1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 /* Macros to iterate over CPU policies */ 42 #define for_each_suitable_policy(__policy, __active) \ 43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 44 if ((__active) == !policy_is_inactive(__policy)) 45 46 #define for_each_active_policy(__policy) \ 47 for_each_suitable_policy(__policy, true) 48 #define for_each_inactive_policy(__policy) \ 49 for_each_suitable_policy(__policy, false) 50 51 #define for_each_policy(__policy) \ 52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 53 54 /* Iterate over governors */ 55 static LIST_HEAD(cpufreq_governor_list); 56 #define for_each_governor(__governor) \ 57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 58 59 /** 60 * The "cpufreq driver" - the arch- or hardware-dependent low 61 * level driver of CPUFreq support, and its spinlock. This lock 62 * also protects the cpufreq_cpu_data array. 63 */ 64 static struct cpufreq_driver *cpufreq_driver; 65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 66 static DEFINE_RWLOCK(cpufreq_driver_lock); 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 78 static int cpufreq_init_governor(struct cpufreq_policy *policy); 79 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 80 static int cpufreq_start_governor(struct cpufreq_policy *policy); 81 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 82 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 83 84 /** 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 static struct srcu_notifier_head cpufreq_transition_notifier_list; 93 94 static bool init_cpufreq_transition_notifier_list_called; 95 static int __init init_cpufreq_transition_notifier_list(void) 96 { 97 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 98 init_cpufreq_transition_notifier_list_called = true; 99 return 0; 100 } 101 pure_initcall(init_cpufreq_transition_notifier_list); 102 103 static int off __read_mostly; 104 static int cpufreq_disabled(void) 105 { 106 return off; 107 } 108 void disable_cpufreq(void) 109 { 110 off = 1; 111 } 112 static DEFINE_MUTEX(cpufreq_governor_mutex); 113 114 bool have_governor_per_policy(void) 115 { 116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 117 } 118 EXPORT_SYMBOL_GPL(have_governor_per_policy); 119 120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 121 { 122 if (have_governor_per_policy()) 123 return &policy->kobj; 124 else 125 return cpufreq_global_kobject; 126 } 127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 128 129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 130 { 131 u64 idle_time; 132 u64 cur_wall_time; 133 u64 busy_time; 134 135 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 136 137 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 138 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 143 144 idle_time = cur_wall_time - busy_time; 145 if (wall) 146 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 147 148 return div_u64(idle_time, NSEC_PER_USEC); 149 } 150 151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 152 { 153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 154 155 if (idle_time == -1ULL) 156 return get_cpu_idle_time_jiffy(cpu, wall); 157 else if (!io_busy) 158 idle_time += get_cpu_iowait_time_us(cpu, wall); 159 160 return idle_time; 161 } 162 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 163 164 /* 165 * This is a generic cpufreq init() routine which can be used by cpufreq 166 * drivers of SMP systems. It will do following: 167 * - validate & show freq table passed 168 * - set policies transition latency 169 * - policy->cpus with all possible CPUs 170 */ 171 int cpufreq_generic_init(struct cpufreq_policy *policy, 172 struct cpufreq_frequency_table *table, 173 unsigned int transition_latency) 174 { 175 int ret; 176 177 ret = cpufreq_table_validate_and_show(policy, table); 178 if (ret) { 179 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 180 return ret; 181 } 182 183 policy->cpuinfo.transition_latency = transition_latency; 184 185 /* 186 * The driver only supports the SMP configuration where all processors 187 * share the clock and voltage and clock. 188 */ 189 cpumask_setall(policy->cpus); 190 191 return 0; 192 } 193 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 194 195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 196 { 197 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 198 199 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 200 } 201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 202 203 unsigned int cpufreq_generic_get(unsigned int cpu) 204 { 205 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 206 207 if (!policy || IS_ERR(policy->clk)) { 208 pr_err("%s: No %s associated to cpu: %d\n", 209 __func__, policy ? "clk" : "policy", cpu); 210 return 0; 211 } 212 213 return clk_get_rate(policy->clk) / 1000; 214 } 215 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 216 217 /** 218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 219 * 220 * @cpu: cpu to find policy for. 221 * 222 * This returns policy for 'cpu', returns NULL if it doesn't exist. 223 * It also increments the kobject reference count to mark it busy and so would 224 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 226 * freed as that depends on the kobj count. 227 * 228 * Return: A valid policy on success, otherwise NULL on failure. 229 */ 230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 231 { 232 struct cpufreq_policy *policy = NULL; 233 unsigned long flags; 234 235 if (WARN_ON(cpu >= nr_cpu_ids)) 236 return NULL; 237 238 /* get the cpufreq driver */ 239 read_lock_irqsave(&cpufreq_driver_lock, flags); 240 241 if (cpufreq_driver) { 242 /* get the CPU */ 243 policy = cpufreq_cpu_get_raw(cpu); 244 if (policy) 245 kobject_get(&policy->kobj); 246 } 247 248 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 249 250 return policy; 251 } 252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 253 254 /** 255 * cpufreq_cpu_put: Decrements the usage count of a policy 256 * 257 * @policy: policy earlier returned by cpufreq_cpu_get(). 258 * 259 * This decrements the kobject reference count incremented earlier by calling 260 * cpufreq_cpu_get(). 261 */ 262 void cpufreq_cpu_put(struct cpufreq_policy *policy) 263 { 264 kobject_put(&policy->kobj); 265 } 266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 267 268 /********************************************************************* 269 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 270 *********************************************************************/ 271 272 /** 273 * adjust_jiffies - adjust the system "loops_per_jiffy" 274 * 275 * This function alters the system "loops_per_jiffy" for the clock 276 * speed change. Note that loops_per_jiffy cannot be updated on SMP 277 * systems as each CPU might be scaled differently. So, use the arch 278 * per-CPU loops_per_jiffy value wherever possible. 279 */ 280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 281 { 282 #ifndef CONFIG_SMP 283 static unsigned long l_p_j_ref; 284 static unsigned int l_p_j_ref_freq; 285 286 if (ci->flags & CPUFREQ_CONST_LOOPS) 287 return; 288 289 if (!l_p_j_ref_freq) { 290 l_p_j_ref = loops_per_jiffy; 291 l_p_j_ref_freq = ci->old; 292 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 293 l_p_j_ref, l_p_j_ref_freq); 294 } 295 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 297 ci->new); 298 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 299 loops_per_jiffy, ci->new); 300 } 301 #endif 302 } 303 304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 305 struct cpufreq_freqs *freqs, unsigned int state) 306 { 307 BUG_ON(irqs_disabled()); 308 309 if (cpufreq_disabled()) 310 return; 311 312 freqs->flags = cpufreq_driver->flags; 313 pr_debug("notification %u of frequency transition to %u kHz\n", 314 state, freqs->new); 315 316 switch (state) { 317 318 case CPUFREQ_PRECHANGE: 319 /* detect if the driver reported a value as "old frequency" 320 * which is not equal to what the cpufreq core thinks is 321 * "old frequency". 322 */ 323 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 324 if ((policy) && (policy->cpu == freqs->cpu) && 325 (policy->cur) && (policy->cur != freqs->old)) { 326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 327 freqs->old, policy->cur); 328 freqs->old = policy->cur; 329 } 330 } 331 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 332 CPUFREQ_PRECHANGE, freqs); 333 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 334 break; 335 336 case CPUFREQ_POSTCHANGE: 337 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 338 pr_debug("FREQ: %lu - CPU: %lu\n", 339 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 340 trace_cpu_frequency(freqs->new, freqs->cpu); 341 cpufreq_stats_record_transition(policy, freqs->new); 342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 343 CPUFREQ_POSTCHANGE, freqs); 344 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 345 policy->cur = freqs->new; 346 break; 347 } 348 } 349 350 /** 351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 352 * on frequency transition. 353 * 354 * This function calls the transition notifiers and the "adjust_jiffies" 355 * function. It is called twice on all CPU frequency changes that have 356 * external effects. 357 */ 358 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 359 struct cpufreq_freqs *freqs, unsigned int state) 360 { 361 for_each_cpu(freqs->cpu, policy->cpus) 362 __cpufreq_notify_transition(policy, freqs, state); 363 } 364 365 /* Do post notifications when there are chances that transition has failed */ 366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 367 struct cpufreq_freqs *freqs, int transition_failed) 368 { 369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 370 if (!transition_failed) 371 return; 372 373 swap(freqs->old, freqs->new); 374 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 375 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 376 } 377 378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 379 struct cpufreq_freqs *freqs) 380 { 381 382 /* 383 * Catch double invocations of _begin() which lead to self-deadlock. 384 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 385 * doesn't invoke _begin() on their behalf, and hence the chances of 386 * double invocations are very low. Moreover, there are scenarios 387 * where these checks can emit false-positive warnings in these 388 * drivers; so we avoid that by skipping them altogether. 389 */ 390 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 391 && current == policy->transition_task); 392 393 wait: 394 wait_event(policy->transition_wait, !policy->transition_ongoing); 395 396 spin_lock(&policy->transition_lock); 397 398 if (unlikely(policy->transition_ongoing)) { 399 spin_unlock(&policy->transition_lock); 400 goto wait; 401 } 402 403 policy->transition_ongoing = true; 404 policy->transition_task = current; 405 406 spin_unlock(&policy->transition_lock); 407 408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 409 } 410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 411 412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 413 struct cpufreq_freqs *freqs, int transition_failed) 414 { 415 if (unlikely(WARN_ON(!policy->transition_ongoing))) 416 return; 417 418 cpufreq_notify_post_transition(policy, freqs, transition_failed); 419 420 policy->transition_ongoing = false; 421 policy->transition_task = NULL; 422 423 wake_up(&policy->transition_wait); 424 } 425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 426 427 /* 428 * Fast frequency switching status count. Positive means "enabled", negative 429 * means "disabled" and 0 means "not decided yet". 430 */ 431 static int cpufreq_fast_switch_count; 432 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 433 434 static void cpufreq_list_transition_notifiers(void) 435 { 436 struct notifier_block *nb; 437 438 pr_info("Registered transition notifiers:\n"); 439 440 mutex_lock(&cpufreq_transition_notifier_list.mutex); 441 442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 443 pr_info("%pF\n", nb->notifier_call); 444 445 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 446 } 447 448 /** 449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 450 * @policy: cpufreq policy to enable fast frequency switching for. 451 * 452 * Try to enable fast frequency switching for @policy. 453 * 454 * The attempt will fail if there is at least one transition notifier registered 455 * at this point, as fast frequency switching is quite fundamentally at odds 456 * with transition notifiers. Thus if successful, it will make registration of 457 * transition notifiers fail going forward. 458 */ 459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 460 { 461 lockdep_assert_held(&policy->rwsem); 462 463 if (!policy->fast_switch_possible) 464 return; 465 466 mutex_lock(&cpufreq_fast_switch_lock); 467 if (cpufreq_fast_switch_count >= 0) { 468 cpufreq_fast_switch_count++; 469 policy->fast_switch_enabled = true; 470 } else { 471 pr_warn("CPU%u: Fast frequency switching not enabled\n", 472 policy->cpu); 473 cpufreq_list_transition_notifiers(); 474 } 475 mutex_unlock(&cpufreq_fast_switch_lock); 476 } 477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 478 479 /** 480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 481 * @policy: cpufreq policy to disable fast frequency switching for. 482 */ 483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 484 { 485 mutex_lock(&cpufreq_fast_switch_lock); 486 if (policy->fast_switch_enabled) { 487 policy->fast_switch_enabled = false; 488 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 489 cpufreq_fast_switch_count--; 490 } 491 mutex_unlock(&cpufreq_fast_switch_lock); 492 } 493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 494 495 /** 496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 497 * one. 498 * @target_freq: target frequency to resolve. 499 * 500 * The target to driver frequency mapping is cached in the policy. 501 * 502 * Return: Lowest driver-supported frequency greater than or equal to the 503 * given target_freq, subject to policy (min/max) and driver limitations. 504 */ 505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 506 unsigned int target_freq) 507 { 508 target_freq = clamp_val(target_freq, policy->min, policy->max); 509 policy->cached_target_freq = target_freq; 510 511 if (cpufreq_driver->target_index) { 512 int idx; 513 514 idx = cpufreq_frequency_table_target(policy, target_freq, 515 CPUFREQ_RELATION_L); 516 policy->cached_resolved_idx = idx; 517 return policy->freq_table[idx].frequency; 518 } 519 520 if (cpufreq_driver->resolve_freq) 521 return cpufreq_driver->resolve_freq(policy, target_freq); 522 523 return target_freq; 524 } 525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 526 527 /********************************************************************* 528 * SYSFS INTERFACE * 529 *********************************************************************/ 530 static ssize_t show_boost(struct kobject *kobj, 531 struct attribute *attr, char *buf) 532 { 533 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 534 } 535 536 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 537 const char *buf, size_t count) 538 { 539 int ret, enable; 540 541 ret = sscanf(buf, "%d", &enable); 542 if (ret != 1 || enable < 0 || enable > 1) 543 return -EINVAL; 544 545 if (cpufreq_boost_trigger_state(enable)) { 546 pr_err("%s: Cannot %s BOOST!\n", 547 __func__, enable ? "enable" : "disable"); 548 return -EINVAL; 549 } 550 551 pr_debug("%s: cpufreq BOOST %s\n", 552 __func__, enable ? "enabled" : "disabled"); 553 554 return count; 555 } 556 define_one_global_rw(boost); 557 558 static struct cpufreq_governor *find_governor(const char *str_governor) 559 { 560 struct cpufreq_governor *t; 561 562 for_each_governor(t) 563 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 564 return t; 565 566 return NULL; 567 } 568 569 /** 570 * cpufreq_parse_governor - parse a governor string 571 */ 572 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 573 struct cpufreq_governor **governor) 574 { 575 int err = -EINVAL; 576 577 if (cpufreq_driver->setpolicy) { 578 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 579 *policy = CPUFREQ_POLICY_PERFORMANCE; 580 err = 0; 581 } else if (!strncasecmp(str_governor, "powersave", 582 CPUFREQ_NAME_LEN)) { 583 *policy = CPUFREQ_POLICY_POWERSAVE; 584 err = 0; 585 } 586 } else { 587 struct cpufreq_governor *t; 588 589 mutex_lock(&cpufreq_governor_mutex); 590 591 t = find_governor(str_governor); 592 593 if (t == NULL) { 594 int ret; 595 596 mutex_unlock(&cpufreq_governor_mutex); 597 ret = request_module("cpufreq_%s", str_governor); 598 mutex_lock(&cpufreq_governor_mutex); 599 600 if (ret == 0) 601 t = find_governor(str_governor); 602 } 603 604 if (t != NULL) { 605 *governor = t; 606 err = 0; 607 } 608 609 mutex_unlock(&cpufreq_governor_mutex); 610 } 611 return err; 612 } 613 614 /** 615 * cpufreq_per_cpu_attr_read() / show_##file_name() - 616 * print out cpufreq information 617 * 618 * Write out information from cpufreq_driver->policy[cpu]; object must be 619 * "unsigned int". 620 */ 621 622 #define show_one(file_name, object) \ 623 static ssize_t show_##file_name \ 624 (struct cpufreq_policy *policy, char *buf) \ 625 { \ 626 return sprintf(buf, "%u\n", policy->object); \ 627 } 628 629 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 630 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 631 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 632 show_one(scaling_min_freq, min); 633 show_one(scaling_max_freq, max); 634 635 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 636 { 637 ssize_t ret; 638 639 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 640 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 641 else 642 ret = sprintf(buf, "%u\n", policy->cur); 643 return ret; 644 } 645 646 static int cpufreq_set_policy(struct cpufreq_policy *policy, 647 struct cpufreq_policy *new_policy); 648 649 /** 650 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 651 */ 652 #define store_one(file_name, object) \ 653 static ssize_t store_##file_name \ 654 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 655 { \ 656 int ret, temp; \ 657 struct cpufreq_policy new_policy; \ 658 \ 659 memcpy(&new_policy, policy, sizeof(*policy)); \ 660 \ 661 ret = sscanf(buf, "%u", &new_policy.object); \ 662 if (ret != 1) \ 663 return -EINVAL; \ 664 \ 665 temp = new_policy.object; \ 666 ret = cpufreq_set_policy(policy, &new_policy); \ 667 if (!ret) \ 668 policy->user_policy.object = temp; \ 669 \ 670 return ret ? ret : count; \ 671 } 672 673 store_one(scaling_min_freq, min); 674 store_one(scaling_max_freq, max); 675 676 /** 677 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 678 */ 679 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 680 char *buf) 681 { 682 unsigned int cur_freq = __cpufreq_get(policy); 683 684 if (cur_freq) 685 return sprintf(buf, "%u\n", cur_freq); 686 687 return sprintf(buf, "<unknown>\n"); 688 } 689 690 /** 691 * show_scaling_governor - show the current policy for the specified CPU 692 */ 693 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 694 { 695 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 696 return sprintf(buf, "powersave\n"); 697 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 698 return sprintf(buf, "performance\n"); 699 else if (policy->governor) 700 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 701 policy->governor->name); 702 return -EINVAL; 703 } 704 705 /** 706 * store_scaling_governor - store policy for the specified CPU 707 */ 708 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 709 const char *buf, size_t count) 710 { 711 int ret; 712 char str_governor[16]; 713 struct cpufreq_policy new_policy; 714 715 memcpy(&new_policy, policy, sizeof(*policy)); 716 717 ret = sscanf(buf, "%15s", str_governor); 718 if (ret != 1) 719 return -EINVAL; 720 721 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 722 &new_policy.governor)) 723 return -EINVAL; 724 725 ret = cpufreq_set_policy(policy, &new_policy); 726 return ret ? ret : count; 727 } 728 729 /** 730 * show_scaling_driver - show the cpufreq driver currently loaded 731 */ 732 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 733 { 734 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 735 } 736 737 /** 738 * show_scaling_available_governors - show the available CPUfreq governors 739 */ 740 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 741 char *buf) 742 { 743 ssize_t i = 0; 744 struct cpufreq_governor *t; 745 746 if (!has_target()) { 747 i += sprintf(buf, "performance powersave"); 748 goto out; 749 } 750 751 for_each_governor(t) { 752 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 753 - (CPUFREQ_NAME_LEN + 2))) 754 goto out; 755 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 756 } 757 out: 758 i += sprintf(&buf[i], "\n"); 759 return i; 760 } 761 762 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 763 { 764 ssize_t i = 0; 765 unsigned int cpu; 766 767 for_each_cpu(cpu, mask) { 768 if (i) 769 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 770 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 771 if (i >= (PAGE_SIZE - 5)) 772 break; 773 } 774 i += sprintf(&buf[i], "\n"); 775 return i; 776 } 777 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 778 779 /** 780 * show_related_cpus - show the CPUs affected by each transition even if 781 * hw coordination is in use 782 */ 783 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 784 { 785 return cpufreq_show_cpus(policy->related_cpus, buf); 786 } 787 788 /** 789 * show_affected_cpus - show the CPUs affected by each transition 790 */ 791 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 792 { 793 return cpufreq_show_cpus(policy->cpus, buf); 794 } 795 796 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 797 const char *buf, size_t count) 798 { 799 unsigned int freq = 0; 800 unsigned int ret; 801 802 if (!policy->governor || !policy->governor->store_setspeed) 803 return -EINVAL; 804 805 ret = sscanf(buf, "%u", &freq); 806 if (ret != 1) 807 return -EINVAL; 808 809 policy->governor->store_setspeed(policy, freq); 810 811 return count; 812 } 813 814 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 815 { 816 if (!policy->governor || !policy->governor->show_setspeed) 817 return sprintf(buf, "<unsupported>\n"); 818 819 return policy->governor->show_setspeed(policy, buf); 820 } 821 822 /** 823 * show_bios_limit - show the current cpufreq HW/BIOS limitation 824 */ 825 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 826 { 827 unsigned int limit; 828 int ret; 829 if (cpufreq_driver->bios_limit) { 830 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 831 if (!ret) 832 return sprintf(buf, "%u\n", limit); 833 } 834 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 835 } 836 837 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 838 cpufreq_freq_attr_ro(cpuinfo_min_freq); 839 cpufreq_freq_attr_ro(cpuinfo_max_freq); 840 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 841 cpufreq_freq_attr_ro(scaling_available_governors); 842 cpufreq_freq_attr_ro(scaling_driver); 843 cpufreq_freq_attr_ro(scaling_cur_freq); 844 cpufreq_freq_attr_ro(bios_limit); 845 cpufreq_freq_attr_ro(related_cpus); 846 cpufreq_freq_attr_ro(affected_cpus); 847 cpufreq_freq_attr_rw(scaling_min_freq); 848 cpufreq_freq_attr_rw(scaling_max_freq); 849 cpufreq_freq_attr_rw(scaling_governor); 850 cpufreq_freq_attr_rw(scaling_setspeed); 851 852 static struct attribute *default_attrs[] = { 853 &cpuinfo_min_freq.attr, 854 &cpuinfo_max_freq.attr, 855 &cpuinfo_transition_latency.attr, 856 &scaling_min_freq.attr, 857 &scaling_max_freq.attr, 858 &affected_cpus.attr, 859 &related_cpus.attr, 860 &scaling_governor.attr, 861 &scaling_driver.attr, 862 &scaling_available_governors.attr, 863 &scaling_setspeed.attr, 864 NULL 865 }; 866 867 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 868 #define to_attr(a) container_of(a, struct freq_attr, attr) 869 870 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 871 { 872 struct cpufreq_policy *policy = to_policy(kobj); 873 struct freq_attr *fattr = to_attr(attr); 874 ssize_t ret; 875 876 down_read(&policy->rwsem); 877 ret = fattr->show(policy, buf); 878 up_read(&policy->rwsem); 879 880 return ret; 881 } 882 883 static ssize_t store(struct kobject *kobj, struct attribute *attr, 884 const char *buf, size_t count) 885 { 886 struct cpufreq_policy *policy = to_policy(kobj); 887 struct freq_attr *fattr = to_attr(attr); 888 ssize_t ret = -EINVAL; 889 890 get_online_cpus(); 891 892 if (cpu_online(policy->cpu)) { 893 down_write(&policy->rwsem); 894 ret = fattr->store(policy, buf, count); 895 up_write(&policy->rwsem); 896 } 897 898 put_online_cpus(); 899 900 return ret; 901 } 902 903 static void cpufreq_sysfs_release(struct kobject *kobj) 904 { 905 struct cpufreq_policy *policy = to_policy(kobj); 906 pr_debug("last reference is dropped\n"); 907 complete(&policy->kobj_unregister); 908 } 909 910 static const struct sysfs_ops sysfs_ops = { 911 .show = show, 912 .store = store, 913 }; 914 915 static struct kobj_type ktype_cpufreq = { 916 .sysfs_ops = &sysfs_ops, 917 .default_attrs = default_attrs, 918 .release = cpufreq_sysfs_release, 919 }; 920 921 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, 922 struct device *dev) 923 { 924 dev_dbg(dev, "%s: Adding symlink\n", __func__); 925 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 926 } 927 928 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 929 struct device *dev) 930 { 931 dev_dbg(dev, "%s: Removing symlink\n", __func__); 932 sysfs_remove_link(&dev->kobj, "cpufreq"); 933 } 934 935 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 936 { 937 struct freq_attr **drv_attr; 938 int ret = 0; 939 940 /* set up files for this cpu device */ 941 drv_attr = cpufreq_driver->attr; 942 while (drv_attr && *drv_attr) { 943 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 944 if (ret) 945 return ret; 946 drv_attr++; 947 } 948 if (cpufreq_driver->get) { 949 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 950 if (ret) 951 return ret; 952 } 953 954 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 955 if (ret) 956 return ret; 957 958 if (cpufreq_driver->bios_limit) { 959 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 960 if (ret) 961 return ret; 962 } 963 964 return 0; 965 } 966 967 __weak struct cpufreq_governor *cpufreq_default_governor(void) 968 { 969 return NULL; 970 } 971 972 static int cpufreq_init_policy(struct cpufreq_policy *policy) 973 { 974 struct cpufreq_governor *gov = NULL; 975 struct cpufreq_policy new_policy; 976 977 memcpy(&new_policy, policy, sizeof(*policy)); 978 979 /* Update governor of new_policy to the governor used before hotplug */ 980 gov = find_governor(policy->last_governor); 981 if (gov) { 982 pr_debug("Restoring governor %s for cpu %d\n", 983 policy->governor->name, policy->cpu); 984 } else { 985 gov = cpufreq_default_governor(); 986 if (!gov) 987 return -ENODATA; 988 } 989 990 new_policy.governor = gov; 991 992 /* Use the default policy if there is no last_policy. */ 993 if (cpufreq_driver->setpolicy) { 994 if (policy->last_policy) 995 new_policy.policy = policy->last_policy; 996 else 997 cpufreq_parse_governor(gov->name, &new_policy.policy, 998 NULL); 999 } 1000 /* set default policy */ 1001 return cpufreq_set_policy(policy, &new_policy); 1002 } 1003 1004 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1005 { 1006 int ret = 0; 1007 1008 /* Has this CPU been taken care of already? */ 1009 if (cpumask_test_cpu(cpu, policy->cpus)) 1010 return 0; 1011 1012 down_write(&policy->rwsem); 1013 if (has_target()) 1014 cpufreq_stop_governor(policy); 1015 1016 cpumask_set_cpu(cpu, policy->cpus); 1017 1018 if (has_target()) { 1019 ret = cpufreq_start_governor(policy); 1020 if (ret) 1021 pr_err("%s: Failed to start governor\n", __func__); 1022 } 1023 up_write(&policy->rwsem); 1024 return ret; 1025 } 1026 1027 static void handle_update(struct work_struct *work) 1028 { 1029 struct cpufreq_policy *policy = 1030 container_of(work, struct cpufreq_policy, update); 1031 unsigned int cpu = policy->cpu; 1032 pr_debug("handle_update for cpu %u called\n", cpu); 1033 cpufreq_update_policy(cpu); 1034 } 1035 1036 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1037 { 1038 struct cpufreq_policy *policy; 1039 int ret; 1040 1041 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1042 if (!policy) 1043 return NULL; 1044 1045 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1046 goto err_free_policy; 1047 1048 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1049 goto err_free_cpumask; 1050 1051 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1052 goto err_free_rcpumask; 1053 1054 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1055 cpufreq_global_kobject, "policy%u", cpu); 1056 if (ret) { 1057 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1058 goto err_free_real_cpus; 1059 } 1060 1061 INIT_LIST_HEAD(&policy->policy_list); 1062 init_rwsem(&policy->rwsem); 1063 spin_lock_init(&policy->transition_lock); 1064 init_waitqueue_head(&policy->transition_wait); 1065 init_completion(&policy->kobj_unregister); 1066 INIT_WORK(&policy->update, handle_update); 1067 1068 policy->cpu = cpu; 1069 return policy; 1070 1071 err_free_real_cpus: 1072 free_cpumask_var(policy->real_cpus); 1073 err_free_rcpumask: 1074 free_cpumask_var(policy->related_cpus); 1075 err_free_cpumask: 1076 free_cpumask_var(policy->cpus); 1077 err_free_policy: 1078 kfree(policy); 1079 1080 return NULL; 1081 } 1082 1083 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1084 { 1085 struct kobject *kobj; 1086 struct completion *cmp; 1087 1088 down_write(&policy->rwsem); 1089 cpufreq_stats_free_table(policy); 1090 kobj = &policy->kobj; 1091 cmp = &policy->kobj_unregister; 1092 up_write(&policy->rwsem); 1093 kobject_put(kobj); 1094 1095 /* 1096 * We need to make sure that the underlying kobj is 1097 * actually not referenced anymore by anybody before we 1098 * proceed with unloading. 1099 */ 1100 pr_debug("waiting for dropping of refcount\n"); 1101 wait_for_completion(cmp); 1102 pr_debug("wait complete\n"); 1103 } 1104 1105 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1106 { 1107 unsigned long flags; 1108 int cpu; 1109 1110 /* Remove policy from list */ 1111 write_lock_irqsave(&cpufreq_driver_lock, flags); 1112 list_del(&policy->policy_list); 1113 1114 for_each_cpu(cpu, policy->related_cpus) 1115 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1116 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1117 1118 cpufreq_policy_put_kobj(policy); 1119 free_cpumask_var(policy->real_cpus); 1120 free_cpumask_var(policy->related_cpus); 1121 free_cpumask_var(policy->cpus); 1122 kfree(policy); 1123 } 1124 1125 static int cpufreq_online(unsigned int cpu) 1126 { 1127 struct cpufreq_policy *policy; 1128 bool new_policy; 1129 unsigned long flags; 1130 unsigned int j; 1131 int ret; 1132 1133 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1134 1135 /* Check if this CPU already has a policy to manage it */ 1136 policy = per_cpu(cpufreq_cpu_data, cpu); 1137 if (policy) { 1138 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1139 if (!policy_is_inactive(policy)) 1140 return cpufreq_add_policy_cpu(policy, cpu); 1141 1142 /* This is the only online CPU for the policy. Start over. */ 1143 new_policy = false; 1144 down_write(&policy->rwsem); 1145 policy->cpu = cpu; 1146 policy->governor = NULL; 1147 up_write(&policy->rwsem); 1148 } else { 1149 new_policy = true; 1150 policy = cpufreq_policy_alloc(cpu); 1151 if (!policy) 1152 return -ENOMEM; 1153 } 1154 1155 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1156 1157 /* call driver. From then on the cpufreq must be able 1158 * to accept all calls to ->verify and ->setpolicy for this CPU 1159 */ 1160 ret = cpufreq_driver->init(policy); 1161 if (ret) { 1162 pr_debug("initialization failed\n"); 1163 goto out_free_policy; 1164 } 1165 1166 down_write(&policy->rwsem); 1167 1168 if (new_policy) { 1169 /* related_cpus should at least include policy->cpus. */ 1170 cpumask_copy(policy->related_cpus, policy->cpus); 1171 } 1172 1173 /* 1174 * affected cpus must always be the one, which are online. We aren't 1175 * managing offline cpus here. 1176 */ 1177 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1178 1179 if (new_policy) { 1180 policy->user_policy.min = policy->min; 1181 policy->user_policy.max = policy->max; 1182 1183 write_lock_irqsave(&cpufreq_driver_lock, flags); 1184 for_each_cpu(j, policy->related_cpus) 1185 per_cpu(cpufreq_cpu_data, j) = policy; 1186 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1187 } else { 1188 policy->min = policy->user_policy.min; 1189 policy->max = policy->user_policy.max; 1190 } 1191 1192 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1193 policy->cur = cpufreq_driver->get(policy->cpu); 1194 if (!policy->cur) { 1195 pr_err("%s: ->get() failed\n", __func__); 1196 goto out_exit_policy; 1197 } 1198 } 1199 1200 /* 1201 * Sometimes boot loaders set CPU frequency to a value outside of 1202 * frequency table present with cpufreq core. In such cases CPU might be 1203 * unstable if it has to run on that frequency for long duration of time 1204 * and so its better to set it to a frequency which is specified in 1205 * freq-table. This also makes cpufreq stats inconsistent as 1206 * cpufreq-stats would fail to register because current frequency of CPU 1207 * isn't found in freq-table. 1208 * 1209 * Because we don't want this change to effect boot process badly, we go 1210 * for the next freq which is >= policy->cur ('cur' must be set by now, 1211 * otherwise we will end up setting freq to lowest of the table as 'cur' 1212 * is initialized to zero). 1213 * 1214 * We are passing target-freq as "policy->cur - 1" otherwise 1215 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1216 * equal to target-freq. 1217 */ 1218 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1219 && has_target()) { 1220 /* Are we running at unknown frequency ? */ 1221 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1222 if (ret == -EINVAL) { 1223 /* Warn user and fix it */ 1224 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1225 __func__, policy->cpu, policy->cur); 1226 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1227 CPUFREQ_RELATION_L); 1228 1229 /* 1230 * Reaching here after boot in a few seconds may not 1231 * mean that system will remain stable at "unknown" 1232 * frequency for longer duration. Hence, a BUG_ON(). 1233 */ 1234 BUG_ON(ret); 1235 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1236 __func__, policy->cpu, policy->cur); 1237 } 1238 } 1239 1240 if (new_policy) { 1241 ret = cpufreq_add_dev_interface(policy); 1242 if (ret) 1243 goto out_exit_policy; 1244 1245 cpufreq_stats_create_table(policy); 1246 1247 write_lock_irqsave(&cpufreq_driver_lock, flags); 1248 list_add(&policy->policy_list, &cpufreq_policy_list); 1249 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1250 } 1251 1252 ret = cpufreq_init_policy(policy); 1253 if (ret) { 1254 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1255 __func__, cpu, ret); 1256 /* cpufreq_policy_free() will notify based on this */ 1257 new_policy = false; 1258 goto out_exit_policy; 1259 } 1260 1261 up_write(&policy->rwsem); 1262 1263 kobject_uevent(&policy->kobj, KOBJ_ADD); 1264 1265 /* Callback for handling stuff after policy is ready */ 1266 if (cpufreq_driver->ready) 1267 cpufreq_driver->ready(policy); 1268 1269 pr_debug("initialization complete\n"); 1270 1271 return 0; 1272 1273 out_exit_policy: 1274 up_write(&policy->rwsem); 1275 1276 if (cpufreq_driver->exit) 1277 cpufreq_driver->exit(policy); 1278 out_free_policy: 1279 cpufreq_policy_free(policy); 1280 return ret; 1281 } 1282 1283 static int cpufreq_offline(unsigned int cpu); 1284 1285 /** 1286 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1287 * @dev: CPU device. 1288 * @sif: Subsystem interface structure pointer (not used) 1289 */ 1290 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1291 { 1292 struct cpufreq_policy *policy; 1293 unsigned cpu = dev->id; 1294 int ret; 1295 1296 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1297 1298 if (cpu_online(cpu)) { 1299 ret = cpufreq_online(cpu); 1300 if (ret) 1301 return ret; 1302 } 1303 1304 /* Create sysfs link on CPU registration */ 1305 policy = per_cpu(cpufreq_cpu_data, cpu); 1306 if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1307 return 0; 1308 1309 ret = add_cpu_dev_symlink(policy, dev); 1310 if (ret) { 1311 cpumask_clear_cpu(cpu, policy->real_cpus); 1312 cpufreq_offline(cpu); 1313 } 1314 1315 return ret; 1316 } 1317 1318 static int cpufreq_offline(unsigned int cpu) 1319 { 1320 struct cpufreq_policy *policy; 1321 int ret; 1322 1323 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1324 1325 policy = cpufreq_cpu_get_raw(cpu); 1326 if (!policy) { 1327 pr_debug("%s: No cpu_data found\n", __func__); 1328 return 0; 1329 } 1330 1331 down_write(&policy->rwsem); 1332 if (has_target()) 1333 cpufreq_stop_governor(policy); 1334 1335 cpumask_clear_cpu(cpu, policy->cpus); 1336 1337 if (policy_is_inactive(policy)) { 1338 if (has_target()) 1339 strncpy(policy->last_governor, policy->governor->name, 1340 CPUFREQ_NAME_LEN); 1341 else 1342 policy->last_policy = policy->policy; 1343 } else if (cpu == policy->cpu) { 1344 /* Nominate new CPU */ 1345 policy->cpu = cpumask_any(policy->cpus); 1346 } 1347 1348 /* Start governor again for active policy */ 1349 if (!policy_is_inactive(policy)) { 1350 if (has_target()) { 1351 ret = cpufreq_start_governor(policy); 1352 if (ret) 1353 pr_err("%s: Failed to start governor\n", __func__); 1354 } 1355 1356 goto unlock; 1357 } 1358 1359 if (cpufreq_driver->stop_cpu) 1360 cpufreq_driver->stop_cpu(policy); 1361 1362 if (has_target()) 1363 cpufreq_exit_governor(policy); 1364 1365 /* 1366 * Perform the ->exit() even during light-weight tear-down, 1367 * since this is a core component, and is essential for the 1368 * subsequent light-weight ->init() to succeed. 1369 */ 1370 if (cpufreq_driver->exit) { 1371 cpufreq_driver->exit(policy); 1372 policy->freq_table = NULL; 1373 } 1374 1375 unlock: 1376 up_write(&policy->rwsem); 1377 return 0; 1378 } 1379 1380 /** 1381 * cpufreq_remove_dev - remove a CPU device 1382 * 1383 * Removes the cpufreq interface for a CPU device. 1384 */ 1385 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1386 { 1387 unsigned int cpu = dev->id; 1388 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1389 1390 if (!policy) 1391 return; 1392 1393 if (cpu_online(cpu)) 1394 cpufreq_offline(cpu); 1395 1396 cpumask_clear_cpu(cpu, policy->real_cpus); 1397 remove_cpu_dev_symlink(policy, dev); 1398 1399 if (cpumask_empty(policy->real_cpus)) 1400 cpufreq_policy_free(policy); 1401 } 1402 1403 /** 1404 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1405 * in deep trouble. 1406 * @policy: policy managing CPUs 1407 * @new_freq: CPU frequency the CPU actually runs at 1408 * 1409 * We adjust to current frequency first, and need to clean up later. 1410 * So either call to cpufreq_update_policy() or schedule handle_update()). 1411 */ 1412 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1413 unsigned int new_freq) 1414 { 1415 struct cpufreq_freqs freqs; 1416 1417 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1418 policy->cur, new_freq); 1419 1420 freqs.old = policy->cur; 1421 freqs.new = new_freq; 1422 1423 cpufreq_freq_transition_begin(policy, &freqs); 1424 cpufreq_freq_transition_end(policy, &freqs, 0); 1425 } 1426 1427 /** 1428 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1429 * @cpu: CPU number 1430 * 1431 * This is the last known freq, without actually getting it from the driver. 1432 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1433 */ 1434 unsigned int cpufreq_quick_get(unsigned int cpu) 1435 { 1436 struct cpufreq_policy *policy; 1437 unsigned int ret_freq = 0; 1438 unsigned long flags; 1439 1440 read_lock_irqsave(&cpufreq_driver_lock, flags); 1441 1442 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1443 ret_freq = cpufreq_driver->get(cpu); 1444 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1445 return ret_freq; 1446 } 1447 1448 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1449 1450 policy = cpufreq_cpu_get(cpu); 1451 if (policy) { 1452 ret_freq = policy->cur; 1453 cpufreq_cpu_put(policy); 1454 } 1455 1456 return ret_freq; 1457 } 1458 EXPORT_SYMBOL(cpufreq_quick_get); 1459 1460 /** 1461 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1462 * @cpu: CPU number 1463 * 1464 * Just return the max possible frequency for a given CPU. 1465 */ 1466 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1467 { 1468 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1469 unsigned int ret_freq = 0; 1470 1471 if (policy) { 1472 ret_freq = policy->max; 1473 cpufreq_cpu_put(policy); 1474 } 1475 1476 return ret_freq; 1477 } 1478 EXPORT_SYMBOL(cpufreq_quick_get_max); 1479 1480 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1481 { 1482 unsigned int ret_freq = 0; 1483 1484 if (!cpufreq_driver->get) 1485 return ret_freq; 1486 1487 ret_freq = cpufreq_driver->get(policy->cpu); 1488 1489 /* 1490 * Updating inactive policies is invalid, so avoid doing that. Also 1491 * if fast frequency switching is used with the given policy, the check 1492 * against policy->cur is pointless, so skip it in that case too. 1493 */ 1494 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled) 1495 return ret_freq; 1496 1497 if (ret_freq && policy->cur && 1498 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1499 /* verify no discrepancy between actual and 1500 saved value exists */ 1501 if (unlikely(ret_freq != policy->cur)) { 1502 cpufreq_out_of_sync(policy, ret_freq); 1503 schedule_work(&policy->update); 1504 } 1505 } 1506 1507 return ret_freq; 1508 } 1509 1510 /** 1511 * cpufreq_get - get the current CPU frequency (in kHz) 1512 * @cpu: CPU number 1513 * 1514 * Get the CPU current (static) CPU frequency 1515 */ 1516 unsigned int cpufreq_get(unsigned int cpu) 1517 { 1518 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1519 unsigned int ret_freq = 0; 1520 1521 if (policy) { 1522 down_read(&policy->rwsem); 1523 1524 if (!policy_is_inactive(policy)) 1525 ret_freq = __cpufreq_get(policy); 1526 1527 up_read(&policy->rwsem); 1528 1529 cpufreq_cpu_put(policy); 1530 } 1531 1532 return ret_freq; 1533 } 1534 EXPORT_SYMBOL(cpufreq_get); 1535 1536 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy) 1537 { 1538 unsigned int new_freq; 1539 1540 new_freq = cpufreq_driver->get(policy->cpu); 1541 if (!new_freq) 1542 return 0; 1543 1544 if (!policy->cur) { 1545 pr_debug("cpufreq: Driver did not initialize current freq\n"); 1546 policy->cur = new_freq; 1547 } else if (policy->cur != new_freq && has_target()) { 1548 cpufreq_out_of_sync(policy, new_freq); 1549 } 1550 1551 return new_freq; 1552 } 1553 1554 static struct subsys_interface cpufreq_interface = { 1555 .name = "cpufreq", 1556 .subsys = &cpu_subsys, 1557 .add_dev = cpufreq_add_dev, 1558 .remove_dev = cpufreq_remove_dev, 1559 }; 1560 1561 /* 1562 * In case platform wants some specific frequency to be configured 1563 * during suspend.. 1564 */ 1565 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1566 { 1567 int ret; 1568 1569 if (!policy->suspend_freq) { 1570 pr_debug("%s: suspend_freq not defined\n", __func__); 1571 return 0; 1572 } 1573 1574 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1575 policy->suspend_freq); 1576 1577 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1578 CPUFREQ_RELATION_H); 1579 if (ret) 1580 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1581 __func__, policy->suspend_freq, ret); 1582 1583 return ret; 1584 } 1585 EXPORT_SYMBOL(cpufreq_generic_suspend); 1586 1587 /** 1588 * cpufreq_suspend() - Suspend CPUFreq governors 1589 * 1590 * Called during system wide Suspend/Hibernate cycles for suspending governors 1591 * as some platforms can't change frequency after this point in suspend cycle. 1592 * Because some of the devices (like: i2c, regulators, etc) they use for 1593 * changing frequency are suspended quickly after this point. 1594 */ 1595 void cpufreq_suspend(void) 1596 { 1597 struct cpufreq_policy *policy; 1598 1599 if (!cpufreq_driver) 1600 return; 1601 1602 if (!has_target() && !cpufreq_driver->suspend) 1603 goto suspend; 1604 1605 pr_debug("%s: Suspending Governors\n", __func__); 1606 1607 for_each_active_policy(policy) { 1608 if (has_target()) { 1609 down_write(&policy->rwsem); 1610 cpufreq_stop_governor(policy); 1611 up_write(&policy->rwsem); 1612 } 1613 1614 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1615 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1616 policy); 1617 } 1618 1619 suspend: 1620 cpufreq_suspended = true; 1621 } 1622 1623 /** 1624 * cpufreq_resume() - Resume CPUFreq governors 1625 * 1626 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1627 * are suspended with cpufreq_suspend(). 1628 */ 1629 void cpufreq_resume(void) 1630 { 1631 struct cpufreq_policy *policy; 1632 int ret; 1633 1634 if (!cpufreq_driver) 1635 return; 1636 1637 cpufreq_suspended = false; 1638 1639 if (!has_target() && !cpufreq_driver->resume) 1640 return; 1641 1642 pr_debug("%s: Resuming Governors\n", __func__); 1643 1644 for_each_active_policy(policy) { 1645 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1646 pr_err("%s: Failed to resume driver: %p\n", __func__, 1647 policy); 1648 } else if (has_target()) { 1649 down_write(&policy->rwsem); 1650 ret = cpufreq_start_governor(policy); 1651 up_write(&policy->rwsem); 1652 1653 if (ret) 1654 pr_err("%s: Failed to start governor for policy: %p\n", 1655 __func__, policy); 1656 } 1657 } 1658 } 1659 1660 /** 1661 * cpufreq_get_current_driver - return current driver's name 1662 * 1663 * Return the name string of the currently loaded cpufreq driver 1664 * or NULL, if none. 1665 */ 1666 const char *cpufreq_get_current_driver(void) 1667 { 1668 if (cpufreq_driver) 1669 return cpufreq_driver->name; 1670 1671 return NULL; 1672 } 1673 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1674 1675 /** 1676 * cpufreq_get_driver_data - return current driver data 1677 * 1678 * Return the private data of the currently loaded cpufreq 1679 * driver, or NULL if no cpufreq driver is loaded. 1680 */ 1681 void *cpufreq_get_driver_data(void) 1682 { 1683 if (cpufreq_driver) 1684 return cpufreq_driver->driver_data; 1685 1686 return NULL; 1687 } 1688 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1689 1690 /********************************************************************* 1691 * NOTIFIER LISTS INTERFACE * 1692 *********************************************************************/ 1693 1694 /** 1695 * cpufreq_register_notifier - register a driver with cpufreq 1696 * @nb: notifier function to register 1697 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1698 * 1699 * Add a driver to one of two lists: either a list of drivers that 1700 * are notified about clock rate changes (once before and once after 1701 * the transition), or a list of drivers that are notified about 1702 * changes in cpufreq policy. 1703 * 1704 * This function may sleep, and has the same return conditions as 1705 * blocking_notifier_chain_register. 1706 */ 1707 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1708 { 1709 int ret; 1710 1711 if (cpufreq_disabled()) 1712 return -EINVAL; 1713 1714 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1715 1716 switch (list) { 1717 case CPUFREQ_TRANSITION_NOTIFIER: 1718 mutex_lock(&cpufreq_fast_switch_lock); 1719 1720 if (cpufreq_fast_switch_count > 0) { 1721 mutex_unlock(&cpufreq_fast_switch_lock); 1722 return -EBUSY; 1723 } 1724 ret = srcu_notifier_chain_register( 1725 &cpufreq_transition_notifier_list, nb); 1726 if (!ret) 1727 cpufreq_fast_switch_count--; 1728 1729 mutex_unlock(&cpufreq_fast_switch_lock); 1730 break; 1731 case CPUFREQ_POLICY_NOTIFIER: 1732 ret = blocking_notifier_chain_register( 1733 &cpufreq_policy_notifier_list, nb); 1734 break; 1735 default: 1736 ret = -EINVAL; 1737 } 1738 1739 return ret; 1740 } 1741 EXPORT_SYMBOL(cpufreq_register_notifier); 1742 1743 /** 1744 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1745 * @nb: notifier block to be unregistered 1746 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1747 * 1748 * Remove a driver from the CPU frequency notifier list. 1749 * 1750 * This function may sleep, and has the same return conditions as 1751 * blocking_notifier_chain_unregister. 1752 */ 1753 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1754 { 1755 int ret; 1756 1757 if (cpufreq_disabled()) 1758 return -EINVAL; 1759 1760 switch (list) { 1761 case CPUFREQ_TRANSITION_NOTIFIER: 1762 mutex_lock(&cpufreq_fast_switch_lock); 1763 1764 ret = srcu_notifier_chain_unregister( 1765 &cpufreq_transition_notifier_list, nb); 1766 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1767 cpufreq_fast_switch_count++; 1768 1769 mutex_unlock(&cpufreq_fast_switch_lock); 1770 break; 1771 case CPUFREQ_POLICY_NOTIFIER: 1772 ret = blocking_notifier_chain_unregister( 1773 &cpufreq_policy_notifier_list, nb); 1774 break; 1775 default: 1776 ret = -EINVAL; 1777 } 1778 1779 return ret; 1780 } 1781 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1782 1783 1784 /********************************************************************* 1785 * GOVERNORS * 1786 *********************************************************************/ 1787 1788 /** 1789 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1790 * @policy: cpufreq policy to switch the frequency for. 1791 * @target_freq: New frequency to set (may be approximate). 1792 * 1793 * Carry out a fast frequency switch without sleeping. 1794 * 1795 * The driver's ->fast_switch() callback invoked by this function must be 1796 * suitable for being called from within RCU-sched read-side critical sections 1797 * and it is expected to select the minimum available frequency greater than or 1798 * equal to @target_freq (CPUFREQ_RELATION_L). 1799 * 1800 * This function must not be called if policy->fast_switch_enabled is unset. 1801 * 1802 * Governors calling this function must guarantee that it will never be invoked 1803 * twice in parallel for the same policy and that it will never be called in 1804 * parallel with either ->target() or ->target_index() for the same policy. 1805 * 1806 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch() 1807 * callback to indicate an error condition, the hardware configuration must be 1808 * preserved. 1809 */ 1810 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1811 unsigned int target_freq) 1812 { 1813 target_freq = clamp_val(target_freq, policy->min, policy->max); 1814 1815 return cpufreq_driver->fast_switch(policy, target_freq); 1816 } 1817 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1818 1819 /* Must set freqs->new to intermediate frequency */ 1820 static int __target_intermediate(struct cpufreq_policy *policy, 1821 struct cpufreq_freqs *freqs, int index) 1822 { 1823 int ret; 1824 1825 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1826 1827 /* We don't need to switch to intermediate freq */ 1828 if (!freqs->new) 1829 return 0; 1830 1831 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1832 __func__, policy->cpu, freqs->old, freqs->new); 1833 1834 cpufreq_freq_transition_begin(policy, freqs); 1835 ret = cpufreq_driver->target_intermediate(policy, index); 1836 cpufreq_freq_transition_end(policy, freqs, ret); 1837 1838 if (ret) 1839 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1840 __func__, ret); 1841 1842 return ret; 1843 } 1844 1845 static int __target_index(struct cpufreq_policy *policy, int index) 1846 { 1847 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1848 unsigned int intermediate_freq = 0; 1849 unsigned int newfreq = policy->freq_table[index].frequency; 1850 int retval = -EINVAL; 1851 bool notify; 1852 1853 if (newfreq == policy->cur) 1854 return 0; 1855 1856 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1857 if (notify) { 1858 /* Handle switching to intermediate frequency */ 1859 if (cpufreq_driver->get_intermediate) { 1860 retval = __target_intermediate(policy, &freqs, index); 1861 if (retval) 1862 return retval; 1863 1864 intermediate_freq = freqs.new; 1865 /* Set old freq to intermediate */ 1866 if (intermediate_freq) 1867 freqs.old = freqs.new; 1868 } 1869 1870 freqs.new = newfreq; 1871 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1872 __func__, policy->cpu, freqs.old, freqs.new); 1873 1874 cpufreq_freq_transition_begin(policy, &freqs); 1875 } 1876 1877 retval = cpufreq_driver->target_index(policy, index); 1878 if (retval) 1879 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1880 retval); 1881 1882 if (notify) { 1883 cpufreq_freq_transition_end(policy, &freqs, retval); 1884 1885 /* 1886 * Failed after setting to intermediate freq? Driver should have 1887 * reverted back to initial frequency and so should we. Check 1888 * here for intermediate_freq instead of get_intermediate, in 1889 * case we haven't switched to intermediate freq at all. 1890 */ 1891 if (unlikely(retval && intermediate_freq)) { 1892 freqs.old = intermediate_freq; 1893 freqs.new = policy->restore_freq; 1894 cpufreq_freq_transition_begin(policy, &freqs); 1895 cpufreq_freq_transition_end(policy, &freqs, 0); 1896 } 1897 } 1898 1899 return retval; 1900 } 1901 1902 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1903 unsigned int target_freq, 1904 unsigned int relation) 1905 { 1906 unsigned int old_target_freq = target_freq; 1907 int index; 1908 1909 if (cpufreq_disabled()) 1910 return -ENODEV; 1911 1912 /* Make sure that target_freq is within supported range */ 1913 target_freq = clamp_val(target_freq, policy->min, policy->max); 1914 1915 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1916 policy->cpu, target_freq, relation, old_target_freq); 1917 1918 /* 1919 * This might look like a redundant call as we are checking it again 1920 * after finding index. But it is left intentionally for cases where 1921 * exactly same freq is called again and so we can save on few function 1922 * calls. 1923 */ 1924 if (target_freq == policy->cur) 1925 return 0; 1926 1927 /* Save last value to restore later on errors */ 1928 policy->restore_freq = policy->cur; 1929 1930 if (cpufreq_driver->target) 1931 return cpufreq_driver->target(policy, target_freq, relation); 1932 1933 if (!cpufreq_driver->target_index) 1934 return -EINVAL; 1935 1936 index = cpufreq_frequency_table_target(policy, target_freq, relation); 1937 1938 return __target_index(policy, index); 1939 } 1940 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1941 1942 int cpufreq_driver_target(struct cpufreq_policy *policy, 1943 unsigned int target_freq, 1944 unsigned int relation) 1945 { 1946 int ret = -EINVAL; 1947 1948 down_write(&policy->rwsem); 1949 1950 ret = __cpufreq_driver_target(policy, target_freq, relation); 1951 1952 up_write(&policy->rwsem); 1953 1954 return ret; 1955 } 1956 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1957 1958 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 1959 { 1960 return NULL; 1961 } 1962 1963 static int cpufreq_init_governor(struct cpufreq_policy *policy) 1964 { 1965 int ret; 1966 1967 /* Don't start any governor operations if we are entering suspend */ 1968 if (cpufreq_suspended) 1969 return 0; 1970 /* 1971 * Governor might not be initiated here if ACPI _PPC changed 1972 * notification happened, so check it. 1973 */ 1974 if (!policy->governor) 1975 return -EINVAL; 1976 1977 if (policy->governor->max_transition_latency && 1978 policy->cpuinfo.transition_latency > 1979 policy->governor->max_transition_latency) { 1980 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 1981 1982 if (gov) { 1983 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 1984 policy->governor->name, gov->name); 1985 policy->governor = gov; 1986 } else { 1987 return -EINVAL; 1988 } 1989 } 1990 1991 if (!try_module_get(policy->governor->owner)) 1992 return -EINVAL; 1993 1994 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 1995 1996 if (policy->governor->init) { 1997 ret = policy->governor->init(policy); 1998 if (ret) { 1999 module_put(policy->governor->owner); 2000 return ret; 2001 } 2002 } 2003 2004 return 0; 2005 } 2006 2007 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2008 { 2009 if (cpufreq_suspended || !policy->governor) 2010 return; 2011 2012 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2013 2014 if (policy->governor->exit) 2015 policy->governor->exit(policy); 2016 2017 module_put(policy->governor->owner); 2018 } 2019 2020 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2021 { 2022 int ret; 2023 2024 if (cpufreq_suspended) 2025 return 0; 2026 2027 if (!policy->governor) 2028 return -EINVAL; 2029 2030 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2031 2032 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) 2033 cpufreq_update_current_freq(policy); 2034 2035 if (policy->governor->start) { 2036 ret = policy->governor->start(policy); 2037 if (ret) 2038 return ret; 2039 } 2040 2041 if (policy->governor->limits) 2042 policy->governor->limits(policy); 2043 2044 return 0; 2045 } 2046 2047 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2048 { 2049 if (cpufreq_suspended || !policy->governor) 2050 return; 2051 2052 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2053 2054 if (policy->governor->stop) 2055 policy->governor->stop(policy); 2056 } 2057 2058 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2059 { 2060 if (cpufreq_suspended || !policy->governor) 2061 return; 2062 2063 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2064 2065 if (policy->governor->limits) 2066 policy->governor->limits(policy); 2067 } 2068 2069 int cpufreq_register_governor(struct cpufreq_governor *governor) 2070 { 2071 int err; 2072 2073 if (!governor) 2074 return -EINVAL; 2075 2076 if (cpufreq_disabled()) 2077 return -ENODEV; 2078 2079 mutex_lock(&cpufreq_governor_mutex); 2080 2081 err = -EBUSY; 2082 if (!find_governor(governor->name)) { 2083 err = 0; 2084 list_add(&governor->governor_list, &cpufreq_governor_list); 2085 } 2086 2087 mutex_unlock(&cpufreq_governor_mutex); 2088 return err; 2089 } 2090 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2091 2092 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2093 { 2094 struct cpufreq_policy *policy; 2095 unsigned long flags; 2096 2097 if (!governor) 2098 return; 2099 2100 if (cpufreq_disabled()) 2101 return; 2102 2103 /* clear last_governor for all inactive policies */ 2104 read_lock_irqsave(&cpufreq_driver_lock, flags); 2105 for_each_inactive_policy(policy) { 2106 if (!strcmp(policy->last_governor, governor->name)) { 2107 policy->governor = NULL; 2108 strcpy(policy->last_governor, "\0"); 2109 } 2110 } 2111 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2112 2113 mutex_lock(&cpufreq_governor_mutex); 2114 list_del(&governor->governor_list); 2115 mutex_unlock(&cpufreq_governor_mutex); 2116 return; 2117 } 2118 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2119 2120 2121 /********************************************************************* 2122 * POLICY INTERFACE * 2123 *********************************************************************/ 2124 2125 /** 2126 * cpufreq_get_policy - get the current cpufreq_policy 2127 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2128 * is written 2129 * 2130 * Reads the current cpufreq policy. 2131 */ 2132 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2133 { 2134 struct cpufreq_policy *cpu_policy; 2135 if (!policy) 2136 return -EINVAL; 2137 2138 cpu_policy = cpufreq_cpu_get(cpu); 2139 if (!cpu_policy) 2140 return -EINVAL; 2141 2142 memcpy(policy, cpu_policy, sizeof(*policy)); 2143 2144 cpufreq_cpu_put(cpu_policy); 2145 return 0; 2146 } 2147 EXPORT_SYMBOL(cpufreq_get_policy); 2148 2149 /* 2150 * policy : current policy. 2151 * new_policy: policy to be set. 2152 */ 2153 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2154 struct cpufreq_policy *new_policy) 2155 { 2156 struct cpufreq_governor *old_gov; 2157 int ret; 2158 2159 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2160 new_policy->cpu, new_policy->min, new_policy->max); 2161 2162 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2163 2164 /* 2165 * This check works well when we store new min/max freq attributes, 2166 * because new_policy is a copy of policy with one field updated. 2167 */ 2168 if (new_policy->min > new_policy->max) 2169 return -EINVAL; 2170 2171 /* verify the cpu speed can be set within this limit */ 2172 ret = cpufreq_driver->verify(new_policy); 2173 if (ret) 2174 return ret; 2175 2176 /* adjust if necessary - all reasons */ 2177 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2178 CPUFREQ_ADJUST, new_policy); 2179 2180 /* 2181 * verify the cpu speed can be set within this limit, which might be 2182 * different to the first one 2183 */ 2184 ret = cpufreq_driver->verify(new_policy); 2185 if (ret) 2186 return ret; 2187 2188 /* notification of the new policy */ 2189 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2190 CPUFREQ_NOTIFY, new_policy); 2191 2192 policy->min = new_policy->min; 2193 policy->max = new_policy->max; 2194 2195 policy->cached_target_freq = UINT_MAX; 2196 2197 pr_debug("new min and max freqs are %u - %u kHz\n", 2198 policy->min, policy->max); 2199 2200 if (cpufreq_driver->setpolicy) { 2201 policy->policy = new_policy->policy; 2202 pr_debug("setting range\n"); 2203 return cpufreq_driver->setpolicy(new_policy); 2204 } 2205 2206 if (new_policy->governor == policy->governor) { 2207 pr_debug("cpufreq: governor limits update\n"); 2208 cpufreq_governor_limits(policy); 2209 return 0; 2210 } 2211 2212 pr_debug("governor switch\n"); 2213 2214 /* save old, working values */ 2215 old_gov = policy->governor; 2216 /* end old governor */ 2217 if (old_gov) { 2218 cpufreq_stop_governor(policy); 2219 cpufreq_exit_governor(policy); 2220 } 2221 2222 /* start new governor */ 2223 policy->governor = new_policy->governor; 2224 ret = cpufreq_init_governor(policy); 2225 if (!ret) { 2226 ret = cpufreq_start_governor(policy); 2227 if (!ret) { 2228 pr_debug("cpufreq: governor change\n"); 2229 return 0; 2230 } 2231 cpufreq_exit_governor(policy); 2232 } 2233 2234 /* new governor failed, so re-start old one */ 2235 pr_debug("starting governor %s failed\n", policy->governor->name); 2236 if (old_gov) { 2237 policy->governor = old_gov; 2238 if (cpufreq_init_governor(policy)) 2239 policy->governor = NULL; 2240 else 2241 cpufreq_start_governor(policy); 2242 } 2243 2244 return ret; 2245 } 2246 2247 /** 2248 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2249 * @cpu: CPU which shall be re-evaluated 2250 * 2251 * Useful for policy notifiers which have different necessities 2252 * at different times. 2253 */ 2254 void cpufreq_update_policy(unsigned int cpu) 2255 { 2256 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2257 struct cpufreq_policy new_policy; 2258 2259 if (!policy) 2260 return; 2261 2262 down_write(&policy->rwsem); 2263 2264 if (policy_is_inactive(policy)) 2265 goto unlock; 2266 2267 pr_debug("updating policy for CPU %u\n", cpu); 2268 memcpy(&new_policy, policy, sizeof(*policy)); 2269 new_policy.min = policy->user_policy.min; 2270 new_policy.max = policy->user_policy.max; 2271 2272 /* 2273 * BIOS might change freq behind our back 2274 * -> ask driver for current freq and notify governors about a change 2275 */ 2276 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2277 if (cpufreq_suspended) 2278 goto unlock; 2279 2280 new_policy.cur = cpufreq_update_current_freq(policy); 2281 if (WARN_ON(!new_policy.cur)) 2282 goto unlock; 2283 } 2284 2285 cpufreq_set_policy(policy, &new_policy); 2286 2287 unlock: 2288 up_write(&policy->rwsem); 2289 2290 cpufreq_cpu_put(policy); 2291 } 2292 EXPORT_SYMBOL(cpufreq_update_policy); 2293 2294 /********************************************************************* 2295 * BOOST * 2296 *********************************************************************/ 2297 static int cpufreq_boost_set_sw(int state) 2298 { 2299 struct cpufreq_policy *policy; 2300 int ret = -EINVAL; 2301 2302 for_each_active_policy(policy) { 2303 if (!policy->freq_table) 2304 continue; 2305 2306 ret = cpufreq_frequency_table_cpuinfo(policy, 2307 policy->freq_table); 2308 if (ret) { 2309 pr_err("%s: Policy frequency update failed\n", 2310 __func__); 2311 break; 2312 } 2313 2314 down_write(&policy->rwsem); 2315 policy->user_policy.max = policy->max; 2316 cpufreq_governor_limits(policy); 2317 up_write(&policy->rwsem); 2318 } 2319 2320 return ret; 2321 } 2322 2323 int cpufreq_boost_trigger_state(int state) 2324 { 2325 unsigned long flags; 2326 int ret = 0; 2327 2328 if (cpufreq_driver->boost_enabled == state) 2329 return 0; 2330 2331 write_lock_irqsave(&cpufreq_driver_lock, flags); 2332 cpufreq_driver->boost_enabled = state; 2333 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2334 2335 ret = cpufreq_driver->set_boost(state); 2336 if (ret) { 2337 write_lock_irqsave(&cpufreq_driver_lock, flags); 2338 cpufreq_driver->boost_enabled = !state; 2339 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2340 2341 pr_err("%s: Cannot %s BOOST\n", 2342 __func__, state ? "enable" : "disable"); 2343 } 2344 2345 return ret; 2346 } 2347 2348 static bool cpufreq_boost_supported(void) 2349 { 2350 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2351 } 2352 2353 static int create_boost_sysfs_file(void) 2354 { 2355 int ret; 2356 2357 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2358 if (ret) 2359 pr_err("%s: cannot register global BOOST sysfs file\n", 2360 __func__); 2361 2362 return ret; 2363 } 2364 2365 static void remove_boost_sysfs_file(void) 2366 { 2367 if (cpufreq_boost_supported()) 2368 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2369 } 2370 2371 int cpufreq_enable_boost_support(void) 2372 { 2373 if (!cpufreq_driver) 2374 return -EINVAL; 2375 2376 if (cpufreq_boost_supported()) 2377 return 0; 2378 2379 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2380 2381 /* This will get removed on driver unregister */ 2382 return create_boost_sysfs_file(); 2383 } 2384 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2385 2386 int cpufreq_boost_enabled(void) 2387 { 2388 return cpufreq_driver->boost_enabled; 2389 } 2390 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2391 2392 /********************************************************************* 2393 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2394 *********************************************************************/ 2395 static enum cpuhp_state hp_online; 2396 2397 /** 2398 * cpufreq_register_driver - register a CPU Frequency driver 2399 * @driver_data: A struct cpufreq_driver containing the values# 2400 * submitted by the CPU Frequency driver. 2401 * 2402 * Registers a CPU Frequency driver to this core code. This code 2403 * returns zero on success, -EEXIST when another driver got here first 2404 * (and isn't unregistered in the meantime). 2405 * 2406 */ 2407 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2408 { 2409 unsigned long flags; 2410 int ret; 2411 2412 if (cpufreq_disabled()) 2413 return -ENODEV; 2414 2415 if (!driver_data || !driver_data->verify || !driver_data->init || 2416 !(driver_data->setpolicy || driver_data->target_index || 2417 driver_data->target) || 2418 (driver_data->setpolicy && (driver_data->target_index || 2419 driver_data->target)) || 2420 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2421 return -EINVAL; 2422 2423 pr_debug("trying to register driver %s\n", driver_data->name); 2424 2425 /* Protect against concurrent CPU online/offline. */ 2426 get_online_cpus(); 2427 2428 write_lock_irqsave(&cpufreq_driver_lock, flags); 2429 if (cpufreq_driver) { 2430 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2431 ret = -EEXIST; 2432 goto out; 2433 } 2434 cpufreq_driver = driver_data; 2435 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2436 2437 if (driver_data->setpolicy) 2438 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2439 2440 if (cpufreq_boost_supported()) { 2441 ret = create_boost_sysfs_file(); 2442 if (ret) 2443 goto err_null_driver; 2444 } 2445 2446 ret = subsys_interface_register(&cpufreq_interface); 2447 if (ret) 2448 goto err_boost_unreg; 2449 2450 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2451 list_empty(&cpufreq_policy_list)) { 2452 /* if all ->init() calls failed, unregister */ 2453 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2454 driver_data->name); 2455 goto err_if_unreg; 2456 } 2457 2458 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "cpufreq:online", 2459 cpufreq_online, 2460 cpufreq_offline); 2461 if (ret < 0) 2462 goto err_if_unreg; 2463 hp_online = ret; 2464 ret = 0; 2465 2466 pr_debug("driver %s up and running\n", driver_data->name); 2467 goto out; 2468 2469 err_if_unreg: 2470 subsys_interface_unregister(&cpufreq_interface); 2471 err_boost_unreg: 2472 remove_boost_sysfs_file(); 2473 err_null_driver: 2474 write_lock_irqsave(&cpufreq_driver_lock, flags); 2475 cpufreq_driver = NULL; 2476 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2477 out: 2478 put_online_cpus(); 2479 return ret; 2480 } 2481 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2482 2483 /** 2484 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2485 * 2486 * Unregister the current CPUFreq driver. Only call this if you have 2487 * the right to do so, i.e. if you have succeeded in initialising before! 2488 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2489 * currently not initialised. 2490 */ 2491 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2492 { 2493 unsigned long flags; 2494 2495 if (!cpufreq_driver || (driver != cpufreq_driver)) 2496 return -EINVAL; 2497 2498 pr_debug("unregistering driver %s\n", driver->name); 2499 2500 /* Protect against concurrent cpu hotplug */ 2501 get_online_cpus(); 2502 subsys_interface_unregister(&cpufreq_interface); 2503 remove_boost_sysfs_file(); 2504 cpuhp_remove_state_nocalls(hp_online); 2505 2506 write_lock_irqsave(&cpufreq_driver_lock, flags); 2507 2508 cpufreq_driver = NULL; 2509 2510 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2511 put_online_cpus(); 2512 2513 return 0; 2514 } 2515 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2516 2517 /* 2518 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2519 * or mutexes when secondary CPUs are halted. 2520 */ 2521 static struct syscore_ops cpufreq_syscore_ops = { 2522 .shutdown = cpufreq_suspend, 2523 }; 2524 2525 struct kobject *cpufreq_global_kobject; 2526 EXPORT_SYMBOL(cpufreq_global_kobject); 2527 2528 static int __init cpufreq_core_init(void) 2529 { 2530 if (cpufreq_disabled()) 2531 return -ENODEV; 2532 2533 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2534 BUG_ON(!cpufreq_global_kobject); 2535 2536 register_syscore_ops(&cpufreq_syscore_ops); 2537 2538 return 0; 2539 } 2540 module_param(off, int, 0444); 2541 core_initcall(cpufreq_core_init); 2542