1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * 7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 8 * Added handling for CPU hotplug 9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 10 * Fix handling for CPU hotplug -- affected CPUs 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/init.h> 21 #include <linux/notifier.h> 22 #include <linux/cpufreq.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/slab.h> 28 #include <linux/cpu.h> 29 #include <linux/completion.h> 30 #include <linux/mutex.h> 31 32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \ 33 "cpufreq-core", msg) 34 35 /** 36 * The "cpufreq driver" - the arch- or hardware-dependent low 37 * level driver of CPUFreq support, and its spinlock. This lock 38 * also protects the cpufreq_cpu_data array. 39 */ 40 static struct cpufreq_driver *cpufreq_driver; 41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 42 #ifdef CONFIG_HOTPLUG_CPU 43 /* This one keeps track of the previously set governor of a removed CPU */ 44 static DEFINE_PER_CPU(struct cpufreq_governor *, cpufreq_cpu_governor); 45 #endif 46 static DEFINE_SPINLOCK(cpufreq_driver_lock); 47 48 /* 49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 50 * all cpufreq/hotplug/workqueue/etc related lock issues. 51 * 52 * The rules for this semaphore: 53 * - Any routine that wants to read from the policy structure will 54 * do a down_read on this semaphore. 55 * - Any routine that will write to the policy structure and/or may take away 56 * the policy altogether (eg. CPU hotplug), will hold this lock in write 57 * mode before doing so. 58 * 59 * Additional rules: 60 * - All holders of the lock should check to make sure that the CPU they 61 * are concerned with are online after they get the lock. 62 * - Governor routines that can be called in cpufreq hotplug path should not 63 * take this sem as top level hotplug notifier handler takes this. 64 * - Lock should not be held across 65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 66 */ 67 static DEFINE_PER_CPU(int, policy_cpu); 68 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 69 70 #define lock_policy_rwsem(mode, cpu) \ 71 int lock_policy_rwsem_##mode \ 72 (int cpu) \ 73 { \ 74 int policy_cpu = per_cpu(policy_cpu, cpu); \ 75 BUG_ON(policy_cpu == -1); \ 76 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 77 if (unlikely(!cpu_online(cpu))) { \ 78 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 79 return -1; \ 80 } \ 81 \ 82 return 0; \ 83 } 84 85 lock_policy_rwsem(read, cpu); 86 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read); 87 88 lock_policy_rwsem(write, cpu); 89 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write); 90 91 void unlock_policy_rwsem_read(int cpu) 92 { 93 int policy_cpu = per_cpu(policy_cpu, cpu); 94 BUG_ON(policy_cpu == -1); 95 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu)); 96 } 97 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read); 98 99 void unlock_policy_rwsem_write(int cpu) 100 { 101 int policy_cpu = per_cpu(policy_cpu, cpu); 102 BUG_ON(policy_cpu == -1); 103 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu)); 104 } 105 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write); 106 107 108 /* internal prototypes */ 109 static int __cpufreq_governor(struct cpufreq_policy *policy, 110 unsigned int event); 111 static unsigned int __cpufreq_get(unsigned int cpu); 112 static void handle_update(struct work_struct *work); 113 114 /** 115 * Two notifier lists: the "policy" list is involved in the 116 * validation process for a new CPU frequency policy; the 117 * "transition" list for kernel code that needs to handle 118 * changes to devices when the CPU clock speed changes. 119 * The mutex locks both lists. 120 */ 121 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 122 static struct srcu_notifier_head cpufreq_transition_notifier_list; 123 124 static bool init_cpufreq_transition_notifier_list_called; 125 static int __init init_cpufreq_transition_notifier_list(void) 126 { 127 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 128 init_cpufreq_transition_notifier_list_called = true; 129 return 0; 130 } 131 pure_initcall(init_cpufreq_transition_notifier_list); 132 133 static LIST_HEAD(cpufreq_governor_list); 134 static DEFINE_MUTEX(cpufreq_governor_mutex); 135 136 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 137 { 138 struct cpufreq_policy *data; 139 unsigned long flags; 140 141 if (cpu >= nr_cpu_ids) 142 goto err_out; 143 144 /* get the cpufreq driver */ 145 spin_lock_irqsave(&cpufreq_driver_lock, flags); 146 147 if (!cpufreq_driver) 148 goto err_out_unlock; 149 150 if (!try_module_get(cpufreq_driver->owner)) 151 goto err_out_unlock; 152 153 154 /* get the CPU */ 155 data = per_cpu(cpufreq_cpu_data, cpu); 156 157 if (!data) 158 goto err_out_put_module; 159 160 if (!kobject_get(&data->kobj)) 161 goto err_out_put_module; 162 163 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 164 return data; 165 166 err_out_put_module: 167 module_put(cpufreq_driver->owner); 168 err_out_unlock: 169 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 170 err_out: 171 return NULL; 172 } 173 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 174 175 176 void cpufreq_cpu_put(struct cpufreq_policy *data) 177 { 178 kobject_put(&data->kobj); 179 module_put(cpufreq_driver->owner); 180 } 181 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 182 183 184 /********************************************************************* 185 * UNIFIED DEBUG HELPERS * 186 *********************************************************************/ 187 #ifdef CONFIG_CPU_FREQ_DEBUG 188 189 /* what part(s) of the CPUfreq subsystem are debugged? */ 190 static unsigned int debug; 191 192 /* is the debug output ratelimit'ed using printk_ratelimit? User can 193 * set or modify this value. 194 */ 195 static unsigned int debug_ratelimit = 1; 196 197 /* is the printk_ratelimit'ing enabled? It's enabled after a successful 198 * loading of a cpufreq driver, temporarily disabled when a new policy 199 * is set, and disabled upon cpufreq driver removal 200 */ 201 static unsigned int disable_ratelimit = 1; 202 static DEFINE_SPINLOCK(disable_ratelimit_lock); 203 204 static void cpufreq_debug_enable_ratelimit(void) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&disable_ratelimit_lock, flags); 209 if (disable_ratelimit) 210 disable_ratelimit--; 211 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 212 } 213 214 static void cpufreq_debug_disable_ratelimit(void) 215 { 216 unsigned long flags; 217 218 spin_lock_irqsave(&disable_ratelimit_lock, flags); 219 disable_ratelimit++; 220 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 221 } 222 223 void cpufreq_debug_printk(unsigned int type, const char *prefix, 224 const char *fmt, ...) 225 { 226 char s[256]; 227 va_list args; 228 unsigned int len; 229 unsigned long flags; 230 231 WARN_ON(!prefix); 232 if (type & debug) { 233 spin_lock_irqsave(&disable_ratelimit_lock, flags); 234 if (!disable_ratelimit && debug_ratelimit 235 && !printk_ratelimit()) { 236 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 237 return; 238 } 239 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 240 241 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix); 242 243 va_start(args, fmt); 244 len += vsnprintf(&s[len], (256 - len), fmt, args); 245 va_end(args); 246 247 printk(s); 248 249 WARN_ON(len < 5); 250 } 251 } 252 EXPORT_SYMBOL(cpufreq_debug_printk); 253 254 255 module_param(debug, uint, 0644); 256 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core," 257 " 2 to debug drivers, and 4 to debug governors."); 258 259 module_param(debug_ratelimit, uint, 0644); 260 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:" 261 " set to 0 to disable ratelimiting."); 262 263 #else /* !CONFIG_CPU_FREQ_DEBUG */ 264 265 static inline void cpufreq_debug_enable_ratelimit(void) { return; } 266 static inline void cpufreq_debug_disable_ratelimit(void) { return; } 267 268 #endif /* CONFIG_CPU_FREQ_DEBUG */ 269 270 271 /********************************************************************* 272 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 273 *********************************************************************/ 274 275 /** 276 * adjust_jiffies - adjust the system "loops_per_jiffy" 277 * 278 * This function alters the system "loops_per_jiffy" for the clock 279 * speed change. Note that loops_per_jiffy cannot be updated on SMP 280 * systems as each CPU might be scaled differently. So, use the arch 281 * per-CPU loops_per_jiffy value wherever possible. 282 */ 283 #ifndef CONFIG_SMP 284 static unsigned long l_p_j_ref; 285 static unsigned int l_p_j_ref_freq; 286 287 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 288 { 289 if (ci->flags & CPUFREQ_CONST_LOOPS) 290 return; 291 292 if (!l_p_j_ref_freq) { 293 l_p_j_ref = loops_per_jiffy; 294 l_p_j_ref_freq = ci->old; 295 dprintk("saving %lu as reference value for loops_per_jiffy; " 296 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 297 } 298 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) || 299 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) || 300 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 301 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 302 ci->new); 303 dprintk("scaling loops_per_jiffy to %lu " 304 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 305 } 306 } 307 #else 308 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 309 { 310 return; 311 } 312 #endif 313 314 315 /** 316 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 317 * on frequency transition. 318 * 319 * This function calls the transition notifiers and the "adjust_jiffies" 320 * function. It is called twice on all CPU frequency changes that have 321 * external effects. 322 */ 323 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state) 324 { 325 struct cpufreq_policy *policy; 326 327 BUG_ON(irqs_disabled()); 328 329 freqs->flags = cpufreq_driver->flags; 330 dprintk("notification %u of frequency transition to %u kHz\n", 331 state, freqs->new); 332 333 policy = per_cpu(cpufreq_cpu_data, freqs->cpu); 334 switch (state) { 335 336 case CPUFREQ_PRECHANGE: 337 /* detect if the driver reported a value as "old frequency" 338 * which is not equal to what the cpufreq core thinks is 339 * "old frequency". 340 */ 341 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 342 if ((policy) && (policy->cpu == freqs->cpu) && 343 (policy->cur) && (policy->cur != freqs->old)) { 344 dprintk("Warning: CPU frequency is" 345 " %u, cpufreq assumed %u kHz.\n", 346 freqs->old, policy->cur); 347 freqs->old = policy->cur; 348 } 349 } 350 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 351 CPUFREQ_PRECHANGE, freqs); 352 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 353 break; 354 355 case CPUFREQ_POSTCHANGE: 356 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 357 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 358 CPUFREQ_POSTCHANGE, freqs); 359 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 360 policy->cur = freqs->new; 361 break; 362 } 363 } 364 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 365 366 367 368 /********************************************************************* 369 * SYSFS INTERFACE * 370 *********************************************************************/ 371 372 static struct cpufreq_governor *__find_governor(const char *str_governor) 373 { 374 struct cpufreq_governor *t; 375 376 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 377 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 378 return t; 379 380 return NULL; 381 } 382 383 /** 384 * cpufreq_parse_governor - parse a governor string 385 */ 386 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 387 struct cpufreq_governor **governor) 388 { 389 int err = -EINVAL; 390 391 if (!cpufreq_driver) 392 goto out; 393 394 if (cpufreq_driver->setpolicy) { 395 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 396 *policy = CPUFREQ_POLICY_PERFORMANCE; 397 err = 0; 398 } else if (!strnicmp(str_governor, "powersave", 399 CPUFREQ_NAME_LEN)) { 400 *policy = CPUFREQ_POLICY_POWERSAVE; 401 err = 0; 402 } 403 } else if (cpufreq_driver->target) { 404 struct cpufreq_governor *t; 405 406 mutex_lock(&cpufreq_governor_mutex); 407 408 t = __find_governor(str_governor); 409 410 if (t == NULL) { 411 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s", 412 str_governor); 413 414 if (name) { 415 int ret; 416 417 mutex_unlock(&cpufreq_governor_mutex); 418 ret = request_module("%s", name); 419 mutex_lock(&cpufreq_governor_mutex); 420 421 if (ret == 0) 422 t = __find_governor(str_governor); 423 } 424 425 kfree(name); 426 } 427 428 if (t != NULL) { 429 *governor = t; 430 err = 0; 431 } 432 433 mutex_unlock(&cpufreq_governor_mutex); 434 } 435 out: 436 return err; 437 } 438 439 440 /** 441 * cpufreq_per_cpu_attr_read() / show_##file_name() - 442 * print out cpufreq information 443 * 444 * Write out information from cpufreq_driver->policy[cpu]; object must be 445 * "unsigned int". 446 */ 447 448 #define show_one(file_name, object) \ 449 static ssize_t show_##file_name \ 450 (struct cpufreq_policy *policy, char *buf) \ 451 { \ 452 return sprintf(buf, "%u\n", policy->object); \ 453 } 454 455 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 456 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 457 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 458 show_one(scaling_min_freq, min); 459 show_one(scaling_max_freq, max); 460 show_one(scaling_cur_freq, cur); 461 462 static int __cpufreq_set_policy(struct cpufreq_policy *data, 463 struct cpufreq_policy *policy); 464 465 /** 466 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 467 */ 468 #define store_one(file_name, object) \ 469 static ssize_t store_##file_name \ 470 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 471 { \ 472 unsigned int ret = -EINVAL; \ 473 struct cpufreq_policy new_policy; \ 474 \ 475 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 476 if (ret) \ 477 return -EINVAL; \ 478 \ 479 ret = sscanf(buf, "%u", &new_policy.object); \ 480 if (ret != 1) \ 481 return -EINVAL; \ 482 \ 483 ret = __cpufreq_set_policy(policy, &new_policy); \ 484 policy->user_policy.object = policy->object; \ 485 \ 486 return ret ? ret : count; \ 487 } 488 489 store_one(scaling_min_freq, min); 490 store_one(scaling_max_freq, max); 491 492 /** 493 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 494 */ 495 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 496 char *buf) 497 { 498 unsigned int cur_freq = __cpufreq_get(policy->cpu); 499 if (!cur_freq) 500 return sprintf(buf, "<unknown>"); 501 return sprintf(buf, "%u\n", cur_freq); 502 } 503 504 505 /** 506 * show_scaling_governor - show the current policy for the specified CPU 507 */ 508 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 509 { 510 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 511 return sprintf(buf, "powersave\n"); 512 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 513 return sprintf(buf, "performance\n"); 514 else if (policy->governor) 515 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", 516 policy->governor->name); 517 return -EINVAL; 518 } 519 520 521 /** 522 * store_scaling_governor - store policy for the specified CPU 523 */ 524 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 525 const char *buf, size_t count) 526 { 527 unsigned int ret = -EINVAL; 528 char str_governor[16]; 529 struct cpufreq_policy new_policy; 530 531 ret = cpufreq_get_policy(&new_policy, policy->cpu); 532 if (ret) 533 return ret; 534 535 ret = sscanf(buf, "%15s", str_governor); 536 if (ret != 1) 537 return -EINVAL; 538 539 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 540 &new_policy.governor)) 541 return -EINVAL; 542 543 /* Do not use cpufreq_set_policy here or the user_policy.max 544 will be wrongly overridden */ 545 ret = __cpufreq_set_policy(policy, &new_policy); 546 547 policy->user_policy.policy = policy->policy; 548 policy->user_policy.governor = policy->governor; 549 550 if (ret) 551 return ret; 552 else 553 return count; 554 } 555 556 /** 557 * show_scaling_driver - show the cpufreq driver currently loaded 558 */ 559 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 560 { 561 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name); 562 } 563 564 /** 565 * show_scaling_available_governors - show the available CPUfreq governors 566 */ 567 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 568 char *buf) 569 { 570 ssize_t i = 0; 571 struct cpufreq_governor *t; 572 573 if (!cpufreq_driver->target) { 574 i += sprintf(buf, "performance powersave"); 575 goto out; 576 } 577 578 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 579 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 580 - (CPUFREQ_NAME_LEN + 2))) 581 goto out; 582 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name); 583 } 584 out: 585 i += sprintf(&buf[i], "\n"); 586 return i; 587 } 588 589 static ssize_t show_cpus(const struct cpumask *mask, char *buf) 590 { 591 ssize_t i = 0; 592 unsigned int cpu; 593 594 for_each_cpu(cpu, mask) { 595 if (i) 596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 597 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 598 if (i >= (PAGE_SIZE - 5)) 599 break; 600 } 601 i += sprintf(&buf[i], "\n"); 602 return i; 603 } 604 605 /** 606 * show_related_cpus - show the CPUs affected by each transition even if 607 * hw coordination is in use 608 */ 609 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 610 { 611 if (cpumask_empty(policy->related_cpus)) 612 return show_cpus(policy->cpus, buf); 613 return show_cpus(policy->related_cpus, buf); 614 } 615 616 /** 617 * show_affected_cpus - show the CPUs affected by each transition 618 */ 619 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 620 { 621 return show_cpus(policy->cpus, buf); 622 } 623 624 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 625 const char *buf, size_t count) 626 { 627 unsigned int freq = 0; 628 unsigned int ret; 629 630 if (!policy->governor || !policy->governor->store_setspeed) 631 return -EINVAL; 632 633 ret = sscanf(buf, "%u", &freq); 634 if (ret != 1) 635 return -EINVAL; 636 637 policy->governor->store_setspeed(policy, freq); 638 639 return count; 640 } 641 642 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 643 { 644 if (!policy->governor || !policy->governor->show_setspeed) 645 return sprintf(buf, "<unsupported>\n"); 646 647 return policy->governor->show_setspeed(policy, buf); 648 } 649 650 #define define_one_ro(_name) \ 651 static struct freq_attr _name = \ 652 __ATTR(_name, 0444, show_##_name, NULL) 653 654 #define define_one_ro0400(_name) \ 655 static struct freq_attr _name = \ 656 __ATTR(_name, 0400, show_##_name, NULL) 657 658 #define define_one_rw(_name) \ 659 static struct freq_attr _name = \ 660 __ATTR(_name, 0644, show_##_name, store_##_name) 661 662 define_one_ro0400(cpuinfo_cur_freq); 663 define_one_ro(cpuinfo_min_freq); 664 define_one_ro(cpuinfo_max_freq); 665 define_one_ro(cpuinfo_transition_latency); 666 define_one_ro(scaling_available_governors); 667 define_one_ro(scaling_driver); 668 define_one_ro(scaling_cur_freq); 669 define_one_ro(related_cpus); 670 define_one_ro(affected_cpus); 671 define_one_rw(scaling_min_freq); 672 define_one_rw(scaling_max_freq); 673 define_one_rw(scaling_governor); 674 define_one_rw(scaling_setspeed); 675 676 static struct attribute *default_attrs[] = { 677 &cpuinfo_min_freq.attr, 678 &cpuinfo_max_freq.attr, 679 &cpuinfo_transition_latency.attr, 680 &scaling_min_freq.attr, 681 &scaling_max_freq.attr, 682 &affected_cpus.attr, 683 &related_cpus.attr, 684 &scaling_governor.attr, 685 &scaling_driver.attr, 686 &scaling_available_governors.attr, 687 &scaling_setspeed.attr, 688 NULL 689 }; 690 691 struct kobject *cpufreq_global_kobject; 692 EXPORT_SYMBOL(cpufreq_global_kobject); 693 694 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 695 #define to_attr(a) container_of(a, struct freq_attr, attr) 696 697 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 698 { 699 struct cpufreq_policy *policy = to_policy(kobj); 700 struct freq_attr *fattr = to_attr(attr); 701 ssize_t ret = -EINVAL; 702 policy = cpufreq_cpu_get(policy->cpu); 703 if (!policy) 704 goto no_policy; 705 706 if (lock_policy_rwsem_read(policy->cpu) < 0) 707 goto fail; 708 709 if (fattr->show) 710 ret = fattr->show(policy, buf); 711 else 712 ret = -EIO; 713 714 unlock_policy_rwsem_read(policy->cpu); 715 fail: 716 cpufreq_cpu_put(policy); 717 no_policy: 718 return ret; 719 } 720 721 static ssize_t store(struct kobject *kobj, struct attribute *attr, 722 const char *buf, size_t count) 723 { 724 struct cpufreq_policy *policy = to_policy(kobj); 725 struct freq_attr *fattr = to_attr(attr); 726 ssize_t ret = -EINVAL; 727 policy = cpufreq_cpu_get(policy->cpu); 728 if (!policy) 729 goto no_policy; 730 731 if (lock_policy_rwsem_write(policy->cpu) < 0) 732 goto fail; 733 734 if (fattr->store) 735 ret = fattr->store(policy, buf, count); 736 else 737 ret = -EIO; 738 739 unlock_policy_rwsem_write(policy->cpu); 740 fail: 741 cpufreq_cpu_put(policy); 742 no_policy: 743 return ret; 744 } 745 746 static void cpufreq_sysfs_release(struct kobject *kobj) 747 { 748 struct cpufreq_policy *policy = to_policy(kobj); 749 dprintk("last reference is dropped\n"); 750 complete(&policy->kobj_unregister); 751 } 752 753 static struct sysfs_ops sysfs_ops = { 754 .show = show, 755 .store = store, 756 }; 757 758 static struct kobj_type ktype_cpufreq = { 759 .sysfs_ops = &sysfs_ops, 760 .default_attrs = default_attrs, 761 .release = cpufreq_sysfs_release, 762 }; 763 764 /* 765 * Returns: 766 * Negative: Failure 767 * 0: Success 768 * Positive: When we have a managed CPU and the sysfs got symlinked 769 */ 770 int cpufreq_add_dev_policy(unsigned int cpu, struct cpufreq_policy *policy, 771 struct sys_device *sys_dev) 772 { 773 int ret = 0; 774 #ifdef CONFIG_SMP 775 unsigned long flags; 776 unsigned int j; 777 778 #ifdef CONFIG_HOTPLUG_CPU 779 if (per_cpu(cpufreq_cpu_governor, cpu)) { 780 policy->governor = per_cpu(cpufreq_cpu_governor, cpu); 781 dprintk("Restoring governor %s for cpu %d\n", 782 policy->governor->name, cpu); 783 } 784 #endif 785 786 for_each_cpu(j, policy->cpus) { 787 struct cpufreq_policy *managed_policy; 788 789 if (cpu == j) 790 continue; 791 792 /* Check for existing affected CPUs. 793 * They may not be aware of it due to CPU Hotplug. 794 * cpufreq_cpu_put is called when the device is removed 795 * in __cpufreq_remove_dev() 796 */ 797 managed_policy = cpufreq_cpu_get(j); 798 if (unlikely(managed_policy)) { 799 800 /* Set proper policy_cpu */ 801 unlock_policy_rwsem_write(cpu); 802 per_cpu(policy_cpu, cpu) = managed_policy->cpu; 803 804 if (lock_policy_rwsem_write(cpu) < 0) { 805 /* Should not go through policy unlock path */ 806 if (cpufreq_driver->exit) 807 cpufreq_driver->exit(policy); 808 cpufreq_cpu_put(managed_policy); 809 return -EBUSY; 810 } 811 812 spin_lock_irqsave(&cpufreq_driver_lock, flags); 813 cpumask_copy(managed_policy->cpus, policy->cpus); 814 per_cpu(cpufreq_cpu_data, cpu) = managed_policy; 815 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 816 817 dprintk("CPU already managed, adding link\n"); 818 ret = sysfs_create_link(&sys_dev->kobj, 819 &managed_policy->kobj, 820 "cpufreq"); 821 if (ret) 822 cpufreq_cpu_put(managed_policy); 823 /* 824 * Success. We only needed to be added to the mask. 825 * Call driver->exit() because only the cpu parent of 826 * the kobj needed to call init(). 827 */ 828 if (cpufreq_driver->exit) 829 cpufreq_driver->exit(policy); 830 831 if (!ret) 832 return 1; 833 else 834 return ret; 835 } 836 } 837 #endif 838 return ret; 839 } 840 841 842 /* symlink affected CPUs */ 843 int cpufreq_add_dev_symlink(unsigned int cpu, struct cpufreq_policy *policy) 844 { 845 unsigned int j; 846 int ret = 0; 847 848 for_each_cpu(j, policy->cpus) { 849 struct cpufreq_policy *managed_policy; 850 struct sys_device *cpu_sys_dev; 851 852 if (j == cpu) 853 continue; 854 if (!cpu_online(j)) 855 continue; 856 857 dprintk("CPU %u already managed, adding link\n", j); 858 managed_policy = cpufreq_cpu_get(cpu); 859 cpu_sys_dev = get_cpu_sysdev(j); 860 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj, 861 "cpufreq"); 862 if (ret) { 863 cpufreq_cpu_put(managed_policy); 864 return ret; 865 } 866 } 867 return ret; 868 } 869 870 int cpufreq_add_dev_interface(unsigned int cpu, struct cpufreq_policy *policy, 871 struct sys_device *sys_dev) 872 { 873 struct cpufreq_policy new_policy; 874 struct freq_attr **drv_attr; 875 unsigned long flags; 876 int ret = 0; 877 unsigned int j; 878 879 /* prepare interface data */ 880 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 881 &sys_dev->kobj, "cpufreq"); 882 if (ret) 883 return ret; 884 885 /* set up files for this cpu device */ 886 drv_attr = cpufreq_driver->attr; 887 while ((drv_attr) && (*drv_attr)) { 888 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 889 if (ret) 890 goto err_out_kobj_put; 891 drv_attr++; 892 } 893 if (cpufreq_driver->get) { 894 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 895 if (ret) 896 goto err_out_kobj_put; 897 } 898 if (cpufreq_driver->target) { 899 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 900 if (ret) 901 goto err_out_kobj_put; 902 } 903 904 spin_lock_irqsave(&cpufreq_driver_lock, flags); 905 for_each_cpu(j, policy->cpus) { 906 if (!cpu_online(j)) 907 continue; 908 per_cpu(cpufreq_cpu_data, j) = policy; 909 per_cpu(policy_cpu, j) = policy->cpu; 910 } 911 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 912 913 ret = cpufreq_add_dev_symlink(cpu, policy); 914 if (ret) 915 goto err_out_kobj_put; 916 917 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 918 /* assure that the starting sequence is run in __cpufreq_set_policy */ 919 policy->governor = NULL; 920 921 /* set default policy */ 922 ret = __cpufreq_set_policy(policy, &new_policy); 923 policy->user_policy.policy = policy->policy; 924 policy->user_policy.governor = policy->governor; 925 926 if (ret) { 927 dprintk("setting policy failed\n"); 928 if (cpufreq_driver->exit) 929 cpufreq_driver->exit(policy); 930 } 931 return ret; 932 933 err_out_kobj_put: 934 kobject_put(&policy->kobj); 935 wait_for_completion(&policy->kobj_unregister); 936 return ret; 937 } 938 939 940 /** 941 * cpufreq_add_dev - add a CPU device 942 * 943 * Adds the cpufreq interface for a CPU device. 944 * 945 * The Oracle says: try running cpufreq registration/unregistration concurrently 946 * with with cpu hotplugging and all hell will break loose. Tried to clean this 947 * mess up, but more thorough testing is needed. - Mathieu 948 */ 949 static int cpufreq_add_dev(struct sys_device *sys_dev) 950 { 951 unsigned int cpu = sys_dev->id; 952 int ret = 0; 953 struct cpufreq_policy *policy; 954 unsigned long flags; 955 unsigned int j; 956 957 if (cpu_is_offline(cpu)) 958 return 0; 959 960 cpufreq_debug_disable_ratelimit(); 961 dprintk("adding CPU %u\n", cpu); 962 963 #ifdef CONFIG_SMP 964 /* check whether a different CPU already registered this 965 * CPU because it is in the same boat. */ 966 policy = cpufreq_cpu_get(cpu); 967 if (unlikely(policy)) { 968 cpufreq_cpu_put(policy); 969 cpufreq_debug_enable_ratelimit(); 970 return 0; 971 } 972 #endif 973 974 if (!try_module_get(cpufreq_driver->owner)) { 975 ret = -EINVAL; 976 goto module_out; 977 } 978 979 ret = -ENOMEM; 980 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 981 if (!policy) 982 goto nomem_out; 983 984 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 985 goto err_free_policy; 986 987 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 988 goto err_free_cpumask; 989 990 policy->cpu = cpu; 991 cpumask_copy(policy->cpus, cpumask_of(cpu)); 992 993 /* Initially set CPU itself as the policy_cpu */ 994 per_cpu(policy_cpu, cpu) = cpu; 995 ret = (lock_policy_rwsem_write(cpu) < 0); 996 WARN_ON(ret); 997 998 init_completion(&policy->kobj_unregister); 999 INIT_WORK(&policy->update, handle_update); 1000 1001 /* Set governor before ->init, so that driver could check it */ 1002 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1003 /* call driver. From then on the cpufreq must be able 1004 * to accept all calls to ->verify and ->setpolicy for this CPU 1005 */ 1006 ret = cpufreq_driver->init(policy); 1007 if (ret) { 1008 dprintk("initialization failed\n"); 1009 goto err_unlock_policy; 1010 } 1011 policy->user_policy.min = policy->min; 1012 policy->user_policy.max = policy->max; 1013 1014 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1015 CPUFREQ_START, policy); 1016 1017 ret = cpufreq_add_dev_policy(cpu, policy, sys_dev); 1018 if (ret) { 1019 if (ret > 0) 1020 /* This is a managed cpu, symlink created, 1021 exit with 0 */ 1022 ret = 0; 1023 goto err_unlock_policy; 1024 } 1025 1026 ret = cpufreq_add_dev_interface(cpu, policy, sys_dev); 1027 if (ret) 1028 goto err_out_unregister; 1029 1030 unlock_policy_rwsem_write(cpu); 1031 1032 kobject_uevent(&policy->kobj, KOBJ_ADD); 1033 module_put(cpufreq_driver->owner); 1034 dprintk("initialization complete\n"); 1035 cpufreq_debug_enable_ratelimit(); 1036 1037 return 0; 1038 1039 1040 err_out_unregister: 1041 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1042 for_each_cpu(j, policy->cpus) 1043 per_cpu(cpufreq_cpu_data, j) = NULL; 1044 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1045 1046 kobject_put(&policy->kobj); 1047 wait_for_completion(&policy->kobj_unregister); 1048 1049 err_unlock_policy: 1050 unlock_policy_rwsem_write(cpu); 1051 err_free_cpumask: 1052 free_cpumask_var(policy->cpus); 1053 err_free_policy: 1054 kfree(policy); 1055 nomem_out: 1056 module_put(cpufreq_driver->owner); 1057 module_out: 1058 cpufreq_debug_enable_ratelimit(); 1059 return ret; 1060 } 1061 1062 1063 /** 1064 * __cpufreq_remove_dev - remove a CPU device 1065 * 1066 * Removes the cpufreq interface for a CPU device. 1067 * Caller should already have policy_rwsem in write mode for this CPU. 1068 * This routine frees the rwsem before returning. 1069 */ 1070 static int __cpufreq_remove_dev(struct sys_device *sys_dev) 1071 { 1072 unsigned int cpu = sys_dev->id; 1073 unsigned long flags; 1074 struct cpufreq_policy *data; 1075 #ifdef CONFIG_SMP 1076 struct sys_device *cpu_sys_dev; 1077 unsigned int j; 1078 #endif 1079 1080 cpufreq_debug_disable_ratelimit(); 1081 dprintk("unregistering CPU %u\n", cpu); 1082 1083 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1084 data = per_cpu(cpufreq_cpu_data, cpu); 1085 1086 if (!data) { 1087 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1088 cpufreq_debug_enable_ratelimit(); 1089 unlock_policy_rwsem_write(cpu); 1090 return -EINVAL; 1091 } 1092 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1093 1094 1095 #ifdef CONFIG_SMP 1096 /* if this isn't the CPU which is the parent of the kobj, we 1097 * only need to unlink, put and exit 1098 */ 1099 if (unlikely(cpu != data->cpu)) { 1100 dprintk("removing link\n"); 1101 cpumask_clear_cpu(cpu, data->cpus); 1102 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1103 sysfs_remove_link(&sys_dev->kobj, "cpufreq"); 1104 cpufreq_cpu_put(data); 1105 cpufreq_debug_enable_ratelimit(); 1106 unlock_policy_rwsem_write(cpu); 1107 return 0; 1108 } 1109 #endif 1110 1111 #ifdef CONFIG_SMP 1112 1113 #ifdef CONFIG_HOTPLUG_CPU 1114 per_cpu(cpufreq_cpu_governor, cpu) = data->governor; 1115 #endif 1116 1117 /* if we have other CPUs still registered, we need to unlink them, 1118 * or else wait_for_completion below will lock up. Clean the 1119 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove 1120 * the sysfs links afterwards. 1121 */ 1122 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1123 for_each_cpu(j, data->cpus) { 1124 if (j == cpu) 1125 continue; 1126 per_cpu(cpufreq_cpu_data, j) = NULL; 1127 } 1128 } 1129 1130 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1131 1132 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1133 for_each_cpu(j, data->cpus) { 1134 if (j == cpu) 1135 continue; 1136 dprintk("removing link for cpu %u\n", j); 1137 #ifdef CONFIG_HOTPLUG_CPU 1138 per_cpu(cpufreq_cpu_governor, j) = data->governor; 1139 #endif 1140 cpu_sys_dev = get_cpu_sysdev(j); 1141 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq"); 1142 cpufreq_cpu_put(data); 1143 } 1144 } 1145 #else 1146 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1147 #endif 1148 1149 if (cpufreq_driver->target) 1150 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1151 1152 kobject_put(&data->kobj); 1153 1154 /* we need to make sure that the underlying kobj is actually 1155 * not referenced anymore by anybody before we proceed with 1156 * unloading. 1157 */ 1158 dprintk("waiting for dropping of refcount\n"); 1159 wait_for_completion(&data->kobj_unregister); 1160 dprintk("wait complete\n"); 1161 1162 if (cpufreq_driver->exit) 1163 cpufreq_driver->exit(data); 1164 1165 unlock_policy_rwsem_write(cpu); 1166 1167 free_cpumask_var(data->related_cpus); 1168 free_cpumask_var(data->cpus); 1169 kfree(data); 1170 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1171 1172 cpufreq_debug_enable_ratelimit(); 1173 return 0; 1174 } 1175 1176 1177 static int cpufreq_remove_dev(struct sys_device *sys_dev) 1178 { 1179 unsigned int cpu = sys_dev->id; 1180 int retval; 1181 1182 if (cpu_is_offline(cpu)) 1183 return 0; 1184 1185 if (unlikely(lock_policy_rwsem_write(cpu))) 1186 BUG(); 1187 1188 retval = __cpufreq_remove_dev(sys_dev); 1189 return retval; 1190 } 1191 1192 1193 static void handle_update(struct work_struct *work) 1194 { 1195 struct cpufreq_policy *policy = 1196 container_of(work, struct cpufreq_policy, update); 1197 unsigned int cpu = policy->cpu; 1198 dprintk("handle_update for cpu %u called\n", cpu); 1199 cpufreq_update_policy(cpu); 1200 } 1201 1202 /** 1203 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble. 1204 * @cpu: cpu number 1205 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1206 * @new_freq: CPU frequency the CPU actually runs at 1207 * 1208 * We adjust to current frequency first, and need to clean up later. 1209 * So either call to cpufreq_update_policy() or schedule handle_update()). 1210 */ 1211 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1212 unsigned int new_freq) 1213 { 1214 struct cpufreq_freqs freqs; 1215 1216 dprintk("Warning: CPU frequency out of sync: cpufreq and timing " 1217 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1218 1219 freqs.cpu = cpu; 1220 freqs.old = old_freq; 1221 freqs.new = new_freq; 1222 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); 1223 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); 1224 } 1225 1226 1227 /** 1228 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1229 * @cpu: CPU number 1230 * 1231 * This is the last known freq, without actually getting it from the driver. 1232 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1233 */ 1234 unsigned int cpufreq_quick_get(unsigned int cpu) 1235 { 1236 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1237 unsigned int ret_freq = 0; 1238 1239 if (policy) { 1240 ret_freq = policy->cur; 1241 cpufreq_cpu_put(policy); 1242 } 1243 1244 return ret_freq; 1245 } 1246 EXPORT_SYMBOL(cpufreq_quick_get); 1247 1248 1249 static unsigned int __cpufreq_get(unsigned int cpu) 1250 { 1251 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1252 unsigned int ret_freq = 0; 1253 1254 if (!cpufreq_driver->get) 1255 return ret_freq; 1256 1257 ret_freq = cpufreq_driver->get(cpu); 1258 1259 if (ret_freq && policy->cur && 1260 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1261 /* verify no discrepancy between actual and 1262 saved value exists */ 1263 if (unlikely(ret_freq != policy->cur)) { 1264 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1265 schedule_work(&policy->update); 1266 } 1267 } 1268 1269 return ret_freq; 1270 } 1271 1272 /** 1273 * cpufreq_get - get the current CPU frequency (in kHz) 1274 * @cpu: CPU number 1275 * 1276 * Get the CPU current (static) CPU frequency 1277 */ 1278 unsigned int cpufreq_get(unsigned int cpu) 1279 { 1280 unsigned int ret_freq = 0; 1281 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1282 1283 if (!policy) 1284 goto out; 1285 1286 if (unlikely(lock_policy_rwsem_read(cpu))) 1287 goto out_policy; 1288 1289 ret_freq = __cpufreq_get(cpu); 1290 1291 unlock_policy_rwsem_read(cpu); 1292 1293 out_policy: 1294 cpufreq_cpu_put(policy); 1295 out: 1296 return ret_freq; 1297 } 1298 EXPORT_SYMBOL(cpufreq_get); 1299 1300 1301 /** 1302 * cpufreq_suspend - let the low level driver prepare for suspend 1303 */ 1304 1305 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg) 1306 { 1307 int ret = 0; 1308 1309 int cpu = sysdev->id; 1310 struct cpufreq_policy *cpu_policy; 1311 1312 dprintk("suspending cpu %u\n", cpu); 1313 1314 if (!cpu_online(cpu)) 1315 return 0; 1316 1317 /* we may be lax here as interrupts are off. Nonetheless 1318 * we need to grab the correct cpu policy, as to check 1319 * whether we really run on this CPU. 1320 */ 1321 1322 cpu_policy = cpufreq_cpu_get(cpu); 1323 if (!cpu_policy) 1324 return -EINVAL; 1325 1326 /* only handle each CPU group once */ 1327 if (unlikely(cpu_policy->cpu != cpu)) 1328 goto out; 1329 1330 if (cpufreq_driver->suspend) { 1331 ret = cpufreq_driver->suspend(cpu_policy, pmsg); 1332 if (ret) 1333 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1334 "step on CPU %u\n", cpu_policy->cpu); 1335 } 1336 1337 out: 1338 cpufreq_cpu_put(cpu_policy); 1339 return ret; 1340 } 1341 1342 /** 1343 * cpufreq_resume - restore proper CPU frequency handling after resume 1344 * 1345 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1346 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1347 * restored. It will verify that the current freq is in sync with 1348 * what we believe it to be. This is a bit later than when it 1349 * should be, but nonethteless it's better than calling 1350 * cpufreq_driver->get() here which might re-enable interrupts... 1351 */ 1352 static int cpufreq_resume(struct sys_device *sysdev) 1353 { 1354 int ret = 0; 1355 1356 int cpu = sysdev->id; 1357 struct cpufreq_policy *cpu_policy; 1358 1359 dprintk("resuming cpu %u\n", cpu); 1360 1361 if (!cpu_online(cpu)) 1362 return 0; 1363 1364 /* we may be lax here as interrupts are off. Nonetheless 1365 * we need to grab the correct cpu policy, as to check 1366 * whether we really run on this CPU. 1367 */ 1368 1369 cpu_policy = cpufreq_cpu_get(cpu); 1370 if (!cpu_policy) 1371 return -EINVAL; 1372 1373 /* only handle each CPU group once */ 1374 if (unlikely(cpu_policy->cpu != cpu)) 1375 goto fail; 1376 1377 if (cpufreq_driver->resume) { 1378 ret = cpufreq_driver->resume(cpu_policy); 1379 if (ret) { 1380 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1381 "step on CPU %u\n", cpu_policy->cpu); 1382 goto fail; 1383 } 1384 } 1385 1386 schedule_work(&cpu_policy->update); 1387 1388 fail: 1389 cpufreq_cpu_put(cpu_policy); 1390 return ret; 1391 } 1392 1393 static struct sysdev_driver cpufreq_sysdev_driver = { 1394 .add = cpufreq_add_dev, 1395 .remove = cpufreq_remove_dev, 1396 .suspend = cpufreq_suspend, 1397 .resume = cpufreq_resume, 1398 }; 1399 1400 1401 /********************************************************************* 1402 * NOTIFIER LISTS INTERFACE * 1403 *********************************************************************/ 1404 1405 /** 1406 * cpufreq_register_notifier - register a driver with cpufreq 1407 * @nb: notifier function to register 1408 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1409 * 1410 * Add a driver to one of two lists: either a list of drivers that 1411 * are notified about clock rate changes (once before and once after 1412 * the transition), or a list of drivers that are notified about 1413 * changes in cpufreq policy. 1414 * 1415 * This function may sleep, and has the same return conditions as 1416 * blocking_notifier_chain_register. 1417 */ 1418 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1419 { 1420 int ret; 1421 1422 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1423 1424 switch (list) { 1425 case CPUFREQ_TRANSITION_NOTIFIER: 1426 ret = srcu_notifier_chain_register( 1427 &cpufreq_transition_notifier_list, nb); 1428 break; 1429 case CPUFREQ_POLICY_NOTIFIER: 1430 ret = blocking_notifier_chain_register( 1431 &cpufreq_policy_notifier_list, nb); 1432 break; 1433 default: 1434 ret = -EINVAL; 1435 } 1436 1437 return ret; 1438 } 1439 EXPORT_SYMBOL(cpufreq_register_notifier); 1440 1441 1442 /** 1443 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1444 * @nb: notifier block to be unregistered 1445 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1446 * 1447 * Remove a driver from the CPU frequency notifier list. 1448 * 1449 * This function may sleep, and has the same return conditions as 1450 * blocking_notifier_chain_unregister. 1451 */ 1452 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1453 { 1454 int ret; 1455 1456 switch (list) { 1457 case CPUFREQ_TRANSITION_NOTIFIER: 1458 ret = srcu_notifier_chain_unregister( 1459 &cpufreq_transition_notifier_list, nb); 1460 break; 1461 case CPUFREQ_POLICY_NOTIFIER: 1462 ret = blocking_notifier_chain_unregister( 1463 &cpufreq_policy_notifier_list, nb); 1464 break; 1465 default: 1466 ret = -EINVAL; 1467 } 1468 1469 return ret; 1470 } 1471 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1472 1473 1474 /********************************************************************* 1475 * GOVERNORS * 1476 *********************************************************************/ 1477 1478 1479 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1480 unsigned int target_freq, 1481 unsigned int relation) 1482 { 1483 int retval = -EINVAL; 1484 1485 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu, 1486 target_freq, relation); 1487 if (cpu_online(policy->cpu) && cpufreq_driver->target) 1488 retval = cpufreq_driver->target(policy, target_freq, relation); 1489 1490 return retval; 1491 } 1492 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1493 1494 int cpufreq_driver_target(struct cpufreq_policy *policy, 1495 unsigned int target_freq, 1496 unsigned int relation) 1497 { 1498 int ret = -EINVAL; 1499 1500 policy = cpufreq_cpu_get(policy->cpu); 1501 if (!policy) 1502 goto no_policy; 1503 1504 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1505 goto fail; 1506 1507 ret = __cpufreq_driver_target(policy, target_freq, relation); 1508 1509 unlock_policy_rwsem_write(policy->cpu); 1510 1511 fail: 1512 cpufreq_cpu_put(policy); 1513 no_policy: 1514 return ret; 1515 } 1516 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1517 1518 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu) 1519 { 1520 int ret = 0; 1521 1522 policy = cpufreq_cpu_get(policy->cpu); 1523 if (!policy) 1524 return -EINVAL; 1525 1526 if (cpu_online(cpu) && cpufreq_driver->getavg) 1527 ret = cpufreq_driver->getavg(policy, cpu); 1528 1529 cpufreq_cpu_put(policy); 1530 return ret; 1531 } 1532 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1533 1534 /* 1535 * when "event" is CPUFREQ_GOV_LIMITS 1536 */ 1537 1538 static int __cpufreq_governor(struct cpufreq_policy *policy, 1539 unsigned int event) 1540 { 1541 int ret; 1542 1543 /* Only must be defined when default governor is known to have latency 1544 restrictions, like e.g. conservative or ondemand. 1545 That this is the case is already ensured in Kconfig 1546 */ 1547 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1548 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1549 #else 1550 struct cpufreq_governor *gov = NULL; 1551 #endif 1552 1553 if (policy->governor->max_transition_latency && 1554 policy->cpuinfo.transition_latency > 1555 policy->governor->max_transition_latency) { 1556 if (!gov) 1557 return -EINVAL; 1558 else { 1559 printk(KERN_WARNING "%s governor failed, too long" 1560 " transition latency of HW, fallback" 1561 " to %s governor\n", 1562 policy->governor->name, 1563 gov->name); 1564 policy->governor = gov; 1565 } 1566 } 1567 1568 if (!try_module_get(policy->governor->owner)) 1569 return -EINVAL; 1570 1571 dprintk("__cpufreq_governor for CPU %u, event %u\n", 1572 policy->cpu, event); 1573 ret = policy->governor->governor(policy, event); 1574 1575 /* we keep one module reference alive for 1576 each CPU governed by this CPU */ 1577 if ((event != CPUFREQ_GOV_START) || ret) 1578 module_put(policy->governor->owner); 1579 if ((event == CPUFREQ_GOV_STOP) && !ret) 1580 module_put(policy->governor->owner); 1581 1582 return ret; 1583 } 1584 1585 1586 int cpufreq_register_governor(struct cpufreq_governor *governor) 1587 { 1588 int err; 1589 1590 if (!governor) 1591 return -EINVAL; 1592 1593 mutex_lock(&cpufreq_governor_mutex); 1594 1595 err = -EBUSY; 1596 if (__find_governor(governor->name) == NULL) { 1597 err = 0; 1598 list_add(&governor->governor_list, &cpufreq_governor_list); 1599 } 1600 1601 mutex_unlock(&cpufreq_governor_mutex); 1602 return err; 1603 } 1604 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1605 1606 1607 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1608 { 1609 if (!governor) 1610 return; 1611 1612 mutex_lock(&cpufreq_governor_mutex); 1613 list_del(&governor->governor_list); 1614 mutex_unlock(&cpufreq_governor_mutex); 1615 return; 1616 } 1617 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1618 1619 1620 1621 /********************************************************************* 1622 * POLICY INTERFACE * 1623 *********************************************************************/ 1624 1625 /** 1626 * cpufreq_get_policy - get the current cpufreq_policy 1627 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1628 * is written 1629 * 1630 * Reads the current cpufreq policy. 1631 */ 1632 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1633 { 1634 struct cpufreq_policy *cpu_policy; 1635 if (!policy) 1636 return -EINVAL; 1637 1638 cpu_policy = cpufreq_cpu_get(cpu); 1639 if (!cpu_policy) 1640 return -EINVAL; 1641 1642 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1643 1644 cpufreq_cpu_put(cpu_policy); 1645 return 0; 1646 } 1647 EXPORT_SYMBOL(cpufreq_get_policy); 1648 1649 1650 /* 1651 * data : current policy. 1652 * policy : policy to be set. 1653 */ 1654 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1655 struct cpufreq_policy *policy) 1656 { 1657 int ret = 0; 1658 1659 cpufreq_debug_disable_ratelimit(); 1660 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1661 policy->min, policy->max); 1662 1663 memcpy(&policy->cpuinfo, &data->cpuinfo, 1664 sizeof(struct cpufreq_cpuinfo)); 1665 1666 if (policy->min > data->max || policy->max < data->min) { 1667 ret = -EINVAL; 1668 goto error_out; 1669 } 1670 1671 /* verify the cpu speed can be set within this limit */ 1672 ret = cpufreq_driver->verify(policy); 1673 if (ret) 1674 goto error_out; 1675 1676 /* adjust if necessary - all reasons */ 1677 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1678 CPUFREQ_ADJUST, policy); 1679 1680 /* adjust if necessary - hardware incompatibility*/ 1681 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1682 CPUFREQ_INCOMPATIBLE, policy); 1683 1684 /* verify the cpu speed can be set within this limit, 1685 which might be different to the first one */ 1686 ret = cpufreq_driver->verify(policy); 1687 if (ret) 1688 goto error_out; 1689 1690 /* notification of the new policy */ 1691 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1692 CPUFREQ_NOTIFY, policy); 1693 1694 data->min = policy->min; 1695 data->max = policy->max; 1696 1697 dprintk("new min and max freqs are %u - %u kHz\n", 1698 data->min, data->max); 1699 1700 if (cpufreq_driver->setpolicy) { 1701 data->policy = policy->policy; 1702 dprintk("setting range\n"); 1703 ret = cpufreq_driver->setpolicy(policy); 1704 } else { 1705 if (policy->governor != data->governor) { 1706 /* save old, working values */ 1707 struct cpufreq_governor *old_gov = data->governor; 1708 1709 dprintk("governor switch\n"); 1710 1711 /* end old governor */ 1712 if (data->governor) { 1713 /* 1714 * Need to release the rwsem around governor 1715 * stop due to lock dependency between 1716 * cancel_delayed_work_sync and the read lock 1717 * taken in the delayed work handler. 1718 */ 1719 unlock_policy_rwsem_write(data->cpu); 1720 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1721 lock_policy_rwsem_write(data->cpu); 1722 } 1723 1724 /* start new governor */ 1725 data->governor = policy->governor; 1726 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1727 /* new governor failed, so re-start old one */ 1728 dprintk("starting governor %s failed\n", 1729 data->governor->name); 1730 if (old_gov) { 1731 data->governor = old_gov; 1732 __cpufreq_governor(data, 1733 CPUFREQ_GOV_START); 1734 } 1735 ret = -EINVAL; 1736 goto error_out; 1737 } 1738 /* might be a policy change, too, so fall through */ 1739 } 1740 dprintk("governor: change or update limits\n"); 1741 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1742 } 1743 1744 error_out: 1745 cpufreq_debug_enable_ratelimit(); 1746 return ret; 1747 } 1748 1749 /** 1750 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1751 * @cpu: CPU which shall be re-evaluated 1752 * 1753 * Usefull for policy notifiers which have different necessities 1754 * at different times. 1755 */ 1756 int cpufreq_update_policy(unsigned int cpu) 1757 { 1758 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1759 struct cpufreq_policy policy; 1760 int ret; 1761 1762 if (!data) { 1763 ret = -ENODEV; 1764 goto no_policy; 1765 } 1766 1767 if (unlikely(lock_policy_rwsem_write(cpu))) { 1768 ret = -EINVAL; 1769 goto fail; 1770 } 1771 1772 dprintk("updating policy for CPU %u\n", cpu); 1773 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1774 policy.min = data->user_policy.min; 1775 policy.max = data->user_policy.max; 1776 policy.policy = data->user_policy.policy; 1777 policy.governor = data->user_policy.governor; 1778 1779 /* BIOS might change freq behind our back 1780 -> ask driver for current freq and notify governors about a change */ 1781 if (cpufreq_driver->get) { 1782 policy.cur = cpufreq_driver->get(cpu); 1783 if (!data->cur) { 1784 dprintk("Driver did not initialize current freq"); 1785 data->cur = policy.cur; 1786 } else { 1787 if (data->cur != policy.cur) 1788 cpufreq_out_of_sync(cpu, data->cur, 1789 policy.cur); 1790 } 1791 } 1792 1793 ret = __cpufreq_set_policy(data, &policy); 1794 1795 unlock_policy_rwsem_write(cpu); 1796 1797 fail: 1798 cpufreq_cpu_put(data); 1799 no_policy: 1800 return ret; 1801 } 1802 EXPORT_SYMBOL(cpufreq_update_policy); 1803 1804 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb, 1805 unsigned long action, void *hcpu) 1806 { 1807 unsigned int cpu = (unsigned long)hcpu; 1808 struct sys_device *sys_dev; 1809 1810 sys_dev = get_cpu_sysdev(cpu); 1811 if (sys_dev) { 1812 switch (action) { 1813 case CPU_ONLINE: 1814 case CPU_ONLINE_FROZEN: 1815 cpufreq_add_dev(sys_dev); 1816 break; 1817 case CPU_DOWN_PREPARE: 1818 case CPU_DOWN_PREPARE_FROZEN: 1819 if (unlikely(lock_policy_rwsem_write(cpu))) 1820 BUG(); 1821 1822 __cpufreq_remove_dev(sys_dev); 1823 break; 1824 case CPU_DOWN_FAILED: 1825 case CPU_DOWN_FAILED_FROZEN: 1826 cpufreq_add_dev(sys_dev); 1827 break; 1828 } 1829 } 1830 return NOTIFY_OK; 1831 } 1832 1833 static struct notifier_block __refdata cpufreq_cpu_notifier = 1834 { 1835 .notifier_call = cpufreq_cpu_callback, 1836 }; 1837 1838 /********************************************************************* 1839 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1840 *********************************************************************/ 1841 1842 /** 1843 * cpufreq_register_driver - register a CPU Frequency driver 1844 * @driver_data: A struct cpufreq_driver containing the values# 1845 * submitted by the CPU Frequency driver. 1846 * 1847 * Registers a CPU Frequency driver to this core code. This code 1848 * returns zero on success, -EBUSY when another driver got here first 1849 * (and isn't unregistered in the meantime). 1850 * 1851 */ 1852 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1853 { 1854 unsigned long flags; 1855 int ret; 1856 1857 if (!driver_data || !driver_data->verify || !driver_data->init || 1858 ((!driver_data->setpolicy) && (!driver_data->target))) 1859 return -EINVAL; 1860 1861 dprintk("trying to register driver %s\n", driver_data->name); 1862 1863 if (driver_data->setpolicy) 1864 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1865 1866 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1867 if (cpufreq_driver) { 1868 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1869 return -EBUSY; 1870 } 1871 cpufreq_driver = driver_data; 1872 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1873 1874 ret = sysdev_driver_register(&cpu_sysdev_class, 1875 &cpufreq_sysdev_driver); 1876 1877 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) { 1878 int i; 1879 ret = -ENODEV; 1880 1881 /* check for at least one working CPU */ 1882 for (i = 0; i < nr_cpu_ids; i++) 1883 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 1884 ret = 0; 1885 break; 1886 } 1887 1888 /* if all ->init() calls failed, unregister */ 1889 if (ret) { 1890 dprintk("no CPU initialized for driver %s\n", 1891 driver_data->name); 1892 sysdev_driver_unregister(&cpu_sysdev_class, 1893 &cpufreq_sysdev_driver); 1894 1895 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1896 cpufreq_driver = NULL; 1897 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1898 } 1899 } 1900 1901 if (!ret) { 1902 register_hotcpu_notifier(&cpufreq_cpu_notifier); 1903 dprintk("driver %s up and running\n", driver_data->name); 1904 cpufreq_debug_enable_ratelimit(); 1905 } 1906 1907 return ret; 1908 } 1909 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 1910 1911 1912 /** 1913 * cpufreq_unregister_driver - unregister the current CPUFreq driver 1914 * 1915 * Unregister the current CPUFreq driver. Only call this if you have 1916 * the right to do so, i.e. if you have succeeded in initialising before! 1917 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 1918 * currently not initialised. 1919 */ 1920 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 1921 { 1922 unsigned long flags; 1923 1924 cpufreq_debug_disable_ratelimit(); 1925 1926 if (!cpufreq_driver || (driver != cpufreq_driver)) { 1927 cpufreq_debug_enable_ratelimit(); 1928 return -EINVAL; 1929 } 1930 1931 dprintk("unregistering driver %s\n", driver->name); 1932 1933 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver); 1934 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 1935 1936 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1937 cpufreq_driver = NULL; 1938 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1939 1940 return 0; 1941 } 1942 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 1943 1944 static int __init cpufreq_core_init(void) 1945 { 1946 int cpu; 1947 1948 for_each_possible_cpu(cpu) { 1949 per_cpu(policy_cpu, cpu) = -1; 1950 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 1951 } 1952 1953 cpufreq_global_kobject = kobject_create_and_add("cpufreq", 1954 &cpu_sysdev_class.kset.kobj); 1955 BUG_ON(!cpufreq_global_kobject); 1956 1957 return 0; 1958 } 1959 core_initcall(cpufreq_core_init); 1960