xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/cpu_cooling.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/slab.h>
30 #include <linux/suspend.h>
31 #include <linux/syscore_ops.h>
32 #include <linux/tick.h>
33 #include <trace/events/power.h>
34 
35 static LIST_HEAD(cpufreq_policy_list);
36 
37 /* Macros to iterate over CPU policies */
38 #define for_each_suitable_policy(__policy, __active)			 \
39 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40 		if ((__active) == !policy_is_inactive(__policy))
41 
42 #define for_each_active_policy(__policy)		\
43 	for_each_suitable_policy(__policy, true)
44 #define for_each_inactive_policy(__policy)		\
45 	for_each_suitable_policy(__policy, false)
46 
47 #define for_each_policy(__policy)			\
48 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
49 
50 /* Iterate over governors */
51 static LIST_HEAD(cpufreq_governor_list);
52 #define for_each_governor(__governor)				\
53 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
54 
55 /**
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 /* Flag to suspend/resume CPUFreq governors */
65 static bool cpufreq_suspended;
66 
67 static inline bool has_target(void)
68 {
69 	return cpufreq_driver->target_index || cpufreq_driver->target;
70 }
71 
72 /* internal prototypes */
73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74 static int cpufreq_init_governor(struct cpufreq_policy *policy);
75 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76 static int cpufreq_start_governor(struct cpufreq_policy *policy);
77 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
78 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
79 
80 /**
81  * Two notifier lists: the "policy" list is involved in the
82  * validation process for a new CPU frequency policy; the
83  * "transition" list for kernel code that needs to handle
84  * changes to devices when the CPU clock speed changes.
85  * The mutex locks both lists.
86  */
87 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
88 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
89 
90 static int off __read_mostly;
91 static int cpufreq_disabled(void)
92 {
93 	return off;
94 }
95 void disable_cpufreq(void)
96 {
97 	off = 1;
98 }
99 static DEFINE_MUTEX(cpufreq_governor_mutex);
100 
101 bool have_governor_per_policy(void)
102 {
103 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
104 }
105 EXPORT_SYMBOL_GPL(have_governor_per_policy);
106 
107 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
108 {
109 	if (have_governor_per_policy())
110 		return &policy->kobj;
111 	else
112 		return cpufreq_global_kobject;
113 }
114 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
115 
116 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
117 {
118 	u64 idle_time;
119 	u64 cur_wall_time;
120 	u64 busy_time;
121 
122 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
123 
124 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
125 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
126 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
127 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
128 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
129 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
130 
131 	idle_time = cur_wall_time - busy_time;
132 	if (wall)
133 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
134 
135 	return div_u64(idle_time, NSEC_PER_USEC);
136 }
137 
138 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
139 {
140 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
141 
142 	if (idle_time == -1ULL)
143 		return get_cpu_idle_time_jiffy(cpu, wall);
144 	else if (!io_busy)
145 		idle_time += get_cpu_iowait_time_us(cpu, wall);
146 
147 	return idle_time;
148 }
149 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
150 
151 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
152 		unsigned long max_freq)
153 {
154 }
155 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
156 
157 /*
158  * This is a generic cpufreq init() routine which can be used by cpufreq
159  * drivers of SMP systems. It will do following:
160  * - validate & show freq table passed
161  * - set policies transition latency
162  * - policy->cpus with all possible CPUs
163  */
164 int cpufreq_generic_init(struct cpufreq_policy *policy,
165 		struct cpufreq_frequency_table *table,
166 		unsigned int transition_latency)
167 {
168 	policy->freq_table = table;
169 	policy->cpuinfo.transition_latency = transition_latency;
170 
171 	/*
172 	 * The driver only supports the SMP configuration where all processors
173 	 * share the clock and voltage and clock.
174 	 */
175 	cpumask_setall(policy->cpus);
176 
177 	return 0;
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
180 
181 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
182 {
183 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
184 
185 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
188 
189 unsigned int cpufreq_generic_get(unsigned int cpu)
190 {
191 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
192 
193 	if (!policy || IS_ERR(policy->clk)) {
194 		pr_err("%s: No %s associated to cpu: %d\n",
195 		       __func__, policy ? "clk" : "policy", cpu);
196 		return 0;
197 	}
198 
199 	return clk_get_rate(policy->clk) / 1000;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
202 
203 /**
204  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
205  * @cpu: CPU to find the policy for.
206  *
207  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
208  * the kobject reference counter of that policy.  Return a valid policy on
209  * success or NULL on failure.
210  *
211  * The policy returned by this function has to be released with the help of
212  * cpufreq_cpu_put() to balance its kobject reference counter properly.
213  */
214 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
215 {
216 	struct cpufreq_policy *policy = NULL;
217 	unsigned long flags;
218 
219 	if (WARN_ON(cpu >= nr_cpu_ids))
220 		return NULL;
221 
222 	/* get the cpufreq driver */
223 	read_lock_irqsave(&cpufreq_driver_lock, flags);
224 
225 	if (cpufreq_driver) {
226 		/* get the CPU */
227 		policy = cpufreq_cpu_get_raw(cpu);
228 		if (policy)
229 			kobject_get(&policy->kobj);
230 	}
231 
232 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
233 
234 	return policy;
235 }
236 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
237 
238 /**
239  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
240  * @policy: cpufreq policy returned by cpufreq_cpu_get().
241  */
242 void cpufreq_cpu_put(struct cpufreq_policy *policy)
243 {
244 	kobject_put(&policy->kobj);
245 }
246 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
247 
248 /**
249  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
250  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
251  */
252 void cpufreq_cpu_release(struct cpufreq_policy *policy)
253 {
254 	if (WARN_ON(!policy))
255 		return;
256 
257 	lockdep_assert_held(&policy->rwsem);
258 
259 	up_write(&policy->rwsem);
260 
261 	cpufreq_cpu_put(policy);
262 }
263 
264 /**
265  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
266  * @cpu: CPU to find the policy for.
267  *
268  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
269  * if the policy returned by it is not NULL, acquire its rwsem for writing.
270  * Return the policy if it is active or release it and return NULL otherwise.
271  *
272  * The policy returned by this function has to be released with the help of
273  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
274  * counter properly.
275  */
276 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
277 {
278 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
279 
280 	if (!policy)
281 		return NULL;
282 
283 	down_write(&policy->rwsem);
284 
285 	if (policy_is_inactive(policy)) {
286 		cpufreq_cpu_release(policy);
287 		return NULL;
288 	}
289 
290 	return policy;
291 }
292 
293 /*********************************************************************
294  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
295  *********************************************************************/
296 
297 /**
298  * adjust_jiffies - adjust the system "loops_per_jiffy"
299  *
300  * This function alters the system "loops_per_jiffy" for the clock
301  * speed change. Note that loops_per_jiffy cannot be updated on SMP
302  * systems as each CPU might be scaled differently. So, use the arch
303  * per-CPU loops_per_jiffy value wherever possible.
304  */
305 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
306 {
307 #ifndef CONFIG_SMP
308 	static unsigned long l_p_j_ref;
309 	static unsigned int l_p_j_ref_freq;
310 
311 	if (ci->flags & CPUFREQ_CONST_LOOPS)
312 		return;
313 
314 	if (!l_p_j_ref_freq) {
315 		l_p_j_ref = loops_per_jiffy;
316 		l_p_j_ref_freq = ci->old;
317 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
318 			 l_p_j_ref, l_p_j_ref_freq);
319 	}
320 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
321 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
322 								ci->new);
323 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
324 			 loops_per_jiffy, ci->new);
325 	}
326 #endif
327 }
328 
329 /**
330  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
331  * @policy: cpufreq policy to enable fast frequency switching for.
332  * @freqs: contain details of the frequency update.
333  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
334  *
335  * This function calls the transition notifiers and the "adjust_jiffies"
336  * function. It is called twice on all CPU frequency changes that have
337  * external effects.
338  */
339 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
340 				      struct cpufreq_freqs *freqs,
341 				      unsigned int state)
342 {
343 	int cpu;
344 
345 	BUG_ON(irqs_disabled());
346 
347 	if (cpufreq_disabled())
348 		return;
349 
350 	freqs->policy = policy;
351 	freqs->flags = cpufreq_driver->flags;
352 	pr_debug("notification %u of frequency transition to %u kHz\n",
353 		 state, freqs->new);
354 
355 	switch (state) {
356 	case CPUFREQ_PRECHANGE:
357 		/*
358 		 * Detect if the driver reported a value as "old frequency"
359 		 * which is not equal to what the cpufreq core thinks is
360 		 * "old frequency".
361 		 */
362 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
363 			if (policy->cur && (policy->cur != freqs->old)) {
364 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
365 					 freqs->old, policy->cur);
366 				freqs->old = policy->cur;
367 			}
368 		}
369 
370 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
371 					 CPUFREQ_PRECHANGE, freqs);
372 
373 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
374 		break;
375 
376 	case CPUFREQ_POSTCHANGE:
377 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
378 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
379 			 cpumask_pr_args(policy->cpus));
380 
381 		for_each_cpu(cpu, policy->cpus)
382 			trace_cpu_frequency(freqs->new, cpu);
383 
384 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
385 					 CPUFREQ_POSTCHANGE, freqs);
386 
387 		cpufreq_stats_record_transition(policy, freqs->new);
388 		policy->cur = freqs->new;
389 	}
390 }
391 
392 /* Do post notifications when there are chances that transition has failed */
393 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
394 		struct cpufreq_freqs *freqs, int transition_failed)
395 {
396 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397 	if (!transition_failed)
398 		return;
399 
400 	swap(freqs->old, freqs->new);
401 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
402 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
403 }
404 
405 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
406 		struct cpufreq_freqs *freqs)
407 {
408 
409 	/*
410 	 * Catch double invocations of _begin() which lead to self-deadlock.
411 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
412 	 * doesn't invoke _begin() on their behalf, and hence the chances of
413 	 * double invocations are very low. Moreover, there are scenarios
414 	 * where these checks can emit false-positive warnings in these
415 	 * drivers; so we avoid that by skipping them altogether.
416 	 */
417 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
418 				&& current == policy->transition_task);
419 
420 wait:
421 	wait_event(policy->transition_wait, !policy->transition_ongoing);
422 
423 	spin_lock(&policy->transition_lock);
424 
425 	if (unlikely(policy->transition_ongoing)) {
426 		spin_unlock(&policy->transition_lock);
427 		goto wait;
428 	}
429 
430 	policy->transition_ongoing = true;
431 	policy->transition_task = current;
432 
433 	spin_unlock(&policy->transition_lock);
434 
435 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
436 }
437 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
438 
439 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
440 		struct cpufreq_freqs *freqs, int transition_failed)
441 {
442 	if (WARN_ON(!policy->transition_ongoing))
443 		return;
444 
445 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
446 
447 	policy->transition_ongoing = false;
448 	policy->transition_task = NULL;
449 
450 	wake_up(&policy->transition_wait);
451 }
452 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
453 
454 /*
455  * Fast frequency switching status count.  Positive means "enabled", negative
456  * means "disabled" and 0 means "not decided yet".
457  */
458 static int cpufreq_fast_switch_count;
459 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
460 
461 static void cpufreq_list_transition_notifiers(void)
462 {
463 	struct notifier_block *nb;
464 
465 	pr_info("Registered transition notifiers:\n");
466 
467 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
468 
469 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
470 		pr_info("%pS\n", nb->notifier_call);
471 
472 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
473 }
474 
475 /**
476  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
477  * @policy: cpufreq policy to enable fast frequency switching for.
478  *
479  * Try to enable fast frequency switching for @policy.
480  *
481  * The attempt will fail if there is at least one transition notifier registered
482  * at this point, as fast frequency switching is quite fundamentally at odds
483  * with transition notifiers.  Thus if successful, it will make registration of
484  * transition notifiers fail going forward.
485  */
486 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
487 {
488 	lockdep_assert_held(&policy->rwsem);
489 
490 	if (!policy->fast_switch_possible)
491 		return;
492 
493 	mutex_lock(&cpufreq_fast_switch_lock);
494 	if (cpufreq_fast_switch_count >= 0) {
495 		cpufreq_fast_switch_count++;
496 		policy->fast_switch_enabled = true;
497 	} else {
498 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
499 			policy->cpu);
500 		cpufreq_list_transition_notifiers();
501 	}
502 	mutex_unlock(&cpufreq_fast_switch_lock);
503 }
504 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
505 
506 /**
507  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
508  * @policy: cpufreq policy to disable fast frequency switching for.
509  */
510 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
511 {
512 	mutex_lock(&cpufreq_fast_switch_lock);
513 	if (policy->fast_switch_enabled) {
514 		policy->fast_switch_enabled = false;
515 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
516 			cpufreq_fast_switch_count--;
517 	}
518 	mutex_unlock(&cpufreq_fast_switch_lock);
519 }
520 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
521 
522 /**
523  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
524  * one.
525  * @target_freq: target frequency to resolve.
526  *
527  * The target to driver frequency mapping is cached in the policy.
528  *
529  * Return: Lowest driver-supported frequency greater than or equal to the
530  * given target_freq, subject to policy (min/max) and driver limitations.
531  */
532 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
533 					 unsigned int target_freq)
534 {
535 	target_freq = clamp_val(target_freq, policy->min, policy->max);
536 	policy->cached_target_freq = target_freq;
537 
538 	if (cpufreq_driver->target_index) {
539 		int idx;
540 
541 		idx = cpufreq_frequency_table_target(policy, target_freq,
542 						     CPUFREQ_RELATION_L);
543 		policy->cached_resolved_idx = idx;
544 		return policy->freq_table[idx].frequency;
545 	}
546 
547 	if (cpufreq_driver->resolve_freq)
548 		return cpufreq_driver->resolve_freq(policy, target_freq);
549 
550 	return target_freq;
551 }
552 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
553 
554 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
555 {
556 	unsigned int latency;
557 
558 	if (policy->transition_delay_us)
559 		return policy->transition_delay_us;
560 
561 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
562 	if (latency) {
563 		/*
564 		 * For platforms that can change the frequency very fast (< 10
565 		 * us), the above formula gives a decent transition delay. But
566 		 * for platforms where transition_latency is in milliseconds, it
567 		 * ends up giving unrealistic values.
568 		 *
569 		 * Cap the default transition delay to 10 ms, which seems to be
570 		 * a reasonable amount of time after which we should reevaluate
571 		 * the frequency.
572 		 */
573 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
574 	}
575 
576 	return LATENCY_MULTIPLIER;
577 }
578 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
579 
580 /*********************************************************************
581  *                          SYSFS INTERFACE                          *
582  *********************************************************************/
583 static ssize_t show_boost(struct kobject *kobj,
584 			  struct kobj_attribute *attr, char *buf)
585 {
586 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
587 }
588 
589 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
590 			   const char *buf, size_t count)
591 {
592 	int ret, enable;
593 
594 	ret = sscanf(buf, "%d", &enable);
595 	if (ret != 1 || enable < 0 || enable > 1)
596 		return -EINVAL;
597 
598 	if (cpufreq_boost_trigger_state(enable)) {
599 		pr_err("%s: Cannot %s BOOST!\n",
600 		       __func__, enable ? "enable" : "disable");
601 		return -EINVAL;
602 	}
603 
604 	pr_debug("%s: cpufreq BOOST %s\n",
605 		 __func__, enable ? "enabled" : "disabled");
606 
607 	return count;
608 }
609 define_one_global_rw(boost);
610 
611 static struct cpufreq_governor *find_governor(const char *str_governor)
612 {
613 	struct cpufreq_governor *t;
614 
615 	for_each_governor(t)
616 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
617 			return t;
618 
619 	return NULL;
620 }
621 
622 static int cpufreq_parse_policy(char *str_governor,
623 				struct cpufreq_policy *policy)
624 {
625 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
626 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
627 		return 0;
628 	}
629 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
630 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
631 		return 0;
632 	}
633 	return -EINVAL;
634 }
635 
636 /**
637  * cpufreq_parse_governor - parse a governor string only for !setpolicy
638  */
639 static int cpufreq_parse_governor(char *str_governor,
640 				  struct cpufreq_policy *policy)
641 {
642 	struct cpufreq_governor *t;
643 
644 	mutex_lock(&cpufreq_governor_mutex);
645 
646 	t = find_governor(str_governor);
647 	if (!t) {
648 		int ret;
649 
650 		mutex_unlock(&cpufreq_governor_mutex);
651 
652 		ret = request_module("cpufreq_%s", str_governor);
653 		if (ret)
654 			return -EINVAL;
655 
656 		mutex_lock(&cpufreq_governor_mutex);
657 
658 		t = find_governor(str_governor);
659 	}
660 	if (t && !try_module_get(t->owner))
661 		t = NULL;
662 
663 	mutex_unlock(&cpufreq_governor_mutex);
664 
665 	if (t) {
666 		policy->governor = t;
667 		return 0;
668 	}
669 
670 	return -EINVAL;
671 }
672 
673 /**
674  * cpufreq_per_cpu_attr_read() / show_##file_name() -
675  * print out cpufreq information
676  *
677  * Write out information from cpufreq_driver->policy[cpu]; object must be
678  * "unsigned int".
679  */
680 
681 #define show_one(file_name, object)			\
682 static ssize_t show_##file_name				\
683 (struct cpufreq_policy *policy, char *buf)		\
684 {							\
685 	return sprintf(buf, "%u\n", policy->object);	\
686 }
687 
688 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
689 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
690 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
691 show_one(scaling_min_freq, min);
692 show_one(scaling_max_freq, max);
693 
694 __weak unsigned int arch_freq_get_on_cpu(int cpu)
695 {
696 	return 0;
697 }
698 
699 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
700 {
701 	ssize_t ret;
702 	unsigned int freq;
703 
704 	freq = arch_freq_get_on_cpu(policy->cpu);
705 	if (freq)
706 		ret = sprintf(buf, "%u\n", freq);
707 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
708 			cpufreq_driver->get)
709 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
710 	else
711 		ret = sprintf(buf, "%u\n", policy->cur);
712 	return ret;
713 }
714 
715 /**
716  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
717  */
718 #define store_one(file_name, object)			\
719 static ssize_t store_##file_name					\
720 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
721 {									\
722 	int ret, temp;							\
723 	struct cpufreq_policy new_policy;				\
724 									\
725 	memcpy(&new_policy, policy, sizeof(*policy));			\
726 	new_policy.min = policy->user_policy.min;			\
727 	new_policy.max = policy->user_policy.max;			\
728 									\
729 	ret = sscanf(buf, "%u", &new_policy.object);			\
730 	if (ret != 1)							\
731 		return -EINVAL;						\
732 									\
733 	temp = new_policy.object;					\
734 	ret = cpufreq_set_policy(policy, &new_policy);		\
735 	if (!ret)							\
736 		policy->user_policy.object = temp;			\
737 									\
738 	return ret ? ret : count;					\
739 }
740 
741 store_one(scaling_min_freq, min);
742 store_one(scaling_max_freq, max);
743 
744 /**
745  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
746  */
747 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
748 					char *buf)
749 {
750 	unsigned int cur_freq = __cpufreq_get(policy);
751 
752 	if (cur_freq)
753 		return sprintf(buf, "%u\n", cur_freq);
754 
755 	return sprintf(buf, "<unknown>\n");
756 }
757 
758 /**
759  * show_scaling_governor - show the current policy for the specified CPU
760  */
761 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
762 {
763 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
764 		return sprintf(buf, "powersave\n");
765 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
766 		return sprintf(buf, "performance\n");
767 	else if (policy->governor)
768 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
769 				policy->governor->name);
770 	return -EINVAL;
771 }
772 
773 /**
774  * store_scaling_governor - store policy for the specified CPU
775  */
776 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
777 					const char *buf, size_t count)
778 {
779 	int ret;
780 	char	str_governor[16];
781 	struct cpufreq_policy new_policy;
782 
783 	memcpy(&new_policy, policy, sizeof(*policy));
784 
785 	ret = sscanf(buf, "%15s", str_governor);
786 	if (ret != 1)
787 		return -EINVAL;
788 
789 	if (cpufreq_driver->setpolicy) {
790 		if (cpufreq_parse_policy(str_governor, &new_policy))
791 			return -EINVAL;
792 	} else {
793 		if (cpufreq_parse_governor(str_governor, &new_policy))
794 			return -EINVAL;
795 	}
796 
797 	ret = cpufreq_set_policy(policy, &new_policy);
798 
799 	if (new_policy.governor)
800 		module_put(new_policy.governor->owner);
801 
802 	return ret ? ret : count;
803 }
804 
805 /**
806  * show_scaling_driver - show the cpufreq driver currently loaded
807  */
808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
809 {
810 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
811 }
812 
813 /**
814  * show_scaling_available_governors - show the available CPUfreq governors
815  */
816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
817 						char *buf)
818 {
819 	ssize_t i = 0;
820 	struct cpufreq_governor *t;
821 
822 	if (!has_target()) {
823 		i += sprintf(buf, "performance powersave");
824 		goto out;
825 	}
826 
827 	for_each_governor(t) {
828 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829 		    - (CPUFREQ_NAME_LEN + 2)))
830 			goto out;
831 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832 	}
833 out:
834 	i += sprintf(&buf[i], "\n");
835 	return i;
836 }
837 
838 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
839 {
840 	ssize_t i = 0;
841 	unsigned int cpu;
842 
843 	for_each_cpu(cpu, mask) {
844 		if (i)
845 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
846 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
847 		if (i >= (PAGE_SIZE - 5))
848 			break;
849 	}
850 	i += sprintf(&buf[i], "\n");
851 	return i;
852 }
853 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
854 
855 /**
856  * show_related_cpus - show the CPUs affected by each transition even if
857  * hw coordination is in use
858  */
859 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
860 {
861 	return cpufreq_show_cpus(policy->related_cpus, buf);
862 }
863 
864 /**
865  * show_affected_cpus - show the CPUs affected by each transition
866  */
867 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
868 {
869 	return cpufreq_show_cpus(policy->cpus, buf);
870 }
871 
872 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
873 					const char *buf, size_t count)
874 {
875 	unsigned int freq = 0;
876 	unsigned int ret;
877 
878 	if (!policy->governor || !policy->governor->store_setspeed)
879 		return -EINVAL;
880 
881 	ret = sscanf(buf, "%u", &freq);
882 	if (ret != 1)
883 		return -EINVAL;
884 
885 	policy->governor->store_setspeed(policy, freq);
886 
887 	return count;
888 }
889 
890 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
891 {
892 	if (!policy->governor || !policy->governor->show_setspeed)
893 		return sprintf(buf, "<unsupported>\n");
894 
895 	return policy->governor->show_setspeed(policy, buf);
896 }
897 
898 /**
899  * show_bios_limit - show the current cpufreq HW/BIOS limitation
900  */
901 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
902 {
903 	unsigned int limit;
904 	int ret;
905 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
906 	if (!ret)
907 		return sprintf(buf, "%u\n", limit);
908 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
909 }
910 
911 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
912 cpufreq_freq_attr_ro(cpuinfo_min_freq);
913 cpufreq_freq_attr_ro(cpuinfo_max_freq);
914 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
915 cpufreq_freq_attr_ro(scaling_available_governors);
916 cpufreq_freq_attr_ro(scaling_driver);
917 cpufreq_freq_attr_ro(scaling_cur_freq);
918 cpufreq_freq_attr_ro(bios_limit);
919 cpufreq_freq_attr_ro(related_cpus);
920 cpufreq_freq_attr_ro(affected_cpus);
921 cpufreq_freq_attr_rw(scaling_min_freq);
922 cpufreq_freq_attr_rw(scaling_max_freq);
923 cpufreq_freq_attr_rw(scaling_governor);
924 cpufreq_freq_attr_rw(scaling_setspeed);
925 
926 static struct attribute *default_attrs[] = {
927 	&cpuinfo_min_freq.attr,
928 	&cpuinfo_max_freq.attr,
929 	&cpuinfo_transition_latency.attr,
930 	&scaling_min_freq.attr,
931 	&scaling_max_freq.attr,
932 	&affected_cpus.attr,
933 	&related_cpus.attr,
934 	&scaling_governor.attr,
935 	&scaling_driver.attr,
936 	&scaling_available_governors.attr,
937 	&scaling_setspeed.attr,
938 	NULL
939 };
940 
941 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
942 #define to_attr(a) container_of(a, struct freq_attr, attr)
943 
944 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
945 {
946 	struct cpufreq_policy *policy = to_policy(kobj);
947 	struct freq_attr *fattr = to_attr(attr);
948 	ssize_t ret;
949 
950 	down_read(&policy->rwsem);
951 	ret = fattr->show(policy, buf);
952 	up_read(&policy->rwsem);
953 
954 	return ret;
955 }
956 
957 static ssize_t store(struct kobject *kobj, struct attribute *attr,
958 		     const char *buf, size_t count)
959 {
960 	struct cpufreq_policy *policy = to_policy(kobj);
961 	struct freq_attr *fattr = to_attr(attr);
962 	ssize_t ret = -EINVAL;
963 
964 	/*
965 	 * cpus_read_trylock() is used here to work around a circular lock
966 	 * dependency problem with respect to the cpufreq_register_driver().
967 	 */
968 	if (!cpus_read_trylock())
969 		return -EBUSY;
970 
971 	if (cpu_online(policy->cpu)) {
972 		down_write(&policy->rwsem);
973 		ret = fattr->store(policy, buf, count);
974 		up_write(&policy->rwsem);
975 	}
976 
977 	cpus_read_unlock();
978 
979 	return ret;
980 }
981 
982 static void cpufreq_sysfs_release(struct kobject *kobj)
983 {
984 	struct cpufreq_policy *policy = to_policy(kobj);
985 	pr_debug("last reference is dropped\n");
986 	complete(&policy->kobj_unregister);
987 }
988 
989 static const struct sysfs_ops sysfs_ops = {
990 	.show	= show,
991 	.store	= store,
992 };
993 
994 static struct kobj_type ktype_cpufreq = {
995 	.sysfs_ops	= &sysfs_ops,
996 	.default_attrs	= default_attrs,
997 	.release	= cpufreq_sysfs_release,
998 };
999 
1000 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1001 {
1002 	struct device *dev = get_cpu_device(cpu);
1003 
1004 	if (!dev)
1005 		return;
1006 
1007 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1008 		return;
1009 
1010 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1011 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1012 		dev_err(dev, "cpufreq symlink creation failed\n");
1013 }
1014 
1015 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1016 				   struct device *dev)
1017 {
1018 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1019 	sysfs_remove_link(&dev->kobj, "cpufreq");
1020 }
1021 
1022 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1023 {
1024 	struct freq_attr **drv_attr;
1025 	int ret = 0;
1026 
1027 	/* set up files for this cpu device */
1028 	drv_attr = cpufreq_driver->attr;
1029 	while (drv_attr && *drv_attr) {
1030 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1031 		if (ret)
1032 			return ret;
1033 		drv_attr++;
1034 	}
1035 	if (cpufreq_driver->get) {
1036 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1037 		if (ret)
1038 			return ret;
1039 	}
1040 
1041 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1042 	if (ret)
1043 		return ret;
1044 
1045 	if (cpufreq_driver->bios_limit) {
1046 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1047 		if (ret)
1048 			return ret;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1055 {
1056 	return NULL;
1057 }
1058 
1059 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1060 {
1061 	struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1062 	struct cpufreq_policy new_policy;
1063 
1064 	memcpy(&new_policy, policy, sizeof(*policy));
1065 
1066 	def_gov = cpufreq_default_governor();
1067 
1068 	if (has_target()) {
1069 		/*
1070 		 * Update governor of new_policy to the governor used before
1071 		 * hotplug
1072 		 */
1073 		gov = find_governor(policy->last_governor);
1074 		if (gov) {
1075 			pr_debug("Restoring governor %s for cpu %d\n",
1076 				policy->governor->name, policy->cpu);
1077 		} else {
1078 			if (!def_gov)
1079 				return -ENODATA;
1080 			gov = def_gov;
1081 		}
1082 		new_policy.governor = gov;
1083 	} else {
1084 		/* Use the default policy if there is no last_policy. */
1085 		if (policy->last_policy) {
1086 			new_policy.policy = policy->last_policy;
1087 		} else {
1088 			if (!def_gov)
1089 				return -ENODATA;
1090 			cpufreq_parse_policy(def_gov->name, &new_policy);
1091 		}
1092 	}
1093 
1094 	return cpufreq_set_policy(policy, &new_policy);
1095 }
1096 
1097 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1098 {
1099 	int ret = 0;
1100 
1101 	/* Has this CPU been taken care of already? */
1102 	if (cpumask_test_cpu(cpu, policy->cpus))
1103 		return 0;
1104 
1105 	down_write(&policy->rwsem);
1106 	if (has_target())
1107 		cpufreq_stop_governor(policy);
1108 
1109 	cpumask_set_cpu(cpu, policy->cpus);
1110 
1111 	if (has_target()) {
1112 		ret = cpufreq_start_governor(policy);
1113 		if (ret)
1114 			pr_err("%s: Failed to start governor\n", __func__);
1115 	}
1116 	up_write(&policy->rwsem);
1117 	return ret;
1118 }
1119 
1120 static void handle_update(struct work_struct *work)
1121 {
1122 	struct cpufreq_policy *policy =
1123 		container_of(work, struct cpufreq_policy, update);
1124 	unsigned int cpu = policy->cpu;
1125 	pr_debug("handle_update for cpu %u called\n", cpu);
1126 	cpufreq_update_policy(cpu);
1127 }
1128 
1129 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1130 {
1131 	struct cpufreq_policy *policy;
1132 	int ret;
1133 
1134 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1135 	if (!policy)
1136 		return NULL;
1137 
1138 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1139 		goto err_free_policy;
1140 
1141 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1142 		goto err_free_cpumask;
1143 
1144 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1145 		goto err_free_rcpumask;
1146 
1147 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1148 				   cpufreq_global_kobject, "policy%u", cpu);
1149 	if (ret) {
1150 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1151 		/*
1152 		 * The entire policy object will be freed below, but the extra
1153 		 * memory allocated for the kobject name needs to be freed by
1154 		 * releasing the kobject.
1155 		 */
1156 		kobject_put(&policy->kobj);
1157 		goto err_free_real_cpus;
1158 	}
1159 
1160 	INIT_LIST_HEAD(&policy->policy_list);
1161 	init_rwsem(&policy->rwsem);
1162 	spin_lock_init(&policy->transition_lock);
1163 	init_waitqueue_head(&policy->transition_wait);
1164 	init_completion(&policy->kobj_unregister);
1165 	INIT_WORK(&policy->update, handle_update);
1166 
1167 	policy->cpu = cpu;
1168 	return policy;
1169 
1170 err_free_real_cpus:
1171 	free_cpumask_var(policy->real_cpus);
1172 err_free_rcpumask:
1173 	free_cpumask_var(policy->related_cpus);
1174 err_free_cpumask:
1175 	free_cpumask_var(policy->cpus);
1176 err_free_policy:
1177 	kfree(policy);
1178 
1179 	return NULL;
1180 }
1181 
1182 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1183 {
1184 	struct kobject *kobj;
1185 	struct completion *cmp;
1186 
1187 	down_write(&policy->rwsem);
1188 	cpufreq_stats_free_table(policy);
1189 	kobj = &policy->kobj;
1190 	cmp = &policy->kobj_unregister;
1191 	up_write(&policy->rwsem);
1192 	kobject_put(kobj);
1193 
1194 	/*
1195 	 * We need to make sure that the underlying kobj is
1196 	 * actually not referenced anymore by anybody before we
1197 	 * proceed with unloading.
1198 	 */
1199 	pr_debug("waiting for dropping of refcount\n");
1200 	wait_for_completion(cmp);
1201 	pr_debug("wait complete\n");
1202 }
1203 
1204 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1205 {
1206 	unsigned long flags;
1207 	int cpu;
1208 
1209 	/* Remove policy from list */
1210 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1211 	list_del(&policy->policy_list);
1212 
1213 	for_each_cpu(cpu, policy->related_cpus)
1214 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1215 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1216 
1217 	cpufreq_policy_put_kobj(policy);
1218 	free_cpumask_var(policy->real_cpus);
1219 	free_cpumask_var(policy->related_cpus);
1220 	free_cpumask_var(policy->cpus);
1221 	kfree(policy);
1222 }
1223 
1224 static int cpufreq_online(unsigned int cpu)
1225 {
1226 	struct cpufreq_policy *policy;
1227 	bool new_policy;
1228 	unsigned long flags;
1229 	unsigned int j;
1230 	int ret;
1231 
1232 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1233 
1234 	/* Check if this CPU already has a policy to manage it */
1235 	policy = per_cpu(cpufreq_cpu_data, cpu);
1236 	if (policy) {
1237 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1238 		if (!policy_is_inactive(policy))
1239 			return cpufreq_add_policy_cpu(policy, cpu);
1240 
1241 		/* This is the only online CPU for the policy.  Start over. */
1242 		new_policy = false;
1243 		down_write(&policy->rwsem);
1244 		policy->cpu = cpu;
1245 		policy->governor = NULL;
1246 		up_write(&policy->rwsem);
1247 	} else {
1248 		new_policy = true;
1249 		policy = cpufreq_policy_alloc(cpu);
1250 		if (!policy)
1251 			return -ENOMEM;
1252 	}
1253 
1254 	if (!new_policy && cpufreq_driver->online) {
1255 		ret = cpufreq_driver->online(policy);
1256 		if (ret) {
1257 			pr_debug("%s: %d: initialization failed\n", __func__,
1258 				 __LINE__);
1259 			goto out_exit_policy;
1260 		}
1261 
1262 		/* Recover policy->cpus using related_cpus */
1263 		cpumask_copy(policy->cpus, policy->related_cpus);
1264 	} else {
1265 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1266 
1267 		/*
1268 		 * Call driver. From then on the cpufreq must be able
1269 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1270 		 */
1271 		ret = cpufreq_driver->init(policy);
1272 		if (ret) {
1273 			pr_debug("%s: %d: initialization failed\n", __func__,
1274 				 __LINE__);
1275 			goto out_free_policy;
1276 		}
1277 
1278 		ret = cpufreq_table_validate_and_sort(policy);
1279 		if (ret)
1280 			goto out_exit_policy;
1281 
1282 		/* related_cpus should at least include policy->cpus. */
1283 		cpumask_copy(policy->related_cpus, policy->cpus);
1284 	}
1285 
1286 	down_write(&policy->rwsem);
1287 	/*
1288 	 * affected cpus must always be the one, which are online. We aren't
1289 	 * managing offline cpus here.
1290 	 */
1291 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1292 
1293 	if (new_policy) {
1294 		policy->user_policy.min = policy->min;
1295 		policy->user_policy.max = policy->max;
1296 
1297 		for_each_cpu(j, policy->related_cpus) {
1298 			per_cpu(cpufreq_cpu_data, j) = policy;
1299 			add_cpu_dev_symlink(policy, j);
1300 		}
1301 	} else {
1302 		policy->min = policy->user_policy.min;
1303 		policy->max = policy->user_policy.max;
1304 	}
1305 
1306 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1307 		policy->cur = cpufreq_driver->get(policy->cpu);
1308 		if (!policy->cur) {
1309 			pr_err("%s: ->get() failed\n", __func__);
1310 			goto out_destroy_policy;
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * Sometimes boot loaders set CPU frequency to a value outside of
1316 	 * frequency table present with cpufreq core. In such cases CPU might be
1317 	 * unstable if it has to run on that frequency for long duration of time
1318 	 * and so its better to set it to a frequency which is specified in
1319 	 * freq-table. This also makes cpufreq stats inconsistent as
1320 	 * cpufreq-stats would fail to register because current frequency of CPU
1321 	 * isn't found in freq-table.
1322 	 *
1323 	 * Because we don't want this change to effect boot process badly, we go
1324 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1325 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1326 	 * is initialized to zero).
1327 	 *
1328 	 * We are passing target-freq as "policy->cur - 1" otherwise
1329 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1330 	 * equal to target-freq.
1331 	 */
1332 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1333 	    && has_target()) {
1334 		/* Are we running at unknown frequency ? */
1335 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1336 		if (ret == -EINVAL) {
1337 			/* Warn user and fix it */
1338 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1339 				__func__, policy->cpu, policy->cur);
1340 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1341 				CPUFREQ_RELATION_L);
1342 
1343 			/*
1344 			 * Reaching here after boot in a few seconds may not
1345 			 * mean that system will remain stable at "unknown"
1346 			 * frequency for longer duration. Hence, a BUG_ON().
1347 			 */
1348 			BUG_ON(ret);
1349 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1350 				__func__, policy->cpu, policy->cur);
1351 		}
1352 	}
1353 
1354 	if (new_policy) {
1355 		ret = cpufreq_add_dev_interface(policy);
1356 		if (ret)
1357 			goto out_destroy_policy;
1358 
1359 		cpufreq_stats_create_table(policy);
1360 
1361 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1362 		list_add(&policy->policy_list, &cpufreq_policy_list);
1363 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1364 	}
1365 
1366 	ret = cpufreq_init_policy(policy);
1367 	if (ret) {
1368 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1369 		       __func__, cpu, ret);
1370 		goto out_destroy_policy;
1371 	}
1372 
1373 	up_write(&policy->rwsem);
1374 
1375 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1376 
1377 	/* Callback for handling stuff after policy is ready */
1378 	if (cpufreq_driver->ready)
1379 		cpufreq_driver->ready(policy);
1380 
1381 	if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1382 	    cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV)
1383 		policy->cdev = of_cpufreq_cooling_register(policy);
1384 
1385 	pr_debug("initialization complete\n");
1386 
1387 	return 0;
1388 
1389 out_destroy_policy:
1390 	for_each_cpu(j, policy->real_cpus)
1391 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1392 
1393 	up_write(&policy->rwsem);
1394 
1395 out_exit_policy:
1396 	if (cpufreq_driver->exit)
1397 		cpufreq_driver->exit(policy);
1398 
1399 out_free_policy:
1400 	cpufreq_policy_free(policy);
1401 	return ret;
1402 }
1403 
1404 /**
1405  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1406  * @dev: CPU device.
1407  * @sif: Subsystem interface structure pointer (not used)
1408  */
1409 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1410 {
1411 	struct cpufreq_policy *policy;
1412 	unsigned cpu = dev->id;
1413 	int ret;
1414 
1415 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1416 
1417 	if (cpu_online(cpu)) {
1418 		ret = cpufreq_online(cpu);
1419 		if (ret)
1420 			return ret;
1421 	}
1422 
1423 	/* Create sysfs link on CPU registration */
1424 	policy = per_cpu(cpufreq_cpu_data, cpu);
1425 	if (policy)
1426 		add_cpu_dev_symlink(policy, cpu);
1427 
1428 	return 0;
1429 }
1430 
1431 static int cpufreq_offline(unsigned int cpu)
1432 {
1433 	struct cpufreq_policy *policy;
1434 	int ret;
1435 
1436 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1437 
1438 	policy = cpufreq_cpu_get_raw(cpu);
1439 	if (!policy) {
1440 		pr_debug("%s: No cpu_data found\n", __func__);
1441 		return 0;
1442 	}
1443 
1444 	down_write(&policy->rwsem);
1445 	if (has_target())
1446 		cpufreq_stop_governor(policy);
1447 
1448 	cpumask_clear_cpu(cpu, policy->cpus);
1449 
1450 	if (policy_is_inactive(policy)) {
1451 		if (has_target())
1452 			strncpy(policy->last_governor, policy->governor->name,
1453 				CPUFREQ_NAME_LEN);
1454 		else
1455 			policy->last_policy = policy->policy;
1456 	} else if (cpu == policy->cpu) {
1457 		/* Nominate new CPU */
1458 		policy->cpu = cpumask_any(policy->cpus);
1459 	}
1460 
1461 	/* Start governor again for active policy */
1462 	if (!policy_is_inactive(policy)) {
1463 		if (has_target()) {
1464 			ret = cpufreq_start_governor(policy);
1465 			if (ret)
1466 				pr_err("%s: Failed to start governor\n", __func__);
1467 		}
1468 
1469 		goto unlock;
1470 	}
1471 
1472 	if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1473 	    cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) {
1474 		cpufreq_cooling_unregister(policy->cdev);
1475 		policy->cdev = NULL;
1476 	}
1477 
1478 	if (cpufreq_driver->stop_cpu)
1479 		cpufreq_driver->stop_cpu(policy);
1480 
1481 	if (has_target())
1482 		cpufreq_exit_governor(policy);
1483 
1484 	/*
1485 	 * Perform the ->offline() during light-weight tear-down, as
1486 	 * that allows fast recovery when the CPU comes back.
1487 	 */
1488 	if (cpufreq_driver->offline) {
1489 		cpufreq_driver->offline(policy);
1490 	} else if (cpufreq_driver->exit) {
1491 		cpufreq_driver->exit(policy);
1492 		policy->freq_table = NULL;
1493 	}
1494 
1495 unlock:
1496 	up_write(&policy->rwsem);
1497 	return 0;
1498 }
1499 
1500 /**
1501  * cpufreq_remove_dev - remove a CPU device
1502  *
1503  * Removes the cpufreq interface for a CPU device.
1504  */
1505 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1506 {
1507 	unsigned int cpu = dev->id;
1508 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1509 
1510 	if (!policy)
1511 		return;
1512 
1513 	if (cpu_online(cpu))
1514 		cpufreq_offline(cpu);
1515 
1516 	cpumask_clear_cpu(cpu, policy->real_cpus);
1517 	remove_cpu_dev_symlink(policy, dev);
1518 
1519 	if (cpumask_empty(policy->real_cpus)) {
1520 		/* We did light-weight exit earlier, do full tear down now */
1521 		if (cpufreq_driver->offline)
1522 			cpufreq_driver->exit(policy);
1523 
1524 		cpufreq_policy_free(policy);
1525 	}
1526 }
1527 
1528 /**
1529  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1530  *	in deep trouble.
1531  *	@policy: policy managing CPUs
1532  *	@new_freq: CPU frequency the CPU actually runs at
1533  *
1534  *	We adjust to current frequency first, and need to clean up later.
1535  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1536  */
1537 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1538 				unsigned int new_freq)
1539 {
1540 	struct cpufreq_freqs freqs;
1541 
1542 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1543 		 policy->cur, new_freq);
1544 
1545 	freqs.old = policy->cur;
1546 	freqs.new = new_freq;
1547 
1548 	cpufreq_freq_transition_begin(policy, &freqs);
1549 	cpufreq_freq_transition_end(policy, &freqs, 0);
1550 }
1551 
1552 /**
1553  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1554  * @cpu: CPU number
1555  *
1556  * This is the last known freq, without actually getting it from the driver.
1557  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1558  */
1559 unsigned int cpufreq_quick_get(unsigned int cpu)
1560 {
1561 	struct cpufreq_policy *policy;
1562 	unsigned int ret_freq = 0;
1563 	unsigned long flags;
1564 
1565 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1566 
1567 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1568 		ret_freq = cpufreq_driver->get(cpu);
1569 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1570 		return ret_freq;
1571 	}
1572 
1573 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1574 
1575 	policy = cpufreq_cpu_get(cpu);
1576 	if (policy) {
1577 		ret_freq = policy->cur;
1578 		cpufreq_cpu_put(policy);
1579 	}
1580 
1581 	return ret_freq;
1582 }
1583 EXPORT_SYMBOL(cpufreq_quick_get);
1584 
1585 /**
1586  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1587  * @cpu: CPU number
1588  *
1589  * Just return the max possible frequency for a given CPU.
1590  */
1591 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1592 {
1593 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1594 	unsigned int ret_freq = 0;
1595 
1596 	if (policy) {
1597 		ret_freq = policy->max;
1598 		cpufreq_cpu_put(policy);
1599 	}
1600 
1601 	return ret_freq;
1602 }
1603 EXPORT_SYMBOL(cpufreq_quick_get_max);
1604 
1605 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1606 {
1607 	unsigned int ret_freq = 0;
1608 
1609 	if (unlikely(policy_is_inactive(policy)))
1610 		return ret_freq;
1611 
1612 	ret_freq = cpufreq_driver->get(policy->cpu);
1613 
1614 	/*
1615 	 * If fast frequency switching is used with the given policy, the check
1616 	 * against policy->cur is pointless, so skip it in that case too.
1617 	 */
1618 	if (policy->fast_switch_enabled)
1619 		return ret_freq;
1620 
1621 	if (ret_freq && policy->cur &&
1622 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1623 		/* verify no discrepancy between actual and
1624 					saved value exists */
1625 		if (unlikely(ret_freq != policy->cur)) {
1626 			cpufreq_out_of_sync(policy, ret_freq);
1627 			schedule_work(&policy->update);
1628 		}
1629 	}
1630 
1631 	return ret_freq;
1632 }
1633 
1634 /**
1635  * cpufreq_get - get the current CPU frequency (in kHz)
1636  * @cpu: CPU number
1637  *
1638  * Get the CPU current (static) CPU frequency
1639  */
1640 unsigned int cpufreq_get(unsigned int cpu)
1641 {
1642 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1643 	unsigned int ret_freq = 0;
1644 
1645 	if (policy) {
1646 		down_read(&policy->rwsem);
1647 		if (cpufreq_driver->get)
1648 			ret_freq = __cpufreq_get(policy);
1649 		up_read(&policy->rwsem);
1650 
1651 		cpufreq_cpu_put(policy);
1652 	}
1653 
1654 	return ret_freq;
1655 }
1656 EXPORT_SYMBOL(cpufreq_get);
1657 
1658 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1659 {
1660 	unsigned int new_freq;
1661 
1662 	new_freq = cpufreq_driver->get(policy->cpu);
1663 	if (!new_freq)
1664 		return 0;
1665 
1666 	if (!policy->cur) {
1667 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1668 		policy->cur = new_freq;
1669 	} else if (policy->cur != new_freq && has_target()) {
1670 		cpufreq_out_of_sync(policy, new_freq);
1671 	}
1672 
1673 	return new_freq;
1674 }
1675 
1676 static struct subsys_interface cpufreq_interface = {
1677 	.name		= "cpufreq",
1678 	.subsys		= &cpu_subsys,
1679 	.add_dev	= cpufreq_add_dev,
1680 	.remove_dev	= cpufreq_remove_dev,
1681 };
1682 
1683 /*
1684  * In case platform wants some specific frequency to be configured
1685  * during suspend..
1686  */
1687 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1688 {
1689 	int ret;
1690 
1691 	if (!policy->suspend_freq) {
1692 		pr_debug("%s: suspend_freq not defined\n", __func__);
1693 		return 0;
1694 	}
1695 
1696 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1697 			policy->suspend_freq);
1698 
1699 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1700 			CPUFREQ_RELATION_H);
1701 	if (ret)
1702 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1703 				__func__, policy->suspend_freq, ret);
1704 
1705 	return ret;
1706 }
1707 EXPORT_SYMBOL(cpufreq_generic_suspend);
1708 
1709 /**
1710  * cpufreq_suspend() - Suspend CPUFreq governors
1711  *
1712  * Called during system wide Suspend/Hibernate cycles for suspending governors
1713  * as some platforms can't change frequency after this point in suspend cycle.
1714  * Because some of the devices (like: i2c, regulators, etc) they use for
1715  * changing frequency are suspended quickly after this point.
1716  */
1717 void cpufreq_suspend(void)
1718 {
1719 	struct cpufreq_policy *policy;
1720 
1721 	if (!cpufreq_driver)
1722 		return;
1723 
1724 	if (!has_target() && !cpufreq_driver->suspend)
1725 		goto suspend;
1726 
1727 	pr_debug("%s: Suspending Governors\n", __func__);
1728 
1729 	for_each_active_policy(policy) {
1730 		if (has_target()) {
1731 			down_write(&policy->rwsem);
1732 			cpufreq_stop_governor(policy);
1733 			up_write(&policy->rwsem);
1734 		}
1735 
1736 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1737 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1738 				policy);
1739 	}
1740 
1741 suspend:
1742 	cpufreq_suspended = true;
1743 }
1744 
1745 /**
1746  * cpufreq_resume() - Resume CPUFreq governors
1747  *
1748  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1749  * are suspended with cpufreq_suspend().
1750  */
1751 void cpufreq_resume(void)
1752 {
1753 	struct cpufreq_policy *policy;
1754 	int ret;
1755 
1756 	if (!cpufreq_driver)
1757 		return;
1758 
1759 	if (unlikely(!cpufreq_suspended))
1760 		return;
1761 
1762 	cpufreq_suspended = false;
1763 
1764 	if (!has_target() && !cpufreq_driver->resume)
1765 		return;
1766 
1767 	pr_debug("%s: Resuming Governors\n", __func__);
1768 
1769 	for_each_active_policy(policy) {
1770 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1771 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1772 				policy);
1773 		} else if (has_target()) {
1774 			down_write(&policy->rwsem);
1775 			ret = cpufreq_start_governor(policy);
1776 			up_write(&policy->rwsem);
1777 
1778 			if (ret)
1779 				pr_err("%s: Failed to start governor for policy: %p\n",
1780 				       __func__, policy);
1781 		}
1782 	}
1783 }
1784 
1785 /**
1786  *	cpufreq_get_current_driver - return current driver's name
1787  *
1788  *	Return the name string of the currently loaded cpufreq driver
1789  *	or NULL, if none.
1790  */
1791 const char *cpufreq_get_current_driver(void)
1792 {
1793 	if (cpufreq_driver)
1794 		return cpufreq_driver->name;
1795 
1796 	return NULL;
1797 }
1798 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1799 
1800 /**
1801  *	cpufreq_get_driver_data - return current driver data
1802  *
1803  *	Return the private data of the currently loaded cpufreq
1804  *	driver, or NULL if no cpufreq driver is loaded.
1805  */
1806 void *cpufreq_get_driver_data(void)
1807 {
1808 	if (cpufreq_driver)
1809 		return cpufreq_driver->driver_data;
1810 
1811 	return NULL;
1812 }
1813 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1814 
1815 /*********************************************************************
1816  *                     NOTIFIER LISTS INTERFACE                      *
1817  *********************************************************************/
1818 
1819 /**
1820  *	cpufreq_register_notifier - register a driver with cpufreq
1821  *	@nb: notifier function to register
1822  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1823  *
1824  *	Add a driver to one of two lists: either a list of drivers that
1825  *      are notified about clock rate changes (once before and once after
1826  *      the transition), or a list of drivers that are notified about
1827  *      changes in cpufreq policy.
1828  *
1829  *	This function may sleep, and has the same return conditions as
1830  *	blocking_notifier_chain_register.
1831  */
1832 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1833 {
1834 	int ret;
1835 
1836 	if (cpufreq_disabled())
1837 		return -EINVAL;
1838 
1839 	switch (list) {
1840 	case CPUFREQ_TRANSITION_NOTIFIER:
1841 		mutex_lock(&cpufreq_fast_switch_lock);
1842 
1843 		if (cpufreq_fast_switch_count > 0) {
1844 			mutex_unlock(&cpufreq_fast_switch_lock);
1845 			return -EBUSY;
1846 		}
1847 		ret = srcu_notifier_chain_register(
1848 				&cpufreq_transition_notifier_list, nb);
1849 		if (!ret)
1850 			cpufreq_fast_switch_count--;
1851 
1852 		mutex_unlock(&cpufreq_fast_switch_lock);
1853 		break;
1854 	case CPUFREQ_POLICY_NOTIFIER:
1855 		ret = blocking_notifier_chain_register(
1856 				&cpufreq_policy_notifier_list, nb);
1857 		break;
1858 	default:
1859 		ret = -EINVAL;
1860 	}
1861 
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL(cpufreq_register_notifier);
1865 
1866 /**
1867  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1868  *	@nb: notifier block to be unregistered
1869  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1870  *
1871  *	Remove a driver from the CPU frequency notifier list.
1872  *
1873  *	This function may sleep, and has the same return conditions as
1874  *	blocking_notifier_chain_unregister.
1875  */
1876 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1877 {
1878 	int ret;
1879 
1880 	if (cpufreq_disabled())
1881 		return -EINVAL;
1882 
1883 	switch (list) {
1884 	case CPUFREQ_TRANSITION_NOTIFIER:
1885 		mutex_lock(&cpufreq_fast_switch_lock);
1886 
1887 		ret = srcu_notifier_chain_unregister(
1888 				&cpufreq_transition_notifier_list, nb);
1889 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1890 			cpufreq_fast_switch_count++;
1891 
1892 		mutex_unlock(&cpufreq_fast_switch_lock);
1893 		break;
1894 	case CPUFREQ_POLICY_NOTIFIER:
1895 		ret = blocking_notifier_chain_unregister(
1896 				&cpufreq_policy_notifier_list, nb);
1897 		break;
1898 	default:
1899 		ret = -EINVAL;
1900 	}
1901 
1902 	return ret;
1903 }
1904 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1905 
1906 
1907 /*********************************************************************
1908  *                              GOVERNORS                            *
1909  *********************************************************************/
1910 
1911 /**
1912  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1913  * @policy: cpufreq policy to switch the frequency for.
1914  * @target_freq: New frequency to set (may be approximate).
1915  *
1916  * Carry out a fast frequency switch without sleeping.
1917  *
1918  * The driver's ->fast_switch() callback invoked by this function must be
1919  * suitable for being called from within RCU-sched read-side critical sections
1920  * and it is expected to select the minimum available frequency greater than or
1921  * equal to @target_freq (CPUFREQ_RELATION_L).
1922  *
1923  * This function must not be called if policy->fast_switch_enabled is unset.
1924  *
1925  * Governors calling this function must guarantee that it will never be invoked
1926  * twice in parallel for the same policy and that it will never be called in
1927  * parallel with either ->target() or ->target_index() for the same policy.
1928  *
1929  * Returns the actual frequency set for the CPU.
1930  *
1931  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1932  * error condition, the hardware configuration must be preserved.
1933  */
1934 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1935 					unsigned int target_freq)
1936 {
1937 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1938 
1939 	return cpufreq_driver->fast_switch(policy, target_freq);
1940 }
1941 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1942 
1943 /* Must set freqs->new to intermediate frequency */
1944 static int __target_intermediate(struct cpufreq_policy *policy,
1945 				 struct cpufreq_freqs *freqs, int index)
1946 {
1947 	int ret;
1948 
1949 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1950 
1951 	/* We don't need to switch to intermediate freq */
1952 	if (!freqs->new)
1953 		return 0;
1954 
1955 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1956 		 __func__, policy->cpu, freqs->old, freqs->new);
1957 
1958 	cpufreq_freq_transition_begin(policy, freqs);
1959 	ret = cpufreq_driver->target_intermediate(policy, index);
1960 	cpufreq_freq_transition_end(policy, freqs, ret);
1961 
1962 	if (ret)
1963 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1964 		       __func__, ret);
1965 
1966 	return ret;
1967 }
1968 
1969 static int __target_index(struct cpufreq_policy *policy, int index)
1970 {
1971 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1972 	unsigned int intermediate_freq = 0;
1973 	unsigned int newfreq = policy->freq_table[index].frequency;
1974 	int retval = -EINVAL;
1975 	bool notify;
1976 
1977 	if (newfreq == policy->cur)
1978 		return 0;
1979 
1980 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1981 	if (notify) {
1982 		/* Handle switching to intermediate frequency */
1983 		if (cpufreq_driver->get_intermediate) {
1984 			retval = __target_intermediate(policy, &freqs, index);
1985 			if (retval)
1986 				return retval;
1987 
1988 			intermediate_freq = freqs.new;
1989 			/* Set old freq to intermediate */
1990 			if (intermediate_freq)
1991 				freqs.old = freqs.new;
1992 		}
1993 
1994 		freqs.new = newfreq;
1995 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1996 			 __func__, policy->cpu, freqs.old, freqs.new);
1997 
1998 		cpufreq_freq_transition_begin(policy, &freqs);
1999 	}
2000 
2001 	retval = cpufreq_driver->target_index(policy, index);
2002 	if (retval)
2003 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2004 		       retval);
2005 
2006 	if (notify) {
2007 		cpufreq_freq_transition_end(policy, &freqs, retval);
2008 
2009 		/*
2010 		 * Failed after setting to intermediate freq? Driver should have
2011 		 * reverted back to initial frequency and so should we. Check
2012 		 * here for intermediate_freq instead of get_intermediate, in
2013 		 * case we haven't switched to intermediate freq at all.
2014 		 */
2015 		if (unlikely(retval && intermediate_freq)) {
2016 			freqs.old = intermediate_freq;
2017 			freqs.new = policy->restore_freq;
2018 			cpufreq_freq_transition_begin(policy, &freqs);
2019 			cpufreq_freq_transition_end(policy, &freqs, 0);
2020 		}
2021 	}
2022 
2023 	return retval;
2024 }
2025 
2026 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2027 			    unsigned int target_freq,
2028 			    unsigned int relation)
2029 {
2030 	unsigned int old_target_freq = target_freq;
2031 	int index;
2032 
2033 	if (cpufreq_disabled())
2034 		return -ENODEV;
2035 
2036 	/* Make sure that target_freq is within supported range */
2037 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2038 
2039 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2040 		 policy->cpu, target_freq, relation, old_target_freq);
2041 
2042 	/*
2043 	 * This might look like a redundant call as we are checking it again
2044 	 * after finding index. But it is left intentionally for cases where
2045 	 * exactly same freq is called again and so we can save on few function
2046 	 * calls.
2047 	 */
2048 	if (target_freq == policy->cur)
2049 		return 0;
2050 
2051 	/* Save last value to restore later on errors */
2052 	policy->restore_freq = policy->cur;
2053 
2054 	if (cpufreq_driver->target)
2055 		return cpufreq_driver->target(policy, target_freq, relation);
2056 
2057 	if (!cpufreq_driver->target_index)
2058 		return -EINVAL;
2059 
2060 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2061 
2062 	return __target_index(policy, index);
2063 }
2064 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2065 
2066 int cpufreq_driver_target(struct cpufreq_policy *policy,
2067 			  unsigned int target_freq,
2068 			  unsigned int relation)
2069 {
2070 	int ret = -EINVAL;
2071 
2072 	down_write(&policy->rwsem);
2073 
2074 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2075 
2076 	up_write(&policy->rwsem);
2077 
2078 	return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2081 
2082 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2083 {
2084 	return NULL;
2085 }
2086 
2087 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2088 {
2089 	int ret;
2090 
2091 	/* Don't start any governor operations if we are entering suspend */
2092 	if (cpufreq_suspended)
2093 		return 0;
2094 	/*
2095 	 * Governor might not be initiated here if ACPI _PPC changed
2096 	 * notification happened, so check it.
2097 	 */
2098 	if (!policy->governor)
2099 		return -EINVAL;
2100 
2101 	/* Platform doesn't want dynamic frequency switching ? */
2102 	if (policy->governor->dynamic_switching &&
2103 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2104 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2105 
2106 		if (gov) {
2107 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2108 				policy->governor->name, gov->name);
2109 			policy->governor = gov;
2110 		} else {
2111 			return -EINVAL;
2112 		}
2113 	}
2114 
2115 	if (!try_module_get(policy->governor->owner))
2116 		return -EINVAL;
2117 
2118 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2119 
2120 	if (policy->governor->init) {
2121 		ret = policy->governor->init(policy);
2122 		if (ret) {
2123 			module_put(policy->governor->owner);
2124 			return ret;
2125 		}
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2132 {
2133 	if (cpufreq_suspended || !policy->governor)
2134 		return;
2135 
2136 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2137 
2138 	if (policy->governor->exit)
2139 		policy->governor->exit(policy);
2140 
2141 	module_put(policy->governor->owner);
2142 }
2143 
2144 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2145 {
2146 	int ret;
2147 
2148 	if (cpufreq_suspended)
2149 		return 0;
2150 
2151 	if (!policy->governor)
2152 		return -EINVAL;
2153 
2154 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2155 
2156 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2157 		cpufreq_update_current_freq(policy);
2158 
2159 	if (policy->governor->start) {
2160 		ret = policy->governor->start(policy);
2161 		if (ret)
2162 			return ret;
2163 	}
2164 
2165 	if (policy->governor->limits)
2166 		policy->governor->limits(policy);
2167 
2168 	return 0;
2169 }
2170 
2171 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2172 {
2173 	if (cpufreq_suspended || !policy->governor)
2174 		return;
2175 
2176 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2177 
2178 	if (policy->governor->stop)
2179 		policy->governor->stop(policy);
2180 }
2181 
2182 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2183 {
2184 	if (cpufreq_suspended || !policy->governor)
2185 		return;
2186 
2187 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2188 
2189 	if (policy->governor->limits)
2190 		policy->governor->limits(policy);
2191 }
2192 
2193 int cpufreq_register_governor(struct cpufreq_governor *governor)
2194 {
2195 	int err;
2196 
2197 	if (!governor)
2198 		return -EINVAL;
2199 
2200 	if (cpufreq_disabled())
2201 		return -ENODEV;
2202 
2203 	mutex_lock(&cpufreq_governor_mutex);
2204 
2205 	err = -EBUSY;
2206 	if (!find_governor(governor->name)) {
2207 		err = 0;
2208 		list_add(&governor->governor_list, &cpufreq_governor_list);
2209 	}
2210 
2211 	mutex_unlock(&cpufreq_governor_mutex);
2212 	return err;
2213 }
2214 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2215 
2216 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2217 {
2218 	struct cpufreq_policy *policy;
2219 	unsigned long flags;
2220 
2221 	if (!governor)
2222 		return;
2223 
2224 	if (cpufreq_disabled())
2225 		return;
2226 
2227 	/* clear last_governor for all inactive policies */
2228 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2229 	for_each_inactive_policy(policy) {
2230 		if (!strcmp(policy->last_governor, governor->name)) {
2231 			policy->governor = NULL;
2232 			strcpy(policy->last_governor, "\0");
2233 		}
2234 	}
2235 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2236 
2237 	mutex_lock(&cpufreq_governor_mutex);
2238 	list_del(&governor->governor_list);
2239 	mutex_unlock(&cpufreq_governor_mutex);
2240 }
2241 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2242 
2243 
2244 /*********************************************************************
2245  *                          POLICY INTERFACE                         *
2246  *********************************************************************/
2247 
2248 /**
2249  * cpufreq_get_policy - get the current cpufreq_policy
2250  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2251  *	is written
2252  *
2253  * Reads the current cpufreq policy.
2254  */
2255 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2256 {
2257 	struct cpufreq_policy *cpu_policy;
2258 	if (!policy)
2259 		return -EINVAL;
2260 
2261 	cpu_policy = cpufreq_cpu_get(cpu);
2262 	if (!cpu_policy)
2263 		return -EINVAL;
2264 
2265 	memcpy(policy, cpu_policy, sizeof(*policy));
2266 
2267 	cpufreq_cpu_put(cpu_policy);
2268 	return 0;
2269 }
2270 EXPORT_SYMBOL(cpufreq_get_policy);
2271 
2272 /**
2273  * cpufreq_set_policy - Modify cpufreq policy parameters.
2274  * @policy: Policy object to modify.
2275  * @new_policy: New policy data.
2276  *
2277  * Pass @new_policy to the cpufreq driver's ->verify() callback, run the
2278  * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to
2279  * the driver's ->verify() callback again and run the notifiers for it again
2280  * with the CPUFREQ_NOTIFY value.  Next, copy the min and max parameters
2281  * of @new_policy to @policy and either invoke the driver's ->setpolicy()
2282  * callback (if present) or carry out a governor update for @policy.  That is,
2283  * run the current governor's ->limits() callback (if the governor field in
2284  * @new_policy points to the same object as the one in @policy) or replace the
2285  * governor for @policy with the new one stored in @new_policy.
2286  *
2287  * The cpuinfo part of @policy is not updated by this function.
2288  */
2289 int cpufreq_set_policy(struct cpufreq_policy *policy,
2290 		       struct cpufreq_policy *new_policy)
2291 {
2292 	struct cpufreq_governor *old_gov;
2293 	int ret;
2294 
2295 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2296 		 new_policy->cpu, new_policy->min, new_policy->max);
2297 
2298 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2299 
2300 	/*
2301 	* This check works well when we store new min/max freq attributes,
2302 	* because new_policy is a copy of policy with one field updated.
2303 	*/
2304 	if (new_policy->min > new_policy->max)
2305 		return -EINVAL;
2306 
2307 	/* verify the cpu speed can be set within this limit */
2308 	ret = cpufreq_driver->verify(new_policy);
2309 	if (ret)
2310 		return ret;
2311 
2312 	/* adjust if necessary - all reasons */
2313 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2314 			CPUFREQ_ADJUST, new_policy);
2315 
2316 	/*
2317 	 * verify the cpu speed can be set within this limit, which might be
2318 	 * different to the first one
2319 	 */
2320 	ret = cpufreq_driver->verify(new_policy);
2321 	if (ret)
2322 		return ret;
2323 
2324 	/* notification of the new policy */
2325 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2326 			CPUFREQ_NOTIFY, new_policy);
2327 
2328 	policy->min = new_policy->min;
2329 	policy->max = new_policy->max;
2330 	trace_cpu_frequency_limits(policy);
2331 
2332 	policy->cached_target_freq = UINT_MAX;
2333 
2334 	pr_debug("new min and max freqs are %u - %u kHz\n",
2335 		 policy->min, policy->max);
2336 
2337 	if (cpufreq_driver->setpolicy) {
2338 		policy->policy = new_policy->policy;
2339 		pr_debug("setting range\n");
2340 		return cpufreq_driver->setpolicy(policy);
2341 	}
2342 
2343 	if (new_policy->governor == policy->governor) {
2344 		pr_debug("governor limits update\n");
2345 		cpufreq_governor_limits(policy);
2346 		return 0;
2347 	}
2348 
2349 	pr_debug("governor switch\n");
2350 
2351 	/* save old, working values */
2352 	old_gov = policy->governor;
2353 	/* end old governor */
2354 	if (old_gov) {
2355 		cpufreq_stop_governor(policy);
2356 		cpufreq_exit_governor(policy);
2357 	}
2358 
2359 	/* start new governor */
2360 	policy->governor = new_policy->governor;
2361 	ret = cpufreq_init_governor(policy);
2362 	if (!ret) {
2363 		ret = cpufreq_start_governor(policy);
2364 		if (!ret) {
2365 			pr_debug("governor change\n");
2366 			sched_cpufreq_governor_change(policy, old_gov);
2367 			return 0;
2368 		}
2369 		cpufreq_exit_governor(policy);
2370 	}
2371 
2372 	/* new governor failed, so re-start old one */
2373 	pr_debug("starting governor %s failed\n", policy->governor->name);
2374 	if (old_gov) {
2375 		policy->governor = old_gov;
2376 		if (cpufreq_init_governor(policy))
2377 			policy->governor = NULL;
2378 		else
2379 			cpufreq_start_governor(policy);
2380 	}
2381 
2382 	return ret;
2383 }
2384 
2385 /**
2386  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2387  * @cpu: CPU to re-evaluate the policy for.
2388  *
2389  * Update the current frequency for the cpufreq policy of @cpu and use
2390  * cpufreq_set_policy() to re-apply the min and max limits saved in the
2391  * user_policy sub-structure of that policy, which triggers the evaluation
2392  * of policy notifiers and the cpufreq driver's ->verify() callback for the
2393  * policy in question, among other things.
2394  */
2395 void cpufreq_update_policy(unsigned int cpu)
2396 {
2397 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2398 	struct cpufreq_policy new_policy;
2399 
2400 	if (!policy)
2401 		return;
2402 
2403 	/*
2404 	 * BIOS might change freq behind our back
2405 	 * -> ask driver for current freq and notify governors about a change
2406 	 */
2407 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy &&
2408 	    (cpufreq_suspended || WARN_ON(!cpufreq_update_current_freq(policy))))
2409 		goto unlock;
2410 
2411 	pr_debug("updating policy for CPU %u\n", cpu);
2412 	memcpy(&new_policy, policy, sizeof(*policy));
2413 	new_policy.min = policy->user_policy.min;
2414 	new_policy.max = policy->user_policy.max;
2415 
2416 	cpufreq_set_policy(policy, &new_policy);
2417 
2418 unlock:
2419 	cpufreq_cpu_release(policy);
2420 }
2421 EXPORT_SYMBOL(cpufreq_update_policy);
2422 
2423 /**
2424  * cpufreq_update_limits - Update policy limits for a given CPU.
2425  * @cpu: CPU to update the policy limits for.
2426  *
2427  * Invoke the driver's ->update_limits callback if present or call
2428  * cpufreq_update_policy() for @cpu.
2429  */
2430 void cpufreq_update_limits(unsigned int cpu)
2431 {
2432 	if (cpufreq_driver->update_limits)
2433 		cpufreq_driver->update_limits(cpu);
2434 	else
2435 		cpufreq_update_policy(cpu);
2436 }
2437 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2438 
2439 /*********************************************************************
2440  *               BOOST						     *
2441  *********************************************************************/
2442 static int cpufreq_boost_set_sw(int state)
2443 {
2444 	struct cpufreq_policy *policy;
2445 	int ret = -EINVAL;
2446 
2447 	for_each_active_policy(policy) {
2448 		if (!policy->freq_table)
2449 			continue;
2450 
2451 		ret = cpufreq_frequency_table_cpuinfo(policy,
2452 						      policy->freq_table);
2453 		if (ret) {
2454 			pr_err("%s: Policy frequency update failed\n",
2455 			       __func__);
2456 			break;
2457 		}
2458 
2459 		down_write(&policy->rwsem);
2460 		policy->user_policy.max = policy->max;
2461 		cpufreq_governor_limits(policy);
2462 		up_write(&policy->rwsem);
2463 	}
2464 
2465 	return ret;
2466 }
2467 
2468 int cpufreq_boost_trigger_state(int state)
2469 {
2470 	unsigned long flags;
2471 	int ret = 0;
2472 
2473 	if (cpufreq_driver->boost_enabled == state)
2474 		return 0;
2475 
2476 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2477 	cpufreq_driver->boost_enabled = state;
2478 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2479 
2480 	ret = cpufreq_driver->set_boost(state);
2481 	if (ret) {
2482 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2483 		cpufreq_driver->boost_enabled = !state;
2484 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2485 
2486 		pr_err("%s: Cannot %s BOOST\n",
2487 		       __func__, state ? "enable" : "disable");
2488 	}
2489 
2490 	return ret;
2491 }
2492 
2493 static bool cpufreq_boost_supported(void)
2494 {
2495 	return cpufreq_driver->set_boost;
2496 }
2497 
2498 static int create_boost_sysfs_file(void)
2499 {
2500 	int ret;
2501 
2502 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2503 	if (ret)
2504 		pr_err("%s: cannot register global BOOST sysfs file\n",
2505 		       __func__);
2506 
2507 	return ret;
2508 }
2509 
2510 static void remove_boost_sysfs_file(void)
2511 {
2512 	if (cpufreq_boost_supported())
2513 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2514 }
2515 
2516 int cpufreq_enable_boost_support(void)
2517 {
2518 	if (!cpufreq_driver)
2519 		return -EINVAL;
2520 
2521 	if (cpufreq_boost_supported())
2522 		return 0;
2523 
2524 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2525 
2526 	/* This will get removed on driver unregister */
2527 	return create_boost_sysfs_file();
2528 }
2529 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2530 
2531 int cpufreq_boost_enabled(void)
2532 {
2533 	return cpufreq_driver->boost_enabled;
2534 }
2535 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2536 
2537 /*********************************************************************
2538  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2539  *********************************************************************/
2540 static enum cpuhp_state hp_online;
2541 
2542 static int cpuhp_cpufreq_online(unsigned int cpu)
2543 {
2544 	cpufreq_online(cpu);
2545 
2546 	return 0;
2547 }
2548 
2549 static int cpuhp_cpufreq_offline(unsigned int cpu)
2550 {
2551 	cpufreq_offline(cpu);
2552 
2553 	return 0;
2554 }
2555 
2556 /**
2557  * cpufreq_register_driver - register a CPU Frequency driver
2558  * @driver_data: A struct cpufreq_driver containing the values#
2559  * submitted by the CPU Frequency driver.
2560  *
2561  * Registers a CPU Frequency driver to this core code. This code
2562  * returns zero on success, -EEXIST when another driver got here first
2563  * (and isn't unregistered in the meantime).
2564  *
2565  */
2566 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2567 {
2568 	unsigned long flags;
2569 	int ret;
2570 
2571 	if (cpufreq_disabled())
2572 		return -ENODEV;
2573 
2574 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2575 	    !(driver_data->setpolicy || driver_data->target_index ||
2576 		    driver_data->target) ||
2577 	     (driver_data->setpolicy && (driver_data->target_index ||
2578 		    driver_data->target)) ||
2579 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2580 	     (!driver_data->online != !driver_data->offline))
2581 		return -EINVAL;
2582 
2583 	pr_debug("trying to register driver %s\n", driver_data->name);
2584 
2585 	/* Protect against concurrent CPU online/offline. */
2586 	cpus_read_lock();
2587 
2588 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2589 	if (cpufreq_driver) {
2590 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2591 		ret = -EEXIST;
2592 		goto out;
2593 	}
2594 	cpufreq_driver = driver_data;
2595 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2596 
2597 	if (driver_data->setpolicy)
2598 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2599 
2600 	if (cpufreq_boost_supported()) {
2601 		ret = create_boost_sysfs_file();
2602 		if (ret)
2603 			goto err_null_driver;
2604 	}
2605 
2606 	ret = subsys_interface_register(&cpufreq_interface);
2607 	if (ret)
2608 		goto err_boost_unreg;
2609 
2610 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2611 	    list_empty(&cpufreq_policy_list)) {
2612 		/* if all ->init() calls failed, unregister */
2613 		ret = -ENODEV;
2614 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2615 			 driver_data->name);
2616 		goto err_if_unreg;
2617 	}
2618 
2619 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2620 						   "cpufreq:online",
2621 						   cpuhp_cpufreq_online,
2622 						   cpuhp_cpufreq_offline);
2623 	if (ret < 0)
2624 		goto err_if_unreg;
2625 	hp_online = ret;
2626 	ret = 0;
2627 
2628 	pr_debug("driver %s up and running\n", driver_data->name);
2629 	goto out;
2630 
2631 err_if_unreg:
2632 	subsys_interface_unregister(&cpufreq_interface);
2633 err_boost_unreg:
2634 	remove_boost_sysfs_file();
2635 err_null_driver:
2636 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2637 	cpufreq_driver = NULL;
2638 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2639 out:
2640 	cpus_read_unlock();
2641 	return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2644 
2645 /**
2646  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2647  *
2648  * Unregister the current CPUFreq driver. Only call this if you have
2649  * the right to do so, i.e. if you have succeeded in initialising before!
2650  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2651  * currently not initialised.
2652  */
2653 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2654 {
2655 	unsigned long flags;
2656 
2657 	if (!cpufreq_driver || (driver != cpufreq_driver))
2658 		return -EINVAL;
2659 
2660 	pr_debug("unregistering driver %s\n", driver->name);
2661 
2662 	/* Protect against concurrent cpu hotplug */
2663 	cpus_read_lock();
2664 	subsys_interface_unregister(&cpufreq_interface);
2665 	remove_boost_sysfs_file();
2666 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2667 
2668 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2669 
2670 	cpufreq_driver = NULL;
2671 
2672 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2673 	cpus_read_unlock();
2674 
2675 	return 0;
2676 }
2677 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2678 
2679 /*
2680  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2681  * or mutexes when secondary CPUs are halted.
2682  */
2683 static struct syscore_ops cpufreq_syscore_ops = {
2684 	.shutdown = cpufreq_suspend,
2685 };
2686 
2687 struct kobject *cpufreq_global_kobject;
2688 EXPORT_SYMBOL(cpufreq_global_kobject);
2689 
2690 static int __init cpufreq_core_init(void)
2691 {
2692 	if (cpufreq_disabled())
2693 		return -ENODEV;
2694 
2695 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2696 	BUG_ON(!cpufreq_global_kobject);
2697 
2698 	register_syscore_ops(&cpufreq_syscore_ops);
2699 
2700 	return 0;
2701 }
2702 module_param(off, int, 0444);
2703 core_initcall(cpufreq_core_init);
2704