xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision d0b73b48)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *	Added handling for CPU hotplug
9  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10  *	Fix handling for CPU hotplug -- affected CPUs
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/notifier.h>
24 #include <linux/cpufreq.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/slab.h>
30 #include <linux/cpu.h>
31 #include <linux/completion.h>
32 #include <linux/mutex.h>
33 #include <linux/syscore_ops.h>
34 
35 #include <trace/events/power.h>
36 
37 /**
38  * The "cpufreq driver" - the arch- or hardware-dependent low
39  * level driver of CPUFreq support, and its spinlock. This lock
40  * also protects the cpufreq_cpu_data array.
41  */
42 static struct cpufreq_driver *cpufreq_driver;
43 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
44 #ifdef CONFIG_HOTPLUG_CPU
45 /* This one keeps track of the previously set governor of a removed CPU */
46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47 #endif
48 static DEFINE_SPINLOCK(cpufreq_driver_lock);
49 
50 /*
51  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
52  * all cpufreq/hotplug/workqueue/etc related lock issues.
53  *
54  * The rules for this semaphore:
55  * - Any routine that wants to read from the policy structure will
56  *   do a down_read on this semaphore.
57  * - Any routine that will write to the policy structure and/or may take away
58  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
59  *   mode before doing so.
60  *
61  * Additional rules:
62  * - All holders of the lock should check to make sure that the CPU they
63  *   are concerned with are online after they get the lock.
64  * - Governor routines that can be called in cpufreq hotplug path should not
65  *   take this sem as top level hotplug notifier handler takes this.
66  * - Lock should not be held across
67  *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
68  */
69 static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
70 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
71 
72 #define lock_policy_rwsem(mode, cpu)					\
73 static int lock_policy_rwsem_##mode					\
74 (int cpu)								\
75 {									\
76 	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);		\
77 	BUG_ON(policy_cpu == -1);					\
78 	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
79 	if (unlikely(!cpu_online(cpu))) {				\
80 		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
81 		return -1;						\
82 	}								\
83 									\
84 	return 0;							\
85 }
86 
87 lock_policy_rwsem(read, cpu);
88 
89 lock_policy_rwsem(write, cpu);
90 
91 static void unlock_policy_rwsem_read(int cpu)
92 {
93 	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
94 	BUG_ON(policy_cpu == -1);
95 	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
96 }
97 
98 static void unlock_policy_rwsem_write(int cpu)
99 {
100 	int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
101 	BUG_ON(policy_cpu == -1);
102 	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
103 }
104 
105 
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy,
108 		unsigned int event);
109 static unsigned int __cpufreq_get(unsigned int cpu);
110 static void handle_update(struct work_struct *work);
111 
112 /**
113  * Two notifier lists: the "policy" list is involved in the
114  * validation process for a new CPU frequency policy; the
115  * "transition" list for kernel code that needs to handle
116  * changes to devices when the CPU clock speed changes.
117  * The mutex locks both lists.
118  */
119 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
120 static struct srcu_notifier_head cpufreq_transition_notifier_list;
121 
122 static bool init_cpufreq_transition_notifier_list_called;
123 static int __init init_cpufreq_transition_notifier_list(void)
124 {
125 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
126 	init_cpufreq_transition_notifier_list_called = true;
127 	return 0;
128 }
129 pure_initcall(init_cpufreq_transition_notifier_list);
130 
131 static int off __read_mostly;
132 static int cpufreq_disabled(void)
133 {
134 	return off;
135 }
136 void disable_cpufreq(void)
137 {
138 	off = 1;
139 }
140 static LIST_HEAD(cpufreq_governor_list);
141 static DEFINE_MUTEX(cpufreq_governor_mutex);
142 
143 static struct cpufreq_policy *__cpufreq_cpu_get(unsigned int cpu, bool sysfs)
144 {
145 	struct cpufreq_policy *data;
146 	unsigned long flags;
147 
148 	if (cpu >= nr_cpu_ids)
149 		goto err_out;
150 
151 	/* get the cpufreq driver */
152 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
153 
154 	if (!cpufreq_driver)
155 		goto err_out_unlock;
156 
157 	if (!try_module_get(cpufreq_driver->owner))
158 		goto err_out_unlock;
159 
160 
161 	/* get the CPU */
162 	data = per_cpu(cpufreq_cpu_data, cpu);
163 
164 	if (!data)
165 		goto err_out_put_module;
166 
167 	if (!sysfs && !kobject_get(&data->kobj))
168 		goto err_out_put_module;
169 
170 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
171 	return data;
172 
173 err_out_put_module:
174 	module_put(cpufreq_driver->owner);
175 err_out_unlock:
176 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
177 err_out:
178 	return NULL;
179 }
180 
181 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
182 {
183 	return __cpufreq_cpu_get(cpu, false);
184 }
185 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
186 
187 static struct cpufreq_policy *cpufreq_cpu_get_sysfs(unsigned int cpu)
188 {
189 	return __cpufreq_cpu_get(cpu, true);
190 }
191 
192 static void __cpufreq_cpu_put(struct cpufreq_policy *data, bool sysfs)
193 {
194 	if (!sysfs)
195 		kobject_put(&data->kobj);
196 	module_put(cpufreq_driver->owner);
197 }
198 
199 void cpufreq_cpu_put(struct cpufreq_policy *data)
200 {
201 	__cpufreq_cpu_put(data, false);
202 }
203 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
204 
205 static void cpufreq_cpu_put_sysfs(struct cpufreq_policy *data)
206 {
207 	__cpufreq_cpu_put(data, true);
208 }
209 
210 /*********************************************************************
211  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
212  *********************************************************************/
213 
214 /**
215  * adjust_jiffies - adjust the system "loops_per_jiffy"
216  *
217  * This function alters the system "loops_per_jiffy" for the clock
218  * speed change. Note that loops_per_jiffy cannot be updated on SMP
219  * systems as each CPU might be scaled differently. So, use the arch
220  * per-CPU loops_per_jiffy value wherever possible.
221  */
222 #ifndef CONFIG_SMP
223 static unsigned long l_p_j_ref;
224 static unsigned int  l_p_j_ref_freq;
225 
226 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
227 {
228 	if (ci->flags & CPUFREQ_CONST_LOOPS)
229 		return;
230 
231 	if (!l_p_j_ref_freq) {
232 		l_p_j_ref = loops_per_jiffy;
233 		l_p_j_ref_freq = ci->old;
234 		pr_debug("saving %lu as reference value for loops_per_jiffy; "
235 			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
236 	}
237 	if ((val == CPUFREQ_POSTCHANGE  && ci->old != ci->new) ||
238 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
239 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
240 								ci->new);
241 		pr_debug("scaling loops_per_jiffy to %lu "
242 			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
243 	}
244 }
245 #else
246 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
247 {
248 	return;
249 }
250 #endif
251 
252 
253 /**
254  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
255  * on frequency transition.
256  *
257  * This function calls the transition notifiers and the "adjust_jiffies"
258  * function. It is called twice on all CPU frequency changes that have
259  * external effects.
260  */
261 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
262 {
263 	struct cpufreq_policy *policy;
264 
265 	BUG_ON(irqs_disabled());
266 
267 	freqs->flags = cpufreq_driver->flags;
268 	pr_debug("notification %u of frequency transition to %u kHz\n",
269 		state, freqs->new);
270 
271 	policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
272 	switch (state) {
273 
274 	case CPUFREQ_PRECHANGE:
275 		/* detect if the driver reported a value as "old frequency"
276 		 * which is not equal to what the cpufreq core thinks is
277 		 * "old frequency".
278 		 */
279 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
280 			if ((policy) && (policy->cpu == freqs->cpu) &&
281 			    (policy->cur) && (policy->cur != freqs->old)) {
282 				pr_debug("Warning: CPU frequency is"
283 					" %u, cpufreq assumed %u kHz.\n",
284 					freqs->old, policy->cur);
285 				freqs->old = policy->cur;
286 			}
287 		}
288 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
289 				CPUFREQ_PRECHANGE, freqs);
290 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
291 		break;
292 
293 	case CPUFREQ_POSTCHANGE:
294 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
295 		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
296 			(unsigned long)freqs->cpu);
297 		trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
298 		trace_cpu_frequency(freqs->new, freqs->cpu);
299 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
300 				CPUFREQ_POSTCHANGE, freqs);
301 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
302 			policy->cur = freqs->new;
303 		break;
304 	}
305 }
306 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
307 
308 
309 
310 /*********************************************************************
311  *                          SYSFS INTERFACE                          *
312  *********************************************************************/
313 
314 static struct cpufreq_governor *__find_governor(const char *str_governor)
315 {
316 	struct cpufreq_governor *t;
317 
318 	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
319 		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
320 			return t;
321 
322 	return NULL;
323 }
324 
325 /**
326  * cpufreq_parse_governor - parse a governor string
327  */
328 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
329 				struct cpufreq_governor **governor)
330 {
331 	int err = -EINVAL;
332 
333 	if (!cpufreq_driver)
334 		goto out;
335 
336 	if (cpufreq_driver->setpolicy) {
337 		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
338 			*policy = CPUFREQ_POLICY_PERFORMANCE;
339 			err = 0;
340 		} else if (!strnicmp(str_governor, "powersave",
341 						CPUFREQ_NAME_LEN)) {
342 			*policy = CPUFREQ_POLICY_POWERSAVE;
343 			err = 0;
344 		}
345 	} else if (cpufreq_driver->target) {
346 		struct cpufreq_governor *t;
347 
348 		mutex_lock(&cpufreq_governor_mutex);
349 
350 		t = __find_governor(str_governor);
351 
352 		if (t == NULL) {
353 			int ret;
354 
355 			mutex_unlock(&cpufreq_governor_mutex);
356 			ret = request_module("cpufreq_%s", str_governor);
357 			mutex_lock(&cpufreq_governor_mutex);
358 
359 			if (ret == 0)
360 				t = __find_governor(str_governor);
361 		}
362 
363 		if (t != NULL) {
364 			*governor = t;
365 			err = 0;
366 		}
367 
368 		mutex_unlock(&cpufreq_governor_mutex);
369 	}
370 out:
371 	return err;
372 }
373 
374 
375 /**
376  * cpufreq_per_cpu_attr_read() / show_##file_name() -
377  * print out cpufreq information
378  *
379  * Write out information from cpufreq_driver->policy[cpu]; object must be
380  * "unsigned int".
381  */
382 
383 #define show_one(file_name, object)			\
384 static ssize_t show_##file_name				\
385 (struct cpufreq_policy *policy, char *buf)		\
386 {							\
387 	return sprintf(buf, "%u\n", policy->object);	\
388 }
389 
390 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
391 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
392 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
393 show_one(scaling_min_freq, min);
394 show_one(scaling_max_freq, max);
395 show_one(scaling_cur_freq, cur);
396 
397 static int __cpufreq_set_policy(struct cpufreq_policy *data,
398 				struct cpufreq_policy *policy);
399 
400 /**
401  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
402  */
403 #define store_one(file_name, object)			\
404 static ssize_t store_##file_name					\
405 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
406 {									\
407 	unsigned int ret;						\
408 	struct cpufreq_policy new_policy;				\
409 									\
410 	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
411 	if (ret)							\
412 		return -EINVAL;						\
413 									\
414 	ret = sscanf(buf, "%u", &new_policy.object);			\
415 	if (ret != 1)							\
416 		return -EINVAL;						\
417 									\
418 	ret = __cpufreq_set_policy(policy, &new_policy);		\
419 	policy->user_policy.object = policy->object;			\
420 									\
421 	return ret ? ret : count;					\
422 }
423 
424 store_one(scaling_min_freq, min);
425 store_one(scaling_max_freq, max);
426 
427 /**
428  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
429  */
430 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
431 					char *buf)
432 {
433 	unsigned int cur_freq = __cpufreq_get(policy->cpu);
434 	if (!cur_freq)
435 		return sprintf(buf, "<unknown>");
436 	return sprintf(buf, "%u\n", cur_freq);
437 }
438 
439 
440 /**
441  * show_scaling_governor - show the current policy for the specified CPU
442  */
443 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
444 {
445 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
446 		return sprintf(buf, "powersave\n");
447 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
448 		return sprintf(buf, "performance\n");
449 	else if (policy->governor)
450 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
451 				policy->governor->name);
452 	return -EINVAL;
453 }
454 
455 
456 /**
457  * store_scaling_governor - store policy for the specified CPU
458  */
459 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
460 					const char *buf, size_t count)
461 {
462 	unsigned int ret;
463 	char	str_governor[16];
464 	struct cpufreq_policy new_policy;
465 
466 	ret = cpufreq_get_policy(&new_policy, policy->cpu);
467 	if (ret)
468 		return ret;
469 
470 	ret = sscanf(buf, "%15s", str_governor);
471 	if (ret != 1)
472 		return -EINVAL;
473 
474 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
475 						&new_policy.governor))
476 		return -EINVAL;
477 
478 	/* Do not use cpufreq_set_policy here or the user_policy.max
479 	   will be wrongly overridden */
480 	ret = __cpufreq_set_policy(policy, &new_policy);
481 
482 	policy->user_policy.policy = policy->policy;
483 	policy->user_policy.governor = policy->governor;
484 
485 	if (ret)
486 		return ret;
487 	else
488 		return count;
489 }
490 
491 /**
492  * show_scaling_driver - show the cpufreq driver currently loaded
493  */
494 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
495 {
496 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
497 }
498 
499 /**
500  * show_scaling_available_governors - show the available CPUfreq governors
501  */
502 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
503 						char *buf)
504 {
505 	ssize_t i = 0;
506 	struct cpufreq_governor *t;
507 
508 	if (!cpufreq_driver->target) {
509 		i += sprintf(buf, "performance powersave");
510 		goto out;
511 	}
512 
513 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
514 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
515 		    - (CPUFREQ_NAME_LEN + 2)))
516 			goto out;
517 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
518 	}
519 out:
520 	i += sprintf(&buf[i], "\n");
521 	return i;
522 }
523 
524 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
525 {
526 	ssize_t i = 0;
527 	unsigned int cpu;
528 
529 	for_each_cpu(cpu, mask) {
530 		if (i)
531 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
532 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
533 		if (i >= (PAGE_SIZE - 5))
534 			break;
535 	}
536 	i += sprintf(&buf[i], "\n");
537 	return i;
538 }
539 
540 /**
541  * show_related_cpus - show the CPUs affected by each transition even if
542  * hw coordination is in use
543  */
544 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
545 {
546 	if (cpumask_empty(policy->related_cpus))
547 		return show_cpus(policy->cpus, buf);
548 	return show_cpus(policy->related_cpus, buf);
549 }
550 
551 /**
552  * show_affected_cpus - show the CPUs affected by each transition
553  */
554 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
555 {
556 	return show_cpus(policy->cpus, buf);
557 }
558 
559 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
560 					const char *buf, size_t count)
561 {
562 	unsigned int freq = 0;
563 	unsigned int ret;
564 
565 	if (!policy->governor || !policy->governor->store_setspeed)
566 		return -EINVAL;
567 
568 	ret = sscanf(buf, "%u", &freq);
569 	if (ret != 1)
570 		return -EINVAL;
571 
572 	policy->governor->store_setspeed(policy, freq);
573 
574 	return count;
575 }
576 
577 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
578 {
579 	if (!policy->governor || !policy->governor->show_setspeed)
580 		return sprintf(buf, "<unsupported>\n");
581 
582 	return policy->governor->show_setspeed(policy, buf);
583 }
584 
585 /**
586  * show_bios_limit - show the current cpufreq HW/BIOS limitation
587  */
588 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
589 {
590 	unsigned int limit;
591 	int ret;
592 	if (cpufreq_driver->bios_limit) {
593 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
594 		if (!ret)
595 			return sprintf(buf, "%u\n", limit);
596 	}
597 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
598 }
599 
600 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
601 cpufreq_freq_attr_ro(cpuinfo_min_freq);
602 cpufreq_freq_attr_ro(cpuinfo_max_freq);
603 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
604 cpufreq_freq_attr_ro(scaling_available_governors);
605 cpufreq_freq_attr_ro(scaling_driver);
606 cpufreq_freq_attr_ro(scaling_cur_freq);
607 cpufreq_freq_attr_ro(bios_limit);
608 cpufreq_freq_attr_ro(related_cpus);
609 cpufreq_freq_attr_ro(affected_cpus);
610 cpufreq_freq_attr_rw(scaling_min_freq);
611 cpufreq_freq_attr_rw(scaling_max_freq);
612 cpufreq_freq_attr_rw(scaling_governor);
613 cpufreq_freq_attr_rw(scaling_setspeed);
614 
615 static struct attribute *default_attrs[] = {
616 	&cpuinfo_min_freq.attr,
617 	&cpuinfo_max_freq.attr,
618 	&cpuinfo_transition_latency.attr,
619 	&scaling_min_freq.attr,
620 	&scaling_max_freq.attr,
621 	&affected_cpus.attr,
622 	&related_cpus.attr,
623 	&scaling_governor.attr,
624 	&scaling_driver.attr,
625 	&scaling_available_governors.attr,
626 	&scaling_setspeed.attr,
627 	NULL
628 };
629 
630 struct kobject *cpufreq_global_kobject;
631 EXPORT_SYMBOL(cpufreq_global_kobject);
632 
633 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
634 #define to_attr(a) container_of(a, struct freq_attr, attr)
635 
636 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
637 {
638 	struct cpufreq_policy *policy = to_policy(kobj);
639 	struct freq_attr *fattr = to_attr(attr);
640 	ssize_t ret = -EINVAL;
641 	policy = cpufreq_cpu_get_sysfs(policy->cpu);
642 	if (!policy)
643 		goto no_policy;
644 
645 	if (lock_policy_rwsem_read(policy->cpu) < 0)
646 		goto fail;
647 
648 	if (fattr->show)
649 		ret = fattr->show(policy, buf);
650 	else
651 		ret = -EIO;
652 
653 	unlock_policy_rwsem_read(policy->cpu);
654 fail:
655 	cpufreq_cpu_put_sysfs(policy);
656 no_policy:
657 	return ret;
658 }
659 
660 static ssize_t store(struct kobject *kobj, struct attribute *attr,
661 		     const char *buf, size_t count)
662 {
663 	struct cpufreq_policy *policy = to_policy(kobj);
664 	struct freq_attr *fattr = to_attr(attr);
665 	ssize_t ret = -EINVAL;
666 	policy = cpufreq_cpu_get_sysfs(policy->cpu);
667 	if (!policy)
668 		goto no_policy;
669 
670 	if (lock_policy_rwsem_write(policy->cpu) < 0)
671 		goto fail;
672 
673 	if (fattr->store)
674 		ret = fattr->store(policy, buf, count);
675 	else
676 		ret = -EIO;
677 
678 	unlock_policy_rwsem_write(policy->cpu);
679 fail:
680 	cpufreq_cpu_put_sysfs(policy);
681 no_policy:
682 	return ret;
683 }
684 
685 static void cpufreq_sysfs_release(struct kobject *kobj)
686 {
687 	struct cpufreq_policy *policy = to_policy(kobj);
688 	pr_debug("last reference is dropped\n");
689 	complete(&policy->kobj_unregister);
690 }
691 
692 static const struct sysfs_ops sysfs_ops = {
693 	.show	= show,
694 	.store	= store,
695 };
696 
697 static struct kobj_type ktype_cpufreq = {
698 	.sysfs_ops	= &sysfs_ops,
699 	.default_attrs	= default_attrs,
700 	.release	= cpufreq_sysfs_release,
701 };
702 
703 /*
704  * Returns:
705  *   Negative: Failure
706  *   0:        Success
707  *   Positive: When we have a managed CPU and the sysfs got symlinked
708  */
709 static int cpufreq_add_dev_policy(unsigned int cpu,
710 				  struct cpufreq_policy *policy,
711 				  struct device *dev)
712 {
713 	int ret = 0;
714 #ifdef CONFIG_SMP
715 	unsigned long flags;
716 	unsigned int j;
717 #ifdef CONFIG_HOTPLUG_CPU
718 	struct cpufreq_governor *gov;
719 
720 	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
721 	if (gov) {
722 		policy->governor = gov;
723 		pr_debug("Restoring governor %s for cpu %d\n",
724 		       policy->governor->name, cpu);
725 	}
726 #endif
727 
728 	for_each_cpu(j, policy->cpus) {
729 		struct cpufreq_policy *managed_policy;
730 
731 		if (cpu == j)
732 			continue;
733 
734 		/* Check for existing affected CPUs.
735 		 * They may not be aware of it due to CPU Hotplug.
736 		 * cpufreq_cpu_put is called when the device is removed
737 		 * in __cpufreq_remove_dev()
738 		 */
739 		managed_policy = cpufreq_cpu_get(j);
740 		if (unlikely(managed_policy)) {
741 
742 			/* Set proper policy_cpu */
743 			unlock_policy_rwsem_write(cpu);
744 			per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
745 
746 			if (lock_policy_rwsem_write(cpu) < 0) {
747 				/* Should not go through policy unlock path */
748 				if (cpufreq_driver->exit)
749 					cpufreq_driver->exit(policy);
750 				cpufreq_cpu_put(managed_policy);
751 				return -EBUSY;
752 			}
753 
754 			spin_lock_irqsave(&cpufreq_driver_lock, flags);
755 			cpumask_copy(managed_policy->cpus, policy->cpus);
756 			per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
757 			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
758 
759 			pr_debug("CPU already managed, adding link\n");
760 			ret = sysfs_create_link(&dev->kobj,
761 						&managed_policy->kobj,
762 						"cpufreq");
763 			if (ret)
764 				cpufreq_cpu_put(managed_policy);
765 			/*
766 			 * Success. We only needed to be added to the mask.
767 			 * Call driver->exit() because only the cpu parent of
768 			 * the kobj needed to call init().
769 			 */
770 			if (cpufreq_driver->exit)
771 				cpufreq_driver->exit(policy);
772 
773 			if (!ret)
774 				return 1;
775 			else
776 				return ret;
777 		}
778 	}
779 #endif
780 	return ret;
781 }
782 
783 
784 /* symlink affected CPUs */
785 static int cpufreq_add_dev_symlink(unsigned int cpu,
786 				   struct cpufreq_policy *policy)
787 {
788 	unsigned int j;
789 	int ret = 0;
790 
791 	for_each_cpu(j, policy->cpus) {
792 		struct cpufreq_policy *managed_policy;
793 		struct device *cpu_dev;
794 
795 		if (j == cpu)
796 			continue;
797 		if (!cpu_online(j))
798 			continue;
799 
800 		pr_debug("CPU %u already managed, adding link\n", j);
801 		managed_policy = cpufreq_cpu_get(cpu);
802 		cpu_dev = get_cpu_device(j);
803 		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
804 					"cpufreq");
805 		if (ret) {
806 			cpufreq_cpu_put(managed_policy);
807 			return ret;
808 		}
809 	}
810 	return ret;
811 }
812 
813 static int cpufreq_add_dev_interface(unsigned int cpu,
814 				     struct cpufreq_policy *policy,
815 				     struct device *dev)
816 {
817 	struct cpufreq_policy new_policy;
818 	struct freq_attr **drv_attr;
819 	unsigned long flags;
820 	int ret = 0;
821 	unsigned int j;
822 
823 	/* prepare interface data */
824 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
825 				   &dev->kobj, "cpufreq");
826 	if (ret)
827 		return ret;
828 
829 	/* set up files for this cpu device */
830 	drv_attr = cpufreq_driver->attr;
831 	while ((drv_attr) && (*drv_attr)) {
832 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
833 		if (ret)
834 			goto err_out_kobj_put;
835 		drv_attr++;
836 	}
837 	if (cpufreq_driver->get) {
838 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
839 		if (ret)
840 			goto err_out_kobj_put;
841 	}
842 	if (cpufreq_driver->target) {
843 		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
844 		if (ret)
845 			goto err_out_kobj_put;
846 	}
847 	if (cpufreq_driver->bios_limit) {
848 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
849 		if (ret)
850 			goto err_out_kobj_put;
851 	}
852 
853 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
854 	for_each_cpu(j, policy->cpus) {
855 		if (!cpu_online(j))
856 			continue;
857 		per_cpu(cpufreq_cpu_data, j) = policy;
858 		per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
859 	}
860 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
861 
862 	ret = cpufreq_add_dev_symlink(cpu, policy);
863 	if (ret)
864 		goto err_out_kobj_put;
865 
866 	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
867 	/* assure that the starting sequence is run in __cpufreq_set_policy */
868 	policy->governor = NULL;
869 
870 	/* set default policy */
871 	ret = __cpufreq_set_policy(policy, &new_policy);
872 	policy->user_policy.policy = policy->policy;
873 	policy->user_policy.governor = policy->governor;
874 
875 	if (ret) {
876 		pr_debug("setting policy failed\n");
877 		if (cpufreq_driver->exit)
878 			cpufreq_driver->exit(policy);
879 	}
880 	return ret;
881 
882 err_out_kobj_put:
883 	kobject_put(&policy->kobj);
884 	wait_for_completion(&policy->kobj_unregister);
885 	return ret;
886 }
887 
888 
889 /**
890  * cpufreq_add_dev - add a CPU device
891  *
892  * Adds the cpufreq interface for a CPU device.
893  *
894  * The Oracle says: try running cpufreq registration/unregistration concurrently
895  * with with cpu hotplugging and all hell will break loose. Tried to clean this
896  * mess up, but more thorough testing is needed. - Mathieu
897  */
898 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
899 {
900 	unsigned int cpu = dev->id;
901 	int ret = 0, found = 0;
902 	struct cpufreq_policy *policy;
903 	unsigned long flags;
904 	unsigned int j;
905 #ifdef CONFIG_HOTPLUG_CPU
906 	int sibling;
907 #endif
908 
909 	if (cpu_is_offline(cpu))
910 		return 0;
911 
912 	pr_debug("adding CPU %u\n", cpu);
913 
914 #ifdef CONFIG_SMP
915 	/* check whether a different CPU already registered this
916 	 * CPU because it is in the same boat. */
917 	policy = cpufreq_cpu_get(cpu);
918 	if (unlikely(policy)) {
919 		cpufreq_cpu_put(policy);
920 		return 0;
921 	}
922 #endif
923 
924 	if (!try_module_get(cpufreq_driver->owner)) {
925 		ret = -EINVAL;
926 		goto module_out;
927 	}
928 
929 	ret = -ENOMEM;
930 	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
931 	if (!policy)
932 		goto nomem_out;
933 
934 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
935 		goto err_free_policy;
936 
937 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
938 		goto err_free_cpumask;
939 
940 	policy->cpu = cpu;
941 	cpumask_copy(policy->cpus, cpumask_of(cpu));
942 
943 	/* Initially set CPU itself as the policy_cpu */
944 	per_cpu(cpufreq_policy_cpu, cpu) = cpu;
945 	ret = (lock_policy_rwsem_write(cpu) < 0);
946 	WARN_ON(ret);
947 
948 	init_completion(&policy->kobj_unregister);
949 	INIT_WORK(&policy->update, handle_update);
950 
951 	/* Set governor before ->init, so that driver could check it */
952 #ifdef CONFIG_HOTPLUG_CPU
953 	for_each_online_cpu(sibling) {
954 		struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
955 		if (cp && cp->governor &&
956 		    (cpumask_test_cpu(cpu, cp->related_cpus))) {
957 			policy->governor = cp->governor;
958 			found = 1;
959 			break;
960 		}
961 	}
962 #endif
963 	if (!found)
964 		policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
965 	/* call driver. From then on the cpufreq must be able
966 	 * to accept all calls to ->verify and ->setpolicy for this CPU
967 	 */
968 	ret = cpufreq_driver->init(policy);
969 	if (ret) {
970 		pr_debug("initialization failed\n");
971 		goto err_unlock_policy;
972 	}
973 	policy->user_policy.min = policy->min;
974 	policy->user_policy.max = policy->max;
975 
976 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
977 				     CPUFREQ_START, policy);
978 
979 	ret = cpufreq_add_dev_policy(cpu, policy, dev);
980 	if (ret) {
981 		if (ret > 0)
982 			/* This is a managed cpu, symlink created,
983 			   exit with 0 */
984 			ret = 0;
985 		goto err_unlock_policy;
986 	}
987 
988 	ret = cpufreq_add_dev_interface(cpu, policy, dev);
989 	if (ret)
990 		goto err_out_unregister;
991 
992 	unlock_policy_rwsem_write(cpu);
993 
994 	kobject_uevent(&policy->kobj, KOBJ_ADD);
995 	module_put(cpufreq_driver->owner);
996 	pr_debug("initialization complete\n");
997 
998 	return 0;
999 
1000 
1001 err_out_unregister:
1002 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1003 	for_each_cpu(j, policy->cpus)
1004 		per_cpu(cpufreq_cpu_data, j) = NULL;
1005 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1006 
1007 	kobject_put(&policy->kobj);
1008 	wait_for_completion(&policy->kobj_unregister);
1009 
1010 err_unlock_policy:
1011 	unlock_policy_rwsem_write(cpu);
1012 	free_cpumask_var(policy->related_cpus);
1013 err_free_cpumask:
1014 	free_cpumask_var(policy->cpus);
1015 err_free_policy:
1016 	kfree(policy);
1017 nomem_out:
1018 	module_put(cpufreq_driver->owner);
1019 module_out:
1020 	return ret;
1021 }
1022 
1023 
1024 /**
1025  * __cpufreq_remove_dev - remove a CPU device
1026  *
1027  * Removes the cpufreq interface for a CPU device.
1028  * Caller should already have policy_rwsem in write mode for this CPU.
1029  * This routine frees the rwsem before returning.
1030  */
1031 static int __cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1032 {
1033 	unsigned int cpu = dev->id;
1034 	unsigned long flags;
1035 	struct cpufreq_policy *data;
1036 	struct kobject *kobj;
1037 	struct completion *cmp;
1038 #ifdef CONFIG_SMP
1039 	struct device *cpu_dev;
1040 	unsigned int j;
1041 #endif
1042 
1043 	pr_debug("unregistering CPU %u\n", cpu);
1044 
1045 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1046 	data = per_cpu(cpufreq_cpu_data, cpu);
1047 
1048 	if (!data) {
1049 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1050 		unlock_policy_rwsem_write(cpu);
1051 		return -EINVAL;
1052 	}
1053 	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1054 
1055 
1056 #ifdef CONFIG_SMP
1057 	/* if this isn't the CPU which is the parent of the kobj, we
1058 	 * only need to unlink, put and exit
1059 	 */
1060 	if (unlikely(cpu != data->cpu)) {
1061 		pr_debug("removing link\n");
1062 		cpumask_clear_cpu(cpu, data->cpus);
1063 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064 		kobj = &dev->kobj;
1065 		cpufreq_cpu_put(data);
1066 		unlock_policy_rwsem_write(cpu);
1067 		sysfs_remove_link(kobj, "cpufreq");
1068 		return 0;
1069 	}
1070 #endif
1071 
1072 #ifdef CONFIG_SMP
1073 
1074 #ifdef CONFIG_HOTPLUG_CPU
1075 	strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1076 			CPUFREQ_NAME_LEN);
1077 #endif
1078 
1079 	/* if we have other CPUs still registered, we need to unlink them,
1080 	 * or else wait_for_completion below will lock up. Clean the
1081 	 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1082 	 * the sysfs links afterwards.
1083 	 */
1084 	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1085 		for_each_cpu(j, data->cpus) {
1086 			if (j == cpu)
1087 				continue;
1088 			per_cpu(cpufreq_cpu_data, j) = NULL;
1089 		}
1090 	}
1091 
1092 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1093 
1094 	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1095 		for_each_cpu(j, data->cpus) {
1096 			if (j == cpu)
1097 				continue;
1098 			pr_debug("removing link for cpu %u\n", j);
1099 #ifdef CONFIG_HOTPLUG_CPU
1100 			strncpy(per_cpu(cpufreq_cpu_governor, j),
1101 				data->governor->name, CPUFREQ_NAME_LEN);
1102 #endif
1103 			cpu_dev = get_cpu_device(j);
1104 			kobj = &cpu_dev->kobj;
1105 			unlock_policy_rwsem_write(cpu);
1106 			sysfs_remove_link(kobj, "cpufreq");
1107 			lock_policy_rwsem_write(cpu);
1108 			cpufreq_cpu_put(data);
1109 		}
1110 	}
1111 #else
1112 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1113 #endif
1114 
1115 	if (cpufreq_driver->target)
1116 		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1117 
1118 	kobj = &data->kobj;
1119 	cmp = &data->kobj_unregister;
1120 	unlock_policy_rwsem_write(cpu);
1121 	kobject_put(kobj);
1122 
1123 	/* we need to make sure that the underlying kobj is actually
1124 	 * not referenced anymore by anybody before we proceed with
1125 	 * unloading.
1126 	 */
1127 	pr_debug("waiting for dropping of refcount\n");
1128 	wait_for_completion(cmp);
1129 	pr_debug("wait complete\n");
1130 
1131 	lock_policy_rwsem_write(cpu);
1132 	if (cpufreq_driver->exit)
1133 		cpufreq_driver->exit(data);
1134 	unlock_policy_rwsem_write(cpu);
1135 
1136 #ifdef CONFIG_HOTPLUG_CPU
1137 	/* when the CPU which is the parent of the kobj is hotplugged
1138 	 * offline, check for siblings, and create cpufreq sysfs interface
1139 	 * and symlinks
1140 	 */
1141 	if (unlikely(cpumask_weight(data->cpus) > 1)) {
1142 		/* first sibling now owns the new sysfs dir */
1143 		cpumask_clear_cpu(cpu, data->cpus);
1144 		cpufreq_add_dev(get_cpu_device(cpumask_first(data->cpus)), NULL);
1145 
1146 		/* finally remove our own symlink */
1147 		lock_policy_rwsem_write(cpu);
1148 		__cpufreq_remove_dev(dev, sif);
1149 	}
1150 #endif
1151 
1152 	free_cpumask_var(data->related_cpus);
1153 	free_cpumask_var(data->cpus);
1154 	kfree(data);
1155 
1156 	return 0;
1157 }
1158 
1159 
1160 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1161 {
1162 	unsigned int cpu = dev->id;
1163 	int retval;
1164 
1165 	if (cpu_is_offline(cpu))
1166 		return 0;
1167 
1168 	if (unlikely(lock_policy_rwsem_write(cpu)))
1169 		BUG();
1170 
1171 	retval = __cpufreq_remove_dev(dev, sif);
1172 	return retval;
1173 }
1174 
1175 
1176 static void handle_update(struct work_struct *work)
1177 {
1178 	struct cpufreq_policy *policy =
1179 		container_of(work, struct cpufreq_policy, update);
1180 	unsigned int cpu = policy->cpu;
1181 	pr_debug("handle_update for cpu %u called\n", cpu);
1182 	cpufreq_update_policy(cpu);
1183 }
1184 
1185 /**
1186  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1187  *	@cpu: cpu number
1188  *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1189  *	@new_freq: CPU frequency the CPU actually runs at
1190  *
1191  *	We adjust to current frequency first, and need to clean up later.
1192  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1193  */
1194 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1195 				unsigned int new_freq)
1196 {
1197 	struct cpufreq_freqs freqs;
1198 
1199 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1200 	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1201 
1202 	freqs.cpu = cpu;
1203 	freqs.old = old_freq;
1204 	freqs.new = new_freq;
1205 	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1206 	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1207 }
1208 
1209 
1210 /**
1211  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1212  * @cpu: CPU number
1213  *
1214  * This is the last known freq, without actually getting it from the driver.
1215  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1216  */
1217 unsigned int cpufreq_quick_get(unsigned int cpu)
1218 {
1219 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1220 	unsigned int ret_freq = 0;
1221 
1222 	if (policy) {
1223 		ret_freq = policy->cur;
1224 		cpufreq_cpu_put(policy);
1225 	}
1226 
1227 	return ret_freq;
1228 }
1229 EXPORT_SYMBOL(cpufreq_quick_get);
1230 
1231 /**
1232  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1233  * @cpu: CPU number
1234  *
1235  * Just return the max possible frequency for a given CPU.
1236  */
1237 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1238 {
1239 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1240 	unsigned int ret_freq = 0;
1241 
1242 	if (policy) {
1243 		ret_freq = policy->max;
1244 		cpufreq_cpu_put(policy);
1245 	}
1246 
1247 	return ret_freq;
1248 }
1249 EXPORT_SYMBOL(cpufreq_quick_get_max);
1250 
1251 
1252 static unsigned int __cpufreq_get(unsigned int cpu)
1253 {
1254 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1255 	unsigned int ret_freq = 0;
1256 
1257 	if (!cpufreq_driver->get)
1258 		return ret_freq;
1259 
1260 	ret_freq = cpufreq_driver->get(cpu);
1261 
1262 	if (ret_freq && policy->cur &&
1263 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1264 		/* verify no discrepancy between actual and
1265 					saved value exists */
1266 		if (unlikely(ret_freq != policy->cur)) {
1267 			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1268 			schedule_work(&policy->update);
1269 		}
1270 	}
1271 
1272 	return ret_freq;
1273 }
1274 
1275 /**
1276  * cpufreq_get - get the current CPU frequency (in kHz)
1277  * @cpu: CPU number
1278  *
1279  * Get the CPU current (static) CPU frequency
1280  */
1281 unsigned int cpufreq_get(unsigned int cpu)
1282 {
1283 	unsigned int ret_freq = 0;
1284 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1285 
1286 	if (!policy)
1287 		goto out;
1288 
1289 	if (unlikely(lock_policy_rwsem_read(cpu)))
1290 		goto out_policy;
1291 
1292 	ret_freq = __cpufreq_get(cpu);
1293 
1294 	unlock_policy_rwsem_read(cpu);
1295 
1296 out_policy:
1297 	cpufreq_cpu_put(policy);
1298 out:
1299 	return ret_freq;
1300 }
1301 EXPORT_SYMBOL(cpufreq_get);
1302 
1303 static struct subsys_interface cpufreq_interface = {
1304 	.name		= "cpufreq",
1305 	.subsys		= &cpu_subsys,
1306 	.add_dev	= cpufreq_add_dev,
1307 	.remove_dev	= cpufreq_remove_dev,
1308 };
1309 
1310 
1311 /**
1312  * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1313  *
1314  * This function is only executed for the boot processor.  The other CPUs
1315  * have been put offline by means of CPU hotplug.
1316  */
1317 static int cpufreq_bp_suspend(void)
1318 {
1319 	int ret = 0;
1320 
1321 	int cpu = smp_processor_id();
1322 	struct cpufreq_policy *cpu_policy;
1323 
1324 	pr_debug("suspending cpu %u\n", cpu);
1325 
1326 	/* If there's no policy for the boot CPU, we have nothing to do. */
1327 	cpu_policy = cpufreq_cpu_get(cpu);
1328 	if (!cpu_policy)
1329 		return 0;
1330 
1331 	if (cpufreq_driver->suspend) {
1332 		ret = cpufreq_driver->suspend(cpu_policy);
1333 		if (ret)
1334 			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1335 					"step on CPU %u\n", cpu_policy->cpu);
1336 	}
1337 
1338 	cpufreq_cpu_put(cpu_policy);
1339 	return ret;
1340 }
1341 
1342 /**
1343  * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1344  *
1345  *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1346  *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1347  *	    restored. It will verify that the current freq is in sync with
1348  *	    what we believe it to be. This is a bit later than when it
1349  *	    should be, but nonethteless it's better than calling
1350  *	    cpufreq_driver->get() here which might re-enable interrupts...
1351  *
1352  * This function is only executed for the boot CPU.  The other CPUs have not
1353  * been turned on yet.
1354  */
1355 static void cpufreq_bp_resume(void)
1356 {
1357 	int ret = 0;
1358 
1359 	int cpu = smp_processor_id();
1360 	struct cpufreq_policy *cpu_policy;
1361 
1362 	pr_debug("resuming cpu %u\n", cpu);
1363 
1364 	/* If there's no policy for the boot CPU, we have nothing to do. */
1365 	cpu_policy = cpufreq_cpu_get(cpu);
1366 	if (!cpu_policy)
1367 		return;
1368 
1369 	if (cpufreq_driver->resume) {
1370 		ret = cpufreq_driver->resume(cpu_policy);
1371 		if (ret) {
1372 			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1373 					"step on CPU %u\n", cpu_policy->cpu);
1374 			goto fail;
1375 		}
1376 	}
1377 
1378 	schedule_work(&cpu_policy->update);
1379 
1380 fail:
1381 	cpufreq_cpu_put(cpu_policy);
1382 }
1383 
1384 static struct syscore_ops cpufreq_syscore_ops = {
1385 	.suspend	= cpufreq_bp_suspend,
1386 	.resume		= cpufreq_bp_resume,
1387 };
1388 
1389 
1390 /*********************************************************************
1391  *                     NOTIFIER LISTS INTERFACE                      *
1392  *********************************************************************/
1393 
1394 /**
1395  *	cpufreq_register_notifier - register a driver with cpufreq
1396  *	@nb: notifier function to register
1397  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1398  *
1399  *	Add a driver to one of two lists: either a list of drivers that
1400  *      are notified about clock rate changes (once before and once after
1401  *      the transition), or a list of drivers that are notified about
1402  *      changes in cpufreq policy.
1403  *
1404  *	This function may sleep, and has the same return conditions as
1405  *	blocking_notifier_chain_register.
1406  */
1407 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1408 {
1409 	int ret;
1410 
1411 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1412 
1413 	switch (list) {
1414 	case CPUFREQ_TRANSITION_NOTIFIER:
1415 		ret = srcu_notifier_chain_register(
1416 				&cpufreq_transition_notifier_list, nb);
1417 		break;
1418 	case CPUFREQ_POLICY_NOTIFIER:
1419 		ret = blocking_notifier_chain_register(
1420 				&cpufreq_policy_notifier_list, nb);
1421 		break;
1422 	default:
1423 		ret = -EINVAL;
1424 	}
1425 
1426 	return ret;
1427 }
1428 EXPORT_SYMBOL(cpufreq_register_notifier);
1429 
1430 
1431 /**
1432  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1433  *	@nb: notifier block to be unregistered
1434  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1435  *
1436  *	Remove a driver from the CPU frequency notifier list.
1437  *
1438  *	This function may sleep, and has the same return conditions as
1439  *	blocking_notifier_chain_unregister.
1440  */
1441 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1442 {
1443 	int ret;
1444 
1445 	switch (list) {
1446 	case CPUFREQ_TRANSITION_NOTIFIER:
1447 		ret = srcu_notifier_chain_unregister(
1448 				&cpufreq_transition_notifier_list, nb);
1449 		break;
1450 	case CPUFREQ_POLICY_NOTIFIER:
1451 		ret = blocking_notifier_chain_unregister(
1452 				&cpufreq_policy_notifier_list, nb);
1453 		break;
1454 	default:
1455 		ret = -EINVAL;
1456 	}
1457 
1458 	return ret;
1459 }
1460 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1461 
1462 
1463 /*********************************************************************
1464  *                              GOVERNORS                            *
1465  *********************************************************************/
1466 
1467 
1468 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1469 			    unsigned int target_freq,
1470 			    unsigned int relation)
1471 {
1472 	int retval = -EINVAL;
1473 	unsigned int old_target_freq = target_freq;
1474 
1475 	if (cpufreq_disabled())
1476 		return -ENODEV;
1477 
1478 	/* Make sure that target_freq is within supported range */
1479 	if (target_freq > policy->max)
1480 		target_freq = policy->max;
1481 	if (target_freq < policy->min)
1482 		target_freq = policy->min;
1483 
1484 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1485 			policy->cpu, target_freq, relation, old_target_freq);
1486 
1487 	if (target_freq == policy->cur)
1488 		return 0;
1489 
1490 	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1491 		retval = cpufreq_driver->target(policy, target_freq, relation);
1492 
1493 	return retval;
1494 }
1495 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1496 
1497 int cpufreq_driver_target(struct cpufreq_policy *policy,
1498 			  unsigned int target_freq,
1499 			  unsigned int relation)
1500 {
1501 	int ret = -EINVAL;
1502 
1503 	policy = cpufreq_cpu_get(policy->cpu);
1504 	if (!policy)
1505 		goto no_policy;
1506 
1507 	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1508 		goto fail;
1509 
1510 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1511 
1512 	unlock_policy_rwsem_write(policy->cpu);
1513 
1514 fail:
1515 	cpufreq_cpu_put(policy);
1516 no_policy:
1517 	return ret;
1518 }
1519 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1520 
1521 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1522 {
1523 	int ret = 0;
1524 
1525 	if (!(cpu_online(cpu) && cpufreq_driver->getavg))
1526 		return 0;
1527 
1528 	policy = cpufreq_cpu_get(policy->cpu);
1529 	if (!policy)
1530 		return -EINVAL;
1531 
1532 	ret = cpufreq_driver->getavg(policy, cpu);
1533 
1534 	cpufreq_cpu_put(policy);
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1538 
1539 /*
1540  * when "event" is CPUFREQ_GOV_LIMITS
1541  */
1542 
1543 static int __cpufreq_governor(struct cpufreq_policy *policy,
1544 					unsigned int event)
1545 {
1546 	int ret;
1547 
1548 	/* Only must be defined when default governor is known to have latency
1549 	   restrictions, like e.g. conservative or ondemand.
1550 	   That this is the case is already ensured in Kconfig
1551 	*/
1552 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1553 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1554 #else
1555 	struct cpufreq_governor *gov = NULL;
1556 #endif
1557 
1558 	if (policy->governor->max_transition_latency &&
1559 	    policy->cpuinfo.transition_latency >
1560 	    policy->governor->max_transition_latency) {
1561 		if (!gov)
1562 			return -EINVAL;
1563 		else {
1564 			printk(KERN_WARNING "%s governor failed, too long"
1565 			       " transition latency of HW, fallback"
1566 			       " to %s governor\n",
1567 			       policy->governor->name,
1568 			       gov->name);
1569 			policy->governor = gov;
1570 		}
1571 	}
1572 
1573 	if (!try_module_get(policy->governor->owner))
1574 		return -EINVAL;
1575 
1576 	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1577 						policy->cpu, event);
1578 	ret = policy->governor->governor(policy, event);
1579 
1580 	/* we keep one module reference alive for
1581 			each CPU governed by this CPU */
1582 	if ((event != CPUFREQ_GOV_START) || ret)
1583 		module_put(policy->governor->owner);
1584 	if ((event == CPUFREQ_GOV_STOP) && !ret)
1585 		module_put(policy->governor->owner);
1586 
1587 	return ret;
1588 }
1589 
1590 
1591 int cpufreq_register_governor(struct cpufreq_governor *governor)
1592 {
1593 	int err;
1594 
1595 	if (!governor)
1596 		return -EINVAL;
1597 
1598 	if (cpufreq_disabled())
1599 		return -ENODEV;
1600 
1601 	mutex_lock(&cpufreq_governor_mutex);
1602 
1603 	err = -EBUSY;
1604 	if (__find_governor(governor->name) == NULL) {
1605 		err = 0;
1606 		list_add(&governor->governor_list, &cpufreq_governor_list);
1607 	}
1608 
1609 	mutex_unlock(&cpufreq_governor_mutex);
1610 	return err;
1611 }
1612 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1613 
1614 
1615 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1616 {
1617 #ifdef CONFIG_HOTPLUG_CPU
1618 	int cpu;
1619 #endif
1620 
1621 	if (!governor)
1622 		return;
1623 
1624 	if (cpufreq_disabled())
1625 		return;
1626 
1627 #ifdef CONFIG_HOTPLUG_CPU
1628 	for_each_present_cpu(cpu) {
1629 		if (cpu_online(cpu))
1630 			continue;
1631 		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1632 			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1633 	}
1634 #endif
1635 
1636 	mutex_lock(&cpufreq_governor_mutex);
1637 	list_del(&governor->governor_list);
1638 	mutex_unlock(&cpufreq_governor_mutex);
1639 	return;
1640 }
1641 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1642 
1643 
1644 
1645 /*********************************************************************
1646  *                          POLICY INTERFACE                         *
1647  *********************************************************************/
1648 
1649 /**
1650  * cpufreq_get_policy - get the current cpufreq_policy
1651  * @policy: struct cpufreq_policy into which the current cpufreq_policy
1652  *	is written
1653  *
1654  * Reads the current cpufreq policy.
1655  */
1656 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1657 {
1658 	struct cpufreq_policy *cpu_policy;
1659 	if (!policy)
1660 		return -EINVAL;
1661 
1662 	cpu_policy = cpufreq_cpu_get(cpu);
1663 	if (!cpu_policy)
1664 		return -EINVAL;
1665 
1666 	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1667 
1668 	cpufreq_cpu_put(cpu_policy);
1669 	return 0;
1670 }
1671 EXPORT_SYMBOL(cpufreq_get_policy);
1672 
1673 
1674 /*
1675  * data   : current policy.
1676  * policy : policy to be set.
1677  */
1678 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1679 				struct cpufreq_policy *policy)
1680 {
1681 	int ret = 0;
1682 
1683 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1684 		policy->min, policy->max);
1685 
1686 	memcpy(&policy->cpuinfo, &data->cpuinfo,
1687 				sizeof(struct cpufreq_cpuinfo));
1688 
1689 	if (policy->min > data->max || policy->max < data->min) {
1690 		ret = -EINVAL;
1691 		goto error_out;
1692 	}
1693 
1694 	/* verify the cpu speed can be set within this limit */
1695 	ret = cpufreq_driver->verify(policy);
1696 	if (ret)
1697 		goto error_out;
1698 
1699 	/* adjust if necessary - all reasons */
1700 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1701 			CPUFREQ_ADJUST, policy);
1702 
1703 	/* adjust if necessary - hardware incompatibility*/
1704 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1705 			CPUFREQ_INCOMPATIBLE, policy);
1706 
1707 	/* verify the cpu speed can be set within this limit,
1708 	   which might be different to the first one */
1709 	ret = cpufreq_driver->verify(policy);
1710 	if (ret)
1711 		goto error_out;
1712 
1713 	/* notification of the new policy */
1714 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1715 			CPUFREQ_NOTIFY, policy);
1716 
1717 	data->min = policy->min;
1718 	data->max = policy->max;
1719 
1720 	pr_debug("new min and max freqs are %u - %u kHz\n",
1721 					data->min, data->max);
1722 
1723 	if (cpufreq_driver->setpolicy) {
1724 		data->policy = policy->policy;
1725 		pr_debug("setting range\n");
1726 		ret = cpufreq_driver->setpolicy(policy);
1727 	} else {
1728 		if (policy->governor != data->governor) {
1729 			/* save old, working values */
1730 			struct cpufreq_governor *old_gov = data->governor;
1731 
1732 			pr_debug("governor switch\n");
1733 
1734 			/* end old governor */
1735 			if (data->governor)
1736 				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1737 
1738 			/* start new governor */
1739 			data->governor = policy->governor;
1740 			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1741 				/* new governor failed, so re-start old one */
1742 				pr_debug("starting governor %s failed\n",
1743 							data->governor->name);
1744 				if (old_gov) {
1745 					data->governor = old_gov;
1746 					__cpufreq_governor(data,
1747 							   CPUFREQ_GOV_START);
1748 				}
1749 				ret = -EINVAL;
1750 				goto error_out;
1751 			}
1752 			/* might be a policy change, too, so fall through */
1753 		}
1754 		pr_debug("governor: change or update limits\n");
1755 		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1756 	}
1757 
1758 error_out:
1759 	return ret;
1760 }
1761 
1762 /**
1763  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1764  *	@cpu: CPU which shall be re-evaluated
1765  *
1766  *	Useful for policy notifiers which have different necessities
1767  *	at different times.
1768  */
1769 int cpufreq_update_policy(unsigned int cpu)
1770 {
1771 	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1772 	struct cpufreq_policy policy;
1773 	int ret;
1774 
1775 	if (!data) {
1776 		ret = -ENODEV;
1777 		goto no_policy;
1778 	}
1779 
1780 	if (unlikely(lock_policy_rwsem_write(cpu))) {
1781 		ret = -EINVAL;
1782 		goto fail;
1783 	}
1784 
1785 	pr_debug("updating policy for CPU %u\n", cpu);
1786 	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1787 	policy.min = data->user_policy.min;
1788 	policy.max = data->user_policy.max;
1789 	policy.policy = data->user_policy.policy;
1790 	policy.governor = data->user_policy.governor;
1791 
1792 	/* BIOS might change freq behind our back
1793 	  -> ask driver for current freq and notify governors about a change */
1794 	if (cpufreq_driver->get) {
1795 		policy.cur = cpufreq_driver->get(cpu);
1796 		if (!data->cur) {
1797 			pr_debug("Driver did not initialize current freq");
1798 			data->cur = policy.cur;
1799 		} else {
1800 			if (data->cur != policy.cur)
1801 				cpufreq_out_of_sync(cpu, data->cur,
1802 								policy.cur);
1803 		}
1804 	}
1805 
1806 	ret = __cpufreq_set_policy(data, &policy);
1807 
1808 	unlock_policy_rwsem_write(cpu);
1809 
1810 fail:
1811 	cpufreq_cpu_put(data);
1812 no_policy:
1813 	return ret;
1814 }
1815 EXPORT_SYMBOL(cpufreq_update_policy);
1816 
1817 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1818 					unsigned long action, void *hcpu)
1819 {
1820 	unsigned int cpu = (unsigned long)hcpu;
1821 	struct device *dev;
1822 
1823 	dev = get_cpu_device(cpu);
1824 	if (dev) {
1825 		switch (action) {
1826 		case CPU_ONLINE:
1827 		case CPU_ONLINE_FROZEN:
1828 			cpufreq_add_dev(dev, NULL);
1829 			break;
1830 		case CPU_DOWN_PREPARE:
1831 		case CPU_DOWN_PREPARE_FROZEN:
1832 			if (unlikely(lock_policy_rwsem_write(cpu)))
1833 				BUG();
1834 
1835 			__cpufreq_remove_dev(dev, NULL);
1836 			break;
1837 		case CPU_DOWN_FAILED:
1838 		case CPU_DOWN_FAILED_FROZEN:
1839 			cpufreq_add_dev(dev, NULL);
1840 			break;
1841 		}
1842 	}
1843 	return NOTIFY_OK;
1844 }
1845 
1846 static struct notifier_block __refdata cpufreq_cpu_notifier = {
1847     .notifier_call = cpufreq_cpu_callback,
1848 };
1849 
1850 /*********************************************************************
1851  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1852  *********************************************************************/
1853 
1854 /**
1855  * cpufreq_register_driver - register a CPU Frequency driver
1856  * @driver_data: A struct cpufreq_driver containing the values#
1857  * submitted by the CPU Frequency driver.
1858  *
1859  *   Registers a CPU Frequency driver to this core code. This code
1860  * returns zero on success, -EBUSY when another driver got here first
1861  * (and isn't unregistered in the meantime).
1862  *
1863  */
1864 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1865 {
1866 	unsigned long flags;
1867 	int ret;
1868 
1869 	if (cpufreq_disabled())
1870 		return -ENODEV;
1871 
1872 	if (!driver_data || !driver_data->verify || !driver_data->init ||
1873 	    ((!driver_data->setpolicy) && (!driver_data->target)))
1874 		return -EINVAL;
1875 
1876 	pr_debug("trying to register driver %s\n", driver_data->name);
1877 
1878 	if (driver_data->setpolicy)
1879 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1880 
1881 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1882 	if (cpufreq_driver) {
1883 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1884 		return -EBUSY;
1885 	}
1886 	cpufreq_driver = driver_data;
1887 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1888 
1889 	ret = subsys_interface_register(&cpufreq_interface);
1890 	if (ret)
1891 		goto err_null_driver;
1892 
1893 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1894 		int i;
1895 		ret = -ENODEV;
1896 
1897 		/* check for at least one working CPU */
1898 		for (i = 0; i < nr_cpu_ids; i++)
1899 			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1900 				ret = 0;
1901 				break;
1902 			}
1903 
1904 		/* if all ->init() calls failed, unregister */
1905 		if (ret) {
1906 			pr_debug("no CPU initialized for driver %s\n",
1907 							driver_data->name);
1908 			goto err_if_unreg;
1909 		}
1910 	}
1911 
1912 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
1913 	pr_debug("driver %s up and running\n", driver_data->name);
1914 
1915 	return 0;
1916 err_if_unreg:
1917 	subsys_interface_unregister(&cpufreq_interface);
1918 err_null_driver:
1919 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1920 	cpufreq_driver = NULL;
1921 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1922 	return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1925 
1926 
1927 /**
1928  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1929  *
1930  *    Unregister the current CPUFreq driver. Only call this if you have
1931  * the right to do so, i.e. if you have succeeded in initialising before!
1932  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1933  * currently not initialised.
1934  */
1935 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1936 {
1937 	unsigned long flags;
1938 
1939 	if (!cpufreq_driver || (driver != cpufreq_driver))
1940 		return -EINVAL;
1941 
1942 	pr_debug("unregistering driver %s\n", driver->name);
1943 
1944 	subsys_interface_unregister(&cpufreq_interface);
1945 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1946 
1947 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1948 	cpufreq_driver = NULL;
1949 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1950 
1951 	return 0;
1952 }
1953 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1954 
1955 static int __init cpufreq_core_init(void)
1956 {
1957 	int cpu;
1958 
1959 	if (cpufreq_disabled())
1960 		return -ENODEV;
1961 
1962 	for_each_possible_cpu(cpu) {
1963 		per_cpu(cpufreq_policy_cpu, cpu) = -1;
1964 		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1965 	}
1966 
1967 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
1968 	BUG_ON(!cpufreq_global_kobject);
1969 	register_syscore_ops(&cpufreq_syscore_ops);
1970 
1971 	return 0;
1972 }
1973 core_initcall(cpufreq_core_init);
1974