not initialize current freq\n"); 2305 policy->cur = new_policy.cur; 2306 } else { 2307 if (policy->cur != new_policy.cur && has_target()) 2308 cpufreq_out_of_sync(policy, new_policy.cur); 2309 } 2310 } 2311 2312 ret = cpufreq_set_policy(policy, &new_policy); 2313 2314 unlock: 2315 up_write(&policy->rwsem); 2316 2317 cpufreq_cpu_put(policy); 2318 return ret; 2319 } 2320 EXPORT_SYMBOL(cpufreq_update_policy); 2321 2322 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2323 unsigned long action, void *hcpu) 2324 { 2325 unsigned int cpu = (unsigned long)hcpu; 2326 2327 switch (action & ~CPU_TASKS_FROZEN) { 2328 case CPU_ONLINE: 2329 cpufreq_online(cpu); 2330 break; 2331 2332 case CPU_DOWN_PREPARE: 2333 cpufreq_offline_prepare(cpu); 2334 break; 2335 2336 case CPU_POST_DEAD: 2337 cpufreq_offline_finish(cpu); 2338 break; 2339 2340 case CPU_DOWN_FAILED: 2341 cpufreq_online(cpu); 2342 break; 2343 } 2344 return NOTIFY_OK; 2345 } 2346 2347 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2348 .notifier_call = cpufreq_cpu_callback, 2349 }; 2350 2351 /********************************************************************* 2352 * BOOST * 2353 *********************************************************************/ 2354 static int cpufreq_boost_set_sw(int state) 2355 { 2356 struct cpufreq_frequency_table *freq_table; 2357 struct cpufreq_policy *policy; 2358 int ret = -EINVAL; 2359 2360 for_each_active_policy(policy) { 2361 freq_table = cpufreq_frequency_get_table(policy->cpu); 2362 if (freq_table) { 2363 ret = cpufreq_frequency_table_cpuinfo(policy, 2364 freq_table); 2365 if (ret) { 2366 pr_err("%s: Policy frequency update failed\n", 2367 __func__); 2368 break; 2369 } 2370 policy->user_policy.max = policy->max; 2371 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2372 } 2373 } 2374 2375 return ret; 2376 } 2377 2378 int cpufreq_boost_trigger_state(int state) 2379 { 2380 unsigned long flags; 2381 int ret = 0; 2382 2383 if (cpufreq_driver->boost_enabled == state) 2384 return 0; 2385 2386 write_lock_irqsave(&cpufreq_driver_lock, flags); 2387 cpufreq_driver->boost_enabled = state; 2388 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2389 2390 ret = cpufreq_driver->set_boost(state); 2391 if (ret) { 2392 write_lock_irqsave(&cpufreq_driver_lock, flags); 2393 cpufreq_driver->boost_enabled = !state; 2394 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2395 2396 pr_err("%s: Cannot %s BOOST\n", 2397 __func__, state ? "enable" : "disable"); 2398 } 2399 2400 return ret; 2401 } 2402 2403 int cpufreq_boost_supported(void) 2404 { 2405 if (likely(cpufreq_driver)) 2406 return cpufreq_driver->boost_supported; 2407 2408 return 0; 2409 } 2410 EXPORT_SYMBOL_GPL(cpufreq_boost_supported); 2411 2412 static int create_boost_sysfs_file(void) 2413 { 2414 int ret; 2415 2416 if (!cpufreq_boost_supported()) 2417 return 0; 2418 2419 /* 2420 * Check if driver provides function to enable boost - 2421 * if not, use cpufreq_boost_set_sw as default 2422 */ 2423 if (!cpufreq_driver->set_boost) 2424 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2425 2426 ret = cpufreq_sysfs_create_file(&boost.attr); 2427 if (ret) 2428 pr_err("%s: cannot register global BOOST sysfs file\n", 2429 __func__); 2430 2431 return ret; 2432 } 2433 2434 static void remove_boost_sysfs_file(void) 2435 { 2436 if (cpufreq_boost_supported()) 2437 cpufreq_sysfs_remove_file(&boost.attr); 2438 } 2439 2440 int cpufreq_enable_boost_support(void) 2441 { 2442 if (!cpufreq_driver) 2443 return -EINVAL; 2444 2445 if (cpufreq_boost_supported()) 2446 return 0; 2447 2448 cpufreq_driver->boost_supported = true; 2449 2450 /* This will get removed on driver unregister */ 2451 return create_boost_sysfs_file(); 2452 } 2453 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2454 2455 int cpufreq_boost_enabled(void) 2456 { 2457 return cpufreq_driver->boost_enabled; 2458 } 2459 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2460 2461 /********************************************************************* 2462 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2463 *********************************************************************/ 2464 2465 /** 2466 * cpufreq_register_driver - register a CPU Frequency driver 2467 * @driver_data: A struct cpufreq_driver containing the values# 2468 * submitted by the CPU Frequency driver. 2469 * 2470 * Registers a CPU Frequency driver to this core code. This code 2471 * returns zero on success, -EBUSY when another driver got here first 2472 * (and isn't unregistered in the meantime). 2473 * 2474 */ 2475 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2476 { 2477 unsigned long flags; 2478 int ret; 2479 2480 if (cpufreq_disabled()) 2481 return -ENODEV; 2482 2483 if (!driver_data || !driver_data->verify || !driver_data->init || 2484 !(driver_data->setpolicy || driver_data->target_index || 2485 driver_data->target) || 2486 (driver_data->setpolicy && (driver_data->target_index || 2487 driver_data->target)) || 2488 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2489 return -EINVAL; 2490 2491 pr_debug("trying to register driver %s\n", driver_data->name); 2492 2493 /* Protect against concurrent CPU online/offline. */ 2494 get_online_cpus(); 2495 2496 write_lock_irqsave(&cpufreq_driver_lock, flags); 2497 if (cpufreq_driver) { 2498 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2499 ret = -EEXIST; 2500 goto out; 2501 } 2502 cpufreq_driver = driver_data; 2503 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2504 2505 if (driver_data->setpolicy) 2506 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2507 2508 ret = create_boost_sysfs_file(); 2509 if (ret) 2510 goto err_null_driver; 2511 2512 ret = subsys_interface_register(&cpufreq_interface); 2513 if (ret) 2514 goto err_boost_unreg; 2515 2516 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2517 list_empty(&cpufreq_policy_list)) { 2518 /* if all ->init() calls failed, unregister */ 2519 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2520 driver_data->name); 2521 goto err_if_unreg; 2522 } 2523 2524 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2525 pr_debug("driver %s up and running\n", driver_data->name); 2526 2527 out: 2528 put_online_cpus(); 2529 return ret; 2530 2531 err_if_unreg: 2532 subsys_interface_unregister(&cpufreq_interface); 2533 err_boost_unreg: 2534 remove_boost_sysfs_file(); 2535 err_null_driver: 2536 write_lock_irqsave(&cpufreq_driver_lock, flags); 2537 cpufreq_driver = NULL; 2538 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2539 goto out; 2540 } 2541 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2542 2543 /** 2544 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2545 * 2546 * Unregister the current CPUFreq driver. Only call this if you have 2547 * the right to do so, i.e. if you have succeeded in initialising before! 2548 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2549 * currently not initialised. 2550 */ 2551 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2552 { 2553 unsigned long flags; 2554 2555 if (!cpufreq_driver || (driver != cpufreq_driver)) 2556 return -EINVAL; 2557 2558 pr_debug("unregistering driver %s\n", driver->name); 2559 2560 /* Protect against concurrent cpu hotplug */ 2561 get_online_cpus(); 2562 subsys_interface_unregister(&cpufreq_interface); 2563 remove_boost_sysfs_file(); 2564 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2565 2566 write_lock_irqsave(&cpufreq_driver_lock, flags); 2567 2568 cpufreq_driver = NULL; 2569 2570 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2571 put_online_cpus(); 2572 2573 return 0; 2574 } 2575 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2576 2577 /* 2578 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2579 * or mutexes when secondary CPUs are halted. 2580 */ 2581 static struct syscore_ops cpufreq_syscore_ops = { 2582 .shutdown = cpufreq_suspend, 2583 }; 2584 2585 static int __init cpufreq_core_init(void) 2586 { 2587 if (cpufreq_disabled()) 2588 return -ENODEV; 2589 2590 cpufreq_global_kobject = kobject_create(); 2591 BUG_ON(!cpufreq_global_kobject); 2592 2593 register_syscore_ops(&cpufreq_syscore_ops); 2594 2595 return 0; 2596 } 2597 core_initcall(cpufreq_core_init); 2598