xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)			 \
43 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 		if ((__active) == !policy_is_inactive(__policy))
45 
46 #define for_each_active_policy(__policy)		\
47 	for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)		\
49 	for_each_suitable_policy(__policy, false)
50 
51 #define for_each_policy(__policy)			\
52 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53 
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)				\
57 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58 
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93 
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 	init_cpufreq_transition_notifier_list_called = true;
99 	return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102 
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 	return off;
107 }
108 void disable_cpufreq(void)
109 {
110 	off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113 
114 bool have_governor_per_policy(void)
115 {
116 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119 
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 	if (have_governor_per_policy())
123 		return &policy->kobj;
124 	else
125 		return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128 
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 	u64 idle_time;
132 	u64 cur_wall_time;
133 	u64 busy_time;
134 
135 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
136 
137 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143 
144 	idle_time = cur_wall_time - busy_time;
145 	if (wall)
146 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
147 
148 	return div_u64(idle_time, NSEC_PER_USEC);
149 }
150 
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154 
155 	if (idle_time == -1ULL)
156 		return get_cpu_idle_time_jiffy(cpu, wall);
157 	else if (!io_busy)
158 		idle_time += get_cpu_iowait_time_us(cpu, wall);
159 
160 	return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163 
164 /*
165  * This is a generic cpufreq init() routine which can be used by cpufreq
166  * drivers of SMP systems. It will do following:
167  * - validate & show freq table passed
168  * - set policies transition latency
169  * - policy->cpus with all possible CPUs
170  */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172 		struct cpufreq_frequency_table *table,
173 		unsigned int transition_latency)
174 {
175 	int ret;
176 
177 	ret = cpufreq_table_validate_and_show(policy, table);
178 	if (ret) {
179 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180 		return ret;
181 	}
182 
183 	policy->cpuinfo.transition_latency = transition_latency;
184 
185 	/*
186 	 * The driver only supports the SMP configuration where all processors
187 	 * share the clock and voltage and clock.
188 	 */
189 	cpumask_setall(policy->cpus);
190 
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194 
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198 
199 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202 
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206 
207 	if (!policy || IS_ERR(policy->clk)) {
208 		pr_err("%s: No %s associated to cpu: %d\n",
209 		       __func__, policy ? "clk" : "policy", cpu);
210 		return 0;
211 	}
212 
213 	return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216 
217 /**
218  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219  *
220  * @cpu: cpu to find policy for.
221  *
222  * This returns policy for 'cpu', returns NULL if it doesn't exist.
223  * It also increments the kobject reference count to mark it busy and so would
224  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226  * freed as that depends on the kobj count.
227  *
228  * Return: A valid policy on success, otherwise NULL on failure.
229  */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232 	struct cpufreq_policy *policy = NULL;
233 	unsigned long flags;
234 
235 	if (WARN_ON(cpu >= nr_cpu_ids))
236 		return NULL;
237 
238 	/* get the cpufreq driver */
239 	read_lock_irqsave(&cpufreq_driver_lock, flags);
240 
241 	if (cpufreq_driver) {
242 		/* get the CPU */
243 		policy = cpufreq_cpu_get_raw(cpu);
244 		if (policy)
245 			kobject_get(&policy->kobj);
246 	}
247 
248 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249 
250 	return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253 
254 /**
255  * cpufreq_cpu_put: Decrements the usage count of a policy
256  *
257  * @policy: policy earlier returned by cpufreq_cpu_get().
258  *
259  * This decrements the kobject reference count incremented earlier by calling
260  * cpufreq_cpu_get().
261  */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264 	kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267 
268 /*********************************************************************
269  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
270  *********************************************************************/
271 
272 /**
273  * adjust_jiffies - adjust the system "loops_per_jiffy"
274  *
275  * This function alters the system "loops_per_jiffy" for the clock
276  * speed change. Note that loops_per_jiffy cannot be updated on SMP
277  * systems as each CPU might be scaled differently. So, use the arch
278  * per-CPU loops_per_jiffy value wherever possible.
279  */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283 	static unsigned long l_p_j_ref;
284 	static unsigned int l_p_j_ref_freq;
285 
286 	if (ci->flags & CPUFREQ_CONST_LOOPS)
287 		return;
288 
289 	if (!l_p_j_ref_freq) {
290 		l_p_j_ref = loops_per_jiffy;
291 		l_p_j_ref_freq = ci->old;
292 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293 			 l_p_j_ref, l_p_j_ref_freq);
294 	}
295 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 								ci->new);
298 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299 			 loops_per_jiffy, ci->new);
300 	}
301 #endif
302 }
303 
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305 		struct cpufreq_freqs *freqs, unsigned int state)
306 {
307 	BUG_ON(irqs_disabled());
308 
309 	if (cpufreq_disabled())
310 		return;
311 
312 	freqs->flags = cpufreq_driver->flags;
313 	pr_debug("notification %u of frequency transition to %u kHz\n",
314 		 state, freqs->new);
315 
316 	switch (state) {
317 
318 	case CPUFREQ_PRECHANGE:
319 		/* detect if the driver reported a value as "old frequency"
320 		 * which is not equal to what the cpufreq core thinks is
321 		 * "old frequency".
322 		 */
323 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324 			if ((policy) && (policy->cpu == freqs->cpu) &&
325 			    (policy->cur) && (policy->cur != freqs->old)) {
326 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 					 freqs->old, policy->cur);
328 				freqs->old = policy->cur;
329 			}
330 		}
331 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332 				CPUFREQ_PRECHANGE, freqs);
333 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334 		break;
335 
336 	case CPUFREQ_POSTCHANGE:
337 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338 		pr_debug("FREQ: %lu - CPU: %lu\n",
339 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340 		trace_cpu_frequency(freqs->new, freqs->cpu);
341 		cpufreq_stats_record_transition(policy, freqs->new);
342 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343 				CPUFREQ_POSTCHANGE, freqs);
344 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
345 			policy->cur = freqs->new;
346 		break;
347 	}
348 }
349 
350 /**
351  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352  * on frequency transition.
353  *
354  * This function calls the transition notifiers and the "adjust_jiffies"
355  * function. It is called twice on all CPU frequency changes that have
356  * external effects.
357  */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359 		struct cpufreq_freqs *freqs, unsigned int state)
360 {
361 	for_each_cpu(freqs->cpu, policy->cpus)
362 		__cpufreq_notify_transition(policy, freqs, state);
363 }
364 
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367 		struct cpufreq_freqs *freqs, int transition_failed)
368 {
369 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 	if (!transition_failed)
371 		return;
372 
373 	swap(freqs->old, freqs->new);
374 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377 
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379 		struct cpufreq_freqs *freqs)
380 {
381 
382 	/*
383 	 * Catch double invocations of _begin() which lead to self-deadlock.
384 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385 	 * doesn't invoke _begin() on their behalf, and hence the chances of
386 	 * double invocations are very low. Moreover, there are scenarios
387 	 * where these checks can emit false-positive warnings in these
388 	 * drivers; so we avoid that by skipping them altogether.
389 	 */
390 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391 				&& current == policy->transition_task);
392 
393 wait:
394 	wait_event(policy->transition_wait, !policy->transition_ongoing);
395 
396 	spin_lock(&policy->transition_lock);
397 
398 	if (unlikely(policy->transition_ongoing)) {
399 		spin_unlock(&policy->transition_lock);
400 		goto wait;
401 	}
402 
403 	policy->transition_ongoing = true;
404 	policy->transition_task = current;
405 
406 	spin_unlock(&policy->transition_lock);
407 
408 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411 
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413 		struct cpufreq_freqs *freqs, int transition_failed)
414 {
415 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
416 		return;
417 
418 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
419 
420 	policy->transition_ongoing = false;
421 	policy->transition_task = NULL;
422 
423 	wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426 
427 /*
428  * Fast frequency switching status count.  Positive means "enabled", negative
429  * means "disabled" and 0 means "not decided yet".
430  */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433 
434 static void cpufreq_list_transition_notifiers(void)
435 {
436 	struct notifier_block *nb;
437 
438 	pr_info("Registered transition notifiers:\n");
439 
440 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
441 
442 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 		pr_info("%pF\n", nb->notifier_call);
444 
445 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447 
448 /**
449  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450  * @policy: cpufreq policy to enable fast frequency switching for.
451  *
452  * Try to enable fast frequency switching for @policy.
453  *
454  * The attempt will fail if there is at least one transition notifier registered
455  * at this point, as fast frequency switching is quite fundamentally at odds
456  * with transition notifiers.  Thus if successful, it will make registration of
457  * transition notifiers fail going forward.
458  */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 	lockdep_assert_held(&policy->rwsem);
462 
463 	if (!policy->fast_switch_possible)
464 		return;
465 
466 	mutex_lock(&cpufreq_fast_switch_lock);
467 	if (cpufreq_fast_switch_count >= 0) {
468 		cpufreq_fast_switch_count++;
469 		policy->fast_switch_enabled = true;
470 	} else {
471 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 			policy->cpu);
473 		cpufreq_list_transition_notifiers();
474 	}
475 	mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478 
479 /**
480  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481  * @policy: cpufreq policy to disable fast frequency switching for.
482  */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 	mutex_lock(&cpufreq_fast_switch_lock);
486 	if (policy->fast_switch_enabled) {
487 		policy->fast_switch_enabled = false;
488 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 			cpufreq_fast_switch_count--;
490 	}
491 	mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494 
495 /**
496  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497  * one.
498  * @target_freq: target frequency to resolve.
499  *
500  * The target to driver frequency mapping is cached in the policy.
501  *
502  * Return: Lowest driver-supported frequency greater than or equal to the
503  * given target_freq, subject to policy (min/max) and driver limitations.
504  */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506 					 unsigned int target_freq)
507 {
508 	target_freq = clamp_val(target_freq, policy->min, policy->max);
509 	policy->cached_target_freq = target_freq;
510 
511 	if (cpufreq_driver->target_index) {
512 		int idx;
513 
514 		idx = cpufreq_frequency_table_target(policy, target_freq,
515 						     CPUFREQ_RELATION_L);
516 		policy->cached_resolved_idx = idx;
517 		return policy->freq_table[idx].frequency;
518 	}
519 
520 	if (cpufreq_driver->resolve_freq)
521 		return cpufreq_driver->resolve_freq(policy, target_freq);
522 
523 	return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526 
527 /*********************************************************************
528  *                          SYSFS INTERFACE                          *
529  *********************************************************************/
530 static ssize_t show_boost(struct kobject *kobj,
531 				 struct attribute *attr, char *buf)
532 {
533 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
534 }
535 
536 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
537 				  const char *buf, size_t count)
538 {
539 	int ret, enable;
540 
541 	ret = sscanf(buf, "%d", &enable);
542 	if (ret != 1 || enable < 0 || enable > 1)
543 		return -EINVAL;
544 
545 	if (cpufreq_boost_trigger_state(enable)) {
546 		pr_err("%s: Cannot %s BOOST!\n",
547 		       __func__, enable ? "enable" : "disable");
548 		return -EINVAL;
549 	}
550 
551 	pr_debug("%s: cpufreq BOOST %s\n",
552 		 __func__, enable ? "enabled" : "disabled");
553 
554 	return count;
555 }
556 define_one_global_rw(boost);
557 
558 static struct cpufreq_governor *find_governor(const char *str_governor)
559 {
560 	struct cpufreq_governor *t;
561 
562 	for_each_governor(t)
563 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
564 			return t;
565 
566 	return NULL;
567 }
568 
569 /**
570  * cpufreq_parse_governor - parse a governor string
571  */
572 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
573 				struct cpufreq_governor **governor)
574 {
575 	int err = -EINVAL;
576 
577 	if (cpufreq_driver->setpolicy) {
578 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
579 			*policy = CPUFREQ_POLICY_PERFORMANCE;
580 			err = 0;
581 		} else if (!strncasecmp(str_governor, "powersave",
582 						CPUFREQ_NAME_LEN)) {
583 			*policy = CPUFREQ_POLICY_POWERSAVE;
584 			err = 0;
585 		}
586 	} else {
587 		struct cpufreq_governor *t;
588 
589 		mutex_lock(&cpufreq_governor_mutex);
590 
591 		t = find_governor(str_governor);
592 
593 		if (t == NULL) {
594 			int ret;
595 
596 			mutex_unlock(&cpufreq_governor_mutex);
597 			ret = request_module("cpufreq_%s", str_governor);
598 			mutex_lock(&cpufreq_governor_mutex);
599 
600 			if (ret == 0)
601 				t = find_governor(str_governor);
602 		}
603 
604 		if (t != NULL) {
605 			*governor = t;
606 			err = 0;
607 		}
608 
609 		mutex_unlock(&cpufreq_governor_mutex);
610 	}
611 	return err;
612 }
613 
614 /**
615  * cpufreq_per_cpu_attr_read() / show_##file_name() -
616  * print out cpufreq information
617  *
618  * Write out information from cpufreq_driver->policy[cpu]; object must be
619  * "unsigned int".
620  */
621 
622 #define show_one(file_name, object)			\
623 static ssize_t show_##file_name				\
624 (struct cpufreq_policy *policy, char *buf)		\
625 {							\
626 	return sprintf(buf, "%u\n", policy->object);	\
627 }
628 
629 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
630 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
631 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
632 show_one(scaling_min_freq, min);
633 show_one(scaling_max_freq, max);
634 
635 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
636 {
637 	ssize_t ret;
638 
639 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
640 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
641 	else
642 		ret = sprintf(buf, "%u\n", policy->cur);
643 	return ret;
644 }
645 
646 static int cpufreq_set_policy(struct cpufreq_policy *policy,
647 				struct cpufreq_policy *new_policy);
648 
649 /**
650  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
651  */
652 #define store_one(file_name, object)			\
653 static ssize_t store_##file_name					\
654 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
655 {									\
656 	int ret, temp;							\
657 	struct cpufreq_policy new_policy;				\
658 									\
659 	memcpy(&new_policy, policy, sizeof(*policy));			\
660 									\
661 	ret = sscanf(buf, "%u", &new_policy.object);			\
662 	if (ret != 1)							\
663 		return -EINVAL;						\
664 									\
665 	temp = new_policy.object;					\
666 	ret = cpufreq_set_policy(policy, &new_policy);		\
667 	if (!ret)							\
668 		policy->user_policy.object = temp;			\
669 									\
670 	return ret ? ret : count;					\
671 }
672 
673 store_one(scaling_min_freq, min);
674 store_one(scaling_max_freq, max);
675 
676 /**
677  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
678  */
679 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
680 					char *buf)
681 {
682 	unsigned int cur_freq = __cpufreq_get(policy);
683 
684 	if (cur_freq)
685 		return sprintf(buf, "%u\n", cur_freq);
686 
687 	return sprintf(buf, "<unknown>\n");
688 }
689 
690 /**
691  * show_scaling_governor - show the current policy for the specified CPU
692  */
693 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
694 {
695 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
696 		return sprintf(buf, "powersave\n");
697 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
698 		return sprintf(buf, "performance\n");
699 	else if (policy->governor)
700 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
701 				policy->governor->name);
702 	return -EINVAL;
703 }
704 
705 /**
706  * store_scaling_governor - store policy for the specified CPU
707  */
708 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
709 					const char *buf, size_t count)
710 {
711 	int ret;
712 	char	str_governor[16];
713 	struct cpufreq_policy new_policy;
714 
715 	memcpy(&new_policy, policy, sizeof(*policy));
716 
717 	ret = sscanf(buf, "%15s", str_governor);
718 	if (ret != 1)
719 		return -EINVAL;
720 
721 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
722 						&new_policy.governor))
723 		return -EINVAL;
724 
725 	ret = cpufreq_set_policy(policy, &new_policy);
726 	return ret ? ret : count;
727 }
728 
729 /**
730  * show_scaling_driver - show the cpufreq driver currently loaded
731  */
732 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
733 {
734 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
735 }
736 
737 /**
738  * show_scaling_available_governors - show the available CPUfreq governors
739  */
740 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
741 						char *buf)
742 {
743 	ssize_t i = 0;
744 	struct cpufreq_governor *t;
745 
746 	if (!has_target()) {
747 		i += sprintf(buf, "performance powersave");
748 		goto out;
749 	}
750 
751 	for_each_governor(t) {
752 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
753 		    - (CPUFREQ_NAME_LEN + 2)))
754 			goto out;
755 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
756 	}
757 out:
758 	i += sprintf(&buf[i], "\n");
759 	return i;
760 }
761 
762 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
763 {
764 	ssize_t i = 0;
765 	unsigned int cpu;
766 
767 	for_each_cpu(cpu, mask) {
768 		if (i)
769 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
770 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
771 		if (i >= (PAGE_SIZE - 5))
772 			break;
773 	}
774 	i += sprintf(&buf[i], "\n");
775 	return i;
776 }
777 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
778 
779 /**
780  * show_related_cpus - show the CPUs affected by each transition even if
781  * hw coordination is in use
782  */
783 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
784 {
785 	return cpufreq_show_cpus(policy->related_cpus, buf);
786 }
787 
788 /**
789  * show_affected_cpus - show the CPUs affected by each transition
790  */
791 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
792 {
793 	return cpufreq_show_cpus(policy->cpus, buf);
794 }
795 
796 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
797 					const char *buf, size_t count)
798 {
799 	unsigned int freq = 0;
800 	unsigned int ret;
801 
802 	if (!policy->governor || !policy->governor->store_setspeed)
803 		return -EINVAL;
804 
805 	ret = sscanf(buf, "%u", &freq);
806 	if (ret != 1)
807 		return -EINVAL;
808 
809 	policy->governor->store_setspeed(policy, freq);
810 
811 	return count;
812 }
813 
814 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
815 {
816 	if (!policy->governor || !policy->governor->show_setspeed)
817 		return sprintf(buf, "<unsupported>\n");
818 
819 	return policy->governor->show_setspeed(policy, buf);
820 }
821 
822 /**
823  * show_bios_limit - show the current cpufreq HW/BIOS limitation
824  */
825 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
826 {
827 	unsigned int limit;
828 	int ret;
829 	if (cpufreq_driver->bios_limit) {
830 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
831 		if (!ret)
832 			return sprintf(buf, "%u\n", limit);
833 	}
834 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
835 }
836 
837 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
838 cpufreq_freq_attr_ro(cpuinfo_min_freq);
839 cpufreq_freq_attr_ro(cpuinfo_max_freq);
840 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
841 cpufreq_freq_attr_ro(scaling_available_governors);
842 cpufreq_freq_attr_ro(scaling_driver);
843 cpufreq_freq_attr_ro(scaling_cur_freq);
844 cpufreq_freq_attr_ro(bios_limit);
845 cpufreq_freq_attr_ro(related_cpus);
846 cpufreq_freq_attr_ro(affected_cpus);
847 cpufreq_freq_attr_rw(scaling_min_freq);
848 cpufreq_freq_attr_rw(scaling_max_freq);
849 cpufreq_freq_attr_rw(scaling_governor);
850 cpufreq_freq_attr_rw(scaling_setspeed);
851 
852 static struct attribute *default_attrs[] = {
853 	&cpuinfo_min_freq.attr,
854 	&cpuinfo_max_freq.attr,
855 	&cpuinfo_transition_latency.attr,
856 	&scaling_min_freq.attr,
857 	&scaling_max_freq.attr,
858 	&affected_cpus.attr,
859 	&related_cpus.attr,
860 	&scaling_governor.attr,
861 	&scaling_driver.attr,
862 	&scaling_available_governors.attr,
863 	&scaling_setspeed.attr,
864 	NULL
865 };
866 
867 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
868 #define to_attr(a) container_of(a, struct freq_attr, attr)
869 
870 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
871 {
872 	struct cpufreq_policy *policy = to_policy(kobj);
873 	struct freq_attr *fattr = to_attr(attr);
874 	ssize_t ret;
875 
876 	down_read(&policy->rwsem);
877 	ret = fattr->show(policy, buf);
878 	up_read(&policy->rwsem);
879 
880 	return ret;
881 }
882 
883 static ssize_t store(struct kobject *kobj, struct attribute *attr,
884 		     const char *buf, size_t count)
885 {
886 	struct cpufreq_policy *policy = to_policy(kobj);
887 	struct freq_attr *fattr = to_attr(attr);
888 	ssize_t ret = -EINVAL;
889 
890 	get_online_cpus();
891 
892 	if (cpu_online(policy->cpu)) {
893 		down_write(&policy->rwsem);
894 		ret = fattr->store(policy, buf, count);
895 		up_write(&policy->rwsem);
896 	}
897 
898 	put_online_cpus();
899 
900 	return ret;
901 }
902 
903 static void cpufreq_sysfs_release(struct kobject *kobj)
904 {
905 	struct cpufreq_policy *policy = to_policy(kobj);
906 	pr_debug("last reference is dropped\n");
907 	complete(&policy->kobj_unregister);
908 }
909 
910 static const struct sysfs_ops sysfs_ops = {
911 	.show	= show,
912 	.store	= store,
913 };
914 
915 static struct kobj_type ktype_cpufreq = {
916 	.sysfs_ops	= &sysfs_ops,
917 	.default_attrs	= default_attrs,
918 	.release	= cpufreq_sysfs_release,
919 };
920 
921 static int add_cpu_dev_symlink(struct cpufreq_policy *policy,
922 			       struct device *dev)
923 {
924 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
925 	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
926 }
927 
928 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
929 				   struct device *dev)
930 {
931 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
932 	sysfs_remove_link(&dev->kobj, "cpufreq");
933 }
934 
935 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
936 {
937 	struct freq_attr **drv_attr;
938 	int ret = 0;
939 
940 	/* set up files for this cpu device */
941 	drv_attr = cpufreq_driver->attr;
942 	while (drv_attr && *drv_attr) {
943 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
944 		if (ret)
945 			return ret;
946 		drv_attr++;
947 	}
948 	if (cpufreq_driver->get) {
949 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
950 		if (ret)
951 			return ret;
952 	}
953 
954 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
955 	if (ret)
956 		return ret;
957 
958 	if (cpufreq_driver->bios_limit) {
959 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
960 		if (ret)
961 			return ret;
962 	}
963 
964 	return 0;
965 }
966 
967 __weak struct cpufreq_governor *cpufreq_default_governor(void)
968 {
969 	return NULL;
970 }
971 
972 static int cpufreq_init_policy(struct cpufreq_policy *policy)
973 {
974 	struct cpufreq_governor *gov = NULL;
975 	struct cpufreq_policy new_policy;
976 
977 	memcpy(&new_policy, policy, sizeof(*policy));
978 
979 	/* Update governor of new_policy to the governor used before hotplug */
980 	gov = find_governor(policy->last_governor);
981 	if (gov) {
982 		pr_debug("Restoring governor %s for cpu %d\n",
983 				policy->governor->name, policy->cpu);
984 	} else {
985 		gov = cpufreq_default_governor();
986 		if (!gov)
987 			return -ENODATA;
988 	}
989 
990 	new_policy.governor = gov;
991 
992 	/* Use the default policy if there is no last_policy. */
993 	if (cpufreq_driver->setpolicy) {
994 		if (policy->last_policy)
995 			new_policy.policy = policy->last_policy;
996 		else
997 			cpufreq_parse_governor(gov->name, &new_policy.policy,
998 					       NULL);
999 	}
1000 	/* set default policy */
1001 	return cpufreq_set_policy(policy, &new_policy);
1002 }
1003 
1004 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1005 {
1006 	int ret = 0;
1007 
1008 	/* Has this CPU been taken care of already? */
1009 	if (cpumask_test_cpu(cpu, policy->cpus))
1010 		return 0;
1011 
1012 	down_write(&policy->rwsem);
1013 	if (has_target())
1014 		cpufreq_stop_governor(policy);
1015 
1016 	cpumask_set_cpu(cpu, policy->cpus);
1017 
1018 	if (has_target()) {
1019 		ret = cpufreq_start_governor(policy);
1020 		if (ret)
1021 			pr_err("%s: Failed to start governor\n", __func__);
1022 	}
1023 	up_write(&policy->rwsem);
1024 	return ret;
1025 }
1026 
1027 static void handle_update(struct work_struct *work)
1028 {
1029 	struct cpufreq_policy *policy =
1030 		container_of(work, struct cpufreq_policy, update);
1031 	unsigned int cpu = policy->cpu;
1032 	pr_debug("handle_update for cpu %u called\n", cpu);
1033 	cpufreq_update_policy(cpu);
1034 }
1035 
1036 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1037 {
1038 	struct cpufreq_policy *policy;
1039 	int ret;
1040 
1041 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1042 	if (!policy)
1043 		return NULL;
1044 
1045 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1046 		goto err_free_policy;
1047 
1048 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1049 		goto err_free_cpumask;
1050 
1051 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1052 		goto err_free_rcpumask;
1053 
1054 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1055 				   cpufreq_global_kobject, "policy%u", cpu);
1056 	if (ret) {
1057 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1058 		goto err_free_real_cpus;
1059 	}
1060 
1061 	INIT_LIST_HEAD(&policy->policy_list);
1062 	init_rwsem(&policy->rwsem);
1063 	spin_lock_init(&policy->transition_lock);
1064 	init_waitqueue_head(&policy->transition_wait);
1065 	init_completion(&policy->kobj_unregister);
1066 	INIT_WORK(&policy->update, handle_update);
1067 
1068 	policy->cpu = cpu;
1069 	return policy;
1070 
1071 err_free_real_cpus:
1072 	free_cpumask_var(policy->real_cpus);
1073 err_free_rcpumask:
1074 	free_cpumask_var(policy->related_cpus);
1075 err_free_cpumask:
1076 	free_cpumask_var(policy->cpus);
1077 err_free_policy:
1078 	kfree(policy);
1079 
1080 	return NULL;
1081 }
1082 
1083 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1084 {
1085 	struct kobject *kobj;
1086 	struct completion *cmp;
1087 
1088 	down_write(&policy->rwsem);
1089 	cpufreq_stats_free_table(policy);
1090 	kobj = &policy->kobj;
1091 	cmp = &policy->kobj_unregister;
1092 	up_write(&policy->rwsem);
1093 	kobject_put(kobj);
1094 
1095 	/*
1096 	 * We need to make sure that the underlying kobj is
1097 	 * actually not referenced anymore by anybody before we
1098 	 * proceed with unloading.
1099 	 */
1100 	pr_debug("waiting for dropping of refcount\n");
1101 	wait_for_completion(cmp);
1102 	pr_debug("wait complete\n");
1103 }
1104 
1105 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1106 {
1107 	unsigned long flags;
1108 	int cpu;
1109 
1110 	/* Remove policy from list */
1111 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1112 	list_del(&policy->policy_list);
1113 
1114 	for_each_cpu(cpu, policy->related_cpus)
1115 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1116 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1117 
1118 	cpufreq_policy_put_kobj(policy);
1119 	free_cpumask_var(policy->real_cpus);
1120 	free_cpumask_var(policy->related_cpus);
1121 	free_cpumask_var(policy->cpus);
1122 	kfree(policy);
1123 }
1124 
1125 static int cpufreq_online(unsigned int cpu)
1126 {
1127 	struct cpufreq_policy *policy;
1128 	bool new_policy;
1129 	unsigned long flags;
1130 	unsigned int j;
1131 	int ret;
1132 
1133 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1134 
1135 	/* Check if this CPU already has a policy to manage it */
1136 	policy = per_cpu(cpufreq_cpu_data, cpu);
1137 	if (policy) {
1138 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1139 		if (!policy_is_inactive(policy))
1140 			return cpufreq_add_policy_cpu(policy, cpu);
1141 
1142 		/* This is the only online CPU for the policy.  Start over. */
1143 		new_policy = false;
1144 		down_write(&policy->rwsem);
1145 		policy->cpu = cpu;
1146 		policy->governor = NULL;
1147 		up_write(&policy->rwsem);
1148 	} else {
1149 		new_policy = true;
1150 		policy = cpufreq_policy_alloc(cpu);
1151 		if (!policy)
1152 			return -ENOMEM;
1153 	}
1154 
1155 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1156 
1157 	/* call driver. From then on the cpufreq must be able
1158 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1159 	 */
1160 	ret = cpufreq_driver->init(policy);
1161 	if (ret) {
1162 		pr_debug("initialization failed\n");
1163 		goto out_free_policy;
1164 	}
1165 
1166 	down_write(&policy->rwsem);
1167 
1168 	if (new_policy) {
1169 		/* related_cpus should at least include policy->cpus. */
1170 		cpumask_copy(policy->related_cpus, policy->cpus);
1171 	}
1172 
1173 	/*
1174 	 * affected cpus must always be the one, which are online. We aren't
1175 	 * managing offline cpus here.
1176 	 */
1177 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1178 
1179 	if (new_policy) {
1180 		policy->user_policy.min = policy->min;
1181 		policy->user_policy.max = policy->max;
1182 
1183 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1184 		for_each_cpu(j, policy->related_cpus)
1185 			per_cpu(cpufreq_cpu_data, j) = policy;
1186 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1187 	} else {
1188 		policy->min = policy->user_policy.min;
1189 		policy->max = policy->user_policy.max;
1190 	}
1191 
1192 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1193 		policy->cur = cpufreq_driver->get(policy->cpu);
1194 		if (!policy->cur) {
1195 			pr_err("%s: ->get() failed\n", __func__);
1196 			goto out_exit_policy;
1197 		}
1198 	}
1199 
1200 	/*
1201 	 * Sometimes boot loaders set CPU frequency to a value outside of
1202 	 * frequency table present with cpufreq core. In such cases CPU might be
1203 	 * unstable if it has to run on that frequency for long duration of time
1204 	 * and so its better to set it to a frequency which is specified in
1205 	 * freq-table. This also makes cpufreq stats inconsistent as
1206 	 * cpufreq-stats would fail to register because current frequency of CPU
1207 	 * isn't found in freq-table.
1208 	 *
1209 	 * Because we don't want this change to effect boot process badly, we go
1210 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1211 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1212 	 * is initialized to zero).
1213 	 *
1214 	 * We are passing target-freq as "policy->cur - 1" otherwise
1215 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1216 	 * equal to target-freq.
1217 	 */
1218 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1219 	    && has_target()) {
1220 		/* Are we running at unknown frequency ? */
1221 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1222 		if (ret == -EINVAL) {
1223 			/* Warn user and fix it */
1224 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1225 				__func__, policy->cpu, policy->cur);
1226 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1227 				CPUFREQ_RELATION_L);
1228 
1229 			/*
1230 			 * Reaching here after boot in a few seconds may not
1231 			 * mean that system will remain stable at "unknown"
1232 			 * frequency for longer duration. Hence, a BUG_ON().
1233 			 */
1234 			BUG_ON(ret);
1235 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1236 				__func__, policy->cpu, policy->cur);
1237 		}
1238 	}
1239 
1240 	if (new_policy) {
1241 		ret = cpufreq_add_dev_interface(policy);
1242 		if (ret)
1243 			goto out_exit_policy;
1244 
1245 		cpufreq_stats_create_table(policy);
1246 
1247 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1248 		list_add(&policy->policy_list, &cpufreq_policy_list);
1249 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1250 	}
1251 
1252 	ret = cpufreq_init_policy(policy);
1253 	if (ret) {
1254 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1255 		       __func__, cpu, ret);
1256 		/* cpufreq_policy_free() will notify based on this */
1257 		new_policy = false;
1258 		goto out_exit_policy;
1259 	}
1260 
1261 	up_write(&policy->rwsem);
1262 
1263 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1264 
1265 	/* Callback for handling stuff after policy is ready */
1266 	if (cpufreq_driver->ready)
1267 		cpufreq_driver->ready(policy);
1268 
1269 	pr_debug("initialization complete\n");
1270 
1271 	return 0;
1272 
1273 out_exit_policy:
1274 	up_write(&policy->rwsem);
1275 
1276 	if (cpufreq_driver->exit)
1277 		cpufreq_driver->exit(policy);
1278 out_free_policy:
1279 	cpufreq_policy_free(policy);
1280 	return ret;
1281 }
1282 
1283 static int cpufreq_offline(unsigned int cpu);
1284 
1285 /**
1286  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1287  * @dev: CPU device.
1288  * @sif: Subsystem interface structure pointer (not used)
1289  */
1290 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1291 {
1292 	struct cpufreq_policy *policy;
1293 	unsigned cpu = dev->id;
1294 	int ret;
1295 
1296 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1297 
1298 	if (cpu_online(cpu)) {
1299 		ret = cpufreq_online(cpu);
1300 		if (ret)
1301 			return ret;
1302 	}
1303 
1304 	/* Create sysfs link on CPU registration */
1305 	policy = per_cpu(cpufreq_cpu_data, cpu);
1306 	if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1307 		return 0;
1308 
1309 	ret = add_cpu_dev_symlink(policy, dev);
1310 	if (ret) {
1311 		cpumask_clear_cpu(cpu, policy->real_cpus);
1312 		cpufreq_offline(cpu);
1313 	}
1314 
1315 	return ret;
1316 }
1317 
1318 static int cpufreq_offline(unsigned int cpu)
1319 {
1320 	struct cpufreq_policy *policy;
1321 	int ret;
1322 
1323 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1324 
1325 	policy = cpufreq_cpu_get_raw(cpu);
1326 	if (!policy) {
1327 		pr_debug("%s: No cpu_data found\n", __func__);
1328 		return 0;
1329 	}
1330 
1331 	down_write(&policy->rwsem);
1332 	if (has_target())
1333 		cpufreq_stop_governor(policy);
1334 
1335 	cpumask_clear_cpu(cpu, policy->cpus);
1336 
1337 	if (policy_is_inactive(policy)) {
1338 		if (has_target())
1339 			strncpy(policy->last_governor, policy->governor->name,
1340 				CPUFREQ_NAME_LEN);
1341 		else
1342 			policy->last_policy = policy->policy;
1343 	} else if (cpu == policy->cpu) {
1344 		/* Nominate new CPU */
1345 		policy->cpu = cpumask_any(policy->cpus);
1346 	}
1347 
1348 	/* Start governor again for active policy */
1349 	if (!policy_is_inactive(policy)) {
1350 		if (has_target()) {
1351 			ret = cpufreq_start_governor(policy);
1352 			if (ret)
1353 				pr_err("%s: Failed to start governor\n", __func__);
1354 		}
1355 
1356 		goto unlock;
1357 	}
1358 
1359 	if (cpufreq_driver->stop_cpu)
1360 		cpufreq_driver->stop_cpu(policy);
1361 
1362 	if (has_target())
1363 		cpufreq_exit_governor(policy);
1364 
1365 	/*
1366 	 * Perform the ->exit() even during light-weight tear-down,
1367 	 * since this is a core component, and is essential for the
1368 	 * subsequent light-weight ->init() to succeed.
1369 	 */
1370 	if (cpufreq_driver->exit) {
1371 		cpufreq_driver->exit(policy);
1372 		policy->freq_table = NULL;
1373 	}
1374 
1375 unlock:
1376 	up_write(&policy->rwsem);
1377 	return 0;
1378 }
1379 
1380 /**
1381  * cpufreq_remove_dev - remove a CPU device
1382  *
1383  * Removes the cpufreq interface for a CPU device.
1384  */
1385 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1386 {
1387 	unsigned int cpu = dev->id;
1388 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1389 
1390 	if (!policy)
1391 		return;
1392 
1393 	if (cpu_online(cpu))
1394 		cpufreq_offline(cpu);
1395 
1396 	cpumask_clear_cpu(cpu, policy->real_cpus);
1397 	remove_cpu_dev_symlink(policy, dev);
1398 
1399 	if (cpumask_empty(policy->real_cpus))
1400 		cpufreq_policy_free(policy);
1401 }
1402 
1403 /**
1404  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1405  *	in deep trouble.
1406  *	@policy: policy managing CPUs
1407  *	@new_freq: CPU frequency the CPU actually runs at
1408  *
1409  *	We adjust to current frequency first, and need to clean up later.
1410  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1411  */
1412 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1413 				unsigned int new_freq)
1414 {
1415 	struct cpufreq_freqs freqs;
1416 
1417 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1418 		 policy->cur, new_freq);
1419 
1420 	freqs.old = policy->cur;
1421 	freqs.new = new_freq;
1422 
1423 	cpufreq_freq_transition_begin(policy, &freqs);
1424 	cpufreq_freq_transition_end(policy, &freqs, 0);
1425 }
1426 
1427 /**
1428  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1429  * @cpu: CPU number
1430  *
1431  * This is the last known freq, without actually getting it from the driver.
1432  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1433  */
1434 unsigned int cpufreq_quick_get(unsigned int cpu)
1435 {
1436 	struct cpufreq_policy *policy;
1437 	unsigned int ret_freq = 0;
1438 	unsigned long flags;
1439 
1440 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1441 
1442 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1443 		ret_freq = cpufreq_driver->get(cpu);
1444 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1445 		return ret_freq;
1446 	}
1447 
1448 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1449 
1450 	policy = cpufreq_cpu_get(cpu);
1451 	if (policy) {
1452 		ret_freq = policy->cur;
1453 		cpufreq_cpu_put(policy);
1454 	}
1455 
1456 	return ret_freq;
1457 }
1458 EXPORT_SYMBOL(cpufreq_quick_get);
1459 
1460 /**
1461  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1462  * @cpu: CPU number
1463  *
1464  * Just return the max possible frequency for a given CPU.
1465  */
1466 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1467 {
1468 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1469 	unsigned int ret_freq = 0;
1470 
1471 	if (policy) {
1472 		ret_freq = policy->max;
1473 		cpufreq_cpu_put(policy);
1474 	}
1475 
1476 	return ret_freq;
1477 }
1478 EXPORT_SYMBOL(cpufreq_quick_get_max);
1479 
1480 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1481 {
1482 	unsigned int ret_freq = 0;
1483 
1484 	if (!cpufreq_driver->get)
1485 		return ret_freq;
1486 
1487 	ret_freq = cpufreq_driver->get(policy->cpu);
1488 
1489 	/*
1490 	 * Updating inactive policies is invalid, so avoid doing that.  Also
1491 	 * if fast frequency switching is used with the given policy, the check
1492 	 * against policy->cur is pointless, so skip it in that case too.
1493 	 */
1494 	if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1495 		return ret_freq;
1496 
1497 	if (ret_freq && policy->cur &&
1498 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1499 		/* verify no discrepancy between actual and
1500 					saved value exists */
1501 		if (unlikely(ret_freq != policy->cur)) {
1502 			cpufreq_out_of_sync(policy, ret_freq);
1503 			schedule_work(&policy->update);
1504 		}
1505 	}
1506 
1507 	return ret_freq;
1508 }
1509 
1510 /**
1511  * cpufreq_get - get the current CPU frequency (in kHz)
1512  * @cpu: CPU number
1513  *
1514  * Get the CPU current (static) CPU frequency
1515  */
1516 unsigned int cpufreq_get(unsigned int cpu)
1517 {
1518 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1519 	unsigned int ret_freq = 0;
1520 
1521 	if (policy) {
1522 		down_read(&policy->rwsem);
1523 
1524 		if (!policy_is_inactive(policy))
1525 			ret_freq = __cpufreq_get(policy);
1526 
1527 		up_read(&policy->rwsem);
1528 
1529 		cpufreq_cpu_put(policy);
1530 	}
1531 
1532 	return ret_freq;
1533 }
1534 EXPORT_SYMBOL(cpufreq_get);
1535 
1536 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1537 {
1538 	unsigned int new_freq;
1539 
1540 	new_freq = cpufreq_driver->get(policy->cpu);
1541 	if (!new_freq)
1542 		return 0;
1543 
1544 	if (!policy->cur) {
1545 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1546 		policy->cur = new_freq;
1547 	} else if (policy->cur != new_freq && has_target()) {
1548 		cpufreq_out_of_sync(policy, new_freq);
1549 	}
1550 
1551 	return new_freq;
1552 }
1553 
1554 static struct subsys_interface cpufreq_interface = {
1555 	.name		= "cpufreq",
1556 	.subsys		= &cpu_subsys,
1557 	.add_dev	= cpufreq_add_dev,
1558 	.remove_dev	= cpufreq_remove_dev,
1559 };
1560 
1561 /*
1562  * In case platform wants some specific frequency to be configured
1563  * during suspend..
1564  */
1565 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1566 {
1567 	int ret;
1568 
1569 	if (!policy->suspend_freq) {
1570 		pr_debug("%s: suspend_freq not defined\n", __func__);
1571 		return 0;
1572 	}
1573 
1574 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1575 			policy->suspend_freq);
1576 
1577 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1578 			CPUFREQ_RELATION_H);
1579 	if (ret)
1580 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1581 				__func__, policy->suspend_freq, ret);
1582 
1583 	return ret;
1584 }
1585 EXPORT_SYMBOL(cpufreq_generic_suspend);
1586 
1587 /**
1588  * cpufreq_suspend() - Suspend CPUFreq governors
1589  *
1590  * Called during system wide Suspend/Hibernate cycles for suspending governors
1591  * as some platforms can't change frequency after this point in suspend cycle.
1592  * Because some of the devices (like: i2c, regulators, etc) they use for
1593  * changing frequency are suspended quickly after this point.
1594  */
1595 void cpufreq_suspend(void)
1596 {
1597 	struct cpufreq_policy *policy;
1598 
1599 	if (!cpufreq_driver)
1600 		return;
1601 
1602 	if (!has_target() && !cpufreq_driver->suspend)
1603 		goto suspend;
1604 
1605 	pr_debug("%s: Suspending Governors\n", __func__);
1606 
1607 	for_each_active_policy(policy) {
1608 		if (has_target()) {
1609 			down_write(&policy->rwsem);
1610 			cpufreq_stop_governor(policy);
1611 			up_write(&policy->rwsem);
1612 		}
1613 
1614 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1615 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1616 				policy);
1617 	}
1618 
1619 suspend:
1620 	cpufreq_suspended = true;
1621 }
1622 
1623 /**
1624  * cpufreq_resume() - Resume CPUFreq governors
1625  *
1626  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1627  * are suspended with cpufreq_suspend().
1628  */
1629 void cpufreq_resume(void)
1630 {
1631 	struct cpufreq_policy *policy;
1632 	int ret;
1633 
1634 	if (!cpufreq_driver)
1635 		return;
1636 
1637 	cpufreq_suspended = false;
1638 
1639 	if (!has_target() && !cpufreq_driver->resume)
1640 		return;
1641 
1642 	pr_debug("%s: Resuming Governors\n", __func__);
1643 
1644 	for_each_active_policy(policy) {
1645 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1646 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1647 				policy);
1648 		} else if (has_target()) {
1649 			down_write(&policy->rwsem);
1650 			ret = cpufreq_start_governor(policy);
1651 			up_write(&policy->rwsem);
1652 
1653 			if (ret)
1654 				pr_err("%s: Failed to start governor for policy: %p\n",
1655 				       __func__, policy);
1656 		}
1657 	}
1658 }
1659 
1660 /**
1661  *	cpufreq_get_current_driver - return current driver's name
1662  *
1663  *	Return the name string of the currently loaded cpufreq driver
1664  *	or NULL, if none.
1665  */
1666 const char *cpufreq_get_current_driver(void)
1667 {
1668 	if (cpufreq_driver)
1669 		return cpufreq_driver->name;
1670 
1671 	return NULL;
1672 }
1673 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1674 
1675 /**
1676  *	cpufreq_get_driver_data - return current driver data
1677  *
1678  *	Return the private data of the currently loaded cpufreq
1679  *	driver, or NULL if no cpufreq driver is loaded.
1680  */
1681 void *cpufreq_get_driver_data(void)
1682 {
1683 	if (cpufreq_driver)
1684 		return cpufreq_driver->driver_data;
1685 
1686 	return NULL;
1687 }
1688 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1689 
1690 /*********************************************************************
1691  *                     NOTIFIER LISTS INTERFACE                      *
1692  *********************************************************************/
1693 
1694 /**
1695  *	cpufreq_register_notifier - register a driver with cpufreq
1696  *	@nb: notifier function to register
1697  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1698  *
1699  *	Add a driver to one of two lists: either a list of drivers that
1700  *      are notified about clock rate changes (once before and once after
1701  *      the transition), or a list of drivers that are notified about
1702  *      changes in cpufreq policy.
1703  *
1704  *	This function may sleep, and has the same return conditions as
1705  *	blocking_notifier_chain_register.
1706  */
1707 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1708 {
1709 	int ret;
1710 
1711 	if (cpufreq_disabled())
1712 		return -EINVAL;
1713 
1714 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1715 
1716 	switch (list) {
1717 	case CPUFREQ_TRANSITION_NOTIFIER:
1718 		mutex_lock(&cpufreq_fast_switch_lock);
1719 
1720 		if (cpufreq_fast_switch_count > 0) {
1721 			mutex_unlock(&cpufreq_fast_switch_lock);
1722 			return -EBUSY;
1723 		}
1724 		ret = srcu_notifier_chain_register(
1725 				&cpufreq_transition_notifier_list, nb);
1726 		if (!ret)
1727 			cpufreq_fast_switch_count--;
1728 
1729 		mutex_unlock(&cpufreq_fast_switch_lock);
1730 		break;
1731 	case CPUFREQ_POLICY_NOTIFIER:
1732 		ret = blocking_notifier_chain_register(
1733 				&cpufreq_policy_notifier_list, nb);
1734 		break;
1735 	default:
1736 		ret = -EINVAL;
1737 	}
1738 
1739 	return ret;
1740 }
1741 EXPORT_SYMBOL(cpufreq_register_notifier);
1742 
1743 /**
1744  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1745  *	@nb: notifier block to be unregistered
1746  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1747  *
1748  *	Remove a driver from the CPU frequency notifier list.
1749  *
1750  *	This function may sleep, and has the same return conditions as
1751  *	blocking_notifier_chain_unregister.
1752  */
1753 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1754 {
1755 	int ret;
1756 
1757 	if (cpufreq_disabled())
1758 		return -EINVAL;
1759 
1760 	switch (list) {
1761 	case CPUFREQ_TRANSITION_NOTIFIER:
1762 		mutex_lock(&cpufreq_fast_switch_lock);
1763 
1764 		ret = srcu_notifier_chain_unregister(
1765 				&cpufreq_transition_notifier_list, nb);
1766 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1767 			cpufreq_fast_switch_count++;
1768 
1769 		mutex_unlock(&cpufreq_fast_switch_lock);
1770 		break;
1771 	case CPUFREQ_POLICY_NOTIFIER:
1772 		ret = blocking_notifier_chain_unregister(
1773 				&cpufreq_policy_notifier_list, nb);
1774 		break;
1775 	default:
1776 		ret = -EINVAL;
1777 	}
1778 
1779 	return ret;
1780 }
1781 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1782 
1783 
1784 /*********************************************************************
1785  *                              GOVERNORS                            *
1786  *********************************************************************/
1787 
1788 /**
1789  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1790  * @policy: cpufreq policy to switch the frequency for.
1791  * @target_freq: New frequency to set (may be approximate).
1792  *
1793  * Carry out a fast frequency switch without sleeping.
1794  *
1795  * The driver's ->fast_switch() callback invoked by this function must be
1796  * suitable for being called from within RCU-sched read-side critical sections
1797  * and it is expected to select the minimum available frequency greater than or
1798  * equal to @target_freq (CPUFREQ_RELATION_L).
1799  *
1800  * This function must not be called if policy->fast_switch_enabled is unset.
1801  *
1802  * Governors calling this function must guarantee that it will never be invoked
1803  * twice in parallel for the same policy and that it will never be called in
1804  * parallel with either ->target() or ->target_index() for the same policy.
1805  *
1806  * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1807  * callback to indicate an error condition, the hardware configuration must be
1808  * preserved.
1809  */
1810 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1811 					unsigned int target_freq)
1812 {
1813 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1814 
1815 	return cpufreq_driver->fast_switch(policy, target_freq);
1816 }
1817 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1818 
1819 /* Must set freqs->new to intermediate frequency */
1820 static int __target_intermediate(struct cpufreq_policy *policy,
1821 				 struct cpufreq_freqs *freqs, int index)
1822 {
1823 	int ret;
1824 
1825 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1826 
1827 	/* We don't need to switch to intermediate freq */
1828 	if (!freqs->new)
1829 		return 0;
1830 
1831 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1832 		 __func__, policy->cpu, freqs->old, freqs->new);
1833 
1834 	cpufreq_freq_transition_begin(policy, freqs);
1835 	ret = cpufreq_driver->target_intermediate(policy, index);
1836 	cpufreq_freq_transition_end(policy, freqs, ret);
1837 
1838 	if (ret)
1839 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1840 		       __func__, ret);
1841 
1842 	return ret;
1843 }
1844 
1845 static int __target_index(struct cpufreq_policy *policy, int index)
1846 {
1847 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1848 	unsigned int intermediate_freq = 0;
1849 	unsigned int newfreq = policy->freq_table[index].frequency;
1850 	int retval = -EINVAL;
1851 	bool notify;
1852 
1853 	if (newfreq == policy->cur)
1854 		return 0;
1855 
1856 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1857 	if (notify) {
1858 		/* Handle switching to intermediate frequency */
1859 		if (cpufreq_driver->get_intermediate) {
1860 			retval = __target_intermediate(policy, &freqs, index);
1861 			if (retval)
1862 				return retval;
1863 
1864 			intermediate_freq = freqs.new;
1865 			/* Set old freq to intermediate */
1866 			if (intermediate_freq)
1867 				freqs.old = freqs.new;
1868 		}
1869 
1870 		freqs.new = newfreq;
1871 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1872 			 __func__, policy->cpu, freqs.old, freqs.new);
1873 
1874 		cpufreq_freq_transition_begin(policy, &freqs);
1875 	}
1876 
1877 	retval = cpufreq_driver->target_index(policy, index);
1878 	if (retval)
1879 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1880 		       retval);
1881 
1882 	if (notify) {
1883 		cpufreq_freq_transition_end(policy, &freqs, retval);
1884 
1885 		/*
1886 		 * Failed after setting to intermediate freq? Driver should have
1887 		 * reverted back to initial frequency and so should we. Check
1888 		 * here for intermediate_freq instead of get_intermediate, in
1889 		 * case we haven't switched to intermediate freq at all.
1890 		 */
1891 		if (unlikely(retval && intermediate_freq)) {
1892 			freqs.old = intermediate_freq;
1893 			freqs.new = policy->restore_freq;
1894 			cpufreq_freq_transition_begin(policy, &freqs);
1895 			cpufreq_freq_transition_end(policy, &freqs, 0);
1896 		}
1897 	}
1898 
1899 	return retval;
1900 }
1901 
1902 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1903 			    unsigned int target_freq,
1904 			    unsigned int relation)
1905 {
1906 	unsigned int old_target_freq = target_freq;
1907 	int index;
1908 
1909 	if (cpufreq_disabled())
1910 		return -ENODEV;
1911 
1912 	/* Make sure that target_freq is within supported range */
1913 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1914 
1915 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1916 		 policy->cpu, target_freq, relation, old_target_freq);
1917 
1918 	/*
1919 	 * This might look like a redundant call as we are checking it again
1920 	 * after finding index. But it is left intentionally for cases where
1921 	 * exactly same freq is called again and so we can save on few function
1922 	 * calls.
1923 	 */
1924 	if (target_freq == policy->cur)
1925 		return 0;
1926 
1927 	/* Save last value to restore later on errors */
1928 	policy->restore_freq = policy->cur;
1929 
1930 	if (cpufreq_driver->target)
1931 		return cpufreq_driver->target(policy, target_freq, relation);
1932 
1933 	if (!cpufreq_driver->target_index)
1934 		return -EINVAL;
1935 
1936 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1937 
1938 	return __target_index(policy, index);
1939 }
1940 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1941 
1942 int cpufreq_driver_target(struct cpufreq_policy *policy,
1943 			  unsigned int target_freq,
1944 			  unsigned int relation)
1945 {
1946 	int ret = -EINVAL;
1947 
1948 	down_write(&policy->rwsem);
1949 
1950 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1951 
1952 	up_write(&policy->rwsem);
1953 
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1957 
1958 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1959 {
1960 	return NULL;
1961 }
1962 
1963 static int cpufreq_init_governor(struct cpufreq_policy *policy)
1964 {
1965 	int ret;
1966 
1967 	/* Don't start any governor operations if we are entering suspend */
1968 	if (cpufreq_suspended)
1969 		return 0;
1970 	/*
1971 	 * Governor might not be initiated here if ACPI _PPC changed
1972 	 * notification happened, so check it.
1973 	 */
1974 	if (!policy->governor)
1975 		return -EINVAL;
1976 
1977 	if (policy->governor->max_transition_latency &&
1978 	    policy->cpuinfo.transition_latency >
1979 	    policy->governor->max_transition_latency) {
1980 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
1981 
1982 		if (gov) {
1983 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1984 				policy->governor->name, gov->name);
1985 			policy->governor = gov;
1986 		} else {
1987 			return -EINVAL;
1988 		}
1989 	}
1990 
1991 	if (!try_module_get(policy->governor->owner))
1992 		return -EINVAL;
1993 
1994 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
1995 
1996 	if (policy->governor->init) {
1997 		ret = policy->governor->init(policy);
1998 		if (ret) {
1999 			module_put(policy->governor->owner);
2000 			return ret;
2001 		}
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2008 {
2009 	if (cpufreq_suspended || !policy->governor)
2010 		return;
2011 
2012 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2013 
2014 	if (policy->governor->exit)
2015 		policy->governor->exit(policy);
2016 
2017 	module_put(policy->governor->owner);
2018 }
2019 
2020 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2021 {
2022 	int ret;
2023 
2024 	if (cpufreq_suspended)
2025 		return 0;
2026 
2027 	if (!policy->governor)
2028 		return -EINVAL;
2029 
2030 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2031 
2032 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2033 		cpufreq_update_current_freq(policy);
2034 
2035 	if (policy->governor->start) {
2036 		ret = policy->governor->start(policy);
2037 		if (ret)
2038 			return ret;
2039 	}
2040 
2041 	if (policy->governor->limits)
2042 		policy->governor->limits(policy);
2043 
2044 	return 0;
2045 }
2046 
2047 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2048 {
2049 	if (cpufreq_suspended || !policy->governor)
2050 		return;
2051 
2052 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2053 
2054 	if (policy->governor->stop)
2055 		policy->governor->stop(policy);
2056 }
2057 
2058 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2059 {
2060 	if (cpufreq_suspended || !policy->governor)
2061 		return;
2062 
2063 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2064 
2065 	if (policy->governor->limits)
2066 		policy->governor->limits(policy);
2067 }
2068 
2069 int cpufreq_register_governor(struct cpufreq_governor *governor)
2070 {
2071 	int err;
2072 
2073 	if (!governor)
2074 		return -EINVAL;
2075 
2076 	if (cpufreq_disabled())
2077 		return -ENODEV;
2078 
2079 	mutex_lock(&cpufreq_governor_mutex);
2080 
2081 	err = -EBUSY;
2082 	if (!find_governor(governor->name)) {
2083 		err = 0;
2084 		list_add(&governor->governor_list, &cpufreq_governor_list);
2085 	}
2086 
2087 	mutex_unlock(&cpufreq_governor_mutex);
2088 	return err;
2089 }
2090 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2091 
2092 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2093 {
2094 	struct cpufreq_policy *policy;
2095 	unsigned long flags;
2096 
2097 	if (!governor)
2098 		return;
2099 
2100 	if (cpufreq_disabled())
2101 		return;
2102 
2103 	/* clear last_governor for all inactive policies */
2104 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2105 	for_each_inactive_policy(policy) {
2106 		if (!strcmp(policy->last_governor, governor->name)) {
2107 			policy->governor = NULL;
2108 			strcpy(policy->last_governor, "\0");
2109 		}
2110 	}
2111 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2112 
2113 	mutex_lock(&cpufreq_governor_mutex);
2114 	list_del(&governor->governor_list);
2115 	mutex_unlock(&cpufreq_governor_mutex);
2116 	return;
2117 }
2118 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2119 
2120 
2121 /*********************************************************************
2122  *                          POLICY INTERFACE                         *
2123  *********************************************************************/
2124 
2125 /**
2126  * cpufreq_get_policy - get the current cpufreq_policy
2127  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2128  *	is written
2129  *
2130  * Reads the current cpufreq policy.
2131  */
2132 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2133 {
2134 	struct cpufreq_policy *cpu_policy;
2135 	if (!policy)
2136 		return -EINVAL;
2137 
2138 	cpu_policy = cpufreq_cpu_get(cpu);
2139 	if (!cpu_policy)
2140 		return -EINVAL;
2141 
2142 	memcpy(policy, cpu_policy, sizeof(*policy));
2143 
2144 	cpufreq_cpu_put(cpu_policy);
2145 	return 0;
2146 }
2147 EXPORT_SYMBOL(cpufreq_get_policy);
2148 
2149 /*
2150  * policy : current policy.
2151  * new_policy: policy to be set.
2152  */
2153 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2154 				struct cpufreq_policy *new_policy)
2155 {
2156 	struct cpufreq_governor *old_gov;
2157 	int ret;
2158 
2159 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2160 		 new_policy->cpu, new_policy->min, new_policy->max);
2161 
2162 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2163 
2164 	/*
2165 	* This check works well when we store new min/max freq attributes,
2166 	* because new_policy is a copy of policy with one field updated.
2167 	*/
2168 	if (new_policy->min > new_policy->max)
2169 		return -EINVAL;
2170 
2171 	/* verify the cpu speed can be set within this limit */
2172 	ret = cpufreq_driver->verify(new_policy);
2173 	if (ret)
2174 		return ret;
2175 
2176 	/* adjust if necessary - all reasons */
2177 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2178 			CPUFREQ_ADJUST, new_policy);
2179 
2180 	/*
2181 	 * verify the cpu speed can be set within this limit, which might be
2182 	 * different to the first one
2183 	 */
2184 	ret = cpufreq_driver->verify(new_policy);
2185 	if (ret)
2186 		return ret;
2187 
2188 	/* notification of the new policy */
2189 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2190 			CPUFREQ_NOTIFY, new_policy);
2191 
2192 	policy->min = new_policy->min;
2193 	policy->max = new_policy->max;
2194 
2195 	policy->cached_target_freq = UINT_MAX;
2196 
2197 	pr_debug("new min and max freqs are %u - %u kHz\n",
2198 		 policy->min, policy->max);
2199 
2200 	if (cpufreq_driver->setpolicy) {
2201 		policy->policy = new_policy->policy;
2202 		pr_debug("setting range\n");
2203 		return cpufreq_driver->setpolicy(new_policy);
2204 	}
2205 
2206 	if (new_policy->governor == policy->governor) {
2207 		pr_debug("cpufreq: governor limits update\n");
2208 		cpufreq_governor_limits(policy);
2209 		return 0;
2210 	}
2211 
2212 	pr_debug("governor switch\n");
2213 
2214 	/* save old, working values */
2215 	old_gov = policy->governor;
2216 	/* end old governor */
2217 	if (old_gov) {
2218 		cpufreq_stop_governor(policy);
2219 		cpufreq_exit_governor(policy);
2220 	}
2221 
2222 	/* start new governor */
2223 	policy->governor = new_policy->governor;
2224 	ret = cpufreq_init_governor(policy);
2225 	if (!ret) {
2226 		ret = cpufreq_start_governor(policy);
2227 		if (!ret) {
2228 			pr_debug("cpufreq: governor change\n");
2229 			return 0;
2230 		}
2231 		cpufreq_exit_governor(policy);
2232 	}
2233 
2234 	/* new governor failed, so re-start old one */
2235 	pr_debug("starting governor %s failed\n", policy->governor->name);
2236 	if (old_gov) {
2237 		policy->governor = old_gov;
2238 		if (cpufreq_init_governor(policy))
2239 			policy->governor = NULL;
2240 		else
2241 			cpufreq_start_governor(policy);
2242 	}
2243 
2244 	return ret;
2245 }
2246 
2247 /**
2248  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2249  *	@cpu: CPU which shall be re-evaluated
2250  *
2251  *	Useful for policy notifiers which have different necessities
2252  *	at different times.
2253  */
2254 void cpufreq_update_policy(unsigned int cpu)
2255 {
2256 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2257 	struct cpufreq_policy new_policy;
2258 
2259 	if (!policy)
2260 		return;
2261 
2262 	down_write(&policy->rwsem);
2263 
2264 	if (policy_is_inactive(policy))
2265 		goto unlock;
2266 
2267 	pr_debug("updating policy for CPU %u\n", cpu);
2268 	memcpy(&new_policy, policy, sizeof(*policy));
2269 	new_policy.min = policy->user_policy.min;
2270 	new_policy.max = policy->user_policy.max;
2271 
2272 	/*
2273 	 * BIOS might change freq behind our back
2274 	 * -> ask driver for current freq and notify governors about a change
2275 	 */
2276 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2277 		if (cpufreq_suspended)
2278 			goto unlock;
2279 
2280 		new_policy.cur = cpufreq_update_current_freq(policy);
2281 		if (WARN_ON(!new_policy.cur))
2282 			goto unlock;
2283 	}
2284 
2285 	cpufreq_set_policy(policy, &new_policy);
2286 
2287 unlock:
2288 	up_write(&policy->rwsem);
2289 
2290 	cpufreq_cpu_put(policy);
2291 }
2292 EXPORT_SYMBOL(cpufreq_update_policy);
2293 
2294 /*********************************************************************
2295  *               BOOST						     *
2296  *********************************************************************/
2297 static int cpufreq_boost_set_sw(int state)
2298 {
2299 	struct cpufreq_policy *policy;
2300 	int ret = -EINVAL;
2301 
2302 	for_each_active_policy(policy) {
2303 		if (!policy->freq_table)
2304 			continue;
2305 
2306 		ret = cpufreq_frequency_table_cpuinfo(policy,
2307 						      policy->freq_table);
2308 		if (ret) {
2309 			pr_err("%s: Policy frequency update failed\n",
2310 			       __func__);
2311 			break;
2312 		}
2313 
2314 		down_write(&policy->rwsem);
2315 		policy->user_policy.max = policy->max;
2316 		cpufreq_governor_limits(policy);
2317 		up_write(&policy->rwsem);
2318 	}
2319 
2320 	return ret;
2321 }
2322 
2323 int cpufreq_boost_trigger_state(int state)
2324 {
2325 	unsigned long flags;
2326 	int ret = 0;
2327 
2328 	if (cpufreq_driver->boost_enabled == state)
2329 		return 0;
2330 
2331 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2332 	cpufreq_driver->boost_enabled = state;
2333 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2334 
2335 	ret = cpufreq_driver->set_boost(state);
2336 	if (ret) {
2337 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2338 		cpufreq_driver->boost_enabled = !state;
2339 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2340 
2341 		pr_err("%s: Cannot %s BOOST\n",
2342 		       __func__, state ? "enable" : "disable");
2343 	}
2344 
2345 	return ret;
2346 }
2347 
2348 static bool cpufreq_boost_supported(void)
2349 {
2350 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2351 }
2352 
2353 static int create_boost_sysfs_file(void)
2354 {
2355 	int ret;
2356 
2357 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2358 	if (ret)
2359 		pr_err("%s: cannot register global BOOST sysfs file\n",
2360 		       __func__);
2361 
2362 	return ret;
2363 }
2364 
2365 static void remove_boost_sysfs_file(void)
2366 {
2367 	if (cpufreq_boost_supported())
2368 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2369 }
2370 
2371 int cpufreq_enable_boost_support(void)
2372 {
2373 	if (!cpufreq_driver)
2374 		return -EINVAL;
2375 
2376 	if (cpufreq_boost_supported())
2377 		return 0;
2378 
2379 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2380 
2381 	/* This will get removed on driver unregister */
2382 	return create_boost_sysfs_file();
2383 }
2384 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2385 
2386 int cpufreq_boost_enabled(void)
2387 {
2388 	return cpufreq_driver->boost_enabled;
2389 }
2390 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2391 
2392 /*********************************************************************
2393  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2394  *********************************************************************/
2395 static enum cpuhp_state hp_online;
2396 
2397 /**
2398  * cpufreq_register_driver - register a CPU Frequency driver
2399  * @driver_data: A struct cpufreq_driver containing the values#
2400  * submitted by the CPU Frequency driver.
2401  *
2402  * Registers a CPU Frequency driver to this core code. This code
2403  * returns zero on success, -EEXIST when another driver got here first
2404  * (and isn't unregistered in the meantime).
2405  *
2406  */
2407 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2408 {
2409 	unsigned long flags;
2410 	int ret;
2411 
2412 	if (cpufreq_disabled())
2413 		return -ENODEV;
2414 
2415 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2416 	    !(driver_data->setpolicy || driver_data->target_index ||
2417 		    driver_data->target) ||
2418 	     (driver_data->setpolicy && (driver_data->target_index ||
2419 		    driver_data->target)) ||
2420 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2421 		return -EINVAL;
2422 
2423 	pr_debug("trying to register driver %s\n", driver_data->name);
2424 
2425 	/* Protect against concurrent CPU online/offline. */
2426 	get_online_cpus();
2427 
2428 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2429 	if (cpufreq_driver) {
2430 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2431 		ret = -EEXIST;
2432 		goto out;
2433 	}
2434 	cpufreq_driver = driver_data;
2435 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2436 
2437 	if (driver_data->setpolicy)
2438 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2439 
2440 	if (cpufreq_boost_supported()) {
2441 		ret = create_boost_sysfs_file();
2442 		if (ret)
2443 			goto err_null_driver;
2444 	}
2445 
2446 	ret = subsys_interface_register(&cpufreq_interface);
2447 	if (ret)
2448 		goto err_boost_unreg;
2449 
2450 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2451 	    list_empty(&cpufreq_policy_list)) {
2452 		/* if all ->init() calls failed, unregister */
2453 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2454 			 driver_data->name);
2455 		goto err_if_unreg;
2456 	}
2457 
2458 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "cpufreq:online",
2459 					cpufreq_online,
2460 					cpufreq_offline);
2461 	if (ret < 0)
2462 		goto err_if_unreg;
2463 	hp_online = ret;
2464 	ret = 0;
2465 
2466 	pr_debug("driver %s up and running\n", driver_data->name);
2467 	goto out;
2468 
2469 err_if_unreg:
2470 	subsys_interface_unregister(&cpufreq_interface);
2471 err_boost_unreg:
2472 	remove_boost_sysfs_file();
2473 err_null_driver:
2474 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2475 	cpufreq_driver = NULL;
2476 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2477 out:
2478 	put_online_cpus();
2479 	return ret;
2480 }
2481 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2482 
2483 /**
2484  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2485  *
2486  * Unregister the current CPUFreq driver. Only call this if you have
2487  * the right to do so, i.e. if you have succeeded in initialising before!
2488  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2489  * currently not initialised.
2490  */
2491 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2492 {
2493 	unsigned long flags;
2494 
2495 	if (!cpufreq_driver || (driver != cpufreq_driver))
2496 		return -EINVAL;
2497 
2498 	pr_debug("unregistering driver %s\n", driver->name);
2499 
2500 	/* Protect against concurrent cpu hotplug */
2501 	get_online_cpus();
2502 	subsys_interface_unregister(&cpufreq_interface);
2503 	remove_boost_sysfs_file();
2504 	cpuhp_remove_state_nocalls(hp_online);
2505 
2506 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2507 
2508 	cpufreq_driver = NULL;
2509 
2510 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2511 	put_online_cpus();
2512 
2513 	return 0;
2514 }
2515 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2516 
2517 /*
2518  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2519  * or mutexes when secondary CPUs are halted.
2520  */
2521 static struct syscore_ops cpufreq_syscore_ops = {
2522 	.shutdown = cpufreq_suspend,
2523 };
2524 
2525 struct kobject *cpufreq_global_kobject;
2526 EXPORT_SYMBOL(cpufreq_global_kobject);
2527 
2528 static int __init cpufreq_core_init(void)
2529 {
2530 	if (cpufreq_disabled())
2531 		return -ENODEV;
2532 
2533 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2534 	BUG_ON(!cpufreq_global_kobject);
2535 
2536 	register_syscore_ops(&cpufreq_syscore_ops);
2537 
2538 	return 0;
2539 }
2540 module_param(off, int, 0444);
2541 core_initcall(cpufreq_core_init);
2542