1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 /* Macros to iterate over CPU policies */ 42 #define for_each_suitable_policy(__policy, __active) \ 43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 44 if ((__active) == !policy_is_inactive(__policy)) 45 46 #define for_each_active_policy(__policy) \ 47 for_each_suitable_policy(__policy, true) 48 #define for_each_inactive_policy(__policy) \ 49 for_each_suitable_policy(__policy, false) 50 51 #define for_each_policy(__policy) \ 52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 53 54 /* Iterate over governors */ 55 static LIST_HEAD(cpufreq_governor_list); 56 #define for_each_governor(__governor) \ 57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 58 59 /** 60 * The "cpufreq driver" - the arch- or hardware-dependent low 61 * level driver of CPUFreq support, and its spinlock. This lock 62 * also protects the cpufreq_cpu_data array. 63 */ 64 static struct cpufreq_driver *cpufreq_driver; 65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 66 static DEFINE_RWLOCK(cpufreq_driver_lock); 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 78 static int cpufreq_init_governor(struct cpufreq_policy *policy); 79 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 80 static int cpufreq_start_governor(struct cpufreq_policy *policy); 81 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 82 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 83 84 /** 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 static struct srcu_notifier_head cpufreq_transition_notifier_list; 93 94 static bool init_cpufreq_transition_notifier_list_called; 95 static int __init init_cpufreq_transition_notifier_list(void) 96 { 97 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 98 init_cpufreq_transition_notifier_list_called = true; 99 return 0; 100 } 101 pure_initcall(init_cpufreq_transition_notifier_list); 102 103 static int off __read_mostly; 104 static int cpufreq_disabled(void) 105 { 106 return off; 107 } 108 void disable_cpufreq(void) 109 { 110 off = 1; 111 } 112 static DEFINE_MUTEX(cpufreq_governor_mutex); 113 114 bool have_governor_per_policy(void) 115 { 116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 117 } 118 EXPORT_SYMBOL_GPL(have_governor_per_policy); 119 120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 121 { 122 if (have_governor_per_policy()) 123 return &policy->kobj; 124 else 125 return cpufreq_global_kobject; 126 } 127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 128 129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 130 { 131 u64 idle_time; 132 u64 cur_wall_time; 133 u64 busy_time; 134 135 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 136 137 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 138 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 143 144 idle_time = cur_wall_time - busy_time; 145 if (wall) 146 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 147 148 return div_u64(idle_time, NSEC_PER_USEC); 149 } 150 151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 152 { 153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 154 155 if (idle_time == -1ULL) 156 return get_cpu_idle_time_jiffy(cpu, wall); 157 else if (!io_busy) 158 idle_time += get_cpu_iowait_time_us(cpu, wall); 159 160 return idle_time; 161 } 162 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 163 164 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 165 unsigned long max_freq) 166 { 167 } 168 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 169 170 /* 171 * This is a generic cpufreq init() routine which can be used by cpufreq 172 * drivers of SMP systems. It will do following: 173 * - validate & show freq table passed 174 * - set policies transition latency 175 * - policy->cpus with all possible CPUs 176 */ 177 int cpufreq_generic_init(struct cpufreq_policy *policy, 178 struct cpufreq_frequency_table *table, 179 unsigned int transition_latency) 180 { 181 int ret; 182 183 ret = cpufreq_table_validate_and_show(policy, table); 184 if (ret) { 185 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 186 return ret; 187 } 188 189 policy->cpuinfo.transition_latency = transition_latency; 190 191 /* 192 * The driver only supports the SMP configuration where all processors 193 * share the clock and voltage and clock. 194 */ 195 cpumask_setall(policy->cpus); 196 197 return 0; 198 } 199 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 200 201 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 202 { 203 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 204 205 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 206 } 207 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 208 209 unsigned int cpufreq_generic_get(unsigned int cpu) 210 { 211 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 212 213 if (!policy || IS_ERR(policy->clk)) { 214 pr_err("%s: No %s associated to cpu: %d\n", 215 __func__, policy ? "clk" : "policy", cpu); 216 return 0; 217 } 218 219 return clk_get_rate(policy->clk) / 1000; 220 } 221 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 222 223 /** 224 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 225 * 226 * @cpu: cpu to find policy for. 227 * 228 * This returns policy for 'cpu', returns NULL if it doesn't exist. 229 * It also increments the kobject reference count to mark it busy and so would 230 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 231 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 232 * freed as that depends on the kobj count. 233 * 234 * Return: A valid policy on success, otherwise NULL on failure. 235 */ 236 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 237 { 238 struct cpufreq_policy *policy = NULL; 239 unsigned long flags; 240 241 if (WARN_ON(cpu >= nr_cpu_ids)) 242 return NULL; 243 244 /* get the cpufreq driver */ 245 read_lock_irqsave(&cpufreq_driver_lock, flags); 246 247 if (cpufreq_driver) { 248 /* get the CPU */ 249 policy = cpufreq_cpu_get_raw(cpu); 250 if (policy) 251 kobject_get(&policy->kobj); 252 } 253 254 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 255 256 return policy; 257 } 258 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 259 260 /** 261 * cpufreq_cpu_put: Decrements the usage count of a policy 262 * 263 * @policy: policy earlier returned by cpufreq_cpu_get(). 264 * 265 * This decrements the kobject reference count incremented earlier by calling 266 * cpufreq_cpu_get(). 267 */ 268 void cpufreq_cpu_put(struct cpufreq_policy *policy) 269 { 270 kobject_put(&policy->kobj); 271 } 272 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 273 274 /********************************************************************* 275 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 276 *********************************************************************/ 277 278 /** 279 * adjust_jiffies - adjust the system "loops_per_jiffy" 280 * 281 * This function alters the system "loops_per_jiffy" for the clock 282 * speed change. Note that loops_per_jiffy cannot be updated on SMP 283 * systems as each CPU might be scaled differently. So, use the arch 284 * per-CPU loops_per_jiffy value wherever possible. 285 */ 286 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 287 { 288 #ifndef CONFIG_SMP 289 static unsigned long l_p_j_ref; 290 static unsigned int l_p_j_ref_freq; 291 292 if (ci->flags & CPUFREQ_CONST_LOOPS) 293 return; 294 295 if (!l_p_j_ref_freq) { 296 l_p_j_ref = loops_per_jiffy; 297 l_p_j_ref_freq = ci->old; 298 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 299 l_p_j_ref, l_p_j_ref_freq); 300 } 301 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 302 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 303 ci->new); 304 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 305 loops_per_jiffy, ci->new); 306 } 307 #endif 308 } 309 310 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 311 struct cpufreq_freqs *freqs, unsigned int state) 312 { 313 BUG_ON(irqs_disabled()); 314 315 if (cpufreq_disabled()) 316 return; 317 318 freqs->flags = cpufreq_driver->flags; 319 pr_debug("notification %u of frequency transition to %u kHz\n", 320 state, freqs->new); 321 322 switch (state) { 323 324 case CPUFREQ_PRECHANGE: 325 /* detect if the driver reported a value as "old frequency" 326 * which is not equal to what the cpufreq core thinks is 327 * "old frequency". 328 */ 329 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 330 if ((policy) && (policy->cpu == freqs->cpu) && 331 (policy->cur) && (policy->cur != freqs->old)) { 332 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 333 freqs->old, policy->cur); 334 freqs->old = policy->cur; 335 } 336 } 337 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 338 CPUFREQ_PRECHANGE, freqs); 339 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 340 break; 341 342 case CPUFREQ_POSTCHANGE: 343 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 344 pr_debug("FREQ: %lu - CPU: %lu\n", 345 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 346 trace_cpu_frequency(freqs->new, freqs->cpu); 347 cpufreq_stats_record_transition(policy, freqs->new); 348 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 349 CPUFREQ_POSTCHANGE, freqs); 350 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 351 policy->cur = freqs->new; 352 break; 353 } 354 } 355 356 /** 357 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 358 * on frequency transition. 359 * 360 * This function calls the transition notifiers and the "adjust_jiffies" 361 * function. It is called twice on all CPU frequency changes that have 362 * external effects. 363 */ 364 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 365 struct cpufreq_freqs *freqs, unsigned int state) 366 { 367 for_each_cpu(freqs->cpu, policy->cpus) 368 __cpufreq_notify_transition(policy, freqs, state); 369 } 370 371 /* Do post notifications when there are chances that transition has failed */ 372 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 373 struct cpufreq_freqs *freqs, int transition_failed) 374 { 375 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 376 if (!transition_failed) 377 return; 378 379 swap(freqs->old, freqs->new); 380 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 381 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 382 } 383 384 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 385 struct cpufreq_freqs *freqs) 386 { 387 388 /* 389 * Catch double invocations of _begin() which lead to self-deadlock. 390 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 391 * doesn't invoke _begin() on their behalf, and hence the chances of 392 * double invocations are very low. Moreover, there are scenarios 393 * where these checks can emit false-positive warnings in these 394 * drivers; so we avoid that by skipping them altogether. 395 */ 396 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 397 && current == policy->transition_task); 398 399 wait: 400 wait_event(policy->transition_wait, !policy->transition_ongoing); 401 402 spin_lock(&policy->transition_lock); 403 404 if (unlikely(policy->transition_ongoing)) { 405 spin_unlock(&policy->transition_lock); 406 goto wait; 407 } 408 409 policy->transition_ongoing = true; 410 policy->transition_task = current; 411 412 spin_unlock(&policy->transition_lock); 413 414 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 415 } 416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 417 418 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 419 struct cpufreq_freqs *freqs, int transition_failed) 420 { 421 if (unlikely(WARN_ON(!policy->transition_ongoing))) 422 return; 423 424 cpufreq_notify_post_transition(policy, freqs, transition_failed); 425 426 policy->transition_ongoing = false; 427 policy->transition_task = NULL; 428 429 wake_up(&policy->transition_wait); 430 } 431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 432 433 /* 434 * Fast frequency switching status count. Positive means "enabled", negative 435 * means "disabled" and 0 means "not decided yet". 436 */ 437 static int cpufreq_fast_switch_count; 438 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 439 440 static void cpufreq_list_transition_notifiers(void) 441 { 442 struct notifier_block *nb; 443 444 pr_info("Registered transition notifiers:\n"); 445 446 mutex_lock(&cpufreq_transition_notifier_list.mutex); 447 448 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 449 pr_info("%pF\n", nb->notifier_call); 450 451 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 452 } 453 454 /** 455 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 456 * @policy: cpufreq policy to enable fast frequency switching for. 457 * 458 * Try to enable fast frequency switching for @policy. 459 * 460 * The attempt will fail if there is at least one transition notifier registered 461 * at this point, as fast frequency switching is quite fundamentally at odds 462 * with transition notifiers. Thus if successful, it will make registration of 463 * transition notifiers fail going forward. 464 */ 465 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 466 { 467 lockdep_assert_held(&policy->rwsem); 468 469 if (!policy->fast_switch_possible) 470 return; 471 472 mutex_lock(&cpufreq_fast_switch_lock); 473 if (cpufreq_fast_switch_count >= 0) { 474 cpufreq_fast_switch_count++; 475 policy->fast_switch_enabled = true; 476 } else { 477 pr_warn("CPU%u: Fast frequency switching not enabled\n", 478 policy->cpu); 479 cpufreq_list_transition_notifiers(); 480 } 481 mutex_unlock(&cpufreq_fast_switch_lock); 482 } 483 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 484 485 /** 486 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 487 * @policy: cpufreq policy to disable fast frequency switching for. 488 */ 489 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 490 { 491 mutex_lock(&cpufreq_fast_switch_lock); 492 if (policy->fast_switch_enabled) { 493 policy->fast_switch_enabled = false; 494 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 495 cpufreq_fast_switch_count--; 496 } 497 mutex_unlock(&cpufreq_fast_switch_lock); 498 } 499 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 500 501 /** 502 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 503 * one. 504 * @target_freq: target frequency to resolve. 505 * 506 * The target to driver frequency mapping is cached in the policy. 507 * 508 * Return: Lowest driver-supported frequency greater than or equal to the 509 * given target_freq, subject to policy (min/max) and driver limitations. 510 */ 511 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 512 unsigned int target_freq) 513 { 514 target_freq = clamp_val(target_freq, policy->min, policy->max); 515 policy->cached_target_freq = target_freq; 516 517 if (cpufreq_driver->target_index) { 518 int idx; 519 520 idx = cpufreq_frequency_table_target(policy, target_freq, 521 CPUFREQ_RELATION_L); 522 policy->cached_resolved_idx = idx; 523 return policy->freq_table[idx].frequency; 524 } 525 526 if (cpufreq_driver->resolve_freq) 527 return cpufreq_driver->resolve_freq(policy, target_freq); 528 529 return target_freq; 530 } 531 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 532 533 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 534 { 535 unsigned int latency; 536 537 if (policy->transition_delay_us) 538 return policy->transition_delay_us; 539 540 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 541 if (latency) { 542 /* 543 * For platforms that can change the frequency very fast (< 10 544 * us), the above formula gives a decent transition delay. But 545 * for platforms where transition_latency is in milliseconds, it 546 * ends up giving unrealistic values. 547 * 548 * Cap the default transition delay to 10 ms, which seems to be 549 * a reasonable amount of time after which we should reevaluate 550 * the frequency. 551 */ 552 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 553 } 554 555 return LATENCY_MULTIPLIER; 556 } 557 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 558 559 /********************************************************************* 560 * SYSFS INTERFACE * 561 *********************************************************************/ 562 static ssize_t show_boost(struct kobject *kobj, 563 struct attribute *attr, char *buf) 564 { 565 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 566 } 567 568 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 569 const char *buf, size_t count) 570 { 571 int ret, enable; 572 573 ret = sscanf(buf, "%d", &enable); 574 if (ret != 1 || enable < 0 || enable > 1) 575 return -EINVAL; 576 577 if (cpufreq_boost_trigger_state(enable)) { 578 pr_err("%s: Cannot %s BOOST!\n", 579 __func__, enable ? "enable" : "disable"); 580 return -EINVAL; 581 } 582 583 pr_debug("%s: cpufreq BOOST %s\n", 584 __func__, enable ? "enabled" : "disabled"); 585 586 return count; 587 } 588 define_one_global_rw(boost); 589 590 static struct cpufreq_governor *find_governor(const char *str_governor) 591 { 592 struct cpufreq_governor *t; 593 594 for_each_governor(t) 595 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 596 return t; 597 598 return NULL; 599 } 600 601 /** 602 * cpufreq_parse_governor - parse a governor string 603 */ 604 static int cpufreq_parse_governor(char *str_governor, 605 struct cpufreq_policy *policy) 606 { 607 if (cpufreq_driver->setpolicy) { 608 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 609 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 610 return 0; 611 } 612 613 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 614 policy->policy = CPUFREQ_POLICY_POWERSAVE; 615 return 0; 616 } 617 } else { 618 struct cpufreq_governor *t; 619 620 mutex_lock(&cpufreq_governor_mutex); 621 622 t = find_governor(str_governor); 623 if (!t) { 624 int ret; 625 626 mutex_unlock(&cpufreq_governor_mutex); 627 628 ret = request_module("cpufreq_%s", str_governor); 629 if (ret) 630 return -EINVAL; 631 632 mutex_lock(&cpufreq_governor_mutex); 633 634 t = find_governor(str_governor); 635 } 636 if (t && !try_module_get(t->owner)) 637 t = NULL; 638 639 mutex_unlock(&cpufreq_governor_mutex); 640 641 if (t) { 642 policy->governor = t; 643 return 0; 644 } 645 } 646 647 return -EINVAL; 648 } 649 650 /** 651 * cpufreq_per_cpu_attr_read() / show_##file_name() - 652 * print out cpufreq information 653 * 654 * Write out information from cpufreq_driver->policy[cpu]; object must be 655 * "unsigned int". 656 */ 657 658 #define show_one(file_name, object) \ 659 static ssize_t show_##file_name \ 660 (struct cpufreq_policy *policy, char *buf) \ 661 { \ 662 return sprintf(buf, "%u\n", policy->object); \ 663 } 664 665 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 666 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 667 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 668 show_one(scaling_min_freq, min); 669 show_one(scaling_max_freq, max); 670 671 __weak unsigned int arch_freq_get_on_cpu(int cpu) 672 { 673 return 0; 674 } 675 676 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 677 { 678 ssize_t ret; 679 unsigned int freq; 680 681 freq = arch_freq_get_on_cpu(policy->cpu); 682 if (freq) 683 ret = sprintf(buf, "%u\n", freq); 684 else if (cpufreq_driver && cpufreq_driver->setpolicy && 685 cpufreq_driver->get) 686 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 687 else 688 ret = sprintf(buf, "%u\n", policy->cur); 689 return ret; 690 } 691 692 static int cpufreq_set_policy(struct cpufreq_policy *policy, 693 struct cpufreq_policy *new_policy); 694 695 /** 696 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 697 */ 698 #define store_one(file_name, object) \ 699 static ssize_t store_##file_name \ 700 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 701 { \ 702 int ret, temp; \ 703 struct cpufreq_policy new_policy; \ 704 \ 705 memcpy(&new_policy, policy, sizeof(*policy)); \ 706 \ 707 ret = sscanf(buf, "%u", &new_policy.object); \ 708 if (ret != 1) \ 709 return -EINVAL; \ 710 \ 711 temp = new_policy.object; \ 712 ret = cpufreq_set_policy(policy, &new_policy); \ 713 if (!ret) \ 714 policy->user_policy.object = temp; \ 715 \ 716 return ret ? ret : count; \ 717 } 718 719 store_one(scaling_min_freq, min); 720 store_one(scaling_max_freq, max); 721 722 /** 723 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 724 */ 725 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 726 char *buf) 727 { 728 unsigned int cur_freq = __cpufreq_get(policy); 729 730 if (cur_freq) 731 return sprintf(buf, "%u\n", cur_freq); 732 733 return sprintf(buf, "<unknown>\n"); 734 } 735 736 /** 737 * show_scaling_governor - show the current policy for the specified CPU 738 */ 739 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 740 { 741 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 742 return sprintf(buf, "powersave\n"); 743 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 744 return sprintf(buf, "performance\n"); 745 else if (policy->governor) 746 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 747 policy->governor->name); 748 return -EINVAL; 749 } 750 751 /** 752 * store_scaling_governor - store policy for the specified CPU 753 */ 754 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 755 const char *buf, size_t count) 756 { 757 int ret; 758 char str_governor[16]; 759 struct cpufreq_policy new_policy; 760 761 memcpy(&new_policy, policy, sizeof(*policy)); 762 763 ret = sscanf(buf, "%15s", str_governor); 764 if (ret != 1) 765 return -EINVAL; 766 767 if (cpufreq_parse_governor(str_governor, &new_policy)) 768 return -EINVAL; 769 770 ret = cpufreq_set_policy(policy, &new_policy); 771 772 if (new_policy.governor) 773 module_put(new_policy.governor->owner); 774 775 return ret ? ret : count; 776 } 777 778 /** 779 * show_scaling_driver - show the cpufreq driver currently loaded 780 */ 781 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 782 { 783 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 784 } 785 786 /** 787 * show_scaling_available_governors - show the available CPUfreq governors 788 */ 789 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 790 char *buf) 791 { 792 ssize_t i = 0; 793 struct cpufreq_governor *t; 794 795 if (!has_target()) { 796 i += sprintf(buf, "performance powersave"); 797 goto out; 798 } 799 800 for_each_governor(t) { 801 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 802 - (CPUFREQ_NAME_LEN + 2))) 803 goto out; 804 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 805 } 806 out: 807 i += sprintf(&buf[i], "\n"); 808 return i; 809 } 810 811 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 812 { 813 ssize_t i = 0; 814 unsigned int cpu; 815 816 for_each_cpu(cpu, mask) { 817 if (i) 818 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 819 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 820 if (i >= (PAGE_SIZE - 5)) 821 break; 822 } 823 i += sprintf(&buf[i], "\n"); 824 return i; 825 } 826 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 827 828 /** 829 * show_related_cpus - show the CPUs affected by each transition even if 830 * hw coordination is in use 831 */ 832 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 833 { 834 return cpufreq_show_cpus(policy->related_cpus, buf); 835 } 836 837 /** 838 * show_affected_cpus - show the CPUs affected by each transition 839 */ 840 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 841 { 842 return cpufreq_show_cpus(policy->cpus, buf); 843 } 844 845 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 846 const char *buf, size_t count) 847 { 848 unsigned int freq = 0; 849 unsigned int ret; 850 851 if (!policy->governor || !policy->governor->store_setspeed) 852 return -EINVAL; 853 854 ret = sscanf(buf, "%u", &freq); 855 if (ret != 1) 856 return -EINVAL; 857 858 policy->governor->store_setspeed(policy, freq); 859 860 return count; 861 } 862 863 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 864 { 865 if (!policy->governor || !policy->governor->show_setspeed) 866 return sprintf(buf, "<unsupported>\n"); 867 868 return policy->governor->show_setspeed(policy, buf); 869 } 870 871 /** 872 * show_bios_limit - show the current cpufreq HW/BIOS limitation 873 */ 874 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 875 { 876 unsigned int limit; 877 int ret; 878 if (cpufreq_driver->bios_limit) { 879 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 880 if (!ret) 881 return sprintf(buf, "%u\n", limit); 882 } 883 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 884 } 885 886 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 887 cpufreq_freq_attr_ro(cpuinfo_min_freq); 888 cpufreq_freq_attr_ro(cpuinfo_max_freq); 889 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 890 cpufreq_freq_attr_ro(scaling_available_governors); 891 cpufreq_freq_attr_ro(scaling_driver); 892 cpufreq_freq_attr_ro(scaling_cur_freq); 893 cpufreq_freq_attr_ro(bios_limit); 894 cpufreq_freq_attr_ro(related_cpus); 895 cpufreq_freq_attr_ro(affected_cpus); 896 cpufreq_freq_attr_rw(scaling_min_freq); 897 cpufreq_freq_attr_rw(scaling_max_freq); 898 cpufreq_freq_attr_rw(scaling_governor); 899 cpufreq_freq_attr_rw(scaling_setspeed); 900 901 static struct attribute *default_attrs[] = { 902 &cpuinfo_min_freq.attr, 903 &cpuinfo_max_freq.attr, 904 &cpuinfo_transition_latency.attr, 905 &scaling_min_freq.attr, 906 &scaling_max_freq.attr, 907 &affected_cpus.attr, 908 &related_cpus.attr, 909 &scaling_governor.attr, 910 &scaling_driver.attr, 911 &scaling_available_governors.attr, 912 &scaling_setspeed.attr, 913 NULL 914 }; 915 916 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 917 #define to_attr(a) container_of(a, struct freq_attr, attr) 918 919 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 920 { 921 struct cpufreq_policy *policy = to_policy(kobj); 922 struct freq_attr *fattr = to_attr(attr); 923 ssize_t ret; 924 925 down_read(&policy->rwsem); 926 ret = fattr->show(policy, buf); 927 up_read(&policy->rwsem); 928 929 return ret; 930 } 931 932 static ssize_t store(struct kobject *kobj, struct attribute *attr, 933 const char *buf, size_t count) 934 { 935 struct cpufreq_policy *policy = to_policy(kobj); 936 struct freq_attr *fattr = to_attr(attr); 937 ssize_t ret = -EINVAL; 938 939 cpus_read_lock(); 940 941 if (cpu_online(policy->cpu)) { 942 down_write(&policy->rwsem); 943 ret = fattr->store(policy, buf, count); 944 up_write(&policy->rwsem); 945 } 946 947 cpus_read_unlock(); 948 949 return ret; 950 } 951 952 static void cpufreq_sysfs_release(struct kobject *kobj) 953 { 954 struct cpufreq_policy *policy = to_policy(kobj); 955 pr_debug("last reference is dropped\n"); 956 complete(&policy->kobj_unregister); 957 } 958 959 static const struct sysfs_ops sysfs_ops = { 960 .show = show, 961 .store = store, 962 }; 963 964 static struct kobj_type ktype_cpufreq = { 965 .sysfs_ops = &sysfs_ops, 966 .default_attrs = default_attrs, 967 .release = cpufreq_sysfs_release, 968 }; 969 970 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 971 { 972 struct device *dev = get_cpu_device(cpu); 973 974 if (!dev) 975 return; 976 977 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 978 return; 979 980 dev_dbg(dev, "%s: Adding symlink\n", __func__); 981 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 982 dev_err(dev, "cpufreq symlink creation failed\n"); 983 } 984 985 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 986 struct device *dev) 987 { 988 dev_dbg(dev, "%s: Removing symlink\n", __func__); 989 sysfs_remove_link(&dev->kobj, "cpufreq"); 990 } 991 992 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 993 { 994 struct freq_attr **drv_attr; 995 int ret = 0; 996 997 /* set up files for this cpu device */ 998 drv_attr = cpufreq_driver->attr; 999 while (drv_attr && *drv_attr) { 1000 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1001 if (ret) 1002 return ret; 1003 drv_attr++; 1004 } 1005 if (cpufreq_driver->get) { 1006 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1007 if (ret) 1008 return ret; 1009 } 1010 1011 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1012 if (ret) 1013 return ret; 1014 1015 if (cpufreq_driver->bios_limit) { 1016 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1017 if (ret) 1018 return ret; 1019 } 1020 1021 return 0; 1022 } 1023 1024 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1025 { 1026 return NULL; 1027 } 1028 1029 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1030 { 1031 struct cpufreq_governor *gov = NULL; 1032 struct cpufreq_policy new_policy; 1033 1034 memcpy(&new_policy, policy, sizeof(*policy)); 1035 1036 /* Update governor of new_policy to the governor used before hotplug */ 1037 gov = find_governor(policy->last_governor); 1038 if (gov) { 1039 pr_debug("Restoring governor %s for cpu %d\n", 1040 policy->governor->name, policy->cpu); 1041 } else { 1042 gov = cpufreq_default_governor(); 1043 if (!gov) 1044 return -ENODATA; 1045 } 1046 1047 new_policy.governor = gov; 1048 1049 /* Use the default policy if there is no last_policy. */ 1050 if (cpufreq_driver->setpolicy) { 1051 if (policy->last_policy) 1052 new_policy.policy = policy->last_policy; 1053 else 1054 cpufreq_parse_governor(gov->name, &new_policy); 1055 } 1056 /* set default policy */ 1057 return cpufreq_set_policy(policy, &new_policy); 1058 } 1059 1060 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1061 { 1062 int ret = 0; 1063 1064 /* Has this CPU been taken care of already? */ 1065 if (cpumask_test_cpu(cpu, policy->cpus)) 1066 return 0; 1067 1068 down_write(&policy->rwsem); 1069 if (has_target()) 1070 cpufreq_stop_governor(policy); 1071 1072 cpumask_set_cpu(cpu, policy->cpus); 1073 1074 if (has_target()) { 1075 ret = cpufreq_start_governor(policy); 1076 if (ret) 1077 pr_err("%s: Failed to start governor\n", __func__); 1078 } 1079 up_write(&policy->rwsem); 1080 return ret; 1081 } 1082 1083 static void handle_update(struct work_struct *work) 1084 { 1085 struct cpufreq_policy *policy = 1086 container_of(work, struct cpufreq_policy, update); 1087 unsigned int cpu = policy->cpu; 1088 pr_debug("handle_update for cpu %u called\n", cpu); 1089 cpufreq_update_policy(cpu); 1090 } 1091 1092 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1093 { 1094 struct cpufreq_policy *policy; 1095 int ret; 1096 1097 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1098 if (!policy) 1099 return NULL; 1100 1101 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1102 goto err_free_policy; 1103 1104 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1105 goto err_free_cpumask; 1106 1107 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1108 goto err_free_rcpumask; 1109 1110 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1111 cpufreq_global_kobject, "policy%u", cpu); 1112 if (ret) { 1113 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1114 goto err_free_real_cpus; 1115 } 1116 1117 INIT_LIST_HEAD(&policy->policy_list); 1118 init_rwsem(&policy->rwsem); 1119 spin_lock_init(&policy->transition_lock); 1120 init_waitqueue_head(&policy->transition_wait); 1121 init_completion(&policy->kobj_unregister); 1122 INIT_WORK(&policy->update, handle_update); 1123 1124 policy->cpu = cpu; 1125 return policy; 1126 1127 err_free_real_cpus: 1128 free_cpumask_var(policy->real_cpus); 1129 err_free_rcpumask: 1130 free_cpumask_var(policy->related_cpus); 1131 err_free_cpumask: 1132 free_cpumask_var(policy->cpus); 1133 err_free_policy: 1134 kfree(policy); 1135 1136 return NULL; 1137 } 1138 1139 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1140 { 1141 struct kobject *kobj; 1142 struct completion *cmp; 1143 1144 down_write(&policy->rwsem); 1145 cpufreq_stats_free_table(policy); 1146 kobj = &policy->kobj; 1147 cmp = &policy->kobj_unregister; 1148 up_write(&policy->rwsem); 1149 kobject_put(kobj); 1150 1151 /* 1152 * We need to make sure that the underlying kobj is 1153 * actually not referenced anymore by anybody before we 1154 * proceed with unloading. 1155 */ 1156 pr_debug("waiting for dropping of refcount\n"); 1157 wait_for_completion(cmp); 1158 pr_debug("wait complete\n"); 1159 } 1160 1161 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1162 { 1163 unsigned long flags; 1164 int cpu; 1165 1166 /* Remove policy from list */ 1167 write_lock_irqsave(&cpufreq_driver_lock, flags); 1168 list_del(&policy->policy_list); 1169 1170 for_each_cpu(cpu, policy->related_cpus) 1171 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1172 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1173 1174 cpufreq_policy_put_kobj(policy); 1175 free_cpumask_var(policy->real_cpus); 1176 free_cpumask_var(policy->related_cpus); 1177 free_cpumask_var(policy->cpus); 1178 kfree(policy); 1179 } 1180 1181 static int cpufreq_online(unsigned int cpu) 1182 { 1183 struct cpufreq_policy *policy; 1184 bool new_policy; 1185 unsigned long flags; 1186 unsigned int j; 1187 int ret; 1188 1189 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1190 1191 /* Check if this CPU already has a policy to manage it */ 1192 policy = per_cpu(cpufreq_cpu_data, cpu); 1193 if (policy) { 1194 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1195 if (!policy_is_inactive(policy)) 1196 return cpufreq_add_policy_cpu(policy, cpu); 1197 1198 /* This is the only online CPU for the policy. Start over. */ 1199 new_policy = false; 1200 down_write(&policy->rwsem); 1201 policy->cpu = cpu; 1202 policy->governor = NULL; 1203 up_write(&policy->rwsem); 1204 } else { 1205 new_policy = true; 1206 policy = cpufreq_policy_alloc(cpu); 1207 if (!policy) 1208 return -ENOMEM; 1209 } 1210 1211 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1212 1213 /* call driver. From then on the cpufreq must be able 1214 * to accept all calls to ->verify and ->setpolicy for this CPU 1215 */ 1216 ret = cpufreq_driver->init(policy); 1217 if (ret) { 1218 pr_debug("initialization failed\n"); 1219 goto out_free_policy; 1220 } 1221 1222 down_write(&policy->rwsem); 1223 1224 if (new_policy) { 1225 /* related_cpus should at least include policy->cpus. */ 1226 cpumask_copy(policy->related_cpus, policy->cpus); 1227 } 1228 1229 /* 1230 * affected cpus must always be the one, which are online. We aren't 1231 * managing offline cpus here. 1232 */ 1233 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1234 1235 if (new_policy) { 1236 policy->user_policy.min = policy->min; 1237 policy->user_policy.max = policy->max; 1238 1239 for_each_cpu(j, policy->related_cpus) { 1240 per_cpu(cpufreq_cpu_data, j) = policy; 1241 add_cpu_dev_symlink(policy, j); 1242 } 1243 } else { 1244 policy->min = policy->user_policy.min; 1245 policy->max = policy->user_policy.max; 1246 } 1247 1248 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1249 policy->cur = cpufreq_driver->get(policy->cpu); 1250 if (!policy->cur) { 1251 pr_err("%s: ->get() failed\n", __func__); 1252 goto out_exit_policy; 1253 } 1254 } 1255 1256 /* 1257 * Sometimes boot loaders set CPU frequency to a value outside of 1258 * frequency table present with cpufreq core. In such cases CPU might be 1259 * unstable if it has to run on that frequency for long duration of time 1260 * and so its better to set it to a frequency which is specified in 1261 * freq-table. This also makes cpufreq stats inconsistent as 1262 * cpufreq-stats would fail to register because current frequency of CPU 1263 * isn't found in freq-table. 1264 * 1265 * Because we don't want this change to effect boot process badly, we go 1266 * for the next freq which is >= policy->cur ('cur' must be set by now, 1267 * otherwise we will end up setting freq to lowest of the table as 'cur' 1268 * is initialized to zero). 1269 * 1270 * We are passing target-freq as "policy->cur - 1" otherwise 1271 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1272 * equal to target-freq. 1273 */ 1274 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1275 && has_target()) { 1276 /* Are we running at unknown frequency ? */ 1277 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1278 if (ret == -EINVAL) { 1279 /* Warn user and fix it */ 1280 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1281 __func__, policy->cpu, policy->cur); 1282 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1283 CPUFREQ_RELATION_L); 1284 1285 /* 1286 * Reaching here after boot in a few seconds may not 1287 * mean that system will remain stable at "unknown" 1288 * frequency for longer duration. Hence, a BUG_ON(). 1289 */ 1290 BUG_ON(ret); 1291 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1292 __func__, policy->cpu, policy->cur); 1293 } 1294 } 1295 1296 if (new_policy) { 1297 ret = cpufreq_add_dev_interface(policy); 1298 if (ret) 1299 goto out_exit_policy; 1300 1301 cpufreq_stats_create_table(policy); 1302 1303 write_lock_irqsave(&cpufreq_driver_lock, flags); 1304 list_add(&policy->policy_list, &cpufreq_policy_list); 1305 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1306 } 1307 1308 ret = cpufreq_init_policy(policy); 1309 if (ret) { 1310 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1311 __func__, cpu, ret); 1312 /* cpufreq_policy_free() will notify based on this */ 1313 new_policy = false; 1314 goto out_exit_policy; 1315 } 1316 1317 up_write(&policy->rwsem); 1318 1319 kobject_uevent(&policy->kobj, KOBJ_ADD); 1320 1321 /* Callback for handling stuff after policy is ready */ 1322 if (cpufreq_driver->ready) 1323 cpufreq_driver->ready(policy); 1324 1325 pr_debug("initialization complete\n"); 1326 1327 return 0; 1328 1329 out_exit_policy: 1330 up_write(&policy->rwsem); 1331 1332 if (cpufreq_driver->exit) 1333 cpufreq_driver->exit(policy); 1334 1335 for_each_cpu(j, policy->real_cpus) 1336 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1337 1338 out_free_policy: 1339 cpufreq_policy_free(policy); 1340 return ret; 1341 } 1342 1343 /** 1344 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1345 * @dev: CPU device. 1346 * @sif: Subsystem interface structure pointer (not used) 1347 */ 1348 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1349 { 1350 struct cpufreq_policy *policy; 1351 unsigned cpu = dev->id; 1352 int ret; 1353 1354 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1355 1356 if (cpu_online(cpu)) { 1357 ret = cpufreq_online(cpu); 1358 if (ret) 1359 return ret; 1360 } 1361 1362 /* Create sysfs link on CPU registration */ 1363 policy = per_cpu(cpufreq_cpu_data, cpu); 1364 if (policy) 1365 add_cpu_dev_symlink(policy, cpu); 1366 1367 return 0; 1368 } 1369 1370 static int cpufreq_offline(unsigned int cpu) 1371 { 1372 struct cpufreq_policy *policy; 1373 int ret; 1374 1375 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1376 1377 policy = cpufreq_cpu_get_raw(cpu); 1378 if (!policy) { 1379 pr_debug("%s: No cpu_data found\n", __func__); 1380 return 0; 1381 } 1382 1383 down_write(&policy->rwsem); 1384 if (has_target()) 1385 cpufreq_stop_governor(policy); 1386 1387 cpumask_clear_cpu(cpu, policy->cpus); 1388 1389 if (policy_is_inactive(policy)) { 1390 if (has_target()) 1391 strncpy(policy->last_governor, policy->governor->name, 1392 CPUFREQ_NAME_LEN); 1393 else 1394 policy->last_policy = policy->policy; 1395 } else if (cpu == policy->cpu) { 1396 /* Nominate new CPU */ 1397 policy->cpu = cpumask_any(policy->cpus); 1398 } 1399 1400 /* Start governor again for active policy */ 1401 if (!policy_is_inactive(policy)) { 1402 if (has_target()) { 1403 ret = cpufreq_start_governor(policy); 1404 if (ret) 1405 pr_err("%s: Failed to start governor\n", __func__); 1406 } 1407 1408 goto unlock; 1409 } 1410 1411 if (cpufreq_driver->stop_cpu) 1412 cpufreq_driver->stop_cpu(policy); 1413 1414 if (has_target()) 1415 cpufreq_exit_governor(policy); 1416 1417 /* 1418 * Perform the ->exit() even during light-weight tear-down, 1419 * since this is a core component, and is essential for the 1420 * subsequent light-weight ->init() to succeed. 1421 */ 1422 if (cpufreq_driver->exit) { 1423 cpufreq_driver->exit(policy); 1424 policy->freq_table = NULL; 1425 } 1426 1427 unlock: 1428 up_write(&policy->rwsem); 1429 return 0; 1430 } 1431 1432 /** 1433 * cpufreq_remove_dev - remove a CPU device 1434 * 1435 * Removes the cpufreq interface for a CPU device. 1436 */ 1437 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1438 { 1439 unsigned int cpu = dev->id; 1440 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1441 1442 if (!policy) 1443 return; 1444 1445 if (cpu_online(cpu)) 1446 cpufreq_offline(cpu); 1447 1448 cpumask_clear_cpu(cpu, policy->real_cpus); 1449 remove_cpu_dev_symlink(policy, dev); 1450 1451 if (cpumask_empty(policy->real_cpus)) 1452 cpufreq_policy_free(policy); 1453 } 1454 1455 /** 1456 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1457 * in deep trouble. 1458 * @policy: policy managing CPUs 1459 * @new_freq: CPU frequency the CPU actually runs at 1460 * 1461 * We adjust to current frequency first, and need to clean up later. 1462 * So either call to cpufreq_update_policy() or schedule handle_update()). 1463 */ 1464 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1465 unsigned int new_freq) 1466 { 1467 struct cpufreq_freqs freqs; 1468 1469 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1470 policy->cur, new_freq); 1471 1472 freqs.old = policy->cur; 1473 freqs.new = new_freq; 1474 1475 cpufreq_freq_transition_begin(policy, &freqs); 1476 cpufreq_freq_transition_end(policy, &freqs, 0); 1477 } 1478 1479 /** 1480 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1481 * @cpu: CPU number 1482 * 1483 * This is the last known freq, without actually getting it from the driver. 1484 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1485 */ 1486 unsigned int cpufreq_quick_get(unsigned int cpu) 1487 { 1488 struct cpufreq_policy *policy; 1489 unsigned int ret_freq = 0; 1490 unsigned long flags; 1491 1492 read_lock_irqsave(&cpufreq_driver_lock, flags); 1493 1494 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1495 ret_freq = cpufreq_driver->get(cpu); 1496 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1497 return ret_freq; 1498 } 1499 1500 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1501 1502 policy = cpufreq_cpu_get(cpu); 1503 if (policy) { 1504 ret_freq = policy->cur; 1505 cpufreq_cpu_put(policy); 1506 } 1507 1508 return ret_freq; 1509 } 1510 EXPORT_SYMBOL(cpufreq_quick_get); 1511 1512 /** 1513 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1514 * @cpu: CPU number 1515 * 1516 * Just return the max possible frequency for a given CPU. 1517 */ 1518 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1519 { 1520 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1521 unsigned int ret_freq = 0; 1522 1523 if (policy) { 1524 ret_freq = policy->max; 1525 cpufreq_cpu_put(policy); 1526 } 1527 1528 return ret_freq; 1529 } 1530 EXPORT_SYMBOL(cpufreq_quick_get_max); 1531 1532 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1533 { 1534 unsigned int ret_freq = 0; 1535 1536 if (!cpufreq_driver->get) 1537 return ret_freq; 1538 1539 ret_freq = cpufreq_driver->get(policy->cpu); 1540 1541 /* 1542 * Updating inactive policies is invalid, so avoid doing that. Also 1543 * if fast frequency switching is used with the given policy, the check 1544 * against policy->cur is pointless, so skip it in that case too. 1545 */ 1546 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled) 1547 return ret_freq; 1548 1549 if (ret_freq && policy->cur && 1550 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1551 /* verify no discrepancy between actual and 1552 saved value exists */ 1553 if (unlikely(ret_freq != policy->cur)) { 1554 cpufreq_out_of_sync(policy, ret_freq); 1555 schedule_work(&policy->update); 1556 } 1557 } 1558 1559 return ret_freq; 1560 } 1561 1562 /** 1563 * cpufreq_get - get the current CPU frequency (in kHz) 1564 * @cpu: CPU number 1565 * 1566 * Get the CPU current (static) CPU frequency 1567 */ 1568 unsigned int cpufreq_get(unsigned int cpu) 1569 { 1570 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1571 unsigned int ret_freq = 0; 1572 1573 if (policy) { 1574 down_read(&policy->rwsem); 1575 1576 if (!policy_is_inactive(policy)) 1577 ret_freq = __cpufreq_get(policy); 1578 1579 up_read(&policy->rwsem); 1580 1581 cpufreq_cpu_put(policy); 1582 } 1583 1584 return ret_freq; 1585 } 1586 EXPORT_SYMBOL(cpufreq_get); 1587 1588 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy) 1589 { 1590 unsigned int new_freq; 1591 1592 new_freq = cpufreq_driver->get(policy->cpu); 1593 if (!new_freq) 1594 return 0; 1595 1596 if (!policy->cur) { 1597 pr_debug("cpufreq: Driver did not initialize current freq\n"); 1598 policy->cur = new_freq; 1599 } else if (policy->cur != new_freq && has_target()) { 1600 cpufreq_out_of_sync(policy, new_freq); 1601 } 1602 1603 return new_freq; 1604 } 1605 1606 static struct subsys_interface cpufreq_interface = { 1607 .name = "cpufreq", 1608 .subsys = &cpu_subsys, 1609 .add_dev = cpufreq_add_dev, 1610 .remove_dev = cpufreq_remove_dev, 1611 }; 1612 1613 /* 1614 * In case platform wants some specific frequency to be configured 1615 * during suspend.. 1616 */ 1617 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1618 { 1619 int ret; 1620 1621 if (!policy->suspend_freq) { 1622 pr_debug("%s: suspend_freq not defined\n", __func__); 1623 return 0; 1624 } 1625 1626 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1627 policy->suspend_freq); 1628 1629 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1630 CPUFREQ_RELATION_H); 1631 if (ret) 1632 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1633 __func__, policy->suspend_freq, ret); 1634 1635 return ret; 1636 } 1637 EXPORT_SYMBOL(cpufreq_generic_suspend); 1638 1639 /** 1640 * cpufreq_suspend() - Suspend CPUFreq governors 1641 * 1642 * Called during system wide Suspend/Hibernate cycles for suspending governors 1643 * as some platforms can't change frequency after this point in suspend cycle. 1644 * Because some of the devices (like: i2c, regulators, etc) they use for 1645 * changing frequency are suspended quickly after this point. 1646 */ 1647 void cpufreq_suspend(void) 1648 { 1649 struct cpufreq_policy *policy; 1650 1651 if (!cpufreq_driver) 1652 return; 1653 1654 if (!has_target() && !cpufreq_driver->suspend) 1655 goto suspend; 1656 1657 pr_debug("%s: Suspending Governors\n", __func__); 1658 1659 for_each_active_policy(policy) { 1660 if (has_target()) { 1661 down_write(&policy->rwsem); 1662 cpufreq_stop_governor(policy); 1663 up_write(&policy->rwsem); 1664 } 1665 1666 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1667 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1668 policy); 1669 } 1670 1671 suspend: 1672 cpufreq_suspended = true; 1673 } 1674 1675 /** 1676 * cpufreq_resume() - Resume CPUFreq governors 1677 * 1678 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1679 * are suspended with cpufreq_suspend(). 1680 */ 1681 void cpufreq_resume(void) 1682 { 1683 struct cpufreq_policy *policy; 1684 int ret; 1685 1686 if (!cpufreq_driver) 1687 return; 1688 1689 if (unlikely(!cpufreq_suspended)) 1690 return; 1691 1692 cpufreq_suspended = false; 1693 1694 if (!has_target() && !cpufreq_driver->resume) 1695 return; 1696 1697 pr_debug("%s: Resuming Governors\n", __func__); 1698 1699 for_each_active_policy(policy) { 1700 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1701 pr_err("%s: Failed to resume driver: %p\n", __func__, 1702 policy); 1703 } else if (has_target()) { 1704 down_write(&policy->rwsem); 1705 ret = cpufreq_start_governor(policy); 1706 up_write(&policy->rwsem); 1707 1708 if (ret) 1709 pr_err("%s: Failed to start governor for policy: %p\n", 1710 __func__, policy); 1711 } 1712 } 1713 } 1714 1715 /** 1716 * cpufreq_get_current_driver - return current driver's name 1717 * 1718 * Return the name string of the currently loaded cpufreq driver 1719 * or NULL, if none. 1720 */ 1721 const char *cpufreq_get_current_driver(void) 1722 { 1723 if (cpufreq_driver) 1724 return cpufreq_driver->name; 1725 1726 return NULL; 1727 } 1728 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1729 1730 /** 1731 * cpufreq_get_driver_data - return current driver data 1732 * 1733 * Return the private data of the currently loaded cpufreq 1734 * driver, or NULL if no cpufreq driver is loaded. 1735 */ 1736 void *cpufreq_get_driver_data(void) 1737 { 1738 if (cpufreq_driver) 1739 return cpufreq_driver->driver_data; 1740 1741 return NULL; 1742 } 1743 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1744 1745 /********************************************************************* 1746 * NOTIFIER LISTS INTERFACE * 1747 *********************************************************************/ 1748 1749 /** 1750 * cpufreq_register_notifier - register a driver with cpufreq 1751 * @nb: notifier function to register 1752 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1753 * 1754 * Add a driver to one of two lists: either a list of drivers that 1755 * are notified about clock rate changes (once before and once after 1756 * the transition), or a list of drivers that are notified about 1757 * changes in cpufreq policy. 1758 * 1759 * This function may sleep, and has the same return conditions as 1760 * blocking_notifier_chain_register. 1761 */ 1762 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1763 { 1764 int ret; 1765 1766 if (cpufreq_disabled()) 1767 return -EINVAL; 1768 1769 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1770 1771 switch (list) { 1772 case CPUFREQ_TRANSITION_NOTIFIER: 1773 mutex_lock(&cpufreq_fast_switch_lock); 1774 1775 if (cpufreq_fast_switch_count > 0) { 1776 mutex_unlock(&cpufreq_fast_switch_lock); 1777 return -EBUSY; 1778 } 1779 ret = srcu_notifier_chain_register( 1780 &cpufreq_transition_notifier_list, nb); 1781 if (!ret) 1782 cpufreq_fast_switch_count--; 1783 1784 mutex_unlock(&cpufreq_fast_switch_lock); 1785 break; 1786 case CPUFREQ_POLICY_NOTIFIER: 1787 ret = blocking_notifier_chain_register( 1788 &cpufreq_policy_notifier_list, nb); 1789 break; 1790 default: 1791 ret = -EINVAL; 1792 } 1793 1794 return ret; 1795 } 1796 EXPORT_SYMBOL(cpufreq_register_notifier); 1797 1798 /** 1799 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1800 * @nb: notifier block to be unregistered 1801 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1802 * 1803 * Remove a driver from the CPU frequency notifier list. 1804 * 1805 * This function may sleep, and has the same return conditions as 1806 * blocking_notifier_chain_unregister. 1807 */ 1808 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1809 { 1810 int ret; 1811 1812 if (cpufreq_disabled()) 1813 return -EINVAL; 1814 1815 switch (list) { 1816 case CPUFREQ_TRANSITION_NOTIFIER: 1817 mutex_lock(&cpufreq_fast_switch_lock); 1818 1819 ret = srcu_notifier_chain_unregister( 1820 &cpufreq_transition_notifier_list, nb); 1821 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1822 cpufreq_fast_switch_count++; 1823 1824 mutex_unlock(&cpufreq_fast_switch_lock); 1825 break; 1826 case CPUFREQ_POLICY_NOTIFIER: 1827 ret = blocking_notifier_chain_unregister( 1828 &cpufreq_policy_notifier_list, nb); 1829 break; 1830 default: 1831 ret = -EINVAL; 1832 } 1833 1834 return ret; 1835 } 1836 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1837 1838 1839 /********************************************************************* 1840 * GOVERNORS * 1841 *********************************************************************/ 1842 1843 /** 1844 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1845 * @policy: cpufreq policy to switch the frequency for. 1846 * @target_freq: New frequency to set (may be approximate). 1847 * 1848 * Carry out a fast frequency switch without sleeping. 1849 * 1850 * The driver's ->fast_switch() callback invoked by this function must be 1851 * suitable for being called from within RCU-sched read-side critical sections 1852 * and it is expected to select the minimum available frequency greater than or 1853 * equal to @target_freq (CPUFREQ_RELATION_L). 1854 * 1855 * This function must not be called if policy->fast_switch_enabled is unset. 1856 * 1857 * Governors calling this function must guarantee that it will never be invoked 1858 * twice in parallel for the same policy and that it will never be called in 1859 * parallel with either ->target() or ->target_index() for the same policy. 1860 * 1861 * Returns the actual frequency set for the CPU. 1862 * 1863 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 1864 * error condition, the hardware configuration must be preserved. 1865 */ 1866 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1867 unsigned int target_freq) 1868 { 1869 target_freq = clamp_val(target_freq, policy->min, policy->max); 1870 1871 return cpufreq_driver->fast_switch(policy, target_freq); 1872 } 1873 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1874 1875 /* Must set freqs->new to intermediate frequency */ 1876 static int __target_intermediate(struct cpufreq_policy *policy, 1877 struct cpufreq_freqs *freqs, int index) 1878 { 1879 int ret; 1880 1881 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1882 1883 /* We don't need to switch to intermediate freq */ 1884 if (!freqs->new) 1885 return 0; 1886 1887 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1888 __func__, policy->cpu, freqs->old, freqs->new); 1889 1890 cpufreq_freq_transition_begin(policy, freqs); 1891 ret = cpufreq_driver->target_intermediate(policy, index); 1892 cpufreq_freq_transition_end(policy, freqs, ret); 1893 1894 if (ret) 1895 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1896 __func__, ret); 1897 1898 return ret; 1899 } 1900 1901 static int __target_index(struct cpufreq_policy *policy, int index) 1902 { 1903 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1904 unsigned int intermediate_freq = 0; 1905 unsigned int newfreq = policy->freq_table[index].frequency; 1906 int retval = -EINVAL; 1907 bool notify; 1908 1909 if (newfreq == policy->cur) 1910 return 0; 1911 1912 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1913 if (notify) { 1914 /* Handle switching to intermediate frequency */ 1915 if (cpufreq_driver->get_intermediate) { 1916 retval = __target_intermediate(policy, &freqs, index); 1917 if (retval) 1918 return retval; 1919 1920 intermediate_freq = freqs.new; 1921 /* Set old freq to intermediate */ 1922 if (intermediate_freq) 1923 freqs.old = freqs.new; 1924 } 1925 1926 freqs.new = newfreq; 1927 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1928 __func__, policy->cpu, freqs.old, freqs.new); 1929 1930 cpufreq_freq_transition_begin(policy, &freqs); 1931 } 1932 1933 retval = cpufreq_driver->target_index(policy, index); 1934 if (retval) 1935 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1936 retval); 1937 1938 if (notify) { 1939 cpufreq_freq_transition_end(policy, &freqs, retval); 1940 1941 /* 1942 * Failed after setting to intermediate freq? Driver should have 1943 * reverted back to initial frequency and so should we. Check 1944 * here for intermediate_freq instead of get_intermediate, in 1945 * case we haven't switched to intermediate freq at all. 1946 */ 1947 if (unlikely(retval && intermediate_freq)) { 1948 freqs.old = intermediate_freq; 1949 freqs.new = policy->restore_freq; 1950 cpufreq_freq_transition_begin(policy, &freqs); 1951 cpufreq_freq_transition_end(policy, &freqs, 0); 1952 } 1953 } 1954 1955 return retval; 1956 } 1957 1958 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1959 unsigned int target_freq, 1960 unsigned int relation) 1961 { 1962 unsigned int old_target_freq = target_freq; 1963 int index; 1964 1965 if (cpufreq_disabled()) 1966 return -ENODEV; 1967 1968 /* Make sure that target_freq is within supported range */ 1969 target_freq = clamp_val(target_freq, policy->min, policy->max); 1970 1971 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1972 policy->cpu, target_freq, relation, old_target_freq); 1973 1974 /* 1975 * This might look like a redundant call as we are checking it again 1976 * after finding index. But it is left intentionally for cases where 1977 * exactly same freq is called again and so we can save on few function 1978 * calls. 1979 */ 1980 if (target_freq == policy->cur) 1981 return 0; 1982 1983 /* Save last value to restore later on errors */ 1984 policy->restore_freq = policy->cur; 1985 1986 if (cpufreq_driver->target) 1987 return cpufreq_driver->target(policy, target_freq, relation); 1988 1989 if (!cpufreq_driver->target_index) 1990 return -EINVAL; 1991 1992 index = cpufreq_frequency_table_target(policy, target_freq, relation); 1993 1994 return __target_index(policy, index); 1995 } 1996 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1997 1998 int cpufreq_driver_target(struct cpufreq_policy *policy, 1999 unsigned int target_freq, 2000 unsigned int relation) 2001 { 2002 int ret = -EINVAL; 2003 2004 down_write(&policy->rwsem); 2005 2006 ret = __cpufreq_driver_target(policy, target_freq, relation); 2007 2008 up_write(&policy->rwsem); 2009 2010 return ret; 2011 } 2012 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2013 2014 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2015 { 2016 return NULL; 2017 } 2018 2019 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2020 { 2021 int ret; 2022 2023 /* Don't start any governor operations if we are entering suspend */ 2024 if (cpufreq_suspended) 2025 return 0; 2026 /* 2027 * Governor might not be initiated here if ACPI _PPC changed 2028 * notification happened, so check it. 2029 */ 2030 if (!policy->governor) 2031 return -EINVAL; 2032 2033 /* Platform doesn't want dynamic frequency switching ? */ 2034 if (policy->governor->dynamic_switching && 2035 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2036 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2037 2038 if (gov) { 2039 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2040 policy->governor->name, gov->name); 2041 policy->governor = gov; 2042 } else { 2043 return -EINVAL; 2044 } 2045 } 2046 2047 if (!try_module_get(policy->governor->owner)) 2048 return -EINVAL; 2049 2050 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2051 2052 if (policy->governor->init) { 2053 ret = policy->governor->init(policy); 2054 if (ret) { 2055 module_put(policy->governor->owner); 2056 return ret; 2057 } 2058 } 2059 2060 return 0; 2061 } 2062 2063 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2064 { 2065 if (cpufreq_suspended || !policy->governor) 2066 return; 2067 2068 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2069 2070 if (policy->governor->exit) 2071 policy->governor->exit(policy); 2072 2073 module_put(policy->governor->owner); 2074 } 2075 2076 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2077 { 2078 int ret; 2079 2080 if (cpufreq_suspended) 2081 return 0; 2082 2083 if (!policy->governor) 2084 return -EINVAL; 2085 2086 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2087 2088 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) 2089 cpufreq_update_current_freq(policy); 2090 2091 if (policy->governor->start) { 2092 ret = policy->governor->start(policy); 2093 if (ret) 2094 return ret; 2095 } 2096 2097 if (policy->governor->limits) 2098 policy->governor->limits(policy); 2099 2100 return 0; 2101 } 2102 2103 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2104 { 2105 if (cpufreq_suspended || !policy->governor) 2106 return; 2107 2108 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2109 2110 if (policy->governor->stop) 2111 policy->governor->stop(policy); 2112 } 2113 2114 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2115 { 2116 if (cpufreq_suspended || !policy->governor) 2117 return; 2118 2119 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2120 2121 if (policy->governor->limits) 2122 policy->governor->limits(policy); 2123 } 2124 2125 int cpufreq_register_governor(struct cpufreq_governor *governor) 2126 { 2127 int err; 2128 2129 if (!governor) 2130 return -EINVAL; 2131 2132 if (cpufreq_disabled()) 2133 return -ENODEV; 2134 2135 mutex_lock(&cpufreq_governor_mutex); 2136 2137 err = -EBUSY; 2138 if (!find_governor(governor->name)) { 2139 err = 0; 2140 list_add(&governor->governor_list, &cpufreq_governor_list); 2141 } 2142 2143 mutex_unlock(&cpufreq_governor_mutex); 2144 return err; 2145 } 2146 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2147 2148 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2149 { 2150 struct cpufreq_policy *policy; 2151 unsigned long flags; 2152 2153 if (!governor) 2154 return; 2155 2156 if (cpufreq_disabled()) 2157 return; 2158 2159 /* clear last_governor for all inactive policies */ 2160 read_lock_irqsave(&cpufreq_driver_lock, flags); 2161 for_each_inactive_policy(policy) { 2162 if (!strcmp(policy->last_governor, governor->name)) { 2163 policy->governor = NULL; 2164 strcpy(policy->last_governor, "\0"); 2165 } 2166 } 2167 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2168 2169 mutex_lock(&cpufreq_governor_mutex); 2170 list_del(&governor->governor_list); 2171 mutex_unlock(&cpufreq_governor_mutex); 2172 } 2173 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2174 2175 2176 /********************************************************************* 2177 * POLICY INTERFACE * 2178 *********************************************************************/ 2179 2180 /** 2181 * cpufreq_get_policy - get the current cpufreq_policy 2182 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2183 * is written 2184 * 2185 * Reads the current cpufreq policy. 2186 */ 2187 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2188 { 2189 struct cpufreq_policy *cpu_policy; 2190 if (!policy) 2191 return -EINVAL; 2192 2193 cpu_policy = cpufreq_cpu_get(cpu); 2194 if (!cpu_policy) 2195 return -EINVAL; 2196 2197 memcpy(policy, cpu_policy, sizeof(*policy)); 2198 2199 cpufreq_cpu_put(cpu_policy); 2200 return 0; 2201 } 2202 EXPORT_SYMBOL(cpufreq_get_policy); 2203 2204 /* 2205 * policy : current policy. 2206 * new_policy: policy to be set. 2207 */ 2208 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2209 struct cpufreq_policy *new_policy) 2210 { 2211 struct cpufreq_governor *old_gov; 2212 int ret; 2213 2214 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2215 new_policy->cpu, new_policy->min, new_policy->max); 2216 2217 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2218 2219 /* 2220 * This check works well when we store new min/max freq attributes, 2221 * because new_policy is a copy of policy with one field updated. 2222 */ 2223 if (new_policy->min > new_policy->max) 2224 return -EINVAL; 2225 2226 /* verify the cpu speed can be set within this limit */ 2227 ret = cpufreq_driver->verify(new_policy); 2228 if (ret) 2229 return ret; 2230 2231 /* adjust if necessary - all reasons */ 2232 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2233 CPUFREQ_ADJUST, new_policy); 2234 2235 /* 2236 * verify the cpu speed can be set within this limit, which might be 2237 * different to the first one 2238 */ 2239 ret = cpufreq_driver->verify(new_policy); 2240 if (ret) 2241 return ret; 2242 2243 /* notification of the new policy */ 2244 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2245 CPUFREQ_NOTIFY, new_policy); 2246 2247 policy->min = new_policy->min; 2248 policy->max = new_policy->max; 2249 2250 policy->cached_target_freq = UINT_MAX; 2251 2252 pr_debug("new min and max freqs are %u - %u kHz\n", 2253 policy->min, policy->max); 2254 2255 if (cpufreq_driver->setpolicy) { 2256 policy->policy = new_policy->policy; 2257 pr_debug("setting range\n"); 2258 return cpufreq_driver->setpolicy(new_policy); 2259 } 2260 2261 if (new_policy->governor == policy->governor) { 2262 pr_debug("cpufreq: governor limits update\n"); 2263 cpufreq_governor_limits(policy); 2264 return 0; 2265 } 2266 2267 pr_debug("governor switch\n"); 2268 2269 /* save old, working values */ 2270 old_gov = policy->governor; 2271 /* end old governor */ 2272 if (old_gov) { 2273 cpufreq_stop_governor(policy); 2274 cpufreq_exit_governor(policy); 2275 } 2276 2277 /* start new governor */ 2278 policy->governor = new_policy->governor; 2279 ret = cpufreq_init_governor(policy); 2280 if (!ret) { 2281 ret = cpufreq_start_governor(policy); 2282 if (!ret) { 2283 pr_debug("cpufreq: governor change\n"); 2284 return 0; 2285 } 2286 cpufreq_exit_governor(policy); 2287 } 2288 2289 /* new governor failed, so re-start old one */ 2290 pr_debug("starting governor %s failed\n", policy->governor->name); 2291 if (old_gov) { 2292 policy->governor = old_gov; 2293 if (cpufreq_init_governor(policy)) 2294 policy->governor = NULL; 2295 else 2296 cpufreq_start_governor(policy); 2297 } 2298 2299 return ret; 2300 } 2301 2302 /** 2303 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2304 * @cpu: CPU which shall be re-evaluated 2305 * 2306 * Useful for policy notifiers which have different necessities 2307 * at different times. 2308 */ 2309 void cpufreq_update_policy(unsigned int cpu) 2310 { 2311 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2312 struct cpufreq_policy new_policy; 2313 2314 if (!policy) 2315 return; 2316 2317 down_write(&policy->rwsem); 2318 2319 if (policy_is_inactive(policy)) 2320 goto unlock; 2321 2322 pr_debug("updating policy for CPU %u\n", cpu); 2323 memcpy(&new_policy, policy, sizeof(*policy)); 2324 new_policy.min = policy->user_policy.min; 2325 new_policy.max = policy->user_policy.max; 2326 2327 /* 2328 * BIOS might change freq behind our back 2329 * -> ask driver for current freq and notify governors about a change 2330 */ 2331 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2332 if (cpufreq_suspended) 2333 goto unlock; 2334 2335 new_policy.cur = cpufreq_update_current_freq(policy); 2336 if (WARN_ON(!new_policy.cur)) 2337 goto unlock; 2338 } 2339 2340 cpufreq_set_policy(policy, &new_policy); 2341 2342 unlock: 2343 up_write(&policy->rwsem); 2344 2345 cpufreq_cpu_put(policy); 2346 } 2347 EXPORT_SYMBOL(cpufreq_update_policy); 2348 2349 /********************************************************************* 2350 * BOOST * 2351 *********************************************************************/ 2352 static int cpufreq_boost_set_sw(int state) 2353 { 2354 struct cpufreq_policy *policy; 2355 int ret = -EINVAL; 2356 2357 for_each_active_policy(policy) { 2358 if (!policy->freq_table) 2359 continue; 2360 2361 ret = cpufreq_frequency_table_cpuinfo(policy, 2362 policy->freq_table); 2363 if (ret) { 2364 pr_err("%s: Policy frequency update failed\n", 2365 __func__); 2366 break; 2367 } 2368 2369 down_write(&policy->rwsem); 2370 policy->user_policy.max = policy->max; 2371 cpufreq_governor_limits(policy); 2372 up_write(&policy->rwsem); 2373 } 2374 2375 return ret; 2376 } 2377 2378 int cpufreq_boost_trigger_state(int state) 2379 { 2380 unsigned long flags; 2381 int ret = 0; 2382 2383 if (cpufreq_driver->boost_enabled == state) 2384 return 0; 2385 2386 write_lock_irqsave(&cpufreq_driver_lock, flags); 2387 cpufreq_driver->boost_enabled = state; 2388 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2389 2390 ret = cpufreq_driver->set_boost(state); 2391 if (ret) { 2392 write_lock_irqsave(&cpufreq_driver_lock, flags); 2393 cpufreq_driver->boost_enabled = !state; 2394 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2395 2396 pr_err("%s: Cannot %s BOOST\n", 2397 __func__, state ? "enable" : "disable"); 2398 } 2399 2400 return ret; 2401 } 2402 2403 static bool cpufreq_boost_supported(void) 2404 { 2405 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2406 } 2407 2408 static int create_boost_sysfs_file(void) 2409 { 2410 int ret; 2411 2412 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2413 if (ret) 2414 pr_err("%s: cannot register global BOOST sysfs file\n", 2415 __func__); 2416 2417 return ret; 2418 } 2419 2420 static void remove_boost_sysfs_file(void) 2421 { 2422 if (cpufreq_boost_supported()) 2423 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2424 } 2425 2426 int cpufreq_enable_boost_support(void) 2427 { 2428 if (!cpufreq_driver) 2429 return -EINVAL; 2430 2431 if (cpufreq_boost_supported()) 2432 return 0; 2433 2434 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2435 2436 /* This will get removed on driver unregister */ 2437 return create_boost_sysfs_file(); 2438 } 2439 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2440 2441 int cpufreq_boost_enabled(void) 2442 { 2443 return cpufreq_driver->boost_enabled; 2444 } 2445 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2446 2447 /********************************************************************* 2448 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2449 *********************************************************************/ 2450 static enum cpuhp_state hp_online; 2451 2452 static int cpuhp_cpufreq_online(unsigned int cpu) 2453 { 2454 cpufreq_online(cpu); 2455 2456 return 0; 2457 } 2458 2459 static int cpuhp_cpufreq_offline(unsigned int cpu) 2460 { 2461 cpufreq_offline(cpu); 2462 2463 return 0; 2464 } 2465 2466 /** 2467 * cpufreq_register_driver - register a CPU Frequency driver 2468 * @driver_data: A struct cpufreq_driver containing the values# 2469 * submitted by the CPU Frequency driver. 2470 * 2471 * Registers a CPU Frequency driver to this core code. This code 2472 * returns zero on success, -EEXIST when another driver got here first 2473 * (and isn't unregistered in the meantime). 2474 * 2475 */ 2476 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2477 { 2478 unsigned long flags; 2479 int ret; 2480 2481 if (cpufreq_disabled()) 2482 return -ENODEV; 2483 2484 if (!driver_data || !driver_data->verify || !driver_data->init || 2485 !(driver_data->setpolicy || driver_data->target_index || 2486 driver_data->target) || 2487 (driver_data->setpolicy && (driver_data->target_index || 2488 driver_data->target)) || 2489 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2490 return -EINVAL; 2491 2492 pr_debug("trying to register driver %s\n", driver_data->name); 2493 2494 /* Protect against concurrent CPU online/offline. */ 2495 cpus_read_lock(); 2496 2497 write_lock_irqsave(&cpufreq_driver_lock, flags); 2498 if (cpufreq_driver) { 2499 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2500 ret = -EEXIST; 2501 goto out; 2502 } 2503 cpufreq_driver = driver_data; 2504 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2505 2506 if (driver_data->setpolicy) 2507 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2508 2509 if (cpufreq_boost_supported()) { 2510 ret = create_boost_sysfs_file(); 2511 if (ret) 2512 goto err_null_driver; 2513 } 2514 2515 ret = subsys_interface_register(&cpufreq_interface); 2516 if (ret) 2517 goto err_boost_unreg; 2518 2519 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2520 list_empty(&cpufreq_policy_list)) { 2521 /* if all ->init() calls failed, unregister */ 2522 ret = -ENODEV; 2523 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2524 driver_data->name); 2525 goto err_if_unreg; 2526 } 2527 2528 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2529 "cpufreq:online", 2530 cpuhp_cpufreq_online, 2531 cpuhp_cpufreq_offline); 2532 if (ret < 0) 2533 goto err_if_unreg; 2534 hp_online = ret; 2535 ret = 0; 2536 2537 pr_debug("driver %s up and running\n", driver_data->name); 2538 goto out; 2539 2540 err_if_unreg: 2541 subsys_interface_unregister(&cpufreq_interface); 2542 err_boost_unreg: 2543 remove_boost_sysfs_file(); 2544 err_null_driver: 2545 write_lock_irqsave(&cpufreq_driver_lock, flags); 2546 cpufreq_driver = NULL; 2547 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2548 out: 2549 cpus_read_unlock(); 2550 return ret; 2551 } 2552 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2553 2554 /** 2555 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2556 * 2557 * Unregister the current CPUFreq driver. Only call this if you have 2558 * the right to do so, i.e. if you have succeeded in initialising before! 2559 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2560 * currently not initialised. 2561 */ 2562 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2563 { 2564 unsigned long flags; 2565 2566 if (!cpufreq_driver || (driver != cpufreq_driver)) 2567 return -EINVAL; 2568 2569 pr_debug("unregistering driver %s\n", driver->name); 2570 2571 /* Protect against concurrent cpu hotplug */ 2572 cpus_read_lock(); 2573 subsys_interface_unregister(&cpufreq_interface); 2574 remove_boost_sysfs_file(); 2575 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2576 2577 write_lock_irqsave(&cpufreq_driver_lock, flags); 2578 2579 cpufreq_driver = NULL; 2580 2581 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2582 cpus_read_unlock(); 2583 2584 return 0; 2585 } 2586 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2587 2588 /* 2589 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2590 * or mutexes when secondary CPUs are halted. 2591 */ 2592 static struct syscore_ops cpufreq_syscore_ops = { 2593 .shutdown = cpufreq_suspend, 2594 }; 2595 2596 struct kobject *cpufreq_global_kobject; 2597 EXPORT_SYMBOL(cpufreq_global_kobject); 2598 2599 static int __init cpufreq_core_init(void) 2600 { 2601 if (cpufreq_disabled()) 2602 return -ENODEV; 2603 2604 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2605 BUG_ON(!cpufreq_global_kobject); 2606 2607 register_syscore_ops(&cpufreq_syscore_ops); 2608 2609 return 0; 2610 } 2611 module_param(off, int, 0444); 2612 core_initcall(cpufreq_core_init); 2613