xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision e15a5365)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 static char default_governor[CPUFREQ_NAME_LEN];
54 
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
65 bool cpufreq_supports_freq_invariance(void)
66 {
67 	return static_branch_likely(&cpufreq_freq_invariance);
68 }
69 
70 /* Flag to suspend/resume CPUFreq governors */
71 static bool cpufreq_suspended;
72 
73 static inline bool has_target(void)
74 {
75 	return cpufreq_driver->target_index || cpufreq_driver->target;
76 }
77 
78 /* internal prototypes */
79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
80 static int cpufreq_init_governor(struct cpufreq_policy *policy);
81 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 static int cpufreq_set_policy(struct cpufreq_policy *policy,
84 			      struct cpufreq_governor *new_gov,
85 			      unsigned int new_pol);
86 
87 /*
88  * Two notifier lists: the "policy" list is involved in the
89  * validation process for a new CPU frequency policy; the
90  * "transition" list for kernel code that needs to handle
91  * changes to devices when the CPU clock speed changes.
92  * The mutex locks both lists.
93  */
94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
96 
97 static int off __read_mostly;
98 static int cpufreq_disabled(void)
99 {
100 	return off;
101 }
102 void disable_cpufreq(void)
103 {
104 	off = 1;
105 }
106 static DEFINE_MUTEX(cpufreq_governor_mutex);
107 
108 bool have_governor_per_policy(void)
109 {
110 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
111 }
112 EXPORT_SYMBOL_GPL(have_governor_per_policy);
113 
114 static struct kobject *cpufreq_global_kobject;
115 
116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
117 {
118 	if (have_governor_per_policy())
119 		return &policy->kobj;
120 	else
121 		return cpufreq_global_kobject;
122 }
123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
124 
125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
126 {
127 	struct kernel_cpustat kcpustat;
128 	u64 cur_wall_time;
129 	u64 idle_time;
130 	u64 busy_time;
131 
132 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
133 
134 	kcpustat_cpu_fetch(&kcpustat, cpu);
135 
136 	busy_time = kcpustat.cpustat[CPUTIME_USER];
137 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
138 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
139 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
140 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
141 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
142 
143 	idle_time = cur_wall_time - busy_time;
144 	if (wall)
145 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
146 
147 	return div_u64(idle_time, NSEC_PER_USEC);
148 }
149 
150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
151 {
152 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
153 
154 	if (idle_time == -1ULL)
155 		return get_cpu_idle_time_jiffy(cpu, wall);
156 	else if (!io_busy)
157 		idle_time += get_cpu_iowait_time_us(cpu, wall);
158 
159 	return idle_time;
160 }
161 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
162 
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 		struct cpufreq_frequency_table *table,
172 		unsigned int transition_latency)
173 {
174 	policy->freq_table = table;
175 	policy->cpuinfo.transition_latency = transition_latency;
176 
177 	/*
178 	 * The driver only supports the SMP configuration where all processors
179 	 * share the clock and voltage and clock.
180 	 */
181 	cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 	struct cpufreq_policy *policy = NULL;
221 	unsigned long flags;
222 
223 	if (WARN_ON(cpu >= nr_cpu_ids))
224 		return NULL;
225 
226 	/* get the cpufreq driver */
227 	read_lock_irqsave(&cpufreq_driver_lock, flags);
228 
229 	if (cpufreq_driver) {
230 		/* get the CPU */
231 		policy = cpufreq_cpu_get_raw(cpu);
232 		if (policy)
233 			kobject_get(&policy->kobj);
234 	}
235 
236 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237 
238 	return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241 
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 	kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251 
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 	if (WARN_ON(!policy))
259 		return;
260 
261 	lockdep_assert_held(&policy->rwsem);
262 
263 	up_write(&policy->rwsem);
264 
265 	cpufreq_cpu_put(policy);
266 }
267 
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283 
284 	if (!policy)
285 		return NULL;
286 
287 	down_write(&policy->rwsem);
288 
289 	if (policy_is_inactive(policy)) {
290 		cpufreq_cpu_release(policy);
291 		return NULL;
292 	}
293 
294 	return policy;
295 }
296 
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300 
301 /*
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 	static unsigned long l_p_j_ref;
313 	static unsigned int l_p_j_ref_freq;
314 
315 	if (ci->flags & CPUFREQ_CONST_LOOPS)
316 		return;
317 
318 	if (!l_p_j_ref_freq) {
319 		l_p_j_ref = loops_per_jiffy;
320 		l_p_j_ref_freq = ci->old;
321 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 			 l_p_j_ref, l_p_j_ref_freq);
323 	}
324 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 								ci->new);
327 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 			 loops_per_jiffy, ci->new);
329 	}
330 #endif
331 }
332 
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 				      struct cpufreq_freqs *freqs,
345 				      unsigned int state)
346 {
347 	int cpu;
348 
349 	BUG_ON(irqs_disabled());
350 
351 	if (cpufreq_disabled())
352 		return;
353 
354 	freqs->policy = policy;
355 	freqs->flags = cpufreq_driver->flags;
356 	pr_debug("notification %u of frequency transition to %u kHz\n",
357 		 state, freqs->new);
358 
359 	switch (state) {
360 	case CPUFREQ_PRECHANGE:
361 		/*
362 		 * Detect if the driver reported a value as "old frequency"
363 		 * which is not equal to what the cpufreq core thinks is
364 		 * "old frequency".
365 		 */
366 		if (policy->cur && policy->cur != freqs->old) {
367 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 				 freqs->old, policy->cur);
369 			freqs->old = policy->cur;
370 		}
371 
372 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 					 CPUFREQ_PRECHANGE, freqs);
374 
375 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 		break;
377 
378 	case CPUFREQ_POSTCHANGE:
379 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 			 cpumask_pr_args(policy->cpus));
382 
383 		for_each_cpu(cpu, policy->cpus)
384 			trace_cpu_frequency(freqs->new, cpu);
385 
386 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 					 CPUFREQ_POSTCHANGE, freqs);
388 
389 		cpufreq_stats_record_transition(policy, freqs->new);
390 		policy->cur = freqs->new;
391 	}
392 }
393 
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 		struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 	if (!transition_failed)
400 		return;
401 
402 	swap(freqs->old, freqs->new);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406 
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 		struct cpufreq_freqs *freqs)
409 {
410 
411 	/*
412 	 * Catch double invocations of _begin() which lead to self-deadlock.
413 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 	 * doesn't invoke _begin() on their behalf, and hence the chances of
415 	 * double invocations are very low. Moreover, there are scenarios
416 	 * where these checks can emit false-positive warnings in these
417 	 * drivers; so we avoid that by skipping them altogether.
418 	 */
419 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 				&& current == policy->transition_task);
421 
422 wait:
423 	wait_event(policy->transition_wait, !policy->transition_ongoing);
424 
425 	spin_lock(&policy->transition_lock);
426 
427 	if (unlikely(policy->transition_ongoing)) {
428 		spin_unlock(&policy->transition_lock);
429 		goto wait;
430 	}
431 
432 	policy->transition_ongoing = true;
433 	policy->transition_task = current;
434 
435 	spin_unlock(&policy->transition_lock);
436 
437 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440 
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 		struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 	if (WARN_ON(!policy->transition_ongoing))
445 		return;
446 
447 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
448 
449 	arch_set_freq_scale(policy->related_cpus,
450 			    policy->cur,
451 			    policy->cpuinfo.max_freq);
452 
453 	policy->transition_ongoing = false;
454 	policy->transition_task = NULL;
455 
456 	wake_up(&policy->transition_wait);
457 }
458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
459 
460 /*
461  * Fast frequency switching status count.  Positive means "enabled", negative
462  * means "disabled" and 0 means "not decided yet".
463  */
464 static int cpufreq_fast_switch_count;
465 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
466 
467 static void cpufreq_list_transition_notifiers(void)
468 {
469 	struct notifier_block *nb;
470 
471 	pr_info("Registered transition notifiers:\n");
472 
473 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
474 
475 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
476 		pr_info("%pS\n", nb->notifier_call);
477 
478 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
479 }
480 
481 /**
482  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
483  * @policy: cpufreq policy to enable fast frequency switching for.
484  *
485  * Try to enable fast frequency switching for @policy.
486  *
487  * The attempt will fail if there is at least one transition notifier registered
488  * at this point, as fast frequency switching is quite fundamentally at odds
489  * with transition notifiers.  Thus if successful, it will make registration of
490  * transition notifiers fail going forward.
491  */
492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
493 {
494 	lockdep_assert_held(&policy->rwsem);
495 
496 	if (!policy->fast_switch_possible)
497 		return;
498 
499 	mutex_lock(&cpufreq_fast_switch_lock);
500 	if (cpufreq_fast_switch_count >= 0) {
501 		cpufreq_fast_switch_count++;
502 		policy->fast_switch_enabled = true;
503 	} else {
504 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
505 			policy->cpu);
506 		cpufreq_list_transition_notifiers();
507 	}
508 	mutex_unlock(&cpufreq_fast_switch_lock);
509 }
510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
511 
512 /**
513  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
514  * @policy: cpufreq policy to disable fast frequency switching for.
515  */
516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
517 {
518 	mutex_lock(&cpufreq_fast_switch_lock);
519 	if (policy->fast_switch_enabled) {
520 		policy->fast_switch_enabled = false;
521 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
522 			cpufreq_fast_switch_count--;
523 	}
524 	mutex_unlock(&cpufreq_fast_switch_lock);
525 }
526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
527 
528 /**
529  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
530  * one.
531  * @policy: associated policy to interrogate
532  * @target_freq: target frequency to resolve.
533  *
534  * The target to driver frequency mapping is cached in the policy.
535  *
536  * Return: Lowest driver-supported frequency greater than or equal to the
537  * given target_freq, subject to policy (min/max) and driver limitations.
538  */
539 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
540 					 unsigned int target_freq)
541 {
542 	target_freq = clamp_val(target_freq, policy->min, policy->max);
543 	policy->cached_target_freq = target_freq;
544 
545 	if (cpufreq_driver->target_index) {
546 		unsigned int idx;
547 
548 		idx = cpufreq_frequency_table_target(policy, target_freq,
549 						     CPUFREQ_RELATION_L);
550 		policy->cached_resolved_idx = idx;
551 		return policy->freq_table[idx].frequency;
552 	}
553 
554 	if (cpufreq_driver->resolve_freq)
555 		return cpufreq_driver->resolve_freq(policy, target_freq);
556 
557 	return target_freq;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
560 
561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
562 {
563 	unsigned int latency;
564 
565 	if (policy->transition_delay_us)
566 		return policy->transition_delay_us;
567 
568 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
569 	if (latency) {
570 		/*
571 		 * For platforms that can change the frequency very fast (< 10
572 		 * us), the above formula gives a decent transition delay. But
573 		 * for platforms where transition_latency is in milliseconds, it
574 		 * ends up giving unrealistic values.
575 		 *
576 		 * Cap the default transition delay to 10 ms, which seems to be
577 		 * a reasonable amount of time after which we should reevaluate
578 		 * the frequency.
579 		 */
580 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
581 	}
582 
583 	return LATENCY_MULTIPLIER;
584 }
585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
586 
587 /*********************************************************************
588  *                          SYSFS INTERFACE                          *
589  *********************************************************************/
590 static ssize_t show_boost(struct kobject *kobj,
591 			  struct kobj_attribute *attr, char *buf)
592 {
593 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
594 }
595 
596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
597 			   const char *buf, size_t count)
598 {
599 	int ret, enable;
600 
601 	ret = sscanf(buf, "%d", &enable);
602 	if (ret != 1 || enable < 0 || enable > 1)
603 		return -EINVAL;
604 
605 	if (cpufreq_boost_trigger_state(enable)) {
606 		pr_err("%s: Cannot %s BOOST!\n",
607 		       __func__, enable ? "enable" : "disable");
608 		return -EINVAL;
609 	}
610 
611 	pr_debug("%s: cpufreq BOOST %s\n",
612 		 __func__, enable ? "enabled" : "disabled");
613 
614 	return count;
615 }
616 define_one_global_rw(boost);
617 
618 static struct cpufreq_governor *find_governor(const char *str_governor)
619 {
620 	struct cpufreq_governor *t;
621 
622 	for_each_governor(t)
623 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
624 			return t;
625 
626 	return NULL;
627 }
628 
629 static struct cpufreq_governor *get_governor(const char *str_governor)
630 {
631 	struct cpufreq_governor *t;
632 
633 	mutex_lock(&cpufreq_governor_mutex);
634 	t = find_governor(str_governor);
635 	if (!t)
636 		goto unlock;
637 
638 	if (!try_module_get(t->owner))
639 		t = NULL;
640 
641 unlock:
642 	mutex_unlock(&cpufreq_governor_mutex);
643 
644 	return t;
645 }
646 
647 static unsigned int cpufreq_parse_policy(char *str_governor)
648 {
649 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
650 		return CPUFREQ_POLICY_PERFORMANCE;
651 
652 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
653 		return CPUFREQ_POLICY_POWERSAVE;
654 
655 	return CPUFREQ_POLICY_UNKNOWN;
656 }
657 
658 /**
659  * cpufreq_parse_governor - parse a governor string only for has_target()
660  * @str_governor: Governor name.
661  */
662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
663 {
664 	struct cpufreq_governor *t;
665 
666 	t = get_governor(str_governor);
667 	if (t)
668 		return t;
669 
670 	if (request_module("cpufreq_%s", str_governor))
671 		return NULL;
672 
673 	return get_governor(str_governor);
674 }
675 
676 /*
677  * cpufreq_per_cpu_attr_read() / show_##file_name() -
678  * print out cpufreq information
679  *
680  * Write out information from cpufreq_driver->policy[cpu]; object must be
681  * "unsigned int".
682  */
683 
684 #define show_one(file_name, object)			\
685 static ssize_t show_##file_name				\
686 (struct cpufreq_policy *policy, char *buf)		\
687 {							\
688 	return sprintf(buf, "%u\n", policy->object);	\
689 }
690 
691 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
692 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
694 show_one(scaling_min_freq, min);
695 show_one(scaling_max_freq, max);
696 
697 __weak unsigned int arch_freq_get_on_cpu(int cpu)
698 {
699 	return 0;
700 }
701 
702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
703 {
704 	ssize_t ret;
705 	unsigned int freq;
706 
707 	freq = arch_freq_get_on_cpu(policy->cpu);
708 	if (freq)
709 		ret = sprintf(buf, "%u\n", freq);
710 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
711 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712 	else
713 		ret = sprintf(buf, "%u\n", policy->cur);
714 	return ret;
715 }
716 
717 /*
718  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719  */
720 #define store_one(file_name, object)			\
721 static ssize_t store_##file_name					\
722 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
723 {									\
724 	unsigned long val;						\
725 	int ret;							\
726 									\
727 	ret = sscanf(buf, "%lu", &val);					\
728 	if (ret != 1)							\
729 		return -EINVAL;						\
730 									\
731 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
732 	return ret >= 0 ? count : ret;					\
733 }
734 
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737 
738 /*
739  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740  */
741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742 					char *buf)
743 {
744 	unsigned int cur_freq = __cpufreq_get(policy);
745 
746 	if (cur_freq)
747 		return sprintf(buf, "%u\n", cur_freq);
748 
749 	return sprintf(buf, "<unknown>\n");
750 }
751 
752 /*
753  * show_scaling_governor - show the current policy for the specified CPU
754  */
755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758 		return sprintf(buf, "powersave\n");
759 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760 		return sprintf(buf, "performance\n");
761 	else if (policy->governor)
762 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763 				policy->governor->name);
764 	return -EINVAL;
765 }
766 
767 /*
768  * store_scaling_governor - store policy for the specified CPU
769  */
770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771 					const char *buf, size_t count)
772 {
773 	char str_governor[16];
774 	int ret;
775 
776 	ret = sscanf(buf, "%15s", str_governor);
777 	if (ret != 1)
778 		return -EINVAL;
779 
780 	if (cpufreq_driver->setpolicy) {
781 		unsigned int new_pol;
782 
783 		new_pol = cpufreq_parse_policy(str_governor);
784 		if (!new_pol)
785 			return -EINVAL;
786 
787 		ret = cpufreq_set_policy(policy, NULL, new_pol);
788 	} else {
789 		struct cpufreq_governor *new_gov;
790 
791 		new_gov = cpufreq_parse_governor(str_governor);
792 		if (!new_gov)
793 			return -EINVAL;
794 
795 		ret = cpufreq_set_policy(policy, new_gov,
796 					 CPUFREQ_POLICY_UNKNOWN);
797 
798 		module_put(new_gov->owner);
799 	}
800 
801 	return ret ? ret : count;
802 }
803 
804 /*
805  * show_scaling_driver - show the cpufreq driver currently loaded
806  */
807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811 
812 /*
813  * show_scaling_available_governors - show the available CPUfreq governors
814  */
815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816 						char *buf)
817 {
818 	ssize_t i = 0;
819 	struct cpufreq_governor *t;
820 
821 	if (!has_target()) {
822 		i += sprintf(buf, "performance powersave");
823 		goto out;
824 	}
825 
826 	mutex_lock(&cpufreq_governor_mutex);
827 	for_each_governor(t) {
828 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829 		    - (CPUFREQ_NAME_LEN + 2)))
830 			break;
831 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832 	}
833 	mutex_unlock(&cpufreq_governor_mutex);
834 out:
835 	i += sprintf(&buf[i], "\n");
836 	return i;
837 }
838 
839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
840 {
841 	ssize_t i = 0;
842 	unsigned int cpu;
843 
844 	for_each_cpu(cpu, mask) {
845 		if (i)
846 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
847 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
848 		if (i >= (PAGE_SIZE - 5))
849 			break;
850 	}
851 	i += sprintf(&buf[i], "\n");
852 	return i;
853 }
854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
855 
856 /*
857  * show_related_cpus - show the CPUs affected by each transition even if
858  * hw coordination is in use
859  */
860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
861 {
862 	return cpufreq_show_cpus(policy->related_cpus, buf);
863 }
864 
865 /*
866  * show_affected_cpus - show the CPUs affected by each transition
867  */
868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
869 {
870 	return cpufreq_show_cpus(policy->cpus, buf);
871 }
872 
873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
874 					const char *buf, size_t count)
875 {
876 	unsigned int freq = 0;
877 	unsigned int ret;
878 
879 	if (!policy->governor || !policy->governor->store_setspeed)
880 		return -EINVAL;
881 
882 	ret = sscanf(buf, "%u", &freq);
883 	if (ret != 1)
884 		return -EINVAL;
885 
886 	policy->governor->store_setspeed(policy, freq);
887 
888 	return count;
889 }
890 
891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
892 {
893 	if (!policy->governor || !policy->governor->show_setspeed)
894 		return sprintf(buf, "<unsupported>\n");
895 
896 	return policy->governor->show_setspeed(policy, buf);
897 }
898 
899 /*
900  * show_bios_limit - show the current cpufreq HW/BIOS limitation
901  */
902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
903 {
904 	unsigned int limit;
905 	int ret;
906 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
907 	if (!ret)
908 		return sprintf(buf, "%u\n", limit);
909 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
910 }
911 
912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
913 cpufreq_freq_attr_ro(cpuinfo_min_freq);
914 cpufreq_freq_attr_ro(cpuinfo_max_freq);
915 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
916 cpufreq_freq_attr_ro(scaling_available_governors);
917 cpufreq_freq_attr_ro(scaling_driver);
918 cpufreq_freq_attr_ro(scaling_cur_freq);
919 cpufreq_freq_attr_ro(bios_limit);
920 cpufreq_freq_attr_ro(related_cpus);
921 cpufreq_freq_attr_ro(affected_cpus);
922 cpufreq_freq_attr_rw(scaling_min_freq);
923 cpufreq_freq_attr_rw(scaling_max_freq);
924 cpufreq_freq_attr_rw(scaling_governor);
925 cpufreq_freq_attr_rw(scaling_setspeed);
926 
927 static struct attribute *default_attrs[] = {
928 	&cpuinfo_min_freq.attr,
929 	&cpuinfo_max_freq.attr,
930 	&cpuinfo_transition_latency.attr,
931 	&scaling_min_freq.attr,
932 	&scaling_max_freq.attr,
933 	&affected_cpus.attr,
934 	&related_cpus.attr,
935 	&scaling_governor.attr,
936 	&scaling_driver.attr,
937 	&scaling_available_governors.attr,
938 	&scaling_setspeed.attr,
939 	NULL
940 };
941 
942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
943 #define to_attr(a) container_of(a, struct freq_attr, attr)
944 
945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
946 {
947 	struct cpufreq_policy *policy = to_policy(kobj);
948 	struct freq_attr *fattr = to_attr(attr);
949 	ssize_t ret;
950 
951 	if (!fattr->show)
952 		return -EIO;
953 
954 	down_read(&policy->rwsem);
955 	ret = fattr->show(policy, buf);
956 	up_read(&policy->rwsem);
957 
958 	return ret;
959 }
960 
961 static ssize_t store(struct kobject *kobj, struct attribute *attr,
962 		     const char *buf, size_t count)
963 {
964 	struct cpufreq_policy *policy = to_policy(kobj);
965 	struct freq_attr *fattr = to_attr(attr);
966 	ssize_t ret = -EINVAL;
967 
968 	if (!fattr->store)
969 		return -EIO;
970 
971 	/*
972 	 * cpus_read_trylock() is used here to work around a circular lock
973 	 * dependency problem with respect to the cpufreq_register_driver().
974 	 */
975 	if (!cpus_read_trylock())
976 		return -EBUSY;
977 
978 	if (cpu_online(policy->cpu)) {
979 		down_write(&policy->rwsem);
980 		ret = fattr->store(policy, buf, count);
981 		up_write(&policy->rwsem);
982 	}
983 
984 	cpus_read_unlock();
985 
986 	return ret;
987 }
988 
989 static void cpufreq_sysfs_release(struct kobject *kobj)
990 {
991 	struct cpufreq_policy *policy = to_policy(kobj);
992 	pr_debug("last reference is dropped\n");
993 	complete(&policy->kobj_unregister);
994 }
995 
996 static const struct sysfs_ops sysfs_ops = {
997 	.show	= show,
998 	.store	= store,
999 };
1000 
1001 static struct kobj_type ktype_cpufreq = {
1002 	.sysfs_ops	= &sysfs_ops,
1003 	.default_attrs	= default_attrs,
1004 	.release	= cpufreq_sysfs_release,
1005 };
1006 
1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1008 {
1009 	struct device *dev = get_cpu_device(cpu);
1010 
1011 	if (unlikely(!dev))
1012 		return;
1013 
1014 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1015 		return;
1016 
1017 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1018 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1019 		dev_err(dev, "cpufreq symlink creation failed\n");
1020 }
1021 
1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1023 				   struct device *dev)
1024 {
1025 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1026 	sysfs_remove_link(&dev->kobj, "cpufreq");
1027 }
1028 
1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1030 {
1031 	struct freq_attr **drv_attr;
1032 	int ret = 0;
1033 
1034 	/* set up files for this cpu device */
1035 	drv_attr = cpufreq_driver->attr;
1036 	while (drv_attr && *drv_attr) {
1037 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1038 		if (ret)
1039 			return ret;
1040 		drv_attr++;
1041 	}
1042 	if (cpufreq_driver->get) {
1043 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1044 		if (ret)
1045 			return ret;
1046 	}
1047 
1048 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1049 	if (ret)
1050 		return ret;
1051 
1052 	if (cpufreq_driver->bios_limit) {
1053 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1054 		if (ret)
1055 			return ret;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1062 {
1063 	struct cpufreq_governor *gov = NULL;
1064 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1065 	int ret;
1066 
1067 	if (has_target()) {
1068 		/* Update policy governor to the one used before hotplug. */
1069 		gov = get_governor(policy->last_governor);
1070 		if (gov) {
1071 			pr_debug("Restoring governor %s for cpu %d\n",
1072 				 gov->name, policy->cpu);
1073 		} else {
1074 			gov = get_governor(default_governor);
1075 		}
1076 
1077 		if (!gov) {
1078 			gov = cpufreq_default_governor();
1079 			__module_get(gov->owner);
1080 		}
1081 
1082 	} else {
1083 
1084 		/* Use the default policy if there is no last_policy. */
1085 		if (policy->last_policy) {
1086 			pol = policy->last_policy;
1087 		} else {
1088 			pol = cpufreq_parse_policy(default_governor);
1089 			/*
1090 			 * In case the default governor is neither "performance"
1091 			 * nor "powersave", fall back to the initial policy
1092 			 * value set by the driver.
1093 			 */
1094 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1095 				pol = policy->policy;
1096 		}
1097 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1098 		    pol != CPUFREQ_POLICY_POWERSAVE)
1099 			return -ENODATA;
1100 	}
1101 
1102 	ret = cpufreq_set_policy(policy, gov, pol);
1103 	if (gov)
1104 		module_put(gov->owner);
1105 
1106 	return ret;
1107 }
1108 
1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1110 {
1111 	int ret = 0;
1112 
1113 	/* Has this CPU been taken care of already? */
1114 	if (cpumask_test_cpu(cpu, policy->cpus))
1115 		return 0;
1116 
1117 	down_write(&policy->rwsem);
1118 	if (has_target())
1119 		cpufreq_stop_governor(policy);
1120 
1121 	cpumask_set_cpu(cpu, policy->cpus);
1122 
1123 	if (has_target()) {
1124 		ret = cpufreq_start_governor(policy);
1125 		if (ret)
1126 			pr_err("%s: Failed to start governor\n", __func__);
1127 	}
1128 	up_write(&policy->rwsem);
1129 	return ret;
1130 }
1131 
1132 void refresh_frequency_limits(struct cpufreq_policy *policy)
1133 {
1134 	if (!policy_is_inactive(policy)) {
1135 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1136 
1137 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1138 	}
1139 }
1140 EXPORT_SYMBOL(refresh_frequency_limits);
1141 
1142 static void handle_update(struct work_struct *work)
1143 {
1144 	struct cpufreq_policy *policy =
1145 		container_of(work, struct cpufreq_policy, update);
1146 
1147 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1148 	down_write(&policy->rwsem);
1149 	refresh_frequency_limits(policy);
1150 	up_write(&policy->rwsem);
1151 }
1152 
1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1154 				void *data)
1155 {
1156 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1157 
1158 	schedule_work(&policy->update);
1159 	return 0;
1160 }
1161 
1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1163 				void *data)
1164 {
1165 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1166 
1167 	schedule_work(&policy->update);
1168 	return 0;
1169 }
1170 
1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1172 {
1173 	struct kobject *kobj;
1174 	struct completion *cmp;
1175 
1176 	down_write(&policy->rwsem);
1177 	cpufreq_stats_free_table(policy);
1178 	kobj = &policy->kobj;
1179 	cmp = &policy->kobj_unregister;
1180 	up_write(&policy->rwsem);
1181 	kobject_put(kobj);
1182 
1183 	/*
1184 	 * We need to make sure that the underlying kobj is
1185 	 * actually not referenced anymore by anybody before we
1186 	 * proceed with unloading.
1187 	 */
1188 	pr_debug("waiting for dropping of refcount\n");
1189 	wait_for_completion(cmp);
1190 	pr_debug("wait complete\n");
1191 }
1192 
1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1194 {
1195 	struct cpufreq_policy *policy;
1196 	struct device *dev = get_cpu_device(cpu);
1197 	int ret;
1198 
1199 	if (!dev)
1200 		return NULL;
1201 
1202 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1203 	if (!policy)
1204 		return NULL;
1205 
1206 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1207 		goto err_free_policy;
1208 
1209 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1210 		goto err_free_cpumask;
1211 
1212 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1213 		goto err_free_rcpumask;
1214 
1215 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1216 				   cpufreq_global_kobject, "policy%u", cpu);
1217 	if (ret) {
1218 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1219 		/*
1220 		 * The entire policy object will be freed below, but the extra
1221 		 * memory allocated for the kobject name needs to be freed by
1222 		 * releasing the kobject.
1223 		 */
1224 		kobject_put(&policy->kobj);
1225 		goto err_free_real_cpus;
1226 	}
1227 
1228 	freq_constraints_init(&policy->constraints);
1229 
1230 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1231 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1232 
1233 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1234 				    &policy->nb_min);
1235 	if (ret) {
1236 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1237 			ret, cpumask_pr_args(policy->cpus));
1238 		goto err_kobj_remove;
1239 	}
1240 
1241 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1242 				    &policy->nb_max);
1243 	if (ret) {
1244 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1245 			ret, cpumask_pr_args(policy->cpus));
1246 		goto err_min_qos_notifier;
1247 	}
1248 
1249 	INIT_LIST_HEAD(&policy->policy_list);
1250 	init_rwsem(&policy->rwsem);
1251 	spin_lock_init(&policy->transition_lock);
1252 	init_waitqueue_head(&policy->transition_wait);
1253 	init_completion(&policy->kobj_unregister);
1254 	INIT_WORK(&policy->update, handle_update);
1255 
1256 	policy->cpu = cpu;
1257 	return policy;
1258 
1259 err_min_qos_notifier:
1260 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1261 				 &policy->nb_min);
1262 err_kobj_remove:
1263 	cpufreq_policy_put_kobj(policy);
1264 err_free_real_cpus:
1265 	free_cpumask_var(policy->real_cpus);
1266 err_free_rcpumask:
1267 	free_cpumask_var(policy->related_cpus);
1268 err_free_cpumask:
1269 	free_cpumask_var(policy->cpus);
1270 err_free_policy:
1271 	kfree(policy);
1272 
1273 	return NULL;
1274 }
1275 
1276 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1277 {
1278 	unsigned long flags;
1279 	int cpu;
1280 
1281 	/* Remove policy from list */
1282 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1283 	list_del(&policy->policy_list);
1284 
1285 	for_each_cpu(cpu, policy->related_cpus)
1286 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1287 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1288 
1289 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1290 				 &policy->nb_max);
1291 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1292 				 &policy->nb_min);
1293 
1294 	/* Cancel any pending policy->update work before freeing the policy. */
1295 	cancel_work_sync(&policy->update);
1296 
1297 	if (policy->max_freq_req) {
1298 		/*
1299 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1300 		 * successfully adding max_freq_req request.
1301 		 */
1302 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1303 					     CPUFREQ_REMOVE_POLICY, policy);
1304 		freq_qos_remove_request(policy->max_freq_req);
1305 	}
1306 
1307 	freq_qos_remove_request(policy->min_freq_req);
1308 	kfree(policy->min_freq_req);
1309 
1310 	cpufreq_policy_put_kobj(policy);
1311 	free_cpumask_var(policy->real_cpus);
1312 	free_cpumask_var(policy->related_cpus);
1313 	free_cpumask_var(policy->cpus);
1314 	kfree(policy);
1315 }
1316 
1317 static int cpufreq_online(unsigned int cpu)
1318 {
1319 	struct cpufreq_policy *policy;
1320 	bool new_policy;
1321 	unsigned long flags;
1322 	unsigned int j;
1323 	int ret;
1324 
1325 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1326 
1327 	/* Check if this CPU already has a policy to manage it */
1328 	policy = per_cpu(cpufreq_cpu_data, cpu);
1329 	if (policy) {
1330 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1331 		if (!policy_is_inactive(policy))
1332 			return cpufreq_add_policy_cpu(policy, cpu);
1333 
1334 		/* This is the only online CPU for the policy.  Start over. */
1335 		new_policy = false;
1336 		down_write(&policy->rwsem);
1337 		policy->cpu = cpu;
1338 		policy->governor = NULL;
1339 		up_write(&policy->rwsem);
1340 	} else {
1341 		new_policy = true;
1342 		policy = cpufreq_policy_alloc(cpu);
1343 		if (!policy)
1344 			return -ENOMEM;
1345 	}
1346 
1347 	if (!new_policy && cpufreq_driver->online) {
1348 		ret = cpufreq_driver->online(policy);
1349 		if (ret) {
1350 			pr_debug("%s: %d: initialization failed\n", __func__,
1351 				 __LINE__);
1352 			goto out_exit_policy;
1353 		}
1354 
1355 		/* Recover policy->cpus using related_cpus */
1356 		cpumask_copy(policy->cpus, policy->related_cpus);
1357 	} else {
1358 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1359 
1360 		/*
1361 		 * Call driver. From then on the cpufreq must be able
1362 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1363 		 */
1364 		ret = cpufreq_driver->init(policy);
1365 		if (ret) {
1366 			pr_debug("%s: %d: initialization failed\n", __func__,
1367 				 __LINE__);
1368 			goto out_free_policy;
1369 		}
1370 
1371 		ret = cpufreq_table_validate_and_sort(policy);
1372 		if (ret)
1373 			goto out_exit_policy;
1374 
1375 		/* related_cpus should at least include policy->cpus. */
1376 		cpumask_copy(policy->related_cpus, policy->cpus);
1377 	}
1378 
1379 	down_write(&policy->rwsem);
1380 	/*
1381 	 * affected cpus must always be the one, which are online. We aren't
1382 	 * managing offline cpus here.
1383 	 */
1384 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1385 
1386 	if (new_policy) {
1387 		for_each_cpu(j, policy->related_cpus) {
1388 			per_cpu(cpufreq_cpu_data, j) = policy;
1389 			add_cpu_dev_symlink(policy, j);
1390 		}
1391 
1392 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1393 					       GFP_KERNEL);
1394 		if (!policy->min_freq_req)
1395 			goto out_destroy_policy;
1396 
1397 		ret = freq_qos_add_request(&policy->constraints,
1398 					   policy->min_freq_req, FREQ_QOS_MIN,
1399 					   policy->min);
1400 		if (ret < 0) {
1401 			/*
1402 			 * So we don't call freq_qos_remove_request() for an
1403 			 * uninitialized request.
1404 			 */
1405 			kfree(policy->min_freq_req);
1406 			policy->min_freq_req = NULL;
1407 			goto out_destroy_policy;
1408 		}
1409 
1410 		/*
1411 		 * This must be initialized right here to avoid calling
1412 		 * freq_qos_remove_request() on uninitialized request in case
1413 		 * of errors.
1414 		 */
1415 		policy->max_freq_req = policy->min_freq_req + 1;
1416 
1417 		ret = freq_qos_add_request(&policy->constraints,
1418 					   policy->max_freq_req, FREQ_QOS_MAX,
1419 					   policy->max);
1420 		if (ret < 0) {
1421 			policy->max_freq_req = NULL;
1422 			goto out_destroy_policy;
1423 		}
1424 
1425 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1426 				CPUFREQ_CREATE_POLICY, policy);
1427 	}
1428 
1429 	if (cpufreq_driver->get && has_target()) {
1430 		policy->cur = cpufreq_driver->get(policy->cpu);
1431 		if (!policy->cur) {
1432 			pr_err("%s: ->get() failed\n", __func__);
1433 			goto out_destroy_policy;
1434 		}
1435 	}
1436 
1437 	/*
1438 	 * Sometimes boot loaders set CPU frequency to a value outside of
1439 	 * frequency table present with cpufreq core. In such cases CPU might be
1440 	 * unstable if it has to run on that frequency for long duration of time
1441 	 * and so its better to set it to a frequency which is specified in
1442 	 * freq-table. This also makes cpufreq stats inconsistent as
1443 	 * cpufreq-stats would fail to register because current frequency of CPU
1444 	 * isn't found in freq-table.
1445 	 *
1446 	 * Because we don't want this change to effect boot process badly, we go
1447 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1448 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1449 	 * is initialized to zero).
1450 	 *
1451 	 * We are passing target-freq as "policy->cur - 1" otherwise
1452 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1453 	 * equal to target-freq.
1454 	 */
1455 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1456 	    && has_target()) {
1457 		unsigned int old_freq = policy->cur;
1458 
1459 		/* Are we running at unknown frequency ? */
1460 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1461 		if (ret == -EINVAL) {
1462 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1463 						      CPUFREQ_RELATION_L);
1464 
1465 			/*
1466 			 * Reaching here after boot in a few seconds may not
1467 			 * mean that system will remain stable at "unknown"
1468 			 * frequency for longer duration. Hence, a BUG_ON().
1469 			 */
1470 			BUG_ON(ret);
1471 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1472 				__func__, policy->cpu, old_freq, policy->cur);
1473 		}
1474 	}
1475 
1476 	if (new_policy) {
1477 		ret = cpufreq_add_dev_interface(policy);
1478 		if (ret)
1479 			goto out_destroy_policy;
1480 
1481 		cpufreq_stats_create_table(policy);
1482 
1483 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1484 		list_add(&policy->policy_list, &cpufreq_policy_list);
1485 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1486 	}
1487 
1488 	ret = cpufreq_init_policy(policy);
1489 	if (ret) {
1490 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1491 		       __func__, cpu, ret);
1492 		goto out_destroy_policy;
1493 	}
1494 
1495 	up_write(&policy->rwsem);
1496 
1497 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1498 
1499 	/* Callback for handling stuff after policy is ready */
1500 	if (cpufreq_driver->ready)
1501 		cpufreq_driver->ready(policy);
1502 
1503 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1504 		policy->cdev = of_cpufreq_cooling_register(policy);
1505 
1506 	pr_debug("initialization complete\n");
1507 
1508 	return 0;
1509 
1510 out_destroy_policy:
1511 	for_each_cpu(j, policy->real_cpus)
1512 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1513 
1514 	up_write(&policy->rwsem);
1515 
1516 out_exit_policy:
1517 	if (cpufreq_driver->exit)
1518 		cpufreq_driver->exit(policy);
1519 
1520 out_free_policy:
1521 	cpufreq_policy_free(policy);
1522 	return ret;
1523 }
1524 
1525 /**
1526  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1527  * @dev: CPU device.
1528  * @sif: Subsystem interface structure pointer (not used)
1529  */
1530 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1531 {
1532 	struct cpufreq_policy *policy;
1533 	unsigned cpu = dev->id;
1534 	int ret;
1535 
1536 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1537 
1538 	if (cpu_online(cpu)) {
1539 		ret = cpufreq_online(cpu);
1540 		if (ret)
1541 			return ret;
1542 	}
1543 
1544 	/* Create sysfs link on CPU registration */
1545 	policy = per_cpu(cpufreq_cpu_data, cpu);
1546 	if (policy)
1547 		add_cpu_dev_symlink(policy, cpu);
1548 
1549 	return 0;
1550 }
1551 
1552 static int cpufreq_offline(unsigned int cpu)
1553 {
1554 	struct cpufreq_policy *policy;
1555 	int ret;
1556 
1557 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1558 
1559 	policy = cpufreq_cpu_get_raw(cpu);
1560 	if (!policy) {
1561 		pr_debug("%s: No cpu_data found\n", __func__);
1562 		return 0;
1563 	}
1564 
1565 	down_write(&policy->rwsem);
1566 	if (has_target())
1567 		cpufreq_stop_governor(policy);
1568 
1569 	cpumask_clear_cpu(cpu, policy->cpus);
1570 
1571 	if (policy_is_inactive(policy)) {
1572 		if (has_target())
1573 			strncpy(policy->last_governor, policy->governor->name,
1574 				CPUFREQ_NAME_LEN);
1575 		else
1576 			policy->last_policy = policy->policy;
1577 	} else if (cpu == policy->cpu) {
1578 		/* Nominate new CPU */
1579 		policy->cpu = cpumask_any(policy->cpus);
1580 	}
1581 
1582 	/* Start governor again for active policy */
1583 	if (!policy_is_inactive(policy)) {
1584 		if (has_target()) {
1585 			ret = cpufreq_start_governor(policy);
1586 			if (ret)
1587 				pr_err("%s: Failed to start governor\n", __func__);
1588 		}
1589 
1590 		goto unlock;
1591 	}
1592 
1593 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1594 		cpufreq_cooling_unregister(policy->cdev);
1595 		policy->cdev = NULL;
1596 	}
1597 
1598 	if (cpufreq_driver->stop_cpu)
1599 		cpufreq_driver->stop_cpu(policy);
1600 
1601 	if (has_target())
1602 		cpufreq_exit_governor(policy);
1603 
1604 	/*
1605 	 * Perform the ->offline() during light-weight tear-down, as
1606 	 * that allows fast recovery when the CPU comes back.
1607 	 */
1608 	if (cpufreq_driver->offline) {
1609 		cpufreq_driver->offline(policy);
1610 	} else if (cpufreq_driver->exit) {
1611 		cpufreq_driver->exit(policy);
1612 		policy->freq_table = NULL;
1613 	}
1614 
1615 unlock:
1616 	up_write(&policy->rwsem);
1617 	return 0;
1618 }
1619 
1620 /*
1621  * cpufreq_remove_dev - remove a CPU device
1622  *
1623  * Removes the cpufreq interface for a CPU device.
1624  */
1625 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1626 {
1627 	unsigned int cpu = dev->id;
1628 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1629 
1630 	if (!policy)
1631 		return;
1632 
1633 	if (cpu_online(cpu))
1634 		cpufreq_offline(cpu);
1635 
1636 	cpumask_clear_cpu(cpu, policy->real_cpus);
1637 	remove_cpu_dev_symlink(policy, dev);
1638 
1639 	if (cpumask_empty(policy->real_cpus)) {
1640 		/* We did light-weight exit earlier, do full tear down now */
1641 		if (cpufreq_driver->offline)
1642 			cpufreq_driver->exit(policy);
1643 
1644 		cpufreq_policy_free(policy);
1645 	}
1646 }
1647 
1648 /**
1649  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1650  *	in deep trouble.
1651  *	@policy: policy managing CPUs
1652  *	@new_freq: CPU frequency the CPU actually runs at
1653  *
1654  *	We adjust to current frequency first, and need to clean up later.
1655  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1656  */
1657 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1658 				unsigned int new_freq)
1659 {
1660 	struct cpufreq_freqs freqs;
1661 
1662 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1663 		 policy->cur, new_freq);
1664 
1665 	freqs.old = policy->cur;
1666 	freqs.new = new_freq;
1667 
1668 	cpufreq_freq_transition_begin(policy, &freqs);
1669 	cpufreq_freq_transition_end(policy, &freqs, 0);
1670 }
1671 
1672 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1673 {
1674 	unsigned int new_freq;
1675 
1676 	new_freq = cpufreq_driver->get(policy->cpu);
1677 	if (!new_freq)
1678 		return 0;
1679 
1680 	/*
1681 	 * If fast frequency switching is used with the given policy, the check
1682 	 * against policy->cur is pointless, so skip it in that case.
1683 	 */
1684 	if (policy->fast_switch_enabled || !has_target())
1685 		return new_freq;
1686 
1687 	if (policy->cur != new_freq) {
1688 		cpufreq_out_of_sync(policy, new_freq);
1689 		if (update)
1690 			schedule_work(&policy->update);
1691 	}
1692 
1693 	return new_freq;
1694 }
1695 
1696 /**
1697  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1698  * @cpu: CPU number
1699  *
1700  * This is the last known freq, without actually getting it from the driver.
1701  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1702  */
1703 unsigned int cpufreq_quick_get(unsigned int cpu)
1704 {
1705 	struct cpufreq_policy *policy;
1706 	unsigned int ret_freq = 0;
1707 	unsigned long flags;
1708 
1709 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1710 
1711 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1712 		ret_freq = cpufreq_driver->get(cpu);
1713 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1714 		return ret_freq;
1715 	}
1716 
1717 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1718 
1719 	policy = cpufreq_cpu_get(cpu);
1720 	if (policy) {
1721 		ret_freq = policy->cur;
1722 		cpufreq_cpu_put(policy);
1723 	}
1724 
1725 	return ret_freq;
1726 }
1727 EXPORT_SYMBOL(cpufreq_quick_get);
1728 
1729 /**
1730  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1731  * @cpu: CPU number
1732  *
1733  * Just return the max possible frequency for a given CPU.
1734  */
1735 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1736 {
1737 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1738 	unsigned int ret_freq = 0;
1739 
1740 	if (policy) {
1741 		ret_freq = policy->max;
1742 		cpufreq_cpu_put(policy);
1743 	}
1744 
1745 	return ret_freq;
1746 }
1747 EXPORT_SYMBOL(cpufreq_quick_get_max);
1748 
1749 /**
1750  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1751  * @cpu: CPU number
1752  *
1753  * The default return value is the max_freq field of cpuinfo.
1754  */
1755 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1756 {
1757 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1758 	unsigned int ret_freq = 0;
1759 
1760 	if (policy) {
1761 		ret_freq = policy->cpuinfo.max_freq;
1762 		cpufreq_cpu_put(policy);
1763 	}
1764 
1765 	return ret_freq;
1766 }
1767 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1768 
1769 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1770 {
1771 	if (unlikely(policy_is_inactive(policy)))
1772 		return 0;
1773 
1774 	return cpufreq_verify_current_freq(policy, true);
1775 }
1776 
1777 /**
1778  * cpufreq_get - get the current CPU frequency (in kHz)
1779  * @cpu: CPU number
1780  *
1781  * Get the CPU current (static) CPU frequency
1782  */
1783 unsigned int cpufreq_get(unsigned int cpu)
1784 {
1785 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1786 	unsigned int ret_freq = 0;
1787 
1788 	if (policy) {
1789 		down_read(&policy->rwsem);
1790 		if (cpufreq_driver->get)
1791 			ret_freq = __cpufreq_get(policy);
1792 		up_read(&policy->rwsem);
1793 
1794 		cpufreq_cpu_put(policy);
1795 	}
1796 
1797 	return ret_freq;
1798 }
1799 EXPORT_SYMBOL(cpufreq_get);
1800 
1801 static struct subsys_interface cpufreq_interface = {
1802 	.name		= "cpufreq",
1803 	.subsys		= &cpu_subsys,
1804 	.add_dev	= cpufreq_add_dev,
1805 	.remove_dev	= cpufreq_remove_dev,
1806 };
1807 
1808 /*
1809  * In case platform wants some specific frequency to be configured
1810  * during suspend..
1811  */
1812 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1813 {
1814 	int ret;
1815 
1816 	if (!policy->suspend_freq) {
1817 		pr_debug("%s: suspend_freq not defined\n", __func__);
1818 		return 0;
1819 	}
1820 
1821 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1822 			policy->suspend_freq);
1823 
1824 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1825 			CPUFREQ_RELATION_H);
1826 	if (ret)
1827 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1828 				__func__, policy->suspend_freq, ret);
1829 
1830 	return ret;
1831 }
1832 EXPORT_SYMBOL(cpufreq_generic_suspend);
1833 
1834 /**
1835  * cpufreq_suspend() - Suspend CPUFreq governors
1836  *
1837  * Called during system wide Suspend/Hibernate cycles for suspending governors
1838  * as some platforms can't change frequency after this point in suspend cycle.
1839  * Because some of the devices (like: i2c, regulators, etc) they use for
1840  * changing frequency are suspended quickly after this point.
1841  */
1842 void cpufreq_suspend(void)
1843 {
1844 	struct cpufreq_policy *policy;
1845 
1846 	if (!cpufreq_driver)
1847 		return;
1848 
1849 	if (!has_target() && !cpufreq_driver->suspend)
1850 		goto suspend;
1851 
1852 	pr_debug("%s: Suspending Governors\n", __func__);
1853 
1854 	for_each_active_policy(policy) {
1855 		if (has_target()) {
1856 			down_write(&policy->rwsem);
1857 			cpufreq_stop_governor(policy);
1858 			up_write(&policy->rwsem);
1859 		}
1860 
1861 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1862 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1863 				cpufreq_driver->name);
1864 	}
1865 
1866 suspend:
1867 	cpufreq_suspended = true;
1868 }
1869 
1870 /**
1871  * cpufreq_resume() - Resume CPUFreq governors
1872  *
1873  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1874  * are suspended with cpufreq_suspend().
1875  */
1876 void cpufreq_resume(void)
1877 {
1878 	struct cpufreq_policy *policy;
1879 	int ret;
1880 
1881 	if (!cpufreq_driver)
1882 		return;
1883 
1884 	if (unlikely(!cpufreq_suspended))
1885 		return;
1886 
1887 	cpufreq_suspended = false;
1888 
1889 	if (!has_target() && !cpufreq_driver->resume)
1890 		return;
1891 
1892 	pr_debug("%s: Resuming Governors\n", __func__);
1893 
1894 	for_each_active_policy(policy) {
1895 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1896 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1897 				policy);
1898 		} else if (has_target()) {
1899 			down_write(&policy->rwsem);
1900 			ret = cpufreq_start_governor(policy);
1901 			up_write(&policy->rwsem);
1902 
1903 			if (ret)
1904 				pr_err("%s: Failed to start governor for policy: %p\n",
1905 				       __func__, policy);
1906 		}
1907 	}
1908 }
1909 
1910 /**
1911  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1912  * @flags: Flags to test against the current cpufreq driver's flags.
1913  *
1914  * Assumes that the driver is there, so callers must ensure that this is the
1915  * case.
1916  */
1917 bool cpufreq_driver_test_flags(u16 flags)
1918 {
1919 	return !!(cpufreq_driver->flags & flags);
1920 }
1921 
1922 /**
1923  *	cpufreq_get_current_driver - return current driver's name
1924  *
1925  *	Return the name string of the currently loaded cpufreq driver
1926  *	or NULL, if none.
1927  */
1928 const char *cpufreq_get_current_driver(void)
1929 {
1930 	if (cpufreq_driver)
1931 		return cpufreq_driver->name;
1932 
1933 	return NULL;
1934 }
1935 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1936 
1937 /**
1938  *	cpufreq_get_driver_data - return current driver data
1939  *
1940  *	Return the private data of the currently loaded cpufreq
1941  *	driver, or NULL if no cpufreq driver is loaded.
1942  */
1943 void *cpufreq_get_driver_data(void)
1944 {
1945 	if (cpufreq_driver)
1946 		return cpufreq_driver->driver_data;
1947 
1948 	return NULL;
1949 }
1950 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1951 
1952 /*********************************************************************
1953  *                     NOTIFIER LISTS INTERFACE                      *
1954  *********************************************************************/
1955 
1956 /**
1957  *	cpufreq_register_notifier - register a driver with cpufreq
1958  *	@nb: notifier function to register
1959  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1960  *
1961  *	Add a driver to one of two lists: either a list of drivers that
1962  *      are notified about clock rate changes (once before and once after
1963  *      the transition), or a list of drivers that are notified about
1964  *      changes in cpufreq policy.
1965  *
1966  *	This function may sleep, and has the same return conditions as
1967  *	blocking_notifier_chain_register.
1968  */
1969 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1970 {
1971 	int ret;
1972 
1973 	if (cpufreq_disabled())
1974 		return -EINVAL;
1975 
1976 	switch (list) {
1977 	case CPUFREQ_TRANSITION_NOTIFIER:
1978 		mutex_lock(&cpufreq_fast_switch_lock);
1979 
1980 		if (cpufreq_fast_switch_count > 0) {
1981 			mutex_unlock(&cpufreq_fast_switch_lock);
1982 			return -EBUSY;
1983 		}
1984 		ret = srcu_notifier_chain_register(
1985 				&cpufreq_transition_notifier_list, nb);
1986 		if (!ret)
1987 			cpufreq_fast_switch_count--;
1988 
1989 		mutex_unlock(&cpufreq_fast_switch_lock);
1990 		break;
1991 	case CPUFREQ_POLICY_NOTIFIER:
1992 		ret = blocking_notifier_chain_register(
1993 				&cpufreq_policy_notifier_list, nb);
1994 		break;
1995 	default:
1996 		ret = -EINVAL;
1997 	}
1998 
1999 	return ret;
2000 }
2001 EXPORT_SYMBOL(cpufreq_register_notifier);
2002 
2003 /**
2004  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
2005  *	@nb: notifier block to be unregistered
2006  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
2007  *
2008  *	Remove a driver from the CPU frequency notifier list.
2009  *
2010  *	This function may sleep, and has the same return conditions as
2011  *	blocking_notifier_chain_unregister.
2012  */
2013 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2014 {
2015 	int ret;
2016 
2017 	if (cpufreq_disabled())
2018 		return -EINVAL;
2019 
2020 	switch (list) {
2021 	case CPUFREQ_TRANSITION_NOTIFIER:
2022 		mutex_lock(&cpufreq_fast_switch_lock);
2023 
2024 		ret = srcu_notifier_chain_unregister(
2025 				&cpufreq_transition_notifier_list, nb);
2026 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2027 			cpufreq_fast_switch_count++;
2028 
2029 		mutex_unlock(&cpufreq_fast_switch_lock);
2030 		break;
2031 	case CPUFREQ_POLICY_NOTIFIER:
2032 		ret = blocking_notifier_chain_unregister(
2033 				&cpufreq_policy_notifier_list, nb);
2034 		break;
2035 	default:
2036 		ret = -EINVAL;
2037 	}
2038 
2039 	return ret;
2040 }
2041 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2042 
2043 
2044 /*********************************************************************
2045  *                              GOVERNORS                            *
2046  *********************************************************************/
2047 
2048 /**
2049  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2050  * @policy: cpufreq policy to switch the frequency for.
2051  * @target_freq: New frequency to set (may be approximate).
2052  *
2053  * Carry out a fast frequency switch without sleeping.
2054  *
2055  * The driver's ->fast_switch() callback invoked by this function must be
2056  * suitable for being called from within RCU-sched read-side critical sections
2057  * and it is expected to select the minimum available frequency greater than or
2058  * equal to @target_freq (CPUFREQ_RELATION_L).
2059  *
2060  * This function must not be called if policy->fast_switch_enabled is unset.
2061  *
2062  * Governors calling this function must guarantee that it will never be invoked
2063  * twice in parallel for the same policy and that it will never be called in
2064  * parallel with either ->target() or ->target_index() for the same policy.
2065  *
2066  * Returns the actual frequency set for the CPU.
2067  *
2068  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2069  * error condition, the hardware configuration must be preserved.
2070  */
2071 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2072 					unsigned int target_freq)
2073 {
2074 	unsigned int freq;
2075 	int cpu;
2076 
2077 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2078 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2079 
2080 	if (!freq)
2081 		return 0;
2082 
2083 	policy->cur = freq;
2084 	arch_set_freq_scale(policy->related_cpus, freq,
2085 			    policy->cpuinfo.max_freq);
2086 	cpufreq_stats_record_transition(policy, freq);
2087 
2088 	if (trace_cpu_frequency_enabled()) {
2089 		for_each_cpu(cpu, policy->cpus)
2090 			trace_cpu_frequency(freq, cpu);
2091 	}
2092 
2093 	return freq;
2094 }
2095 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2096 
2097 /* Must set freqs->new to intermediate frequency */
2098 static int __target_intermediate(struct cpufreq_policy *policy,
2099 				 struct cpufreq_freqs *freqs, int index)
2100 {
2101 	int ret;
2102 
2103 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2104 
2105 	/* We don't need to switch to intermediate freq */
2106 	if (!freqs->new)
2107 		return 0;
2108 
2109 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2110 		 __func__, policy->cpu, freqs->old, freqs->new);
2111 
2112 	cpufreq_freq_transition_begin(policy, freqs);
2113 	ret = cpufreq_driver->target_intermediate(policy, index);
2114 	cpufreq_freq_transition_end(policy, freqs, ret);
2115 
2116 	if (ret)
2117 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2118 		       __func__, ret);
2119 
2120 	return ret;
2121 }
2122 
2123 static int __target_index(struct cpufreq_policy *policy, int index)
2124 {
2125 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2126 	unsigned int intermediate_freq = 0;
2127 	unsigned int newfreq = policy->freq_table[index].frequency;
2128 	int retval = -EINVAL;
2129 	bool notify;
2130 
2131 	if (newfreq == policy->cur)
2132 		return 0;
2133 
2134 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2135 	if (notify) {
2136 		/* Handle switching to intermediate frequency */
2137 		if (cpufreq_driver->get_intermediate) {
2138 			retval = __target_intermediate(policy, &freqs, index);
2139 			if (retval)
2140 				return retval;
2141 
2142 			intermediate_freq = freqs.new;
2143 			/* Set old freq to intermediate */
2144 			if (intermediate_freq)
2145 				freqs.old = freqs.new;
2146 		}
2147 
2148 		freqs.new = newfreq;
2149 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2150 			 __func__, policy->cpu, freqs.old, freqs.new);
2151 
2152 		cpufreq_freq_transition_begin(policy, &freqs);
2153 	}
2154 
2155 	retval = cpufreq_driver->target_index(policy, index);
2156 	if (retval)
2157 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2158 		       retval);
2159 
2160 	if (notify) {
2161 		cpufreq_freq_transition_end(policy, &freqs, retval);
2162 
2163 		/*
2164 		 * Failed after setting to intermediate freq? Driver should have
2165 		 * reverted back to initial frequency and so should we. Check
2166 		 * here for intermediate_freq instead of get_intermediate, in
2167 		 * case we haven't switched to intermediate freq at all.
2168 		 */
2169 		if (unlikely(retval && intermediate_freq)) {
2170 			freqs.old = intermediate_freq;
2171 			freqs.new = policy->restore_freq;
2172 			cpufreq_freq_transition_begin(policy, &freqs);
2173 			cpufreq_freq_transition_end(policy, &freqs, 0);
2174 		}
2175 	}
2176 
2177 	return retval;
2178 }
2179 
2180 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2181 			    unsigned int target_freq,
2182 			    unsigned int relation)
2183 {
2184 	unsigned int old_target_freq = target_freq;
2185 	int index;
2186 
2187 	if (cpufreq_disabled())
2188 		return -ENODEV;
2189 
2190 	/* Make sure that target_freq is within supported range */
2191 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2192 
2193 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2194 		 policy->cpu, target_freq, relation, old_target_freq);
2195 
2196 	/*
2197 	 * This might look like a redundant call as we are checking it again
2198 	 * after finding index. But it is left intentionally for cases where
2199 	 * exactly same freq is called again and so we can save on few function
2200 	 * calls.
2201 	 */
2202 	if (target_freq == policy->cur &&
2203 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2204 		return 0;
2205 
2206 	/* Save last value to restore later on errors */
2207 	policy->restore_freq = policy->cur;
2208 
2209 	if (cpufreq_driver->target)
2210 		return cpufreq_driver->target(policy, target_freq, relation);
2211 
2212 	if (!cpufreq_driver->target_index)
2213 		return -EINVAL;
2214 
2215 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2216 
2217 	return __target_index(policy, index);
2218 }
2219 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2220 
2221 int cpufreq_driver_target(struct cpufreq_policy *policy,
2222 			  unsigned int target_freq,
2223 			  unsigned int relation)
2224 {
2225 	int ret;
2226 
2227 	down_write(&policy->rwsem);
2228 
2229 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2230 
2231 	up_write(&policy->rwsem);
2232 
2233 	return ret;
2234 }
2235 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2236 
2237 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2238 {
2239 	return NULL;
2240 }
2241 
2242 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2243 {
2244 	int ret;
2245 
2246 	/* Don't start any governor operations if we are entering suspend */
2247 	if (cpufreq_suspended)
2248 		return 0;
2249 	/*
2250 	 * Governor might not be initiated here if ACPI _PPC changed
2251 	 * notification happened, so check it.
2252 	 */
2253 	if (!policy->governor)
2254 		return -EINVAL;
2255 
2256 	/* Platform doesn't want dynamic frequency switching ? */
2257 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2258 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2259 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2260 
2261 		if (gov) {
2262 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2263 				policy->governor->name, gov->name);
2264 			policy->governor = gov;
2265 		} else {
2266 			return -EINVAL;
2267 		}
2268 	}
2269 
2270 	if (!try_module_get(policy->governor->owner))
2271 		return -EINVAL;
2272 
2273 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2274 
2275 	if (policy->governor->init) {
2276 		ret = policy->governor->init(policy);
2277 		if (ret) {
2278 			module_put(policy->governor->owner);
2279 			return ret;
2280 		}
2281 	}
2282 
2283 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2284 
2285 	return 0;
2286 }
2287 
2288 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2289 {
2290 	if (cpufreq_suspended || !policy->governor)
2291 		return;
2292 
2293 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2294 
2295 	if (policy->governor->exit)
2296 		policy->governor->exit(policy);
2297 
2298 	module_put(policy->governor->owner);
2299 }
2300 
2301 int cpufreq_start_governor(struct cpufreq_policy *policy)
2302 {
2303 	int ret;
2304 
2305 	if (cpufreq_suspended)
2306 		return 0;
2307 
2308 	if (!policy->governor)
2309 		return -EINVAL;
2310 
2311 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2312 
2313 	if (cpufreq_driver->get)
2314 		cpufreq_verify_current_freq(policy, false);
2315 
2316 	if (policy->governor->start) {
2317 		ret = policy->governor->start(policy);
2318 		if (ret)
2319 			return ret;
2320 	}
2321 
2322 	if (policy->governor->limits)
2323 		policy->governor->limits(policy);
2324 
2325 	return 0;
2326 }
2327 
2328 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2329 {
2330 	if (cpufreq_suspended || !policy->governor)
2331 		return;
2332 
2333 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2334 
2335 	if (policy->governor->stop)
2336 		policy->governor->stop(policy);
2337 }
2338 
2339 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2340 {
2341 	if (cpufreq_suspended || !policy->governor)
2342 		return;
2343 
2344 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2345 
2346 	if (policy->governor->limits)
2347 		policy->governor->limits(policy);
2348 }
2349 
2350 int cpufreq_register_governor(struct cpufreq_governor *governor)
2351 {
2352 	int err;
2353 
2354 	if (!governor)
2355 		return -EINVAL;
2356 
2357 	if (cpufreq_disabled())
2358 		return -ENODEV;
2359 
2360 	mutex_lock(&cpufreq_governor_mutex);
2361 
2362 	err = -EBUSY;
2363 	if (!find_governor(governor->name)) {
2364 		err = 0;
2365 		list_add(&governor->governor_list, &cpufreq_governor_list);
2366 	}
2367 
2368 	mutex_unlock(&cpufreq_governor_mutex);
2369 	return err;
2370 }
2371 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2372 
2373 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2374 {
2375 	struct cpufreq_policy *policy;
2376 	unsigned long flags;
2377 
2378 	if (!governor)
2379 		return;
2380 
2381 	if (cpufreq_disabled())
2382 		return;
2383 
2384 	/* clear last_governor for all inactive policies */
2385 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2386 	for_each_inactive_policy(policy) {
2387 		if (!strcmp(policy->last_governor, governor->name)) {
2388 			policy->governor = NULL;
2389 			strcpy(policy->last_governor, "\0");
2390 		}
2391 	}
2392 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2393 
2394 	mutex_lock(&cpufreq_governor_mutex);
2395 	list_del(&governor->governor_list);
2396 	mutex_unlock(&cpufreq_governor_mutex);
2397 }
2398 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2399 
2400 
2401 /*********************************************************************
2402  *                          POLICY INTERFACE                         *
2403  *********************************************************************/
2404 
2405 /**
2406  * cpufreq_get_policy - get the current cpufreq_policy
2407  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2408  *	is written
2409  * @cpu: CPU to find the policy for
2410  *
2411  * Reads the current cpufreq policy.
2412  */
2413 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2414 {
2415 	struct cpufreq_policy *cpu_policy;
2416 	if (!policy)
2417 		return -EINVAL;
2418 
2419 	cpu_policy = cpufreq_cpu_get(cpu);
2420 	if (!cpu_policy)
2421 		return -EINVAL;
2422 
2423 	memcpy(policy, cpu_policy, sizeof(*policy));
2424 
2425 	cpufreq_cpu_put(cpu_policy);
2426 	return 0;
2427 }
2428 EXPORT_SYMBOL(cpufreq_get_policy);
2429 
2430 /**
2431  * cpufreq_set_policy - Modify cpufreq policy parameters.
2432  * @policy: Policy object to modify.
2433  * @new_gov: Policy governor pointer.
2434  * @new_pol: Policy value (for drivers with built-in governors).
2435  *
2436  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2437  * limits to be set for the policy, update @policy with the verified limits
2438  * values and either invoke the driver's ->setpolicy() callback (if present) or
2439  * carry out a governor update for @policy.  That is, run the current governor's
2440  * ->limits() callback (if @new_gov points to the same object as the one in
2441  * @policy) or replace the governor for @policy with @new_gov.
2442  *
2443  * The cpuinfo part of @policy is not updated by this function.
2444  */
2445 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2446 			      struct cpufreq_governor *new_gov,
2447 			      unsigned int new_pol)
2448 {
2449 	struct cpufreq_policy_data new_data;
2450 	struct cpufreq_governor *old_gov;
2451 	int ret;
2452 
2453 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2454 	new_data.freq_table = policy->freq_table;
2455 	new_data.cpu = policy->cpu;
2456 	/*
2457 	 * PM QoS framework collects all the requests from users and provide us
2458 	 * the final aggregated value here.
2459 	 */
2460 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2461 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2462 
2463 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2464 		 new_data.cpu, new_data.min, new_data.max);
2465 
2466 	/*
2467 	 * Verify that the CPU speed can be set within these limits and make sure
2468 	 * that min <= max.
2469 	 */
2470 	ret = cpufreq_driver->verify(&new_data);
2471 	if (ret)
2472 		return ret;
2473 
2474 	policy->min = new_data.min;
2475 	policy->max = new_data.max;
2476 	trace_cpu_frequency_limits(policy);
2477 
2478 	policy->cached_target_freq = UINT_MAX;
2479 
2480 	pr_debug("new min and max freqs are %u - %u kHz\n",
2481 		 policy->min, policy->max);
2482 
2483 	if (cpufreq_driver->setpolicy) {
2484 		policy->policy = new_pol;
2485 		pr_debug("setting range\n");
2486 		return cpufreq_driver->setpolicy(policy);
2487 	}
2488 
2489 	if (new_gov == policy->governor) {
2490 		pr_debug("governor limits update\n");
2491 		cpufreq_governor_limits(policy);
2492 		return 0;
2493 	}
2494 
2495 	pr_debug("governor switch\n");
2496 
2497 	/* save old, working values */
2498 	old_gov = policy->governor;
2499 	/* end old governor */
2500 	if (old_gov) {
2501 		cpufreq_stop_governor(policy);
2502 		cpufreq_exit_governor(policy);
2503 	}
2504 
2505 	/* start new governor */
2506 	policy->governor = new_gov;
2507 	ret = cpufreq_init_governor(policy);
2508 	if (!ret) {
2509 		ret = cpufreq_start_governor(policy);
2510 		if (!ret) {
2511 			pr_debug("governor change\n");
2512 			sched_cpufreq_governor_change(policy, old_gov);
2513 			return 0;
2514 		}
2515 		cpufreq_exit_governor(policy);
2516 	}
2517 
2518 	/* new governor failed, so re-start old one */
2519 	pr_debug("starting governor %s failed\n", policy->governor->name);
2520 	if (old_gov) {
2521 		policy->governor = old_gov;
2522 		if (cpufreq_init_governor(policy))
2523 			policy->governor = NULL;
2524 		else
2525 			cpufreq_start_governor(policy);
2526 	}
2527 
2528 	return ret;
2529 }
2530 
2531 /**
2532  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2533  * @cpu: CPU to re-evaluate the policy for.
2534  *
2535  * Update the current frequency for the cpufreq policy of @cpu and use
2536  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2537  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2538  * for the policy in question, among other things.
2539  */
2540 void cpufreq_update_policy(unsigned int cpu)
2541 {
2542 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2543 
2544 	if (!policy)
2545 		return;
2546 
2547 	/*
2548 	 * BIOS might change freq behind our back
2549 	 * -> ask driver for current freq and notify governors about a change
2550 	 */
2551 	if (cpufreq_driver->get && has_target() &&
2552 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2553 		goto unlock;
2554 
2555 	refresh_frequency_limits(policy);
2556 
2557 unlock:
2558 	cpufreq_cpu_release(policy);
2559 }
2560 EXPORT_SYMBOL(cpufreq_update_policy);
2561 
2562 /**
2563  * cpufreq_update_limits - Update policy limits for a given CPU.
2564  * @cpu: CPU to update the policy limits for.
2565  *
2566  * Invoke the driver's ->update_limits callback if present or call
2567  * cpufreq_update_policy() for @cpu.
2568  */
2569 void cpufreq_update_limits(unsigned int cpu)
2570 {
2571 	if (cpufreq_driver->update_limits)
2572 		cpufreq_driver->update_limits(cpu);
2573 	else
2574 		cpufreq_update_policy(cpu);
2575 }
2576 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2577 
2578 /*********************************************************************
2579  *               BOOST						     *
2580  *********************************************************************/
2581 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2582 {
2583 	int ret;
2584 
2585 	if (!policy->freq_table)
2586 		return -ENXIO;
2587 
2588 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2589 	if (ret) {
2590 		pr_err("%s: Policy frequency update failed\n", __func__);
2591 		return ret;
2592 	}
2593 
2594 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2595 	if (ret < 0)
2596 		return ret;
2597 
2598 	return 0;
2599 }
2600 
2601 int cpufreq_boost_trigger_state(int state)
2602 {
2603 	struct cpufreq_policy *policy;
2604 	unsigned long flags;
2605 	int ret = 0;
2606 
2607 	if (cpufreq_driver->boost_enabled == state)
2608 		return 0;
2609 
2610 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2611 	cpufreq_driver->boost_enabled = state;
2612 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2613 
2614 	get_online_cpus();
2615 	for_each_active_policy(policy) {
2616 		ret = cpufreq_driver->set_boost(policy, state);
2617 		if (ret)
2618 			goto err_reset_state;
2619 	}
2620 	put_online_cpus();
2621 
2622 	return 0;
2623 
2624 err_reset_state:
2625 	put_online_cpus();
2626 
2627 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2628 	cpufreq_driver->boost_enabled = !state;
2629 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2630 
2631 	pr_err("%s: Cannot %s BOOST\n",
2632 	       __func__, state ? "enable" : "disable");
2633 
2634 	return ret;
2635 }
2636 
2637 static bool cpufreq_boost_supported(void)
2638 {
2639 	return cpufreq_driver->set_boost;
2640 }
2641 
2642 static int create_boost_sysfs_file(void)
2643 {
2644 	int ret;
2645 
2646 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2647 	if (ret)
2648 		pr_err("%s: cannot register global BOOST sysfs file\n",
2649 		       __func__);
2650 
2651 	return ret;
2652 }
2653 
2654 static void remove_boost_sysfs_file(void)
2655 {
2656 	if (cpufreq_boost_supported())
2657 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2658 }
2659 
2660 int cpufreq_enable_boost_support(void)
2661 {
2662 	if (!cpufreq_driver)
2663 		return -EINVAL;
2664 
2665 	if (cpufreq_boost_supported())
2666 		return 0;
2667 
2668 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2669 
2670 	/* This will get removed on driver unregister */
2671 	return create_boost_sysfs_file();
2672 }
2673 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2674 
2675 int cpufreq_boost_enabled(void)
2676 {
2677 	return cpufreq_driver->boost_enabled;
2678 }
2679 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2680 
2681 /*********************************************************************
2682  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2683  *********************************************************************/
2684 static enum cpuhp_state hp_online;
2685 
2686 static int cpuhp_cpufreq_online(unsigned int cpu)
2687 {
2688 	cpufreq_online(cpu);
2689 
2690 	return 0;
2691 }
2692 
2693 static int cpuhp_cpufreq_offline(unsigned int cpu)
2694 {
2695 	cpufreq_offline(cpu);
2696 
2697 	return 0;
2698 }
2699 
2700 /**
2701  * cpufreq_register_driver - register a CPU Frequency driver
2702  * @driver_data: A struct cpufreq_driver containing the values#
2703  * submitted by the CPU Frequency driver.
2704  *
2705  * Registers a CPU Frequency driver to this core code. This code
2706  * returns zero on success, -EEXIST when another driver got here first
2707  * (and isn't unregistered in the meantime).
2708  *
2709  */
2710 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2711 {
2712 	unsigned long flags;
2713 	int ret;
2714 
2715 	if (cpufreq_disabled())
2716 		return -ENODEV;
2717 
2718 	/*
2719 	 * The cpufreq core depends heavily on the availability of device
2720 	 * structure, make sure they are available before proceeding further.
2721 	 */
2722 	if (!get_cpu_device(0))
2723 		return -EPROBE_DEFER;
2724 
2725 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2726 	    !(driver_data->setpolicy || driver_data->target_index ||
2727 		    driver_data->target) ||
2728 	     (driver_data->setpolicy && (driver_data->target_index ||
2729 		    driver_data->target)) ||
2730 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2731 	     (!driver_data->online != !driver_data->offline))
2732 		return -EINVAL;
2733 
2734 	pr_debug("trying to register driver %s\n", driver_data->name);
2735 
2736 	/* Protect against concurrent CPU online/offline. */
2737 	cpus_read_lock();
2738 
2739 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2740 	if (cpufreq_driver) {
2741 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2742 		ret = -EEXIST;
2743 		goto out;
2744 	}
2745 	cpufreq_driver = driver_data;
2746 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2747 
2748 	/*
2749 	 * Mark support for the scheduler's frequency invariance engine for
2750 	 * drivers that implement target(), target_index() or fast_switch().
2751 	 */
2752 	if (!cpufreq_driver->setpolicy) {
2753 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2754 		pr_debug("supports frequency invariance");
2755 	}
2756 
2757 	if (driver_data->setpolicy)
2758 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2759 
2760 	if (cpufreq_boost_supported()) {
2761 		ret = create_boost_sysfs_file();
2762 		if (ret)
2763 			goto err_null_driver;
2764 	}
2765 
2766 	ret = subsys_interface_register(&cpufreq_interface);
2767 	if (ret)
2768 		goto err_boost_unreg;
2769 
2770 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2771 	    list_empty(&cpufreq_policy_list)) {
2772 		/* if all ->init() calls failed, unregister */
2773 		ret = -ENODEV;
2774 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2775 			 driver_data->name);
2776 		goto err_if_unreg;
2777 	}
2778 
2779 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2780 						   "cpufreq:online",
2781 						   cpuhp_cpufreq_online,
2782 						   cpuhp_cpufreq_offline);
2783 	if (ret < 0)
2784 		goto err_if_unreg;
2785 	hp_online = ret;
2786 	ret = 0;
2787 
2788 	pr_debug("driver %s up and running\n", driver_data->name);
2789 	goto out;
2790 
2791 err_if_unreg:
2792 	subsys_interface_unregister(&cpufreq_interface);
2793 err_boost_unreg:
2794 	remove_boost_sysfs_file();
2795 err_null_driver:
2796 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2797 	cpufreq_driver = NULL;
2798 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2799 out:
2800 	cpus_read_unlock();
2801 	return ret;
2802 }
2803 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2804 
2805 /*
2806  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2807  *
2808  * Unregister the current CPUFreq driver. Only call this if you have
2809  * the right to do so, i.e. if you have succeeded in initialising before!
2810  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2811  * currently not initialised.
2812  */
2813 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2814 {
2815 	unsigned long flags;
2816 
2817 	if (!cpufreq_driver || (driver != cpufreq_driver))
2818 		return -EINVAL;
2819 
2820 	pr_debug("unregistering driver %s\n", driver->name);
2821 
2822 	/* Protect against concurrent cpu hotplug */
2823 	cpus_read_lock();
2824 	subsys_interface_unregister(&cpufreq_interface);
2825 	remove_boost_sysfs_file();
2826 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2827 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2828 
2829 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2830 
2831 	cpufreq_driver = NULL;
2832 
2833 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2834 	cpus_read_unlock();
2835 
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2839 
2840 static int __init cpufreq_core_init(void)
2841 {
2842 	struct cpufreq_governor *gov = cpufreq_default_governor();
2843 
2844 	if (cpufreq_disabled())
2845 		return -ENODEV;
2846 
2847 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2848 	BUG_ON(!cpufreq_global_kobject);
2849 
2850 	if (!strlen(default_governor))
2851 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2852 
2853 	return 0;
2854 }
2855 module_param(off, int, 0444);
2856 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2857 core_initcall(cpufreq_core_init);
2858