xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision e8e0929d)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *	Added handling for CPU hotplug
9  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10  *	Fix handling for CPU hotplug -- affected CPUs
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31 
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 						"cpufreq-core", msg)
34 
35 /**
36  * The "cpufreq driver" - the arch- or hardware-dependent low
37  * level driver of CPUFreq support, and its spinlock. This lock
38  * also protects the cpufreq_cpu_data array.
39  */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(struct cpufreq_governor *, cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47 
48 /*
49  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50  * all cpufreq/hotplug/workqueue/etc related lock issues.
51  *
52  * The rules for this semaphore:
53  * - Any routine that wants to read from the policy structure will
54  *   do a down_read on this semaphore.
55  * - Any routine that will write to the policy structure and/or may take away
56  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
57  *   mode before doing so.
58  *
59  * Additional rules:
60  * - All holders of the lock should check to make sure that the CPU they
61  *   are concerned with are online after they get the lock.
62  * - Governor routines that can be called in cpufreq hotplug path should not
63  *   take this sem as top level hotplug notifier handler takes this.
64  * - Lock should not be held across
65  *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66  */
67 static DEFINE_PER_CPU(int, policy_cpu);
68 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
69 
70 #define lock_policy_rwsem(mode, cpu)					\
71 int lock_policy_rwsem_##mode						\
72 (int cpu)								\
73 {									\
74 	int policy_cpu = per_cpu(policy_cpu, cpu);			\
75 	BUG_ON(policy_cpu == -1);					\
76 	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
77 	if (unlikely(!cpu_online(cpu))) {				\
78 		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
79 		return -1;						\
80 	}								\
81 									\
82 	return 0;							\
83 }
84 
85 lock_policy_rwsem(read, cpu);
86 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
87 
88 lock_policy_rwsem(write, cpu);
89 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
90 
91 void unlock_policy_rwsem_read(int cpu)
92 {
93 	int policy_cpu = per_cpu(policy_cpu, cpu);
94 	BUG_ON(policy_cpu == -1);
95 	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
96 }
97 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
98 
99 void unlock_policy_rwsem_write(int cpu)
100 {
101 	int policy_cpu = per_cpu(policy_cpu, cpu);
102 	BUG_ON(policy_cpu == -1);
103 	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
104 }
105 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
106 
107 
108 /* internal prototypes */
109 static int __cpufreq_governor(struct cpufreq_policy *policy,
110 		unsigned int event);
111 static unsigned int __cpufreq_get(unsigned int cpu);
112 static void handle_update(struct work_struct *work);
113 
114 /**
115  * Two notifier lists: the "policy" list is involved in the
116  * validation process for a new CPU frequency policy; the
117  * "transition" list for kernel code that needs to handle
118  * changes to devices when the CPU clock speed changes.
119  * The mutex locks both lists.
120  */
121 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
122 static struct srcu_notifier_head cpufreq_transition_notifier_list;
123 
124 static bool init_cpufreq_transition_notifier_list_called;
125 static int __init init_cpufreq_transition_notifier_list(void)
126 {
127 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
128 	init_cpufreq_transition_notifier_list_called = true;
129 	return 0;
130 }
131 pure_initcall(init_cpufreq_transition_notifier_list);
132 
133 static LIST_HEAD(cpufreq_governor_list);
134 static DEFINE_MUTEX(cpufreq_governor_mutex);
135 
136 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
137 {
138 	struct cpufreq_policy *data;
139 	unsigned long flags;
140 
141 	if (cpu >= nr_cpu_ids)
142 		goto err_out;
143 
144 	/* get the cpufreq driver */
145 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
146 
147 	if (!cpufreq_driver)
148 		goto err_out_unlock;
149 
150 	if (!try_module_get(cpufreq_driver->owner))
151 		goto err_out_unlock;
152 
153 
154 	/* get the CPU */
155 	data = per_cpu(cpufreq_cpu_data, cpu);
156 
157 	if (!data)
158 		goto err_out_put_module;
159 
160 	if (!kobject_get(&data->kobj))
161 		goto err_out_put_module;
162 
163 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
164 	return data;
165 
166 err_out_put_module:
167 	module_put(cpufreq_driver->owner);
168 err_out_unlock:
169 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
170 err_out:
171 	return NULL;
172 }
173 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
174 
175 
176 void cpufreq_cpu_put(struct cpufreq_policy *data)
177 {
178 	kobject_put(&data->kobj);
179 	module_put(cpufreq_driver->owner);
180 }
181 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
182 
183 
184 /*********************************************************************
185  *                     UNIFIED DEBUG HELPERS                         *
186  *********************************************************************/
187 #ifdef CONFIG_CPU_FREQ_DEBUG
188 
189 /* what part(s) of the CPUfreq subsystem are debugged? */
190 static unsigned int debug;
191 
192 /* is the debug output ratelimit'ed using printk_ratelimit? User can
193  * set or modify this value.
194  */
195 static unsigned int debug_ratelimit = 1;
196 
197 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
198  * loading of a cpufreq driver, temporarily disabled when a new policy
199  * is set, and disabled upon cpufreq driver removal
200  */
201 static unsigned int disable_ratelimit = 1;
202 static DEFINE_SPINLOCK(disable_ratelimit_lock);
203 
204 static void cpufreq_debug_enable_ratelimit(void)
205 {
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&disable_ratelimit_lock, flags);
209 	if (disable_ratelimit)
210 		disable_ratelimit--;
211 	spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
212 }
213 
214 static void cpufreq_debug_disable_ratelimit(void)
215 {
216 	unsigned long flags;
217 
218 	spin_lock_irqsave(&disable_ratelimit_lock, flags);
219 	disable_ratelimit++;
220 	spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
221 }
222 
223 void cpufreq_debug_printk(unsigned int type, const char *prefix,
224 			const char *fmt, ...)
225 {
226 	char s[256];
227 	va_list args;
228 	unsigned int len;
229 	unsigned long flags;
230 
231 	WARN_ON(!prefix);
232 	if (type & debug) {
233 		spin_lock_irqsave(&disable_ratelimit_lock, flags);
234 		if (!disable_ratelimit && debug_ratelimit
235 					&& !printk_ratelimit()) {
236 			spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
237 			return;
238 		}
239 		spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
240 
241 		len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
242 
243 		va_start(args, fmt);
244 		len += vsnprintf(&s[len], (256 - len), fmt, args);
245 		va_end(args);
246 
247 		printk(s);
248 
249 		WARN_ON(len < 5);
250 	}
251 }
252 EXPORT_SYMBOL(cpufreq_debug_printk);
253 
254 
255 module_param(debug, uint, 0644);
256 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
257 			" 2 to debug drivers, and 4 to debug governors.");
258 
259 module_param(debug_ratelimit, uint, 0644);
260 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
261 					" set to 0 to disable ratelimiting.");
262 
263 #else /* !CONFIG_CPU_FREQ_DEBUG */
264 
265 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
266 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
267 
268 #endif /* CONFIG_CPU_FREQ_DEBUG */
269 
270 
271 /*********************************************************************
272  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
273  *********************************************************************/
274 
275 /**
276  * adjust_jiffies - adjust the system "loops_per_jiffy"
277  *
278  * This function alters the system "loops_per_jiffy" for the clock
279  * speed change. Note that loops_per_jiffy cannot be updated on SMP
280  * systems as each CPU might be scaled differently. So, use the arch
281  * per-CPU loops_per_jiffy value wherever possible.
282  */
283 #ifndef CONFIG_SMP
284 static unsigned long l_p_j_ref;
285 static unsigned int  l_p_j_ref_freq;
286 
287 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
288 {
289 	if (ci->flags & CPUFREQ_CONST_LOOPS)
290 		return;
291 
292 	if (!l_p_j_ref_freq) {
293 		l_p_j_ref = loops_per_jiffy;
294 		l_p_j_ref_freq = ci->old;
295 		dprintk("saving %lu as reference value for loops_per_jiffy; "
296 			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
297 	}
298 	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
299 	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
300 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
301 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
302 								ci->new);
303 		dprintk("scaling loops_per_jiffy to %lu "
304 			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
305 	}
306 }
307 #else
308 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 	return;
311 }
312 #endif
313 
314 
315 /**
316  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
317  * on frequency transition.
318  *
319  * This function calls the transition notifiers and the "adjust_jiffies"
320  * function. It is called twice on all CPU frequency changes that have
321  * external effects.
322  */
323 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
324 {
325 	struct cpufreq_policy *policy;
326 
327 	BUG_ON(irqs_disabled());
328 
329 	freqs->flags = cpufreq_driver->flags;
330 	dprintk("notification %u of frequency transition to %u kHz\n",
331 		state, freqs->new);
332 
333 	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
334 	switch (state) {
335 
336 	case CPUFREQ_PRECHANGE:
337 		/* detect if the driver reported a value as "old frequency"
338 		 * which is not equal to what the cpufreq core thinks is
339 		 * "old frequency".
340 		 */
341 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
342 			if ((policy) && (policy->cpu == freqs->cpu) &&
343 			    (policy->cur) && (policy->cur != freqs->old)) {
344 				dprintk("Warning: CPU frequency is"
345 					" %u, cpufreq assumed %u kHz.\n",
346 					freqs->old, policy->cur);
347 				freqs->old = policy->cur;
348 			}
349 		}
350 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
351 				CPUFREQ_PRECHANGE, freqs);
352 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
353 		break;
354 
355 	case CPUFREQ_POSTCHANGE:
356 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
357 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
358 				CPUFREQ_POSTCHANGE, freqs);
359 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
360 			policy->cur = freqs->new;
361 		break;
362 	}
363 }
364 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
365 
366 
367 
368 /*********************************************************************
369  *                          SYSFS INTERFACE                          *
370  *********************************************************************/
371 
372 static struct cpufreq_governor *__find_governor(const char *str_governor)
373 {
374 	struct cpufreq_governor *t;
375 
376 	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
377 		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
378 			return t;
379 
380 	return NULL;
381 }
382 
383 /**
384  * cpufreq_parse_governor - parse a governor string
385  */
386 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
387 				struct cpufreq_governor **governor)
388 {
389 	int err = -EINVAL;
390 
391 	if (!cpufreq_driver)
392 		goto out;
393 
394 	if (cpufreq_driver->setpolicy) {
395 		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
396 			*policy = CPUFREQ_POLICY_PERFORMANCE;
397 			err = 0;
398 		} else if (!strnicmp(str_governor, "powersave",
399 						CPUFREQ_NAME_LEN)) {
400 			*policy = CPUFREQ_POLICY_POWERSAVE;
401 			err = 0;
402 		}
403 	} else if (cpufreq_driver->target) {
404 		struct cpufreq_governor *t;
405 
406 		mutex_lock(&cpufreq_governor_mutex);
407 
408 		t = __find_governor(str_governor);
409 
410 		if (t == NULL) {
411 			char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
412 								str_governor);
413 
414 			if (name) {
415 				int ret;
416 
417 				mutex_unlock(&cpufreq_governor_mutex);
418 				ret = request_module("%s", name);
419 				mutex_lock(&cpufreq_governor_mutex);
420 
421 				if (ret == 0)
422 					t = __find_governor(str_governor);
423 			}
424 
425 			kfree(name);
426 		}
427 
428 		if (t != NULL) {
429 			*governor = t;
430 			err = 0;
431 		}
432 
433 		mutex_unlock(&cpufreq_governor_mutex);
434 	}
435 out:
436 	return err;
437 }
438 
439 
440 /**
441  * cpufreq_per_cpu_attr_read() / show_##file_name() -
442  * print out cpufreq information
443  *
444  * Write out information from cpufreq_driver->policy[cpu]; object must be
445  * "unsigned int".
446  */
447 
448 #define show_one(file_name, object)			\
449 static ssize_t show_##file_name				\
450 (struct cpufreq_policy *policy, char *buf)		\
451 {							\
452 	return sprintf(buf, "%u\n", policy->object);	\
453 }
454 
455 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
456 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
457 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
458 show_one(scaling_min_freq, min);
459 show_one(scaling_max_freq, max);
460 show_one(scaling_cur_freq, cur);
461 
462 static int __cpufreq_set_policy(struct cpufreq_policy *data,
463 				struct cpufreq_policy *policy);
464 
465 /**
466  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
467  */
468 #define store_one(file_name, object)			\
469 static ssize_t store_##file_name					\
470 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
471 {									\
472 	unsigned int ret = -EINVAL;					\
473 	struct cpufreq_policy new_policy;				\
474 									\
475 	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
476 	if (ret)							\
477 		return -EINVAL;						\
478 									\
479 	ret = sscanf(buf, "%u", &new_policy.object);			\
480 	if (ret != 1)							\
481 		return -EINVAL;						\
482 									\
483 	ret = __cpufreq_set_policy(policy, &new_policy);		\
484 	policy->user_policy.object = policy->object;			\
485 									\
486 	return ret ? ret : count;					\
487 }
488 
489 store_one(scaling_min_freq, min);
490 store_one(scaling_max_freq, max);
491 
492 /**
493  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
494  */
495 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
496 					char *buf)
497 {
498 	unsigned int cur_freq = __cpufreq_get(policy->cpu);
499 	if (!cur_freq)
500 		return sprintf(buf, "<unknown>");
501 	return sprintf(buf, "%u\n", cur_freq);
502 }
503 
504 
505 /**
506  * show_scaling_governor - show the current policy for the specified CPU
507  */
508 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
509 {
510 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
511 		return sprintf(buf, "powersave\n");
512 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
513 		return sprintf(buf, "performance\n");
514 	else if (policy->governor)
515 		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
516 				policy->governor->name);
517 	return -EINVAL;
518 }
519 
520 
521 /**
522  * store_scaling_governor - store policy for the specified CPU
523  */
524 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
525 					const char *buf, size_t count)
526 {
527 	unsigned int ret = -EINVAL;
528 	char	str_governor[16];
529 	struct cpufreq_policy new_policy;
530 
531 	ret = cpufreq_get_policy(&new_policy, policy->cpu);
532 	if (ret)
533 		return ret;
534 
535 	ret = sscanf(buf, "%15s", str_governor);
536 	if (ret != 1)
537 		return -EINVAL;
538 
539 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
540 						&new_policy.governor))
541 		return -EINVAL;
542 
543 	/* Do not use cpufreq_set_policy here or the user_policy.max
544 	   will be wrongly overridden */
545 	ret = __cpufreq_set_policy(policy, &new_policy);
546 
547 	policy->user_policy.policy = policy->policy;
548 	policy->user_policy.governor = policy->governor;
549 
550 	if (ret)
551 		return ret;
552 	else
553 		return count;
554 }
555 
556 /**
557  * show_scaling_driver - show the cpufreq driver currently loaded
558  */
559 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
560 {
561 	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
562 }
563 
564 /**
565  * show_scaling_available_governors - show the available CPUfreq governors
566  */
567 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
568 						char *buf)
569 {
570 	ssize_t i = 0;
571 	struct cpufreq_governor *t;
572 
573 	if (!cpufreq_driver->target) {
574 		i += sprintf(buf, "performance powersave");
575 		goto out;
576 	}
577 
578 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
579 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
580 		    - (CPUFREQ_NAME_LEN + 2)))
581 			goto out;
582 		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
583 	}
584 out:
585 	i += sprintf(&buf[i], "\n");
586 	return i;
587 }
588 
589 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
590 {
591 	ssize_t i = 0;
592 	unsigned int cpu;
593 
594 	for_each_cpu(cpu, mask) {
595 		if (i)
596 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
597 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
598 		if (i >= (PAGE_SIZE - 5))
599 			break;
600 	}
601 	i += sprintf(&buf[i], "\n");
602 	return i;
603 }
604 
605 /**
606  * show_related_cpus - show the CPUs affected by each transition even if
607  * hw coordination is in use
608  */
609 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
610 {
611 	if (cpumask_empty(policy->related_cpus))
612 		return show_cpus(policy->cpus, buf);
613 	return show_cpus(policy->related_cpus, buf);
614 }
615 
616 /**
617  * show_affected_cpus - show the CPUs affected by each transition
618  */
619 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
620 {
621 	return show_cpus(policy->cpus, buf);
622 }
623 
624 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
625 					const char *buf, size_t count)
626 {
627 	unsigned int freq = 0;
628 	unsigned int ret;
629 
630 	if (!policy->governor || !policy->governor->store_setspeed)
631 		return -EINVAL;
632 
633 	ret = sscanf(buf, "%u", &freq);
634 	if (ret != 1)
635 		return -EINVAL;
636 
637 	policy->governor->store_setspeed(policy, freq);
638 
639 	return count;
640 }
641 
642 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
643 {
644 	if (!policy->governor || !policy->governor->show_setspeed)
645 		return sprintf(buf, "<unsupported>\n");
646 
647 	return policy->governor->show_setspeed(policy, buf);
648 }
649 
650 #define define_one_ro(_name) \
651 static struct freq_attr _name = \
652 __ATTR(_name, 0444, show_##_name, NULL)
653 
654 #define define_one_ro0400(_name) \
655 static struct freq_attr _name = \
656 __ATTR(_name, 0400, show_##_name, NULL)
657 
658 #define define_one_rw(_name) \
659 static struct freq_attr _name = \
660 __ATTR(_name, 0644, show_##_name, store_##_name)
661 
662 define_one_ro0400(cpuinfo_cur_freq);
663 define_one_ro(cpuinfo_min_freq);
664 define_one_ro(cpuinfo_max_freq);
665 define_one_ro(cpuinfo_transition_latency);
666 define_one_ro(scaling_available_governors);
667 define_one_ro(scaling_driver);
668 define_one_ro(scaling_cur_freq);
669 define_one_ro(related_cpus);
670 define_one_ro(affected_cpus);
671 define_one_rw(scaling_min_freq);
672 define_one_rw(scaling_max_freq);
673 define_one_rw(scaling_governor);
674 define_one_rw(scaling_setspeed);
675 
676 static struct attribute *default_attrs[] = {
677 	&cpuinfo_min_freq.attr,
678 	&cpuinfo_max_freq.attr,
679 	&cpuinfo_transition_latency.attr,
680 	&scaling_min_freq.attr,
681 	&scaling_max_freq.attr,
682 	&affected_cpus.attr,
683 	&related_cpus.attr,
684 	&scaling_governor.attr,
685 	&scaling_driver.attr,
686 	&scaling_available_governors.attr,
687 	&scaling_setspeed.attr,
688 	NULL
689 };
690 
691 struct kobject *cpufreq_global_kobject;
692 EXPORT_SYMBOL(cpufreq_global_kobject);
693 
694 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
695 #define to_attr(a) container_of(a, struct freq_attr, attr)
696 
697 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
698 {
699 	struct cpufreq_policy *policy = to_policy(kobj);
700 	struct freq_attr *fattr = to_attr(attr);
701 	ssize_t ret = -EINVAL;
702 	policy = cpufreq_cpu_get(policy->cpu);
703 	if (!policy)
704 		goto no_policy;
705 
706 	if (lock_policy_rwsem_read(policy->cpu) < 0)
707 		goto fail;
708 
709 	if (fattr->show)
710 		ret = fattr->show(policy, buf);
711 	else
712 		ret = -EIO;
713 
714 	unlock_policy_rwsem_read(policy->cpu);
715 fail:
716 	cpufreq_cpu_put(policy);
717 no_policy:
718 	return ret;
719 }
720 
721 static ssize_t store(struct kobject *kobj, struct attribute *attr,
722 		     const char *buf, size_t count)
723 {
724 	struct cpufreq_policy *policy = to_policy(kobj);
725 	struct freq_attr *fattr = to_attr(attr);
726 	ssize_t ret = -EINVAL;
727 	policy = cpufreq_cpu_get(policy->cpu);
728 	if (!policy)
729 		goto no_policy;
730 
731 	if (lock_policy_rwsem_write(policy->cpu) < 0)
732 		goto fail;
733 
734 	if (fattr->store)
735 		ret = fattr->store(policy, buf, count);
736 	else
737 		ret = -EIO;
738 
739 	unlock_policy_rwsem_write(policy->cpu);
740 fail:
741 	cpufreq_cpu_put(policy);
742 no_policy:
743 	return ret;
744 }
745 
746 static void cpufreq_sysfs_release(struct kobject *kobj)
747 {
748 	struct cpufreq_policy *policy = to_policy(kobj);
749 	dprintk("last reference is dropped\n");
750 	complete(&policy->kobj_unregister);
751 }
752 
753 static struct sysfs_ops sysfs_ops = {
754 	.show	= show,
755 	.store	= store,
756 };
757 
758 static struct kobj_type ktype_cpufreq = {
759 	.sysfs_ops	= &sysfs_ops,
760 	.default_attrs	= default_attrs,
761 	.release	= cpufreq_sysfs_release,
762 };
763 
764 /*
765  * Returns:
766  *   Negative: Failure
767  *   0:        Success
768  *   Positive: When we have a managed CPU and the sysfs got symlinked
769  */
770 int cpufreq_add_dev_policy(unsigned int cpu, struct cpufreq_policy *policy,
771 		struct sys_device *sys_dev)
772 {
773 	int ret = 0;
774 #ifdef CONFIG_SMP
775 	unsigned long flags;
776 	unsigned int j;
777 
778 #ifdef CONFIG_HOTPLUG_CPU
779 	if (per_cpu(cpufreq_cpu_governor, cpu)) {
780 		policy->governor = per_cpu(cpufreq_cpu_governor, cpu);
781 		dprintk("Restoring governor %s for cpu %d\n",
782 		       policy->governor->name, cpu);
783 	}
784 #endif
785 
786 	for_each_cpu(j, policy->cpus) {
787 		struct cpufreq_policy *managed_policy;
788 
789 		if (cpu == j)
790 			continue;
791 
792 		/* Check for existing affected CPUs.
793 		 * They may not be aware of it due to CPU Hotplug.
794 		 * cpufreq_cpu_put is called when the device is removed
795 		 * in __cpufreq_remove_dev()
796 		 */
797 		managed_policy = cpufreq_cpu_get(j);
798 		if (unlikely(managed_policy)) {
799 
800 			/* Set proper policy_cpu */
801 			unlock_policy_rwsem_write(cpu);
802 			per_cpu(policy_cpu, cpu) = managed_policy->cpu;
803 
804 			if (lock_policy_rwsem_write(cpu) < 0) {
805 				/* Should not go through policy unlock path */
806 				if (cpufreq_driver->exit)
807 					cpufreq_driver->exit(policy);
808 				cpufreq_cpu_put(managed_policy);
809 				return -EBUSY;
810 			}
811 
812 			spin_lock_irqsave(&cpufreq_driver_lock, flags);
813 			cpumask_copy(managed_policy->cpus, policy->cpus);
814 			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
815 			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
816 
817 			dprintk("CPU already managed, adding link\n");
818 			ret = sysfs_create_link(&sys_dev->kobj,
819 						&managed_policy->kobj,
820 						"cpufreq");
821 			if (ret)
822 				cpufreq_cpu_put(managed_policy);
823 			/*
824 			 * Success. We only needed to be added to the mask.
825 			 * Call driver->exit() because only the cpu parent of
826 			 * the kobj needed to call init().
827 			 */
828 			if (cpufreq_driver->exit)
829 				cpufreq_driver->exit(policy);
830 
831 			if (!ret)
832 				return 1;
833 			else
834 				return ret;
835 		}
836 	}
837 #endif
838 	return ret;
839 }
840 
841 
842 /* symlink affected CPUs */
843 int cpufreq_add_dev_symlink(unsigned int cpu, struct cpufreq_policy *policy)
844 {
845 	unsigned int j;
846 	int ret = 0;
847 
848 	for_each_cpu(j, policy->cpus) {
849 		struct cpufreq_policy *managed_policy;
850 		struct sys_device *cpu_sys_dev;
851 
852 		if (j == cpu)
853 			continue;
854 		if (!cpu_online(j))
855 			continue;
856 
857 		dprintk("CPU %u already managed, adding link\n", j);
858 		managed_policy = cpufreq_cpu_get(cpu);
859 		cpu_sys_dev = get_cpu_sysdev(j);
860 		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
861 					"cpufreq");
862 		if (ret) {
863 			cpufreq_cpu_put(managed_policy);
864 			return ret;
865 		}
866 	}
867 	return ret;
868 }
869 
870 int cpufreq_add_dev_interface(unsigned int cpu, struct cpufreq_policy *policy,
871 		struct sys_device *sys_dev)
872 {
873 	struct cpufreq_policy new_policy;
874 	struct freq_attr **drv_attr;
875 	unsigned long flags;
876 	int ret = 0;
877 	unsigned int j;
878 
879 	/* prepare interface data */
880 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
881 				   &sys_dev->kobj, "cpufreq");
882 	if (ret)
883 		return ret;
884 
885 	/* set up files for this cpu device */
886 	drv_attr = cpufreq_driver->attr;
887 	while ((drv_attr) && (*drv_attr)) {
888 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
889 		if (ret)
890 			goto err_out_kobj_put;
891 		drv_attr++;
892 	}
893 	if (cpufreq_driver->get) {
894 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
895 		if (ret)
896 			goto err_out_kobj_put;
897 	}
898 	if (cpufreq_driver->target) {
899 		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
900 		if (ret)
901 			goto err_out_kobj_put;
902 	}
903 
904 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
905 	for_each_cpu(j, policy->cpus) {
906 	if (!cpu_online(j))
907 		continue;
908 		per_cpu(cpufreq_cpu_data, j) = policy;
909 		per_cpu(policy_cpu, j) = policy->cpu;
910 	}
911 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
912 
913 	ret = cpufreq_add_dev_symlink(cpu, policy);
914 	if (ret)
915 		goto err_out_kobj_put;
916 
917 	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
918 	/* assure that the starting sequence is run in __cpufreq_set_policy */
919 	policy->governor = NULL;
920 
921 	/* set default policy */
922 	ret = __cpufreq_set_policy(policy, &new_policy);
923 	policy->user_policy.policy = policy->policy;
924 	policy->user_policy.governor = policy->governor;
925 
926 	if (ret) {
927 		dprintk("setting policy failed\n");
928 		if (cpufreq_driver->exit)
929 			cpufreq_driver->exit(policy);
930 	}
931 	return ret;
932 
933 err_out_kobj_put:
934 	kobject_put(&policy->kobj);
935 	wait_for_completion(&policy->kobj_unregister);
936 	return ret;
937 }
938 
939 
940 /**
941  * cpufreq_add_dev - add a CPU device
942  *
943  * Adds the cpufreq interface for a CPU device.
944  *
945  * The Oracle says: try running cpufreq registration/unregistration concurrently
946  * with with cpu hotplugging and all hell will break loose. Tried to clean this
947  * mess up, but more thorough testing is needed. - Mathieu
948  */
949 static int cpufreq_add_dev(struct sys_device *sys_dev)
950 {
951 	unsigned int cpu = sys_dev->id;
952 	int ret = 0;
953 	struct cpufreq_policy *policy;
954 	unsigned long flags;
955 	unsigned int j;
956 
957 	if (cpu_is_offline(cpu))
958 		return 0;
959 
960 	cpufreq_debug_disable_ratelimit();
961 	dprintk("adding CPU %u\n", cpu);
962 
963 #ifdef CONFIG_SMP
964 	/* check whether a different CPU already registered this
965 	 * CPU because it is in the same boat. */
966 	policy = cpufreq_cpu_get(cpu);
967 	if (unlikely(policy)) {
968 		cpufreq_cpu_put(policy);
969 		cpufreq_debug_enable_ratelimit();
970 		return 0;
971 	}
972 #endif
973 
974 	if (!try_module_get(cpufreq_driver->owner)) {
975 		ret = -EINVAL;
976 		goto module_out;
977 	}
978 
979 	ret = -ENOMEM;
980 	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
981 	if (!policy)
982 		goto nomem_out;
983 
984 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
985 		goto err_free_policy;
986 
987 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
988 		goto err_free_cpumask;
989 
990 	policy->cpu = cpu;
991 	cpumask_copy(policy->cpus, cpumask_of(cpu));
992 
993 	/* Initially set CPU itself as the policy_cpu */
994 	per_cpu(policy_cpu, cpu) = cpu;
995 	ret = (lock_policy_rwsem_write(cpu) < 0);
996 	WARN_ON(ret);
997 
998 	init_completion(&policy->kobj_unregister);
999 	INIT_WORK(&policy->update, handle_update);
1000 
1001 	/* Set governor before ->init, so that driver could check it */
1002 	policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1003 	/* call driver. From then on the cpufreq must be able
1004 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1005 	 */
1006 	ret = cpufreq_driver->init(policy);
1007 	if (ret) {
1008 		dprintk("initialization failed\n");
1009 		goto err_unlock_policy;
1010 	}
1011 	policy->user_policy.min = policy->min;
1012 	policy->user_policy.max = policy->max;
1013 
1014 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1015 				     CPUFREQ_START, policy);
1016 
1017 	ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
1018 	if (ret) {
1019 		if (ret > 0)
1020 			/* This is a managed cpu, symlink created,
1021 			   exit with 0 */
1022 			ret = 0;
1023 		goto err_unlock_policy;
1024 	}
1025 
1026 	ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
1027 	if (ret)
1028 		goto err_out_unregister;
1029 
1030 	unlock_policy_rwsem_write(cpu);
1031 
1032 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1033 	module_put(cpufreq_driver->owner);
1034 	dprintk("initialization complete\n");
1035 	cpufreq_debug_enable_ratelimit();
1036 
1037 	return 0;
1038 
1039 
1040 err_out_unregister:
1041 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1042 	for_each_cpu(j, policy->cpus)
1043 		per_cpu(cpufreq_cpu_data, j) = NULL;
1044 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1045 
1046 	kobject_put(&policy->kobj);
1047 	wait_for_completion(&policy->kobj_unregister);
1048 
1049 err_unlock_policy:
1050 	unlock_policy_rwsem_write(cpu);
1051 err_free_cpumask:
1052 	free_cpumask_var(policy->cpus);
1053 err_free_policy:
1054 	kfree(policy);
1055 nomem_out:
1056 	module_put(cpufreq_driver->owner);
1057 module_out:
1058 	cpufreq_debug_enable_ratelimit();
1059 	return ret;
1060 }
1061 
1062 
1063 /**
1064  * __cpufreq_remove_dev - remove a CPU device
1065  *
1066  * Removes the cpufreq interface for a CPU device.
1067  * Caller should already have policy_rwsem in write mode for this CPU.
1068  * This routine frees the rwsem before returning.
1069  */
1070 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1071 {
1072 	unsigned int cpu = sys_dev->id;
1073 	unsigned long flags;
1074 	struct cpufreq_policy *data;
1075 #ifdef CONFIG_SMP
1076 	struct sys_device *cpu_sys_dev;
1077 	unsigned int j;
1078 #endif
1079 
1080 	cpufreq_debug_disable_ratelimit();
1081 	dprintk("unregistering CPU %u\n", cpu);
1082 
1083 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1084 	data = per_cpu(cpufreq_cpu_data, cpu);
1085 
1086 	if (!data) {
1087 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1088 		cpufreq_debug_enable_ratelimit();
1089 		unlock_policy_rwsem_write(cpu);
1090 		return -EINVAL;
1091 	}
1092 	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1093 
1094 
1095 #ifdef CONFIG_SMP
1096 	/* if this isn't the CPU which is the parent of the kobj, we
1097 	 * only need to unlink, put and exit
1098 	 */
1099 	if (unlikely(cpu != data->cpu)) {
1100 		dprintk("removing link\n");
1101 		cpumask_clear_cpu(cpu, data->cpus);
1102 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1103 		sysfs_remove_link(&sys_dev->kobj, "cpufreq");
1104 		cpufreq_cpu_put(data);
1105 		cpufreq_debug_enable_ratelimit();
1106 		unlock_policy_rwsem_write(cpu);
1107 		return 0;
1108 	}
1109 #endif
1110 
1111 #ifdef CONFIG_SMP
1112 
1113 #ifdef CONFIG_HOTPLUG_CPU
1114 	per_cpu(cpufreq_cpu_governor, cpu) = data->governor;
1115 #endif
1116 
1117 	/* if we have other CPUs still registered, we need to unlink them,
1118 	 * or else wait_for_completion below will lock up. Clean the
1119 	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1120 	 * the sysfs links afterwards.
1121 	 */
1122 	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1123 		for_each_cpu(j, data->cpus) {
1124 			if (j == cpu)
1125 				continue;
1126 			per_cpu(cpufreq_cpu_data, j) = NULL;
1127 		}
1128 	}
1129 
1130 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1131 
1132 	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1133 		for_each_cpu(j, data->cpus) {
1134 			if (j == cpu)
1135 				continue;
1136 			dprintk("removing link for cpu %u\n", j);
1137 #ifdef CONFIG_HOTPLUG_CPU
1138 			per_cpu(cpufreq_cpu_governor, j) = data->governor;
1139 #endif
1140 			cpu_sys_dev = get_cpu_sysdev(j);
1141 			sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1142 			cpufreq_cpu_put(data);
1143 		}
1144 	}
1145 #else
1146 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1147 #endif
1148 
1149 	if (cpufreq_driver->target)
1150 		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1151 
1152 	kobject_put(&data->kobj);
1153 
1154 	/* we need to make sure that the underlying kobj is actually
1155 	 * not referenced anymore by anybody before we proceed with
1156 	 * unloading.
1157 	 */
1158 	dprintk("waiting for dropping of refcount\n");
1159 	wait_for_completion(&data->kobj_unregister);
1160 	dprintk("wait complete\n");
1161 
1162 	if (cpufreq_driver->exit)
1163 		cpufreq_driver->exit(data);
1164 
1165 	unlock_policy_rwsem_write(cpu);
1166 
1167 	free_cpumask_var(data->related_cpus);
1168 	free_cpumask_var(data->cpus);
1169 	kfree(data);
1170 	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1171 
1172 	cpufreq_debug_enable_ratelimit();
1173 	return 0;
1174 }
1175 
1176 
1177 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1178 {
1179 	unsigned int cpu = sys_dev->id;
1180 	int retval;
1181 
1182 	if (cpu_is_offline(cpu))
1183 		return 0;
1184 
1185 	if (unlikely(lock_policy_rwsem_write(cpu)))
1186 		BUG();
1187 
1188 	retval = __cpufreq_remove_dev(sys_dev);
1189 	return retval;
1190 }
1191 
1192 
1193 static void handle_update(struct work_struct *work)
1194 {
1195 	struct cpufreq_policy *policy =
1196 		container_of(work, struct cpufreq_policy, update);
1197 	unsigned int cpu = policy->cpu;
1198 	dprintk("handle_update for cpu %u called\n", cpu);
1199 	cpufreq_update_policy(cpu);
1200 }
1201 
1202 /**
1203  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1204  *	@cpu: cpu number
1205  *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1206  *	@new_freq: CPU frequency the CPU actually runs at
1207  *
1208  *	We adjust to current frequency first, and need to clean up later.
1209  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1210  */
1211 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1212 				unsigned int new_freq)
1213 {
1214 	struct cpufreq_freqs freqs;
1215 
1216 	dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1217 	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1218 
1219 	freqs.cpu = cpu;
1220 	freqs.old = old_freq;
1221 	freqs.new = new_freq;
1222 	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1223 	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1224 }
1225 
1226 
1227 /**
1228  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1229  * @cpu: CPU number
1230  *
1231  * This is the last known freq, without actually getting it from the driver.
1232  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1233  */
1234 unsigned int cpufreq_quick_get(unsigned int cpu)
1235 {
1236 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1237 	unsigned int ret_freq = 0;
1238 
1239 	if (policy) {
1240 		ret_freq = policy->cur;
1241 		cpufreq_cpu_put(policy);
1242 	}
1243 
1244 	return ret_freq;
1245 }
1246 EXPORT_SYMBOL(cpufreq_quick_get);
1247 
1248 
1249 static unsigned int __cpufreq_get(unsigned int cpu)
1250 {
1251 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1252 	unsigned int ret_freq = 0;
1253 
1254 	if (!cpufreq_driver->get)
1255 		return ret_freq;
1256 
1257 	ret_freq = cpufreq_driver->get(cpu);
1258 
1259 	if (ret_freq && policy->cur &&
1260 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1261 		/* verify no discrepancy between actual and
1262 					saved value exists */
1263 		if (unlikely(ret_freq != policy->cur)) {
1264 			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1265 			schedule_work(&policy->update);
1266 		}
1267 	}
1268 
1269 	return ret_freq;
1270 }
1271 
1272 /**
1273  * cpufreq_get - get the current CPU frequency (in kHz)
1274  * @cpu: CPU number
1275  *
1276  * Get the CPU current (static) CPU frequency
1277  */
1278 unsigned int cpufreq_get(unsigned int cpu)
1279 {
1280 	unsigned int ret_freq = 0;
1281 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1282 
1283 	if (!policy)
1284 		goto out;
1285 
1286 	if (unlikely(lock_policy_rwsem_read(cpu)))
1287 		goto out_policy;
1288 
1289 	ret_freq = __cpufreq_get(cpu);
1290 
1291 	unlock_policy_rwsem_read(cpu);
1292 
1293 out_policy:
1294 	cpufreq_cpu_put(policy);
1295 out:
1296 	return ret_freq;
1297 }
1298 EXPORT_SYMBOL(cpufreq_get);
1299 
1300 
1301 /**
1302  *	cpufreq_suspend - let the low level driver prepare for suspend
1303  */
1304 
1305 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1306 {
1307 	int ret = 0;
1308 
1309 	int cpu = sysdev->id;
1310 	struct cpufreq_policy *cpu_policy;
1311 
1312 	dprintk("suspending cpu %u\n", cpu);
1313 
1314 	if (!cpu_online(cpu))
1315 		return 0;
1316 
1317 	/* we may be lax here as interrupts are off. Nonetheless
1318 	 * we need to grab the correct cpu policy, as to check
1319 	 * whether we really run on this CPU.
1320 	 */
1321 
1322 	cpu_policy = cpufreq_cpu_get(cpu);
1323 	if (!cpu_policy)
1324 		return -EINVAL;
1325 
1326 	/* only handle each CPU group once */
1327 	if (unlikely(cpu_policy->cpu != cpu))
1328 		goto out;
1329 
1330 	if (cpufreq_driver->suspend) {
1331 		ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1332 		if (ret)
1333 			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1334 					"step on CPU %u\n", cpu_policy->cpu);
1335 	}
1336 
1337 out:
1338 	cpufreq_cpu_put(cpu_policy);
1339 	return ret;
1340 }
1341 
1342 /**
1343  *	cpufreq_resume -  restore proper CPU frequency handling after resume
1344  *
1345  *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1346  *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1347  *	    restored. It will verify that the current freq is in sync with
1348  *	    what we believe it to be. This is a bit later than when it
1349  *	    should be, but nonethteless it's better than calling
1350  *	    cpufreq_driver->get() here which might re-enable interrupts...
1351  */
1352 static int cpufreq_resume(struct sys_device *sysdev)
1353 {
1354 	int ret = 0;
1355 
1356 	int cpu = sysdev->id;
1357 	struct cpufreq_policy *cpu_policy;
1358 
1359 	dprintk("resuming cpu %u\n", cpu);
1360 
1361 	if (!cpu_online(cpu))
1362 		return 0;
1363 
1364 	/* we may be lax here as interrupts are off. Nonetheless
1365 	 * we need to grab the correct cpu policy, as to check
1366 	 * whether we really run on this CPU.
1367 	 */
1368 
1369 	cpu_policy = cpufreq_cpu_get(cpu);
1370 	if (!cpu_policy)
1371 		return -EINVAL;
1372 
1373 	/* only handle each CPU group once */
1374 	if (unlikely(cpu_policy->cpu != cpu))
1375 		goto fail;
1376 
1377 	if (cpufreq_driver->resume) {
1378 		ret = cpufreq_driver->resume(cpu_policy);
1379 		if (ret) {
1380 			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1381 					"step on CPU %u\n", cpu_policy->cpu);
1382 			goto fail;
1383 		}
1384 	}
1385 
1386 	schedule_work(&cpu_policy->update);
1387 
1388 fail:
1389 	cpufreq_cpu_put(cpu_policy);
1390 	return ret;
1391 }
1392 
1393 static struct sysdev_driver cpufreq_sysdev_driver = {
1394 	.add		= cpufreq_add_dev,
1395 	.remove		= cpufreq_remove_dev,
1396 	.suspend	= cpufreq_suspend,
1397 	.resume		= cpufreq_resume,
1398 };
1399 
1400 
1401 /*********************************************************************
1402  *                     NOTIFIER LISTS INTERFACE                      *
1403  *********************************************************************/
1404 
1405 /**
1406  *	cpufreq_register_notifier - register a driver with cpufreq
1407  *	@nb: notifier function to register
1408  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1409  *
1410  *	Add a driver to one of two lists: either a list of drivers that
1411  *      are notified about clock rate changes (once before and once after
1412  *      the transition), or a list of drivers that are notified about
1413  *      changes in cpufreq policy.
1414  *
1415  *	This function may sleep, and has the same return conditions as
1416  *	blocking_notifier_chain_register.
1417  */
1418 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1419 {
1420 	int ret;
1421 
1422 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1423 
1424 	switch (list) {
1425 	case CPUFREQ_TRANSITION_NOTIFIER:
1426 		ret = srcu_notifier_chain_register(
1427 				&cpufreq_transition_notifier_list, nb);
1428 		break;
1429 	case CPUFREQ_POLICY_NOTIFIER:
1430 		ret = blocking_notifier_chain_register(
1431 				&cpufreq_policy_notifier_list, nb);
1432 		break;
1433 	default:
1434 		ret = -EINVAL;
1435 	}
1436 
1437 	return ret;
1438 }
1439 EXPORT_SYMBOL(cpufreq_register_notifier);
1440 
1441 
1442 /**
1443  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1444  *	@nb: notifier block to be unregistered
1445  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1446  *
1447  *	Remove a driver from the CPU frequency notifier list.
1448  *
1449  *	This function may sleep, and has the same return conditions as
1450  *	blocking_notifier_chain_unregister.
1451  */
1452 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1453 {
1454 	int ret;
1455 
1456 	switch (list) {
1457 	case CPUFREQ_TRANSITION_NOTIFIER:
1458 		ret = srcu_notifier_chain_unregister(
1459 				&cpufreq_transition_notifier_list, nb);
1460 		break;
1461 	case CPUFREQ_POLICY_NOTIFIER:
1462 		ret = blocking_notifier_chain_unregister(
1463 				&cpufreq_policy_notifier_list, nb);
1464 		break;
1465 	default:
1466 		ret = -EINVAL;
1467 	}
1468 
1469 	return ret;
1470 }
1471 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1472 
1473 
1474 /*********************************************************************
1475  *                              GOVERNORS                            *
1476  *********************************************************************/
1477 
1478 
1479 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1480 			    unsigned int target_freq,
1481 			    unsigned int relation)
1482 {
1483 	int retval = -EINVAL;
1484 
1485 	dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1486 		target_freq, relation);
1487 	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1488 		retval = cpufreq_driver->target(policy, target_freq, relation);
1489 
1490 	return retval;
1491 }
1492 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1493 
1494 int cpufreq_driver_target(struct cpufreq_policy *policy,
1495 			  unsigned int target_freq,
1496 			  unsigned int relation)
1497 {
1498 	int ret = -EINVAL;
1499 
1500 	policy = cpufreq_cpu_get(policy->cpu);
1501 	if (!policy)
1502 		goto no_policy;
1503 
1504 	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1505 		goto fail;
1506 
1507 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1508 
1509 	unlock_policy_rwsem_write(policy->cpu);
1510 
1511 fail:
1512 	cpufreq_cpu_put(policy);
1513 no_policy:
1514 	return ret;
1515 }
1516 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1517 
1518 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1519 {
1520 	int ret = 0;
1521 
1522 	policy = cpufreq_cpu_get(policy->cpu);
1523 	if (!policy)
1524 		return -EINVAL;
1525 
1526 	if (cpu_online(cpu) && cpufreq_driver->getavg)
1527 		ret = cpufreq_driver->getavg(policy, cpu);
1528 
1529 	cpufreq_cpu_put(policy);
1530 	return ret;
1531 }
1532 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1533 
1534 /*
1535  * when "event" is CPUFREQ_GOV_LIMITS
1536  */
1537 
1538 static int __cpufreq_governor(struct cpufreq_policy *policy,
1539 					unsigned int event)
1540 {
1541 	int ret;
1542 
1543 	/* Only must be defined when default governor is known to have latency
1544 	   restrictions, like e.g. conservative or ondemand.
1545 	   That this is the case is already ensured in Kconfig
1546 	*/
1547 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1548 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1549 #else
1550 	struct cpufreq_governor *gov = NULL;
1551 #endif
1552 
1553 	if (policy->governor->max_transition_latency &&
1554 	    policy->cpuinfo.transition_latency >
1555 	    policy->governor->max_transition_latency) {
1556 		if (!gov)
1557 			return -EINVAL;
1558 		else {
1559 			printk(KERN_WARNING "%s governor failed, too long"
1560 			       " transition latency of HW, fallback"
1561 			       " to %s governor\n",
1562 			       policy->governor->name,
1563 			       gov->name);
1564 			policy->governor = gov;
1565 		}
1566 	}
1567 
1568 	if (!try_module_get(policy->governor->owner))
1569 		return -EINVAL;
1570 
1571 	dprintk("__cpufreq_governor for CPU %u, event %u\n",
1572 						policy->cpu, event);
1573 	ret = policy->governor->governor(policy, event);
1574 
1575 	/* we keep one module reference alive for
1576 			each CPU governed by this CPU */
1577 	if ((event != CPUFREQ_GOV_START) || ret)
1578 		module_put(policy->governor->owner);
1579 	if ((event == CPUFREQ_GOV_STOP) && !ret)
1580 		module_put(policy->governor->owner);
1581 
1582 	return ret;
1583 }
1584 
1585 
1586 int cpufreq_register_governor(struct cpufreq_governor *governor)
1587 {
1588 	int err;
1589 
1590 	if (!governor)
1591 		return -EINVAL;
1592 
1593 	mutex_lock(&cpufreq_governor_mutex);
1594 
1595 	err = -EBUSY;
1596 	if (__find_governor(governor->name) == NULL) {
1597 		err = 0;
1598 		list_add(&governor->governor_list, &cpufreq_governor_list);
1599 	}
1600 
1601 	mutex_unlock(&cpufreq_governor_mutex);
1602 	return err;
1603 }
1604 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1605 
1606 
1607 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1608 {
1609 	if (!governor)
1610 		return;
1611 
1612 	mutex_lock(&cpufreq_governor_mutex);
1613 	list_del(&governor->governor_list);
1614 	mutex_unlock(&cpufreq_governor_mutex);
1615 	return;
1616 }
1617 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1618 
1619 
1620 
1621 /*********************************************************************
1622  *                          POLICY INTERFACE                         *
1623  *********************************************************************/
1624 
1625 /**
1626  * cpufreq_get_policy - get the current cpufreq_policy
1627  * @policy: struct cpufreq_policy into which the current cpufreq_policy
1628  *	is written
1629  *
1630  * Reads the current cpufreq policy.
1631  */
1632 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1633 {
1634 	struct cpufreq_policy *cpu_policy;
1635 	if (!policy)
1636 		return -EINVAL;
1637 
1638 	cpu_policy = cpufreq_cpu_get(cpu);
1639 	if (!cpu_policy)
1640 		return -EINVAL;
1641 
1642 	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1643 
1644 	cpufreq_cpu_put(cpu_policy);
1645 	return 0;
1646 }
1647 EXPORT_SYMBOL(cpufreq_get_policy);
1648 
1649 
1650 /*
1651  * data   : current policy.
1652  * policy : policy to be set.
1653  */
1654 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1655 				struct cpufreq_policy *policy)
1656 {
1657 	int ret = 0;
1658 
1659 	cpufreq_debug_disable_ratelimit();
1660 	dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1661 		policy->min, policy->max);
1662 
1663 	memcpy(&policy->cpuinfo, &data->cpuinfo,
1664 				sizeof(struct cpufreq_cpuinfo));
1665 
1666 	if (policy->min > data->max || policy->max < data->min) {
1667 		ret = -EINVAL;
1668 		goto error_out;
1669 	}
1670 
1671 	/* verify the cpu speed can be set within this limit */
1672 	ret = cpufreq_driver->verify(policy);
1673 	if (ret)
1674 		goto error_out;
1675 
1676 	/* adjust if necessary - all reasons */
1677 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1678 			CPUFREQ_ADJUST, policy);
1679 
1680 	/* adjust if necessary - hardware incompatibility*/
1681 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1682 			CPUFREQ_INCOMPATIBLE, policy);
1683 
1684 	/* verify the cpu speed can be set within this limit,
1685 	   which might be different to the first one */
1686 	ret = cpufreq_driver->verify(policy);
1687 	if (ret)
1688 		goto error_out;
1689 
1690 	/* notification of the new policy */
1691 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1692 			CPUFREQ_NOTIFY, policy);
1693 
1694 	data->min = policy->min;
1695 	data->max = policy->max;
1696 
1697 	dprintk("new min and max freqs are %u - %u kHz\n",
1698 					data->min, data->max);
1699 
1700 	if (cpufreq_driver->setpolicy) {
1701 		data->policy = policy->policy;
1702 		dprintk("setting range\n");
1703 		ret = cpufreq_driver->setpolicy(policy);
1704 	} else {
1705 		if (policy->governor != data->governor) {
1706 			/* save old, working values */
1707 			struct cpufreq_governor *old_gov = data->governor;
1708 
1709 			dprintk("governor switch\n");
1710 
1711 			/* end old governor */
1712 			if (data->governor) {
1713 				/*
1714 				 * Need to release the rwsem around governor
1715 				 * stop due to lock dependency between
1716 				 * cancel_delayed_work_sync and the read lock
1717 				 * taken in the delayed work handler.
1718 				 */
1719 				unlock_policy_rwsem_write(data->cpu);
1720 				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1721 				lock_policy_rwsem_write(data->cpu);
1722 			}
1723 
1724 			/* start new governor */
1725 			data->governor = policy->governor;
1726 			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1727 				/* new governor failed, so re-start old one */
1728 				dprintk("starting governor %s failed\n",
1729 							data->governor->name);
1730 				if (old_gov) {
1731 					data->governor = old_gov;
1732 					__cpufreq_governor(data,
1733 							   CPUFREQ_GOV_START);
1734 				}
1735 				ret = -EINVAL;
1736 				goto error_out;
1737 			}
1738 			/* might be a policy change, too, so fall through */
1739 		}
1740 		dprintk("governor: change or update limits\n");
1741 		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1742 	}
1743 
1744 error_out:
1745 	cpufreq_debug_enable_ratelimit();
1746 	return ret;
1747 }
1748 
1749 /**
1750  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1751  *	@cpu: CPU which shall be re-evaluated
1752  *
1753  *	Usefull for policy notifiers which have different necessities
1754  *	at different times.
1755  */
1756 int cpufreq_update_policy(unsigned int cpu)
1757 {
1758 	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1759 	struct cpufreq_policy policy;
1760 	int ret;
1761 
1762 	if (!data) {
1763 		ret = -ENODEV;
1764 		goto no_policy;
1765 	}
1766 
1767 	if (unlikely(lock_policy_rwsem_write(cpu))) {
1768 		ret = -EINVAL;
1769 		goto fail;
1770 	}
1771 
1772 	dprintk("updating policy for CPU %u\n", cpu);
1773 	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1774 	policy.min = data->user_policy.min;
1775 	policy.max = data->user_policy.max;
1776 	policy.policy = data->user_policy.policy;
1777 	policy.governor = data->user_policy.governor;
1778 
1779 	/* BIOS might change freq behind our back
1780 	  -> ask driver for current freq and notify governors about a change */
1781 	if (cpufreq_driver->get) {
1782 		policy.cur = cpufreq_driver->get(cpu);
1783 		if (!data->cur) {
1784 			dprintk("Driver did not initialize current freq");
1785 			data->cur = policy.cur;
1786 		} else {
1787 			if (data->cur != policy.cur)
1788 				cpufreq_out_of_sync(cpu, data->cur,
1789 								policy.cur);
1790 		}
1791 	}
1792 
1793 	ret = __cpufreq_set_policy(data, &policy);
1794 
1795 	unlock_policy_rwsem_write(cpu);
1796 
1797 fail:
1798 	cpufreq_cpu_put(data);
1799 no_policy:
1800 	return ret;
1801 }
1802 EXPORT_SYMBOL(cpufreq_update_policy);
1803 
1804 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1805 					unsigned long action, void *hcpu)
1806 {
1807 	unsigned int cpu = (unsigned long)hcpu;
1808 	struct sys_device *sys_dev;
1809 
1810 	sys_dev = get_cpu_sysdev(cpu);
1811 	if (sys_dev) {
1812 		switch (action) {
1813 		case CPU_ONLINE:
1814 		case CPU_ONLINE_FROZEN:
1815 			cpufreq_add_dev(sys_dev);
1816 			break;
1817 		case CPU_DOWN_PREPARE:
1818 		case CPU_DOWN_PREPARE_FROZEN:
1819 			if (unlikely(lock_policy_rwsem_write(cpu)))
1820 				BUG();
1821 
1822 			__cpufreq_remove_dev(sys_dev);
1823 			break;
1824 		case CPU_DOWN_FAILED:
1825 		case CPU_DOWN_FAILED_FROZEN:
1826 			cpufreq_add_dev(sys_dev);
1827 			break;
1828 		}
1829 	}
1830 	return NOTIFY_OK;
1831 }
1832 
1833 static struct notifier_block __refdata cpufreq_cpu_notifier =
1834 {
1835     .notifier_call = cpufreq_cpu_callback,
1836 };
1837 
1838 /*********************************************************************
1839  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1840  *********************************************************************/
1841 
1842 /**
1843  * cpufreq_register_driver - register a CPU Frequency driver
1844  * @driver_data: A struct cpufreq_driver containing the values#
1845  * submitted by the CPU Frequency driver.
1846  *
1847  *   Registers a CPU Frequency driver to this core code. This code
1848  * returns zero on success, -EBUSY when another driver got here first
1849  * (and isn't unregistered in the meantime).
1850  *
1851  */
1852 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1853 {
1854 	unsigned long flags;
1855 	int ret;
1856 
1857 	if (!driver_data || !driver_data->verify || !driver_data->init ||
1858 	    ((!driver_data->setpolicy) && (!driver_data->target)))
1859 		return -EINVAL;
1860 
1861 	dprintk("trying to register driver %s\n", driver_data->name);
1862 
1863 	if (driver_data->setpolicy)
1864 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1865 
1866 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1867 	if (cpufreq_driver) {
1868 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1869 		return -EBUSY;
1870 	}
1871 	cpufreq_driver = driver_data;
1872 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1873 
1874 	ret = sysdev_driver_register(&cpu_sysdev_class,
1875 					&cpufreq_sysdev_driver);
1876 
1877 	if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1878 		int i;
1879 		ret = -ENODEV;
1880 
1881 		/* check for at least one working CPU */
1882 		for (i = 0; i < nr_cpu_ids; i++)
1883 			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1884 				ret = 0;
1885 				break;
1886 			}
1887 
1888 		/* if all ->init() calls failed, unregister */
1889 		if (ret) {
1890 			dprintk("no CPU initialized for driver %s\n",
1891 							driver_data->name);
1892 			sysdev_driver_unregister(&cpu_sysdev_class,
1893 						&cpufreq_sysdev_driver);
1894 
1895 			spin_lock_irqsave(&cpufreq_driver_lock, flags);
1896 			cpufreq_driver = NULL;
1897 			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1898 		}
1899 	}
1900 
1901 	if (!ret) {
1902 		register_hotcpu_notifier(&cpufreq_cpu_notifier);
1903 		dprintk("driver %s up and running\n", driver_data->name);
1904 		cpufreq_debug_enable_ratelimit();
1905 	}
1906 
1907 	return ret;
1908 }
1909 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1910 
1911 
1912 /**
1913  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1914  *
1915  *    Unregister the current CPUFreq driver. Only call this if you have
1916  * the right to do so, i.e. if you have succeeded in initialising before!
1917  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1918  * currently not initialised.
1919  */
1920 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1921 {
1922 	unsigned long flags;
1923 
1924 	cpufreq_debug_disable_ratelimit();
1925 
1926 	if (!cpufreq_driver || (driver != cpufreq_driver)) {
1927 		cpufreq_debug_enable_ratelimit();
1928 		return -EINVAL;
1929 	}
1930 
1931 	dprintk("unregistering driver %s\n", driver->name);
1932 
1933 	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1934 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1935 
1936 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1937 	cpufreq_driver = NULL;
1938 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1939 
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1943 
1944 static int __init cpufreq_core_init(void)
1945 {
1946 	int cpu;
1947 
1948 	for_each_possible_cpu(cpu) {
1949 		per_cpu(policy_cpu, cpu) = -1;
1950 		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1951 	}
1952 
1953 	cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1954 						&cpu_sysdev_class.kset.kobj);
1955 	BUG_ON(!cpufreq_global_kobject);
1956 
1957 	return 0;
1958 }
1959 core_initcall(cpufreq_core_init);
1960