xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision e3b9f1e8)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)			 \
43 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 		if ((__active) == !policy_is_inactive(__policy))
45 
46 #define for_each_active_policy(__policy)		\
47 	for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)		\
49 	for_each_suitable_policy(__policy, false)
50 
51 #define for_each_policy(__policy)			\
52 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53 
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)				\
57 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58 
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93 
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 	init_cpufreq_transition_notifier_list_called = true;
99 	return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102 
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 	return off;
107 }
108 void disable_cpufreq(void)
109 {
110 	off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113 
114 bool have_governor_per_policy(void)
115 {
116 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119 
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 	if (have_governor_per_policy())
123 		return &policy->kobj;
124 	else
125 		return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128 
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 	u64 idle_time;
132 	u64 cur_wall_time;
133 	u64 busy_time;
134 
135 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
136 
137 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143 
144 	idle_time = cur_wall_time - busy_time;
145 	if (wall)
146 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
147 
148 	return div_u64(idle_time, NSEC_PER_USEC);
149 }
150 
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154 
155 	if (idle_time == -1ULL)
156 		return get_cpu_idle_time_jiffy(cpu, wall);
157 	else if (!io_busy)
158 		idle_time += get_cpu_iowait_time_us(cpu, wall);
159 
160 	return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163 
164 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
165 		unsigned long max_freq)
166 {
167 }
168 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
169 
170 /*
171  * This is a generic cpufreq init() routine which can be used by cpufreq
172  * drivers of SMP systems. It will do following:
173  * - validate & show freq table passed
174  * - set policies transition latency
175  * - policy->cpus with all possible CPUs
176  */
177 int cpufreq_generic_init(struct cpufreq_policy *policy,
178 		struct cpufreq_frequency_table *table,
179 		unsigned int transition_latency)
180 {
181 	int ret;
182 
183 	ret = cpufreq_table_validate_and_show(policy, table);
184 	if (ret) {
185 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
186 		return ret;
187 	}
188 
189 	policy->cpuinfo.transition_latency = transition_latency;
190 
191 	/*
192 	 * The driver only supports the SMP configuration where all processors
193 	 * share the clock and voltage and clock.
194 	 */
195 	cpumask_setall(policy->cpus);
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
200 
201 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
202 {
203 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
204 
205 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
206 }
207 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
208 
209 unsigned int cpufreq_generic_get(unsigned int cpu)
210 {
211 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
212 
213 	if (!policy || IS_ERR(policy->clk)) {
214 		pr_err("%s: No %s associated to cpu: %d\n",
215 		       __func__, policy ? "clk" : "policy", cpu);
216 		return 0;
217 	}
218 
219 	return clk_get_rate(policy->clk) / 1000;
220 }
221 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
222 
223 /**
224  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
225  *
226  * @cpu: cpu to find policy for.
227  *
228  * This returns policy for 'cpu', returns NULL if it doesn't exist.
229  * It also increments the kobject reference count to mark it busy and so would
230  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
231  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
232  * freed as that depends on the kobj count.
233  *
234  * Return: A valid policy on success, otherwise NULL on failure.
235  */
236 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
237 {
238 	struct cpufreq_policy *policy = NULL;
239 	unsigned long flags;
240 
241 	if (WARN_ON(cpu >= nr_cpu_ids))
242 		return NULL;
243 
244 	/* get the cpufreq driver */
245 	read_lock_irqsave(&cpufreq_driver_lock, flags);
246 
247 	if (cpufreq_driver) {
248 		/* get the CPU */
249 		policy = cpufreq_cpu_get_raw(cpu);
250 		if (policy)
251 			kobject_get(&policy->kobj);
252 	}
253 
254 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
255 
256 	return policy;
257 }
258 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
259 
260 /**
261  * cpufreq_cpu_put: Decrements the usage count of a policy
262  *
263  * @policy: policy earlier returned by cpufreq_cpu_get().
264  *
265  * This decrements the kobject reference count incremented earlier by calling
266  * cpufreq_cpu_get().
267  */
268 void cpufreq_cpu_put(struct cpufreq_policy *policy)
269 {
270 	kobject_put(&policy->kobj);
271 }
272 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
273 
274 /*********************************************************************
275  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
276  *********************************************************************/
277 
278 /**
279  * adjust_jiffies - adjust the system "loops_per_jiffy"
280  *
281  * This function alters the system "loops_per_jiffy" for the clock
282  * speed change. Note that loops_per_jiffy cannot be updated on SMP
283  * systems as each CPU might be scaled differently. So, use the arch
284  * per-CPU loops_per_jiffy value wherever possible.
285  */
286 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
287 {
288 #ifndef CONFIG_SMP
289 	static unsigned long l_p_j_ref;
290 	static unsigned int l_p_j_ref_freq;
291 
292 	if (ci->flags & CPUFREQ_CONST_LOOPS)
293 		return;
294 
295 	if (!l_p_j_ref_freq) {
296 		l_p_j_ref = loops_per_jiffy;
297 		l_p_j_ref_freq = ci->old;
298 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
299 			 l_p_j_ref, l_p_j_ref_freq);
300 	}
301 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
302 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
303 								ci->new);
304 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
305 			 loops_per_jiffy, ci->new);
306 	}
307 #endif
308 }
309 
310 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
311 		struct cpufreq_freqs *freqs, unsigned int state)
312 {
313 	BUG_ON(irqs_disabled());
314 
315 	if (cpufreq_disabled())
316 		return;
317 
318 	freqs->flags = cpufreq_driver->flags;
319 	pr_debug("notification %u of frequency transition to %u kHz\n",
320 		 state, freqs->new);
321 
322 	switch (state) {
323 
324 	case CPUFREQ_PRECHANGE:
325 		/* detect if the driver reported a value as "old frequency"
326 		 * which is not equal to what the cpufreq core thinks is
327 		 * "old frequency".
328 		 */
329 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
330 			if ((policy) && (policy->cpu == freqs->cpu) &&
331 			    (policy->cur) && (policy->cur != freqs->old)) {
332 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
333 					 freqs->old, policy->cur);
334 				freqs->old = policy->cur;
335 			}
336 		}
337 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
338 				CPUFREQ_PRECHANGE, freqs);
339 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
340 		break;
341 
342 	case CPUFREQ_POSTCHANGE:
343 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
344 		pr_debug("FREQ: %lu - CPU: %lu\n",
345 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
346 		trace_cpu_frequency(freqs->new, freqs->cpu);
347 		cpufreq_stats_record_transition(policy, freqs->new);
348 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
349 				CPUFREQ_POSTCHANGE, freqs);
350 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
351 			policy->cur = freqs->new;
352 		break;
353 	}
354 }
355 
356 /**
357  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
358  * on frequency transition.
359  *
360  * This function calls the transition notifiers and the "adjust_jiffies"
361  * function. It is called twice on all CPU frequency changes that have
362  * external effects.
363  */
364 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
365 		struct cpufreq_freqs *freqs, unsigned int state)
366 {
367 	for_each_cpu(freqs->cpu, policy->cpus)
368 		__cpufreq_notify_transition(policy, freqs, state);
369 }
370 
371 /* Do post notifications when there are chances that transition has failed */
372 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
373 		struct cpufreq_freqs *freqs, int transition_failed)
374 {
375 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 	if (!transition_failed)
377 		return;
378 
379 	swap(freqs->old, freqs->new);
380 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
381 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
382 }
383 
384 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
385 		struct cpufreq_freqs *freqs)
386 {
387 
388 	/*
389 	 * Catch double invocations of _begin() which lead to self-deadlock.
390 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
391 	 * doesn't invoke _begin() on their behalf, and hence the chances of
392 	 * double invocations are very low. Moreover, there are scenarios
393 	 * where these checks can emit false-positive warnings in these
394 	 * drivers; so we avoid that by skipping them altogether.
395 	 */
396 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
397 				&& current == policy->transition_task);
398 
399 wait:
400 	wait_event(policy->transition_wait, !policy->transition_ongoing);
401 
402 	spin_lock(&policy->transition_lock);
403 
404 	if (unlikely(policy->transition_ongoing)) {
405 		spin_unlock(&policy->transition_lock);
406 		goto wait;
407 	}
408 
409 	policy->transition_ongoing = true;
410 	policy->transition_task = current;
411 
412 	spin_unlock(&policy->transition_lock);
413 
414 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
415 }
416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
417 
418 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
419 		struct cpufreq_freqs *freqs, int transition_failed)
420 {
421 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
422 		return;
423 
424 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
425 
426 	policy->transition_ongoing = false;
427 	policy->transition_task = NULL;
428 
429 	wake_up(&policy->transition_wait);
430 }
431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
432 
433 /*
434  * Fast frequency switching status count.  Positive means "enabled", negative
435  * means "disabled" and 0 means "not decided yet".
436  */
437 static int cpufreq_fast_switch_count;
438 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
439 
440 static void cpufreq_list_transition_notifiers(void)
441 {
442 	struct notifier_block *nb;
443 
444 	pr_info("Registered transition notifiers:\n");
445 
446 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
447 
448 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
449 		pr_info("%pF\n", nb->notifier_call);
450 
451 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
452 }
453 
454 /**
455  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
456  * @policy: cpufreq policy to enable fast frequency switching for.
457  *
458  * Try to enable fast frequency switching for @policy.
459  *
460  * The attempt will fail if there is at least one transition notifier registered
461  * at this point, as fast frequency switching is quite fundamentally at odds
462  * with transition notifiers.  Thus if successful, it will make registration of
463  * transition notifiers fail going forward.
464  */
465 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
466 {
467 	lockdep_assert_held(&policy->rwsem);
468 
469 	if (!policy->fast_switch_possible)
470 		return;
471 
472 	mutex_lock(&cpufreq_fast_switch_lock);
473 	if (cpufreq_fast_switch_count >= 0) {
474 		cpufreq_fast_switch_count++;
475 		policy->fast_switch_enabled = true;
476 	} else {
477 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
478 			policy->cpu);
479 		cpufreq_list_transition_notifiers();
480 	}
481 	mutex_unlock(&cpufreq_fast_switch_lock);
482 }
483 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
484 
485 /**
486  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
487  * @policy: cpufreq policy to disable fast frequency switching for.
488  */
489 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
490 {
491 	mutex_lock(&cpufreq_fast_switch_lock);
492 	if (policy->fast_switch_enabled) {
493 		policy->fast_switch_enabled = false;
494 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
495 			cpufreq_fast_switch_count--;
496 	}
497 	mutex_unlock(&cpufreq_fast_switch_lock);
498 }
499 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
500 
501 /**
502  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
503  * one.
504  * @target_freq: target frequency to resolve.
505  *
506  * The target to driver frequency mapping is cached in the policy.
507  *
508  * Return: Lowest driver-supported frequency greater than or equal to the
509  * given target_freq, subject to policy (min/max) and driver limitations.
510  */
511 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
512 					 unsigned int target_freq)
513 {
514 	target_freq = clamp_val(target_freq, policy->min, policy->max);
515 	policy->cached_target_freq = target_freq;
516 
517 	if (cpufreq_driver->target_index) {
518 		int idx;
519 
520 		idx = cpufreq_frequency_table_target(policy, target_freq,
521 						     CPUFREQ_RELATION_L);
522 		policy->cached_resolved_idx = idx;
523 		return policy->freq_table[idx].frequency;
524 	}
525 
526 	if (cpufreq_driver->resolve_freq)
527 		return cpufreq_driver->resolve_freq(policy, target_freq);
528 
529 	return target_freq;
530 }
531 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
532 
533 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
534 {
535 	unsigned int latency;
536 
537 	if (policy->transition_delay_us)
538 		return policy->transition_delay_us;
539 
540 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
541 	if (latency) {
542 		/*
543 		 * For platforms that can change the frequency very fast (< 10
544 		 * us), the above formula gives a decent transition delay. But
545 		 * for platforms where transition_latency is in milliseconds, it
546 		 * ends up giving unrealistic values.
547 		 *
548 		 * Cap the default transition delay to 10 ms, which seems to be
549 		 * a reasonable amount of time after which we should reevaluate
550 		 * the frequency.
551 		 */
552 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
553 	}
554 
555 	return LATENCY_MULTIPLIER;
556 }
557 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
558 
559 /*********************************************************************
560  *                          SYSFS INTERFACE                          *
561  *********************************************************************/
562 static ssize_t show_boost(struct kobject *kobj,
563 				 struct attribute *attr, char *buf)
564 {
565 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
566 }
567 
568 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
569 				  const char *buf, size_t count)
570 {
571 	int ret, enable;
572 
573 	ret = sscanf(buf, "%d", &enable);
574 	if (ret != 1 || enable < 0 || enable > 1)
575 		return -EINVAL;
576 
577 	if (cpufreq_boost_trigger_state(enable)) {
578 		pr_err("%s: Cannot %s BOOST!\n",
579 		       __func__, enable ? "enable" : "disable");
580 		return -EINVAL;
581 	}
582 
583 	pr_debug("%s: cpufreq BOOST %s\n",
584 		 __func__, enable ? "enabled" : "disabled");
585 
586 	return count;
587 }
588 define_one_global_rw(boost);
589 
590 static struct cpufreq_governor *find_governor(const char *str_governor)
591 {
592 	struct cpufreq_governor *t;
593 
594 	for_each_governor(t)
595 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
596 			return t;
597 
598 	return NULL;
599 }
600 
601 /**
602  * cpufreq_parse_governor - parse a governor string
603  */
604 static int cpufreq_parse_governor(char *str_governor,
605 				  struct cpufreq_policy *policy)
606 {
607 	if (cpufreq_driver->setpolicy) {
608 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
609 			policy->policy = CPUFREQ_POLICY_PERFORMANCE;
610 			return 0;
611 		}
612 
613 		if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
614 			policy->policy = CPUFREQ_POLICY_POWERSAVE;
615 			return 0;
616 		}
617 	} else {
618 		struct cpufreq_governor *t;
619 
620 		mutex_lock(&cpufreq_governor_mutex);
621 
622 		t = find_governor(str_governor);
623 		if (!t) {
624 			int ret;
625 
626 			mutex_unlock(&cpufreq_governor_mutex);
627 
628 			ret = request_module("cpufreq_%s", str_governor);
629 			if (ret)
630 				return -EINVAL;
631 
632 			mutex_lock(&cpufreq_governor_mutex);
633 
634 			t = find_governor(str_governor);
635 		}
636 		if (t && !try_module_get(t->owner))
637 			t = NULL;
638 
639 		mutex_unlock(&cpufreq_governor_mutex);
640 
641 		if (t) {
642 			policy->governor = t;
643 			return 0;
644 		}
645 	}
646 
647 	return -EINVAL;
648 }
649 
650 /**
651  * cpufreq_per_cpu_attr_read() / show_##file_name() -
652  * print out cpufreq information
653  *
654  * Write out information from cpufreq_driver->policy[cpu]; object must be
655  * "unsigned int".
656  */
657 
658 #define show_one(file_name, object)			\
659 static ssize_t show_##file_name				\
660 (struct cpufreq_policy *policy, char *buf)		\
661 {							\
662 	return sprintf(buf, "%u\n", policy->object);	\
663 }
664 
665 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
666 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
667 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
668 show_one(scaling_min_freq, min);
669 show_one(scaling_max_freq, max);
670 
671 __weak unsigned int arch_freq_get_on_cpu(int cpu)
672 {
673 	return 0;
674 }
675 
676 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
677 {
678 	ssize_t ret;
679 	unsigned int freq;
680 
681 	freq = arch_freq_get_on_cpu(policy->cpu);
682 	if (freq)
683 		ret = sprintf(buf, "%u\n", freq);
684 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
685 			cpufreq_driver->get)
686 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
687 	else
688 		ret = sprintf(buf, "%u\n", policy->cur);
689 	return ret;
690 }
691 
692 static int cpufreq_set_policy(struct cpufreq_policy *policy,
693 				struct cpufreq_policy *new_policy);
694 
695 /**
696  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
697  */
698 #define store_one(file_name, object)			\
699 static ssize_t store_##file_name					\
700 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
701 {									\
702 	int ret, temp;							\
703 	struct cpufreq_policy new_policy;				\
704 									\
705 	memcpy(&new_policy, policy, sizeof(*policy));			\
706 									\
707 	ret = sscanf(buf, "%u", &new_policy.object);			\
708 	if (ret != 1)							\
709 		return -EINVAL;						\
710 									\
711 	temp = new_policy.object;					\
712 	ret = cpufreq_set_policy(policy, &new_policy);		\
713 	if (!ret)							\
714 		policy->user_policy.object = temp;			\
715 									\
716 	return ret ? ret : count;					\
717 }
718 
719 store_one(scaling_min_freq, min);
720 store_one(scaling_max_freq, max);
721 
722 /**
723  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
724  */
725 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
726 					char *buf)
727 {
728 	unsigned int cur_freq = __cpufreq_get(policy);
729 
730 	if (cur_freq)
731 		return sprintf(buf, "%u\n", cur_freq);
732 
733 	return sprintf(buf, "<unknown>\n");
734 }
735 
736 /**
737  * show_scaling_governor - show the current policy for the specified CPU
738  */
739 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
740 {
741 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
742 		return sprintf(buf, "powersave\n");
743 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
744 		return sprintf(buf, "performance\n");
745 	else if (policy->governor)
746 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
747 				policy->governor->name);
748 	return -EINVAL;
749 }
750 
751 /**
752  * store_scaling_governor - store policy for the specified CPU
753  */
754 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
755 					const char *buf, size_t count)
756 {
757 	int ret;
758 	char	str_governor[16];
759 	struct cpufreq_policy new_policy;
760 
761 	memcpy(&new_policy, policy, sizeof(*policy));
762 
763 	ret = sscanf(buf, "%15s", str_governor);
764 	if (ret != 1)
765 		return -EINVAL;
766 
767 	if (cpufreq_parse_governor(str_governor, &new_policy))
768 		return -EINVAL;
769 
770 	ret = cpufreq_set_policy(policy, &new_policy);
771 
772 	if (new_policy.governor)
773 		module_put(new_policy.governor->owner);
774 
775 	return ret ? ret : count;
776 }
777 
778 /**
779  * show_scaling_driver - show the cpufreq driver currently loaded
780  */
781 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
782 {
783 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
784 }
785 
786 /**
787  * show_scaling_available_governors - show the available CPUfreq governors
788  */
789 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
790 						char *buf)
791 {
792 	ssize_t i = 0;
793 	struct cpufreq_governor *t;
794 
795 	if (!has_target()) {
796 		i += sprintf(buf, "performance powersave");
797 		goto out;
798 	}
799 
800 	for_each_governor(t) {
801 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
802 		    - (CPUFREQ_NAME_LEN + 2)))
803 			goto out;
804 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
805 	}
806 out:
807 	i += sprintf(&buf[i], "\n");
808 	return i;
809 }
810 
811 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
812 {
813 	ssize_t i = 0;
814 	unsigned int cpu;
815 
816 	for_each_cpu(cpu, mask) {
817 		if (i)
818 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
819 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
820 		if (i >= (PAGE_SIZE - 5))
821 			break;
822 	}
823 	i += sprintf(&buf[i], "\n");
824 	return i;
825 }
826 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
827 
828 /**
829  * show_related_cpus - show the CPUs affected by each transition even if
830  * hw coordination is in use
831  */
832 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
833 {
834 	return cpufreq_show_cpus(policy->related_cpus, buf);
835 }
836 
837 /**
838  * show_affected_cpus - show the CPUs affected by each transition
839  */
840 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
841 {
842 	return cpufreq_show_cpus(policy->cpus, buf);
843 }
844 
845 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
846 					const char *buf, size_t count)
847 {
848 	unsigned int freq = 0;
849 	unsigned int ret;
850 
851 	if (!policy->governor || !policy->governor->store_setspeed)
852 		return -EINVAL;
853 
854 	ret = sscanf(buf, "%u", &freq);
855 	if (ret != 1)
856 		return -EINVAL;
857 
858 	policy->governor->store_setspeed(policy, freq);
859 
860 	return count;
861 }
862 
863 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
864 {
865 	if (!policy->governor || !policy->governor->show_setspeed)
866 		return sprintf(buf, "<unsupported>\n");
867 
868 	return policy->governor->show_setspeed(policy, buf);
869 }
870 
871 /**
872  * show_bios_limit - show the current cpufreq HW/BIOS limitation
873  */
874 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
875 {
876 	unsigned int limit;
877 	int ret;
878 	if (cpufreq_driver->bios_limit) {
879 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
880 		if (!ret)
881 			return sprintf(buf, "%u\n", limit);
882 	}
883 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
884 }
885 
886 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
887 cpufreq_freq_attr_ro(cpuinfo_min_freq);
888 cpufreq_freq_attr_ro(cpuinfo_max_freq);
889 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
890 cpufreq_freq_attr_ro(scaling_available_governors);
891 cpufreq_freq_attr_ro(scaling_driver);
892 cpufreq_freq_attr_ro(scaling_cur_freq);
893 cpufreq_freq_attr_ro(bios_limit);
894 cpufreq_freq_attr_ro(related_cpus);
895 cpufreq_freq_attr_ro(affected_cpus);
896 cpufreq_freq_attr_rw(scaling_min_freq);
897 cpufreq_freq_attr_rw(scaling_max_freq);
898 cpufreq_freq_attr_rw(scaling_governor);
899 cpufreq_freq_attr_rw(scaling_setspeed);
900 
901 static struct attribute *default_attrs[] = {
902 	&cpuinfo_min_freq.attr,
903 	&cpuinfo_max_freq.attr,
904 	&cpuinfo_transition_latency.attr,
905 	&scaling_min_freq.attr,
906 	&scaling_max_freq.attr,
907 	&affected_cpus.attr,
908 	&related_cpus.attr,
909 	&scaling_governor.attr,
910 	&scaling_driver.attr,
911 	&scaling_available_governors.attr,
912 	&scaling_setspeed.attr,
913 	NULL
914 };
915 
916 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
917 #define to_attr(a) container_of(a, struct freq_attr, attr)
918 
919 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
920 {
921 	struct cpufreq_policy *policy = to_policy(kobj);
922 	struct freq_attr *fattr = to_attr(attr);
923 	ssize_t ret;
924 
925 	down_read(&policy->rwsem);
926 	ret = fattr->show(policy, buf);
927 	up_read(&policy->rwsem);
928 
929 	return ret;
930 }
931 
932 static ssize_t store(struct kobject *kobj, struct attribute *attr,
933 		     const char *buf, size_t count)
934 {
935 	struct cpufreq_policy *policy = to_policy(kobj);
936 	struct freq_attr *fattr = to_attr(attr);
937 	ssize_t ret = -EINVAL;
938 
939 	cpus_read_lock();
940 
941 	if (cpu_online(policy->cpu)) {
942 		down_write(&policy->rwsem);
943 		ret = fattr->store(policy, buf, count);
944 		up_write(&policy->rwsem);
945 	}
946 
947 	cpus_read_unlock();
948 
949 	return ret;
950 }
951 
952 static void cpufreq_sysfs_release(struct kobject *kobj)
953 {
954 	struct cpufreq_policy *policy = to_policy(kobj);
955 	pr_debug("last reference is dropped\n");
956 	complete(&policy->kobj_unregister);
957 }
958 
959 static const struct sysfs_ops sysfs_ops = {
960 	.show	= show,
961 	.store	= store,
962 };
963 
964 static struct kobj_type ktype_cpufreq = {
965 	.sysfs_ops	= &sysfs_ops,
966 	.default_attrs	= default_attrs,
967 	.release	= cpufreq_sysfs_release,
968 };
969 
970 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
971 {
972 	struct device *dev = get_cpu_device(cpu);
973 
974 	if (!dev)
975 		return;
976 
977 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
978 		return;
979 
980 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
981 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
982 		dev_err(dev, "cpufreq symlink creation failed\n");
983 }
984 
985 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
986 				   struct device *dev)
987 {
988 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
989 	sysfs_remove_link(&dev->kobj, "cpufreq");
990 }
991 
992 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
993 {
994 	struct freq_attr **drv_attr;
995 	int ret = 0;
996 
997 	/* set up files for this cpu device */
998 	drv_attr = cpufreq_driver->attr;
999 	while (drv_attr && *drv_attr) {
1000 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1001 		if (ret)
1002 			return ret;
1003 		drv_attr++;
1004 	}
1005 	if (cpufreq_driver->get) {
1006 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1007 		if (ret)
1008 			return ret;
1009 	}
1010 
1011 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1012 	if (ret)
1013 		return ret;
1014 
1015 	if (cpufreq_driver->bios_limit) {
1016 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1017 		if (ret)
1018 			return ret;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1025 {
1026 	return NULL;
1027 }
1028 
1029 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1030 {
1031 	struct cpufreq_governor *gov = NULL;
1032 	struct cpufreq_policy new_policy;
1033 
1034 	memcpy(&new_policy, policy, sizeof(*policy));
1035 
1036 	/* Update governor of new_policy to the governor used before hotplug */
1037 	gov = find_governor(policy->last_governor);
1038 	if (gov) {
1039 		pr_debug("Restoring governor %s for cpu %d\n",
1040 				policy->governor->name, policy->cpu);
1041 	} else {
1042 		gov = cpufreq_default_governor();
1043 		if (!gov)
1044 			return -ENODATA;
1045 	}
1046 
1047 	new_policy.governor = gov;
1048 
1049 	/* Use the default policy if there is no last_policy. */
1050 	if (cpufreq_driver->setpolicy) {
1051 		if (policy->last_policy)
1052 			new_policy.policy = policy->last_policy;
1053 		else
1054 			cpufreq_parse_governor(gov->name, &new_policy);
1055 	}
1056 	/* set default policy */
1057 	return cpufreq_set_policy(policy, &new_policy);
1058 }
1059 
1060 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1061 {
1062 	int ret = 0;
1063 
1064 	/* Has this CPU been taken care of already? */
1065 	if (cpumask_test_cpu(cpu, policy->cpus))
1066 		return 0;
1067 
1068 	down_write(&policy->rwsem);
1069 	if (has_target())
1070 		cpufreq_stop_governor(policy);
1071 
1072 	cpumask_set_cpu(cpu, policy->cpus);
1073 
1074 	if (has_target()) {
1075 		ret = cpufreq_start_governor(policy);
1076 		if (ret)
1077 			pr_err("%s: Failed to start governor\n", __func__);
1078 	}
1079 	up_write(&policy->rwsem);
1080 	return ret;
1081 }
1082 
1083 static void handle_update(struct work_struct *work)
1084 {
1085 	struct cpufreq_policy *policy =
1086 		container_of(work, struct cpufreq_policy, update);
1087 	unsigned int cpu = policy->cpu;
1088 	pr_debug("handle_update for cpu %u called\n", cpu);
1089 	cpufreq_update_policy(cpu);
1090 }
1091 
1092 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1093 {
1094 	struct cpufreq_policy *policy;
1095 	int ret;
1096 
1097 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1098 	if (!policy)
1099 		return NULL;
1100 
1101 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1102 		goto err_free_policy;
1103 
1104 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1105 		goto err_free_cpumask;
1106 
1107 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1108 		goto err_free_rcpumask;
1109 
1110 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1111 				   cpufreq_global_kobject, "policy%u", cpu);
1112 	if (ret) {
1113 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1114 		goto err_free_real_cpus;
1115 	}
1116 
1117 	INIT_LIST_HEAD(&policy->policy_list);
1118 	init_rwsem(&policy->rwsem);
1119 	spin_lock_init(&policy->transition_lock);
1120 	init_waitqueue_head(&policy->transition_wait);
1121 	init_completion(&policy->kobj_unregister);
1122 	INIT_WORK(&policy->update, handle_update);
1123 
1124 	policy->cpu = cpu;
1125 	return policy;
1126 
1127 err_free_real_cpus:
1128 	free_cpumask_var(policy->real_cpus);
1129 err_free_rcpumask:
1130 	free_cpumask_var(policy->related_cpus);
1131 err_free_cpumask:
1132 	free_cpumask_var(policy->cpus);
1133 err_free_policy:
1134 	kfree(policy);
1135 
1136 	return NULL;
1137 }
1138 
1139 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1140 {
1141 	struct kobject *kobj;
1142 	struct completion *cmp;
1143 
1144 	down_write(&policy->rwsem);
1145 	cpufreq_stats_free_table(policy);
1146 	kobj = &policy->kobj;
1147 	cmp = &policy->kobj_unregister;
1148 	up_write(&policy->rwsem);
1149 	kobject_put(kobj);
1150 
1151 	/*
1152 	 * We need to make sure that the underlying kobj is
1153 	 * actually not referenced anymore by anybody before we
1154 	 * proceed with unloading.
1155 	 */
1156 	pr_debug("waiting for dropping of refcount\n");
1157 	wait_for_completion(cmp);
1158 	pr_debug("wait complete\n");
1159 }
1160 
1161 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1162 {
1163 	unsigned long flags;
1164 	int cpu;
1165 
1166 	/* Remove policy from list */
1167 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1168 	list_del(&policy->policy_list);
1169 
1170 	for_each_cpu(cpu, policy->related_cpus)
1171 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1172 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1173 
1174 	cpufreq_policy_put_kobj(policy);
1175 	free_cpumask_var(policy->real_cpus);
1176 	free_cpumask_var(policy->related_cpus);
1177 	free_cpumask_var(policy->cpus);
1178 	kfree(policy);
1179 }
1180 
1181 static int cpufreq_online(unsigned int cpu)
1182 {
1183 	struct cpufreq_policy *policy;
1184 	bool new_policy;
1185 	unsigned long flags;
1186 	unsigned int j;
1187 	int ret;
1188 
1189 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1190 
1191 	/* Check if this CPU already has a policy to manage it */
1192 	policy = per_cpu(cpufreq_cpu_data, cpu);
1193 	if (policy) {
1194 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1195 		if (!policy_is_inactive(policy))
1196 			return cpufreq_add_policy_cpu(policy, cpu);
1197 
1198 		/* This is the only online CPU for the policy.  Start over. */
1199 		new_policy = false;
1200 		down_write(&policy->rwsem);
1201 		policy->cpu = cpu;
1202 		policy->governor = NULL;
1203 		up_write(&policy->rwsem);
1204 	} else {
1205 		new_policy = true;
1206 		policy = cpufreq_policy_alloc(cpu);
1207 		if (!policy)
1208 			return -ENOMEM;
1209 	}
1210 
1211 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1212 
1213 	/* call driver. From then on the cpufreq must be able
1214 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1215 	 */
1216 	ret = cpufreq_driver->init(policy);
1217 	if (ret) {
1218 		pr_debug("initialization failed\n");
1219 		goto out_free_policy;
1220 	}
1221 
1222 	down_write(&policy->rwsem);
1223 
1224 	if (new_policy) {
1225 		/* related_cpus should at least include policy->cpus. */
1226 		cpumask_copy(policy->related_cpus, policy->cpus);
1227 	}
1228 
1229 	/*
1230 	 * affected cpus must always be the one, which are online. We aren't
1231 	 * managing offline cpus here.
1232 	 */
1233 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1234 
1235 	if (new_policy) {
1236 		policy->user_policy.min = policy->min;
1237 		policy->user_policy.max = policy->max;
1238 
1239 		for_each_cpu(j, policy->related_cpus) {
1240 			per_cpu(cpufreq_cpu_data, j) = policy;
1241 			add_cpu_dev_symlink(policy, j);
1242 		}
1243 	} else {
1244 		policy->min = policy->user_policy.min;
1245 		policy->max = policy->user_policy.max;
1246 	}
1247 
1248 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1249 		policy->cur = cpufreq_driver->get(policy->cpu);
1250 		if (!policy->cur) {
1251 			pr_err("%s: ->get() failed\n", __func__);
1252 			goto out_exit_policy;
1253 		}
1254 	}
1255 
1256 	/*
1257 	 * Sometimes boot loaders set CPU frequency to a value outside of
1258 	 * frequency table present with cpufreq core. In such cases CPU might be
1259 	 * unstable if it has to run on that frequency for long duration of time
1260 	 * and so its better to set it to a frequency which is specified in
1261 	 * freq-table. This also makes cpufreq stats inconsistent as
1262 	 * cpufreq-stats would fail to register because current frequency of CPU
1263 	 * isn't found in freq-table.
1264 	 *
1265 	 * Because we don't want this change to effect boot process badly, we go
1266 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1267 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1268 	 * is initialized to zero).
1269 	 *
1270 	 * We are passing target-freq as "policy->cur - 1" otherwise
1271 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1272 	 * equal to target-freq.
1273 	 */
1274 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1275 	    && has_target()) {
1276 		/* Are we running at unknown frequency ? */
1277 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1278 		if (ret == -EINVAL) {
1279 			/* Warn user and fix it */
1280 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1281 				__func__, policy->cpu, policy->cur);
1282 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1283 				CPUFREQ_RELATION_L);
1284 
1285 			/*
1286 			 * Reaching here after boot in a few seconds may not
1287 			 * mean that system will remain stable at "unknown"
1288 			 * frequency for longer duration. Hence, a BUG_ON().
1289 			 */
1290 			BUG_ON(ret);
1291 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1292 				__func__, policy->cpu, policy->cur);
1293 		}
1294 	}
1295 
1296 	if (new_policy) {
1297 		ret = cpufreq_add_dev_interface(policy);
1298 		if (ret)
1299 			goto out_exit_policy;
1300 
1301 		cpufreq_stats_create_table(policy);
1302 
1303 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1304 		list_add(&policy->policy_list, &cpufreq_policy_list);
1305 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1306 	}
1307 
1308 	ret = cpufreq_init_policy(policy);
1309 	if (ret) {
1310 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1311 		       __func__, cpu, ret);
1312 		/* cpufreq_policy_free() will notify based on this */
1313 		new_policy = false;
1314 		goto out_exit_policy;
1315 	}
1316 
1317 	up_write(&policy->rwsem);
1318 
1319 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1320 
1321 	/* Callback for handling stuff after policy is ready */
1322 	if (cpufreq_driver->ready)
1323 		cpufreq_driver->ready(policy);
1324 
1325 	pr_debug("initialization complete\n");
1326 
1327 	return 0;
1328 
1329 out_exit_policy:
1330 	up_write(&policy->rwsem);
1331 
1332 	if (cpufreq_driver->exit)
1333 		cpufreq_driver->exit(policy);
1334 
1335 	for_each_cpu(j, policy->real_cpus)
1336 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1337 
1338 out_free_policy:
1339 	cpufreq_policy_free(policy);
1340 	return ret;
1341 }
1342 
1343 /**
1344  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1345  * @dev: CPU device.
1346  * @sif: Subsystem interface structure pointer (not used)
1347  */
1348 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1349 {
1350 	struct cpufreq_policy *policy;
1351 	unsigned cpu = dev->id;
1352 	int ret;
1353 
1354 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1355 
1356 	if (cpu_online(cpu)) {
1357 		ret = cpufreq_online(cpu);
1358 		if (ret)
1359 			return ret;
1360 	}
1361 
1362 	/* Create sysfs link on CPU registration */
1363 	policy = per_cpu(cpufreq_cpu_data, cpu);
1364 	if (policy)
1365 		add_cpu_dev_symlink(policy, cpu);
1366 
1367 	return 0;
1368 }
1369 
1370 static int cpufreq_offline(unsigned int cpu)
1371 {
1372 	struct cpufreq_policy *policy;
1373 	int ret;
1374 
1375 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1376 
1377 	policy = cpufreq_cpu_get_raw(cpu);
1378 	if (!policy) {
1379 		pr_debug("%s: No cpu_data found\n", __func__);
1380 		return 0;
1381 	}
1382 
1383 	down_write(&policy->rwsem);
1384 	if (has_target())
1385 		cpufreq_stop_governor(policy);
1386 
1387 	cpumask_clear_cpu(cpu, policy->cpus);
1388 
1389 	if (policy_is_inactive(policy)) {
1390 		if (has_target())
1391 			strncpy(policy->last_governor, policy->governor->name,
1392 				CPUFREQ_NAME_LEN);
1393 		else
1394 			policy->last_policy = policy->policy;
1395 	} else if (cpu == policy->cpu) {
1396 		/* Nominate new CPU */
1397 		policy->cpu = cpumask_any(policy->cpus);
1398 	}
1399 
1400 	/* Start governor again for active policy */
1401 	if (!policy_is_inactive(policy)) {
1402 		if (has_target()) {
1403 			ret = cpufreq_start_governor(policy);
1404 			if (ret)
1405 				pr_err("%s: Failed to start governor\n", __func__);
1406 		}
1407 
1408 		goto unlock;
1409 	}
1410 
1411 	if (cpufreq_driver->stop_cpu)
1412 		cpufreq_driver->stop_cpu(policy);
1413 
1414 	if (has_target())
1415 		cpufreq_exit_governor(policy);
1416 
1417 	/*
1418 	 * Perform the ->exit() even during light-weight tear-down,
1419 	 * since this is a core component, and is essential for the
1420 	 * subsequent light-weight ->init() to succeed.
1421 	 */
1422 	if (cpufreq_driver->exit) {
1423 		cpufreq_driver->exit(policy);
1424 		policy->freq_table = NULL;
1425 	}
1426 
1427 unlock:
1428 	up_write(&policy->rwsem);
1429 	return 0;
1430 }
1431 
1432 /**
1433  * cpufreq_remove_dev - remove a CPU device
1434  *
1435  * Removes the cpufreq interface for a CPU device.
1436  */
1437 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1438 {
1439 	unsigned int cpu = dev->id;
1440 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1441 
1442 	if (!policy)
1443 		return;
1444 
1445 	if (cpu_online(cpu))
1446 		cpufreq_offline(cpu);
1447 
1448 	cpumask_clear_cpu(cpu, policy->real_cpus);
1449 	remove_cpu_dev_symlink(policy, dev);
1450 
1451 	if (cpumask_empty(policy->real_cpus))
1452 		cpufreq_policy_free(policy);
1453 }
1454 
1455 /**
1456  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1457  *	in deep trouble.
1458  *	@policy: policy managing CPUs
1459  *	@new_freq: CPU frequency the CPU actually runs at
1460  *
1461  *	We adjust to current frequency first, and need to clean up later.
1462  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1463  */
1464 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1465 				unsigned int new_freq)
1466 {
1467 	struct cpufreq_freqs freqs;
1468 
1469 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1470 		 policy->cur, new_freq);
1471 
1472 	freqs.old = policy->cur;
1473 	freqs.new = new_freq;
1474 
1475 	cpufreq_freq_transition_begin(policy, &freqs);
1476 	cpufreq_freq_transition_end(policy, &freqs, 0);
1477 }
1478 
1479 /**
1480  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1481  * @cpu: CPU number
1482  *
1483  * This is the last known freq, without actually getting it from the driver.
1484  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1485  */
1486 unsigned int cpufreq_quick_get(unsigned int cpu)
1487 {
1488 	struct cpufreq_policy *policy;
1489 	unsigned int ret_freq = 0;
1490 	unsigned long flags;
1491 
1492 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1493 
1494 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1495 		ret_freq = cpufreq_driver->get(cpu);
1496 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1497 		return ret_freq;
1498 	}
1499 
1500 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1501 
1502 	policy = cpufreq_cpu_get(cpu);
1503 	if (policy) {
1504 		ret_freq = policy->cur;
1505 		cpufreq_cpu_put(policy);
1506 	}
1507 
1508 	return ret_freq;
1509 }
1510 EXPORT_SYMBOL(cpufreq_quick_get);
1511 
1512 /**
1513  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1514  * @cpu: CPU number
1515  *
1516  * Just return the max possible frequency for a given CPU.
1517  */
1518 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1519 {
1520 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1521 	unsigned int ret_freq = 0;
1522 
1523 	if (policy) {
1524 		ret_freq = policy->max;
1525 		cpufreq_cpu_put(policy);
1526 	}
1527 
1528 	return ret_freq;
1529 }
1530 EXPORT_SYMBOL(cpufreq_quick_get_max);
1531 
1532 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1533 {
1534 	unsigned int ret_freq = 0;
1535 
1536 	if (!cpufreq_driver->get)
1537 		return ret_freq;
1538 
1539 	ret_freq = cpufreq_driver->get(policy->cpu);
1540 
1541 	/*
1542 	 * Updating inactive policies is invalid, so avoid doing that.  Also
1543 	 * if fast frequency switching is used with the given policy, the check
1544 	 * against policy->cur is pointless, so skip it in that case too.
1545 	 */
1546 	if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1547 		return ret_freq;
1548 
1549 	if (ret_freq && policy->cur &&
1550 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1551 		/* verify no discrepancy between actual and
1552 					saved value exists */
1553 		if (unlikely(ret_freq != policy->cur)) {
1554 			cpufreq_out_of_sync(policy, ret_freq);
1555 			schedule_work(&policy->update);
1556 		}
1557 	}
1558 
1559 	return ret_freq;
1560 }
1561 
1562 /**
1563  * cpufreq_get - get the current CPU frequency (in kHz)
1564  * @cpu: CPU number
1565  *
1566  * Get the CPU current (static) CPU frequency
1567  */
1568 unsigned int cpufreq_get(unsigned int cpu)
1569 {
1570 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1571 	unsigned int ret_freq = 0;
1572 
1573 	if (policy) {
1574 		down_read(&policy->rwsem);
1575 
1576 		if (!policy_is_inactive(policy))
1577 			ret_freq = __cpufreq_get(policy);
1578 
1579 		up_read(&policy->rwsem);
1580 
1581 		cpufreq_cpu_put(policy);
1582 	}
1583 
1584 	return ret_freq;
1585 }
1586 EXPORT_SYMBOL(cpufreq_get);
1587 
1588 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1589 {
1590 	unsigned int new_freq;
1591 
1592 	new_freq = cpufreq_driver->get(policy->cpu);
1593 	if (!new_freq)
1594 		return 0;
1595 
1596 	if (!policy->cur) {
1597 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1598 		policy->cur = new_freq;
1599 	} else if (policy->cur != new_freq && has_target()) {
1600 		cpufreq_out_of_sync(policy, new_freq);
1601 	}
1602 
1603 	return new_freq;
1604 }
1605 
1606 static struct subsys_interface cpufreq_interface = {
1607 	.name		= "cpufreq",
1608 	.subsys		= &cpu_subsys,
1609 	.add_dev	= cpufreq_add_dev,
1610 	.remove_dev	= cpufreq_remove_dev,
1611 };
1612 
1613 /*
1614  * In case platform wants some specific frequency to be configured
1615  * during suspend..
1616  */
1617 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1618 {
1619 	int ret;
1620 
1621 	if (!policy->suspend_freq) {
1622 		pr_debug("%s: suspend_freq not defined\n", __func__);
1623 		return 0;
1624 	}
1625 
1626 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1627 			policy->suspend_freq);
1628 
1629 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1630 			CPUFREQ_RELATION_H);
1631 	if (ret)
1632 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1633 				__func__, policy->suspend_freq, ret);
1634 
1635 	return ret;
1636 }
1637 EXPORT_SYMBOL(cpufreq_generic_suspend);
1638 
1639 /**
1640  * cpufreq_suspend() - Suspend CPUFreq governors
1641  *
1642  * Called during system wide Suspend/Hibernate cycles for suspending governors
1643  * as some platforms can't change frequency after this point in suspend cycle.
1644  * Because some of the devices (like: i2c, regulators, etc) they use for
1645  * changing frequency are suspended quickly after this point.
1646  */
1647 void cpufreq_suspend(void)
1648 {
1649 	struct cpufreq_policy *policy;
1650 
1651 	if (!cpufreq_driver)
1652 		return;
1653 
1654 	if (!has_target() && !cpufreq_driver->suspend)
1655 		goto suspend;
1656 
1657 	pr_debug("%s: Suspending Governors\n", __func__);
1658 
1659 	for_each_active_policy(policy) {
1660 		if (has_target()) {
1661 			down_write(&policy->rwsem);
1662 			cpufreq_stop_governor(policy);
1663 			up_write(&policy->rwsem);
1664 		}
1665 
1666 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1667 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1668 				policy);
1669 	}
1670 
1671 suspend:
1672 	cpufreq_suspended = true;
1673 }
1674 
1675 /**
1676  * cpufreq_resume() - Resume CPUFreq governors
1677  *
1678  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1679  * are suspended with cpufreq_suspend().
1680  */
1681 void cpufreq_resume(void)
1682 {
1683 	struct cpufreq_policy *policy;
1684 	int ret;
1685 
1686 	if (!cpufreq_driver)
1687 		return;
1688 
1689 	if (unlikely(!cpufreq_suspended))
1690 		return;
1691 
1692 	cpufreq_suspended = false;
1693 
1694 	if (!has_target() && !cpufreq_driver->resume)
1695 		return;
1696 
1697 	pr_debug("%s: Resuming Governors\n", __func__);
1698 
1699 	for_each_active_policy(policy) {
1700 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1701 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1702 				policy);
1703 		} else if (has_target()) {
1704 			down_write(&policy->rwsem);
1705 			ret = cpufreq_start_governor(policy);
1706 			up_write(&policy->rwsem);
1707 
1708 			if (ret)
1709 				pr_err("%s: Failed to start governor for policy: %p\n",
1710 				       __func__, policy);
1711 		}
1712 	}
1713 }
1714 
1715 /**
1716  *	cpufreq_get_current_driver - return current driver's name
1717  *
1718  *	Return the name string of the currently loaded cpufreq driver
1719  *	or NULL, if none.
1720  */
1721 const char *cpufreq_get_current_driver(void)
1722 {
1723 	if (cpufreq_driver)
1724 		return cpufreq_driver->name;
1725 
1726 	return NULL;
1727 }
1728 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1729 
1730 /**
1731  *	cpufreq_get_driver_data - return current driver data
1732  *
1733  *	Return the private data of the currently loaded cpufreq
1734  *	driver, or NULL if no cpufreq driver is loaded.
1735  */
1736 void *cpufreq_get_driver_data(void)
1737 {
1738 	if (cpufreq_driver)
1739 		return cpufreq_driver->driver_data;
1740 
1741 	return NULL;
1742 }
1743 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1744 
1745 /*********************************************************************
1746  *                     NOTIFIER LISTS INTERFACE                      *
1747  *********************************************************************/
1748 
1749 /**
1750  *	cpufreq_register_notifier - register a driver with cpufreq
1751  *	@nb: notifier function to register
1752  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1753  *
1754  *	Add a driver to one of two lists: either a list of drivers that
1755  *      are notified about clock rate changes (once before and once after
1756  *      the transition), or a list of drivers that are notified about
1757  *      changes in cpufreq policy.
1758  *
1759  *	This function may sleep, and has the same return conditions as
1760  *	blocking_notifier_chain_register.
1761  */
1762 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1763 {
1764 	int ret;
1765 
1766 	if (cpufreq_disabled())
1767 		return -EINVAL;
1768 
1769 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1770 
1771 	switch (list) {
1772 	case CPUFREQ_TRANSITION_NOTIFIER:
1773 		mutex_lock(&cpufreq_fast_switch_lock);
1774 
1775 		if (cpufreq_fast_switch_count > 0) {
1776 			mutex_unlock(&cpufreq_fast_switch_lock);
1777 			return -EBUSY;
1778 		}
1779 		ret = srcu_notifier_chain_register(
1780 				&cpufreq_transition_notifier_list, nb);
1781 		if (!ret)
1782 			cpufreq_fast_switch_count--;
1783 
1784 		mutex_unlock(&cpufreq_fast_switch_lock);
1785 		break;
1786 	case CPUFREQ_POLICY_NOTIFIER:
1787 		ret = blocking_notifier_chain_register(
1788 				&cpufreq_policy_notifier_list, nb);
1789 		break;
1790 	default:
1791 		ret = -EINVAL;
1792 	}
1793 
1794 	return ret;
1795 }
1796 EXPORT_SYMBOL(cpufreq_register_notifier);
1797 
1798 /**
1799  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1800  *	@nb: notifier block to be unregistered
1801  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1802  *
1803  *	Remove a driver from the CPU frequency notifier list.
1804  *
1805  *	This function may sleep, and has the same return conditions as
1806  *	blocking_notifier_chain_unregister.
1807  */
1808 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1809 {
1810 	int ret;
1811 
1812 	if (cpufreq_disabled())
1813 		return -EINVAL;
1814 
1815 	switch (list) {
1816 	case CPUFREQ_TRANSITION_NOTIFIER:
1817 		mutex_lock(&cpufreq_fast_switch_lock);
1818 
1819 		ret = srcu_notifier_chain_unregister(
1820 				&cpufreq_transition_notifier_list, nb);
1821 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1822 			cpufreq_fast_switch_count++;
1823 
1824 		mutex_unlock(&cpufreq_fast_switch_lock);
1825 		break;
1826 	case CPUFREQ_POLICY_NOTIFIER:
1827 		ret = blocking_notifier_chain_unregister(
1828 				&cpufreq_policy_notifier_list, nb);
1829 		break;
1830 	default:
1831 		ret = -EINVAL;
1832 	}
1833 
1834 	return ret;
1835 }
1836 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1837 
1838 
1839 /*********************************************************************
1840  *                              GOVERNORS                            *
1841  *********************************************************************/
1842 
1843 /**
1844  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1845  * @policy: cpufreq policy to switch the frequency for.
1846  * @target_freq: New frequency to set (may be approximate).
1847  *
1848  * Carry out a fast frequency switch without sleeping.
1849  *
1850  * The driver's ->fast_switch() callback invoked by this function must be
1851  * suitable for being called from within RCU-sched read-side critical sections
1852  * and it is expected to select the minimum available frequency greater than or
1853  * equal to @target_freq (CPUFREQ_RELATION_L).
1854  *
1855  * This function must not be called if policy->fast_switch_enabled is unset.
1856  *
1857  * Governors calling this function must guarantee that it will never be invoked
1858  * twice in parallel for the same policy and that it will never be called in
1859  * parallel with either ->target() or ->target_index() for the same policy.
1860  *
1861  * Returns the actual frequency set for the CPU.
1862  *
1863  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1864  * error condition, the hardware configuration must be preserved.
1865  */
1866 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1867 					unsigned int target_freq)
1868 {
1869 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1870 
1871 	return cpufreq_driver->fast_switch(policy, target_freq);
1872 }
1873 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1874 
1875 /* Must set freqs->new to intermediate frequency */
1876 static int __target_intermediate(struct cpufreq_policy *policy,
1877 				 struct cpufreq_freqs *freqs, int index)
1878 {
1879 	int ret;
1880 
1881 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1882 
1883 	/* We don't need to switch to intermediate freq */
1884 	if (!freqs->new)
1885 		return 0;
1886 
1887 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1888 		 __func__, policy->cpu, freqs->old, freqs->new);
1889 
1890 	cpufreq_freq_transition_begin(policy, freqs);
1891 	ret = cpufreq_driver->target_intermediate(policy, index);
1892 	cpufreq_freq_transition_end(policy, freqs, ret);
1893 
1894 	if (ret)
1895 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1896 		       __func__, ret);
1897 
1898 	return ret;
1899 }
1900 
1901 static int __target_index(struct cpufreq_policy *policy, int index)
1902 {
1903 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1904 	unsigned int intermediate_freq = 0;
1905 	unsigned int newfreq = policy->freq_table[index].frequency;
1906 	int retval = -EINVAL;
1907 	bool notify;
1908 
1909 	if (newfreq == policy->cur)
1910 		return 0;
1911 
1912 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1913 	if (notify) {
1914 		/* Handle switching to intermediate frequency */
1915 		if (cpufreq_driver->get_intermediate) {
1916 			retval = __target_intermediate(policy, &freqs, index);
1917 			if (retval)
1918 				return retval;
1919 
1920 			intermediate_freq = freqs.new;
1921 			/* Set old freq to intermediate */
1922 			if (intermediate_freq)
1923 				freqs.old = freqs.new;
1924 		}
1925 
1926 		freqs.new = newfreq;
1927 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1928 			 __func__, policy->cpu, freqs.old, freqs.new);
1929 
1930 		cpufreq_freq_transition_begin(policy, &freqs);
1931 	}
1932 
1933 	retval = cpufreq_driver->target_index(policy, index);
1934 	if (retval)
1935 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1936 		       retval);
1937 
1938 	if (notify) {
1939 		cpufreq_freq_transition_end(policy, &freqs, retval);
1940 
1941 		/*
1942 		 * Failed after setting to intermediate freq? Driver should have
1943 		 * reverted back to initial frequency and so should we. Check
1944 		 * here for intermediate_freq instead of get_intermediate, in
1945 		 * case we haven't switched to intermediate freq at all.
1946 		 */
1947 		if (unlikely(retval && intermediate_freq)) {
1948 			freqs.old = intermediate_freq;
1949 			freqs.new = policy->restore_freq;
1950 			cpufreq_freq_transition_begin(policy, &freqs);
1951 			cpufreq_freq_transition_end(policy, &freqs, 0);
1952 		}
1953 	}
1954 
1955 	return retval;
1956 }
1957 
1958 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1959 			    unsigned int target_freq,
1960 			    unsigned int relation)
1961 {
1962 	unsigned int old_target_freq = target_freq;
1963 	int index;
1964 
1965 	if (cpufreq_disabled())
1966 		return -ENODEV;
1967 
1968 	/* Make sure that target_freq is within supported range */
1969 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1970 
1971 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1972 		 policy->cpu, target_freq, relation, old_target_freq);
1973 
1974 	/*
1975 	 * This might look like a redundant call as we are checking it again
1976 	 * after finding index. But it is left intentionally for cases where
1977 	 * exactly same freq is called again and so we can save on few function
1978 	 * calls.
1979 	 */
1980 	if (target_freq == policy->cur)
1981 		return 0;
1982 
1983 	/* Save last value to restore later on errors */
1984 	policy->restore_freq = policy->cur;
1985 
1986 	if (cpufreq_driver->target)
1987 		return cpufreq_driver->target(policy, target_freq, relation);
1988 
1989 	if (!cpufreq_driver->target_index)
1990 		return -EINVAL;
1991 
1992 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1993 
1994 	return __target_index(policy, index);
1995 }
1996 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1997 
1998 int cpufreq_driver_target(struct cpufreq_policy *policy,
1999 			  unsigned int target_freq,
2000 			  unsigned int relation)
2001 {
2002 	int ret = -EINVAL;
2003 
2004 	down_write(&policy->rwsem);
2005 
2006 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2007 
2008 	up_write(&policy->rwsem);
2009 
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2013 
2014 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2015 {
2016 	return NULL;
2017 }
2018 
2019 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2020 {
2021 	int ret;
2022 
2023 	/* Don't start any governor operations if we are entering suspend */
2024 	if (cpufreq_suspended)
2025 		return 0;
2026 	/*
2027 	 * Governor might not be initiated here if ACPI _PPC changed
2028 	 * notification happened, so check it.
2029 	 */
2030 	if (!policy->governor)
2031 		return -EINVAL;
2032 
2033 	/* Platform doesn't want dynamic frequency switching ? */
2034 	if (policy->governor->dynamic_switching &&
2035 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2036 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2037 
2038 		if (gov) {
2039 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2040 				policy->governor->name, gov->name);
2041 			policy->governor = gov;
2042 		} else {
2043 			return -EINVAL;
2044 		}
2045 	}
2046 
2047 	if (!try_module_get(policy->governor->owner))
2048 		return -EINVAL;
2049 
2050 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2051 
2052 	if (policy->governor->init) {
2053 		ret = policy->governor->init(policy);
2054 		if (ret) {
2055 			module_put(policy->governor->owner);
2056 			return ret;
2057 		}
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2064 {
2065 	if (cpufreq_suspended || !policy->governor)
2066 		return;
2067 
2068 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2069 
2070 	if (policy->governor->exit)
2071 		policy->governor->exit(policy);
2072 
2073 	module_put(policy->governor->owner);
2074 }
2075 
2076 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2077 {
2078 	int ret;
2079 
2080 	if (cpufreq_suspended)
2081 		return 0;
2082 
2083 	if (!policy->governor)
2084 		return -EINVAL;
2085 
2086 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2087 
2088 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2089 		cpufreq_update_current_freq(policy);
2090 
2091 	if (policy->governor->start) {
2092 		ret = policy->governor->start(policy);
2093 		if (ret)
2094 			return ret;
2095 	}
2096 
2097 	if (policy->governor->limits)
2098 		policy->governor->limits(policy);
2099 
2100 	return 0;
2101 }
2102 
2103 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2104 {
2105 	if (cpufreq_suspended || !policy->governor)
2106 		return;
2107 
2108 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2109 
2110 	if (policy->governor->stop)
2111 		policy->governor->stop(policy);
2112 }
2113 
2114 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2115 {
2116 	if (cpufreq_suspended || !policy->governor)
2117 		return;
2118 
2119 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2120 
2121 	if (policy->governor->limits)
2122 		policy->governor->limits(policy);
2123 }
2124 
2125 int cpufreq_register_governor(struct cpufreq_governor *governor)
2126 {
2127 	int err;
2128 
2129 	if (!governor)
2130 		return -EINVAL;
2131 
2132 	if (cpufreq_disabled())
2133 		return -ENODEV;
2134 
2135 	mutex_lock(&cpufreq_governor_mutex);
2136 
2137 	err = -EBUSY;
2138 	if (!find_governor(governor->name)) {
2139 		err = 0;
2140 		list_add(&governor->governor_list, &cpufreq_governor_list);
2141 	}
2142 
2143 	mutex_unlock(&cpufreq_governor_mutex);
2144 	return err;
2145 }
2146 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2147 
2148 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2149 {
2150 	struct cpufreq_policy *policy;
2151 	unsigned long flags;
2152 
2153 	if (!governor)
2154 		return;
2155 
2156 	if (cpufreq_disabled())
2157 		return;
2158 
2159 	/* clear last_governor for all inactive policies */
2160 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2161 	for_each_inactive_policy(policy) {
2162 		if (!strcmp(policy->last_governor, governor->name)) {
2163 			policy->governor = NULL;
2164 			strcpy(policy->last_governor, "\0");
2165 		}
2166 	}
2167 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2168 
2169 	mutex_lock(&cpufreq_governor_mutex);
2170 	list_del(&governor->governor_list);
2171 	mutex_unlock(&cpufreq_governor_mutex);
2172 }
2173 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2174 
2175 
2176 /*********************************************************************
2177  *                          POLICY INTERFACE                         *
2178  *********************************************************************/
2179 
2180 /**
2181  * cpufreq_get_policy - get the current cpufreq_policy
2182  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2183  *	is written
2184  *
2185  * Reads the current cpufreq policy.
2186  */
2187 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2188 {
2189 	struct cpufreq_policy *cpu_policy;
2190 	if (!policy)
2191 		return -EINVAL;
2192 
2193 	cpu_policy = cpufreq_cpu_get(cpu);
2194 	if (!cpu_policy)
2195 		return -EINVAL;
2196 
2197 	memcpy(policy, cpu_policy, sizeof(*policy));
2198 
2199 	cpufreq_cpu_put(cpu_policy);
2200 	return 0;
2201 }
2202 EXPORT_SYMBOL(cpufreq_get_policy);
2203 
2204 /*
2205  * policy : current policy.
2206  * new_policy: policy to be set.
2207  */
2208 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2209 				struct cpufreq_policy *new_policy)
2210 {
2211 	struct cpufreq_governor *old_gov;
2212 	int ret;
2213 
2214 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2215 		 new_policy->cpu, new_policy->min, new_policy->max);
2216 
2217 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2218 
2219 	/*
2220 	* This check works well when we store new min/max freq attributes,
2221 	* because new_policy is a copy of policy with one field updated.
2222 	*/
2223 	if (new_policy->min > new_policy->max)
2224 		return -EINVAL;
2225 
2226 	/* verify the cpu speed can be set within this limit */
2227 	ret = cpufreq_driver->verify(new_policy);
2228 	if (ret)
2229 		return ret;
2230 
2231 	/* adjust if necessary - all reasons */
2232 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2233 			CPUFREQ_ADJUST, new_policy);
2234 
2235 	/*
2236 	 * verify the cpu speed can be set within this limit, which might be
2237 	 * different to the first one
2238 	 */
2239 	ret = cpufreq_driver->verify(new_policy);
2240 	if (ret)
2241 		return ret;
2242 
2243 	/* notification of the new policy */
2244 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2245 			CPUFREQ_NOTIFY, new_policy);
2246 
2247 	policy->min = new_policy->min;
2248 	policy->max = new_policy->max;
2249 
2250 	policy->cached_target_freq = UINT_MAX;
2251 
2252 	pr_debug("new min and max freqs are %u - %u kHz\n",
2253 		 policy->min, policy->max);
2254 
2255 	if (cpufreq_driver->setpolicy) {
2256 		policy->policy = new_policy->policy;
2257 		pr_debug("setting range\n");
2258 		return cpufreq_driver->setpolicy(new_policy);
2259 	}
2260 
2261 	if (new_policy->governor == policy->governor) {
2262 		pr_debug("cpufreq: governor limits update\n");
2263 		cpufreq_governor_limits(policy);
2264 		return 0;
2265 	}
2266 
2267 	pr_debug("governor switch\n");
2268 
2269 	/* save old, working values */
2270 	old_gov = policy->governor;
2271 	/* end old governor */
2272 	if (old_gov) {
2273 		cpufreq_stop_governor(policy);
2274 		cpufreq_exit_governor(policy);
2275 	}
2276 
2277 	/* start new governor */
2278 	policy->governor = new_policy->governor;
2279 	ret = cpufreq_init_governor(policy);
2280 	if (!ret) {
2281 		ret = cpufreq_start_governor(policy);
2282 		if (!ret) {
2283 			pr_debug("cpufreq: governor change\n");
2284 			return 0;
2285 		}
2286 		cpufreq_exit_governor(policy);
2287 	}
2288 
2289 	/* new governor failed, so re-start old one */
2290 	pr_debug("starting governor %s failed\n", policy->governor->name);
2291 	if (old_gov) {
2292 		policy->governor = old_gov;
2293 		if (cpufreq_init_governor(policy))
2294 			policy->governor = NULL;
2295 		else
2296 			cpufreq_start_governor(policy);
2297 	}
2298 
2299 	return ret;
2300 }
2301 
2302 /**
2303  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2304  *	@cpu: CPU which shall be re-evaluated
2305  *
2306  *	Useful for policy notifiers which have different necessities
2307  *	at different times.
2308  */
2309 void cpufreq_update_policy(unsigned int cpu)
2310 {
2311 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2312 	struct cpufreq_policy new_policy;
2313 
2314 	if (!policy)
2315 		return;
2316 
2317 	down_write(&policy->rwsem);
2318 
2319 	if (policy_is_inactive(policy))
2320 		goto unlock;
2321 
2322 	pr_debug("updating policy for CPU %u\n", cpu);
2323 	memcpy(&new_policy, policy, sizeof(*policy));
2324 	new_policy.min = policy->user_policy.min;
2325 	new_policy.max = policy->user_policy.max;
2326 
2327 	/*
2328 	 * BIOS might change freq behind our back
2329 	 * -> ask driver for current freq and notify governors about a change
2330 	 */
2331 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2332 		if (cpufreq_suspended)
2333 			goto unlock;
2334 
2335 		new_policy.cur = cpufreq_update_current_freq(policy);
2336 		if (WARN_ON(!new_policy.cur))
2337 			goto unlock;
2338 	}
2339 
2340 	cpufreq_set_policy(policy, &new_policy);
2341 
2342 unlock:
2343 	up_write(&policy->rwsem);
2344 
2345 	cpufreq_cpu_put(policy);
2346 }
2347 EXPORT_SYMBOL(cpufreq_update_policy);
2348 
2349 /*********************************************************************
2350  *               BOOST						     *
2351  *********************************************************************/
2352 static int cpufreq_boost_set_sw(int state)
2353 {
2354 	struct cpufreq_policy *policy;
2355 	int ret = -EINVAL;
2356 
2357 	for_each_active_policy(policy) {
2358 		if (!policy->freq_table)
2359 			continue;
2360 
2361 		ret = cpufreq_frequency_table_cpuinfo(policy,
2362 						      policy->freq_table);
2363 		if (ret) {
2364 			pr_err("%s: Policy frequency update failed\n",
2365 			       __func__);
2366 			break;
2367 		}
2368 
2369 		down_write(&policy->rwsem);
2370 		policy->user_policy.max = policy->max;
2371 		cpufreq_governor_limits(policy);
2372 		up_write(&policy->rwsem);
2373 	}
2374 
2375 	return ret;
2376 }
2377 
2378 int cpufreq_boost_trigger_state(int state)
2379 {
2380 	unsigned long flags;
2381 	int ret = 0;
2382 
2383 	if (cpufreq_driver->boost_enabled == state)
2384 		return 0;
2385 
2386 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2387 	cpufreq_driver->boost_enabled = state;
2388 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2389 
2390 	ret = cpufreq_driver->set_boost(state);
2391 	if (ret) {
2392 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2393 		cpufreq_driver->boost_enabled = !state;
2394 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2395 
2396 		pr_err("%s: Cannot %s BOOST\n",
2397 		       __func__, state ? "enable" : "disable");
2398 	}
2399 
2400 	return ret;
2401 }
2402 
2403 static bool cpufreq_boost_supported(void)
2404 {
2405 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2406 }
2407 
2408 static int create_boost_sysfs_file(void)
2409 {
2410 	int ret;
2411 
2412 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2413 	if (ret)
2414 		pr_err("%s: cannot register global BOOST sysfs file\n",
2415 		       __func__);
2416 
2417 	return ret;
2418 }
2419 
2420 static void remove_boost_sysfs_file(void)
2421 {
2422 	if (cpufreq_boost_supported())
2423 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2424 }
2425 
2426 int cpufreq_enable_boost_support(void)
2427 {
2428 	if (!cpufreq_driver)
2429 		return -EINVAL;
2430 
2431 	if (cpufreq_boost_supported())
2432 		return 0;
2433 
2434 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2435 
2436 	/* This will get removed on driver unregister */
2437 	return create_boost_sysfs_file();
2438 }
2439 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2440 
2441 int cpufreq_boost_enabled(void)
2442 {
2443 	return cpufreq_driver->boost_enabled;
2444 }
2445 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2446 
2447 /*********************************************************************
2448  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2449  *********************************************************************/
2450 static enum cpuhp_state hp_online;
2451 
2452 static int cpuhp_cpufreq_online(unsigned int cpu)
2453 {
2454 	cpufreq_online(cpu);
2455 
2456 	return 0;
2457 }
2458 
2459 static int cpuhp_cpufreq_offline(unsigned int cpu)
2460 {
2461 	cpufreq_offline(cpu);
2462 
2463 	return 0;
2464 }
2465 
2466 /**
2467  * cpufreq_register_driver - register a CPU Frequency driver
2468  * @driver_data: A struct cpufreq_driver containing the values#
2469  * submitted by the CPU Frequency driver.
2470  *
2471  * Registers a CPU Frequency driver to this core code. This code
2472  * returns zero on success, -EEXIST when another driver got here first
2473  * (and isn't unregistered in the meantime).
2474  *
2475  */
2476 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2477 {
2478 	unsigned long flags;
2479 	int ret;
2480 
2481 	if (cpufreq_disabled())
2482 		return -ENODEV;
2483 
2484 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2485 	    !(driver_data->setpolicy || driver_data->target_index ||
2486 		    driver_data->target) ||
2487 	     (driver_data->setpolicy && (driver_data->target_index ||
2488 		    driver_data->target)) ||
2489 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2490 		return -EINVAL;
2491 
2492 	pr_debug("trying to register driver %s\n", driver_data->name);
2493 
2494 	/* Protect against concurrent CPU online/offline. */
2495 	cpus_read_lock();
2496 
2497 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2498 	if (cpufreq_driver) {
2499 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2500 		ret = -EEXIST;
2501 		goto out;
2502 	}
2503 	cpufreq_driver = driver_data;
2504 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2505 
2506 	if (driver_data->setpolicy)
2507 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2508 
2509 	if (cpufreq_boost_supported()) {
2510 		ret = create_boost_sysfs_file();
2511 		if (ret)
2512 			goto err_null_driver;
2513 	}
2514 
2515 	ret = subsys_interface_register(&cpufreq_interface);
2516 	if (ret)
2517 		goto err_boost_unreg;
2518 
2519 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2520 	    list_empty(&cpufreq_policy_list)) {
2521 		/* if all ->init() calls failed, unregister */
2522 		ret = -ENODEV;
2523 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2524 			 driver_data->name);
2525 		goto err_if_unreg;
2526 	}
2527 
2528 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2529 						   "cpufreq:online",
2530 						   cpuhp_cpufreq_online,
2531 						   cpuhp_cpufreq_offline);
2532 	if (ret < 0)
2533 		goto err_if_unreg;
2534 	hp_online = ret;
2535 	ret = 0;
2536 
2537 	pr_debug("driver %s up and running\n", driver_data->name);
2538 	goto out;
2539 
2540 err_if_unreg:
2541 	subsys_interface_unregister(&cpufreq_interface);
2542 err_boost_unreg:
2543 	remove_boost_sysfs_file();
2544 err_null_driver:
2545 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2546 	cpufreq_driver = NULL;
2547 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2548 out:
2549 	cpus_read_unlock();
2550 	return ret;
2551 }
2552 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2553 
2554 /**
2555  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2556  *
2557  * Unregister the current CPUFreq driver. Only call this if you have
2558  * the right to do so, i.e. if you have succeeded in initialising before!
2559  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2560  * currently not initialised.
2561  */
2562 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2563 {
2564 	unsigned long flags;
2565 
2566 	if (!cpufreq_driver || (driver != cpufreq_driver))
2567 		return -EINVAL;
2568 
2569 	pr_debug("unregistering driver %s\n", driver->name);
2570 
2571 	/* Protect against concurrent cpu hotplug */
2572 	cpus_read_lock();
2573 	subsys_interface_unregister(&cpufreq_interface);
2574 	remove_boost_sysfs_file();
2575 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2576 
2577 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2578 
2579 	cpufreq_driver = NULL;
2580 
2581 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2582 	cpus_read_unlock();
2583 
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2587 
2588 /*
2589  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2590  * or mutexes when secondary CPUs are halted.
2591  */
2592 static struct syscore_ops cpufreq_syscore_ops = {
2593 	.shutdown = cpufreq_suspend,
2594 };
2595 
2596 struct kobject *cpufreq_global_kobject;
2597 EXPORT_SYMBOL(cpufreq_global_kobject);
2598 
2599 static int __init cpufreq_core_init(void)
2600 {
2601 	if (cpufreq_disabled())
2602 		return -ENODEV;
2603 
2604 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2605 	BUG_ON(!cpufreq_global_kobject);
2606 
2607 	register_syscore_ops(&cpufreq_syscore_ops);
2608 
2609 	return 0;
2610 }
2611 module_param(off, int, 0444);
2612 core_initcall(cpufreq_core_init);
2613