1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/cpu_cooling.h> 23 #include <linux/delay.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/kernel_stat.h> 27 #include <linux/module.h> 28 #include <linux/mutex.h> 29 #include <linux/slab.h> 30 #include <linux/suspend.h> 31 #include <linux/syscore_ops.h> 32 #include <linux/tick.h> 33 #include <trace/events/power.h> 34 35 static LIST_HEAD(cpufreq_policy_list); 36 37 /* Macros to iterate over CPU policies */ 38 #define for_each_suitable_policy(__policy, __active) \ 39 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 40 if ((__active) == !policy_is_inactive(__policy)) 41 42 #define for_each_active_policy(__policy) \ 43 for_each_suitable_policy(__policy, true) 44 #define for_each_inactive_policy(__policy) \ 45 for_each_suitable_policy(__policy, false) 46 47 #define for_each_policy(__policy) \ 48 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 49 50 /* Iterate over governors */ 51 static LIST_HEAD(cpufreq_governor_list); 52 #define for_each_governor(__governor) \ 53 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 54 55 /** 56 * The "cpufreq driver" - the arch- or hardware-dependent low 57 * level driver of CPUFreq support, and its spinlock. This lock 58 * also protects the cpufreq_cpu_data array. 59 */ 60 static struct cpufreq_driver *cpufreq_driver; 61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 62 static DEFINE_RWLOCK(cpufreq_driver_lock); 63 64 /* Flag to suspend/resume CPUFreq governors */ 65 static bool cpufreq_suspended; 66 67 static inline bool has_target(void) 68 { 69 return cpufreq_driver->target_index || cpufreq_driver->target; 70 } 71 72 /* internal prototypes */ 73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 74 static int cpufreq_init_governor(struct cpufreq_policy *policy); 75 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 76 static int cpufreq_start_governor(struct cpufreq_policy *policy); 77 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 78 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 79 80 /** 81 * Two notifier lists: the "policy" list is involved in the 82 * validation process for a new CPU frequency policy; the 83 * "transition" list for kernel code that needs to handle 84 * changes to devices when the CPU clock speed changes. 85 * The mutex locks both lists. 86 */ 87 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 88 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 89 90 static int off __read_mostly; 91 static int cpufreq_disabled(void) 92 { 93 return off; 94 } 95 void disable_cpufreq(void) 96 { 97 off = 1; 98 } 99 static DEFINE_MUTEX(cpufreq_governor_mutex); 100 101 bool have_governor_per_policy(void) 102 { 103 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 104 } 105 EXPORT_SYMBOL_GPL(have_governor_per_policy); 106 107 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 108 { 109 if (have_governor_per_policy()) 110 return &policy->kobj; 111 else 112 return cpufreq_global_kobject; 113 } 114 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 115 116 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 117 { 118 u64 idle_time; 119 u64 cur_wall_time; 120 u64 busy_time; 121 122 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 123 124 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 128 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 129 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 130 131 idle_time = cur_wall_time - busy_time; 132 if (wall) 133 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 134 135 return div_u64(idle_time, NSEC_PER_USEC); 136 } 137 138 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 139 { 140 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 141 142 if (idle_time == -1ULL) 143 return get_cpu_idle_time_jiffy(cpu, wall); 144 else if (!io_busy) 145 idle_time += get_cpu_iowait_time_us(cpu, wall); 146 147 return idle_time; 148 } 149 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 150 151 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 152 unsigned long max_freq) 153 { 154 } 155 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 156 157 /* 158 * This is a generic cpufreq init() routine which can be used by cpufreq 159 * drivers of SMP systems. It will do following: 160 * - validate & show freq table passed 161 * - set policies transition latency 162 * - policy->cpus with all possible CPUs 163 */ 164 int cpufreq_generic_init(struct cpufreq_policy *policy, 165 struct cpufreq_frequency_table *table, 166 unsigned int transition_latency) 167 { 168 policy->freq_table = table; 169 policy->cpuinfo.transition_latency = transition_latency; 170 171 /* 172 * The driver only supports the SMP configuration where all processors 173 * share the clock and voltage and clock. 174 */ 175 cpumask_setall(policy->cpus); 176 177 return 0; 178 } 179 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 180 181 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 182 { 183 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 184 185 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 186 } 187 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 188 189 unsigned int cpufreq_generic_get(unsigned int cpu) 190 { 191 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 192 193 if (!policy || IS_ERR(policy->clk)) { 194 pr_err("%s: No %s associated to cpu: %d\n", 195 __func__, policy ? "clk" : "policy", cpu); 196 return 0; 197 } 198 199 return clk_get_rate(policy->clk) / 1000; 200 } 201 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 202 203 /** 204 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 205 * @cpu: CPU to find the policy for. 206 * 207 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 208 * the kobject reference counter of that policy. Return a valid policy on 209 * success or NULL on failure. 210 * 211 * The policy returned by this function has to be released with the help of 212 * cpufreq_cpu_put() to balance its kobject reference counter properly. 213 */ 214 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 215 { 216 struct cpufreq_policy *policy = NULL; 217 unsigned long flags; 218 219 if (WARN_ON(cpu >= nr_cpu_ids)) 220 return NULL; 221 222 /* get the cpufreq driver */ 223 read_lock_irqsave(&cpufreq_driver_lock, flags); 224 225 if (cpufreq_driver) { 226 /* get the CPU */ 227 policy = cpufreq_cpu_get_raw(cpu); 228 if (policy) 229 kobject_get(&policy->kobj); 230 } 231 232 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 233 234 return policy; 235 } 236 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 237 238 /** 239 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 240 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 241 */ 242 void cpufreq_cpu_put(struct cpufreq_policy *policy) 243 { 244 kobject_put(&policy->kobj); 245 } 246 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 247 248 /** 249 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 250 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 251 */ 252 void cpufreq_cpu_release(struct cpufreq_policy *policy) 253 { 254 if (WARN_ON(!policy)) 255 return; 256 257 lockdep_assert_held(&policy->rwsem); 258 259 up_write(&policy->rwsem); 260 261 cpufreq_cpu_put(policy); 262 } 263 264 /** 265 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 266 * @cpu: CPU to find the policy for. 267 * 268 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 269 * if the policy returned by it is not NULL, acquire its rwsem for writing. 270 * Return the policy if it is active or release it and return NULL otherwise. 271 * 272 * The policy returned by this function has to be released with the help of 273 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 274 * counter properly. 275 */ 276 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 277 { 278 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 279 280 if (!policy) 281 return NULL; 282 283 down_write(&policy->rwsem); 284 285 if (policy_is_inactive(policy)) { 286 cpufreq_cpu_release(policy); 287 return NULL; 288 } 289 290 return policy; 291 } 292 293 /********************************************************************* 294 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 295 *********************************************************************/ 296 297 /** 298 * adjust_jiffies - adjust the system "loops_per_jiffy" 299 * 300 * This function alters the system "loops_per_jiffy" for the clock 301 * speed change. Note that loops_per_jiffy cannot be updated on SMP 302 * systems as each CPU might be scaled differently. So, use the arch 303 * per-CPU loops_per_jiffy value wherever possible. 304 */ 305 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 306 { 307 #ifndef CONFIG_SMP 308 static unsigned long l_p_j_ref; 309 static unsigned int l_p_j_ref_freq; 310 311 if (ci->flags & CPUFREQ_CONST_LOOPS) 312 return; 313 314 if (!l_p_j_ref_freq) { 315 l_p_j_ref = loops_per_jiffy; 316 l_p_j_ref_freq = ci->old; 317 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 318 l_p_j_ref, l_p_j_ref_freq); 319 } 320 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 321 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 322 ci->new); 323 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 324 loops_per_jiffy, ci->new); 325 } 326 #endif 327 } 328 329 /** 330 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 331 * @policy: cpufreq policy to enable fast frequency switching for. 332 * @freqs: contain details of the frequency update. 333 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 334 * 335 * This function calls the transition notifiers and the "adjust_jiffies" 336 * function. It is called twice on all CPU frequency changes that have 337 * external effects. 338 */ 339 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 340 struct cpufreq_freqs *freqs, 341 unsigned int state) 342 { 343 int cpu; 344 345 BUG_ON(irqs_disabled()); 346 347 if (cpufreq_disabled()) 348 return; 349 350 freqs->policy = policy; 351 freqs->flags = cpufreq_driver->flags; 352 pr_debug("notification %u of frequency transition to %u kHz\n", 353 state, freqs->new); 354 355 switch (state) { 356 case CPUFREQ_PRECHANGE: 357 /* 358 * Detect if the driver reported a value as "old frequency" 359 * which is not equal to what the cpufreq core thinks is 360 * "old frequency". 361 */ 362 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 363 if (policy->cur && (policy->cur != freqs->old)) { 364 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 365 freqs->old, policy->cur); 366 freqs->old = policy->cur; 367 } 368 } 369 370 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 371 CPUFREQ_PRECHANGE, freqs); 372 373 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 374 break; 375 376 case CPUFREQ_POSTCHANGE: 377 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 378 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 379 cpumask_pr_args(policy->cpus)); 380 381 for_each_cpu(cpu, policy->cpus) 382 trace_cpu_frequency(freqs->new, cpu); 383 384 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 385 CPUFREQ_POSTCHANGE, freqs); 386 387 cpufreq_stats_record_transition(policy, freqs->new); 388 policy->cur = freqs->new; 389 } 390 } 391 392 /* Do post notifications when there are chances that transition has failed */ 393 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 394 struct cpufreq_freqs *freqs, int transition_failed) 395 { 396 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 397 if (!transition_failed) 398 return; 399 400 swap(freqs->old, freqs->new); 401 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 402 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 403 } 404 405 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 406 struct cpufreq_freqs *freqs) 407 { 408 409 /* 410 * Catch double invocations of _begin() which lead to self-deadlock. 411 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 412 * doesn't invoke _begin() on their behalf, and hence the chances of 413 * double invocations are very low. Moreover, there are scenarios 414 * where these checks can emit false-positive warnings in these 415 * drivers; so we avoid that by skipping them altogether. 416 */ 417 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 418 && current == policy->transition_task); 419 420 wait: 421 wait_event(policy->transition_wait, !policy->transition_ongoing); 422 423 spin_lock(&policy->transition_lock); 424 425 if (unlikely(policy->transition_ongoing)) { 426 spin_unlock(&policy->transition_lock); 427 goto wait; 428 } 429 430 policy->transition_ongoing = true; 431 policy->transition_task = current; 432 433 spin_unlock(&policy->transition_lock); 434 435 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 436 } 437 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 438 439 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 440 struct cpufreq_freqs *freqs, int transition_failed) 441 { 442 if (WARN_ON(!policy->transition_ongoing)) 443 return; 444 445 cpufreq_notify_post_transition(policy, freqs, transition_failed); 446 447 policy->transition_ongoing = false; 448 policy->transition_task = NULL; 449 450 wake_up(&policy->transition_wait); 451 } 452 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 453 454 /* 455 * Fast frequency switching status count. Positive means "enabled", negative 456 * means "disabled" and 0 means "not decided yet". 457 */ 458 static int cpufreq_fast_switch_count; 459 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 460 461 static void cpufreq_list_transition_notifiers(void) 462 { 463 struct notifier_block *nb; 464 465 pr_info("Registered transition notifiers:\n"); 466 467 mutex_lock(&cpufreq_transition_notifier_list.mutex); 468 469 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 470 pr_info("%pS\n", nb->notifier_call); 471 472 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 473 } 474 475 /** 476 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 477 * @policy: cpufreq policy to enable fast frequency switching for. 478 * 479 * Try to enable fast frequency switching for @policy. 480 * 481 * The attempt will fail if there is at least one transition notifier registered 482 * at this point, as fast frequency switching is quite fundamentally at odds 483 * with transition notifiers. Thus if successful, it will make registration of 484 * transition notifiers fail going forward. 485 */ 486 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 487 { 488 lockdep_assert_held(&policy->rwsem); 489 490 if (!policy->fast_switch_possible) 491 return; 492 493 mutex_lock(&cpufreq_fast_switch_lock); 494 if (cpufreq_fast_switch_count >= 0) { 495 cpufreq_fast_switch_count++; 496 policy->fast_switch_enabled = true; 497 } else { 498 pr_warn("CPU%u: Fast frequency switching not enabled\n", 499 policy->cpu); 500 cpufreq_list_transition_notifiers(); 501 } 502 mutex_unlock(&cpufreq_fast_switch_lock); 503 } 504 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 505 506 /** 507 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 508 * @policy: cpufreq policy to disable fast frequency switching for. 509 */ 510 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 511 { 512 mutex_lock(&cpufreq_fast_switch_lock); 513 if (policy->fast_switch_enabled) { 514 policy->fast_switch_enabled = false; 515 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 516 cpufreq_fast_switch_count--; 517 } 518 mutex_unlock(&cpufreq_fast_switch_lock); 519 } 520 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 521 522 /** 523 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 524 * one. 525 * @target_freq: target frequency to resolve. 526 * 527 * The target to driver frequency mapping is cached in the policy. 528 * 529 * Return: Lowest driver-supported frequency greater than or equal to the 530 * given target_freq, subject to policy (min/max) and driver limitations. 531 */ 532 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 533 unsigned int target_freq) 534 { 535 target_freq = clamp_val(target_freq, policy->min, policy->max); 536 policy->cached_target_freq = target_freq; 537 538 if (cpufreq_driver->target_index) { 539 int idx; 540 541 idx = cpufreq_frequency_table_target(policy, target_freq, 542 CPUFREQ_RELATION_L); 543 policy->cached_resolved_idx = idx; 544 return policy->freq_table[idx].frequency; 545 } 546 547 if (cpufreq_driver->resolve_freq) 548 return cpufreq_driver->resolve_freq(policy, target_freq); 549 550 return target_freq; 551 } 552 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 553 554 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 555 { 556 unsigned int latency; 557 558 if (policy->transition_delay_us) 559 return policy->transition_delay_us; 560 561 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 562 if (latency) { 563 /* 564 * For platforms that can change the frequency very fast (< 10 565 * us), the above formula gives a decent transition delay. But 566 * for platforms where transition_latency is in milliseconds, it 567 * ends up giving unrealistic values. 568 * 569 * Cap the default transition delay to 10 ms, which seems to be 570 * a reasonable amount of time after which we should reevaluate 571 * the frequency. 572 */ 573 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 574 } 575 576 return LATENCY_MULTIPLIER; 577 } 578 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 579 580 /********************************************************************* 581 * SYSFS INTERFACE * 582 *********************************************************************/ 583 static ssize_t show_boost(struct kobject *kobj, 584 struct kobj_attribute *attr, char *buf) 585 { 586 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 587 } 588 589 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 590 const char *buf, size_t count) 591 { 592 int ret, enable; 593 594 ret = sscanf(buf, "%d", &enable); 595 if (ret != 1 || enable < 0 || enable > 1) 596 return -EINVAL; 597 598 if (cpufreq_boost_trigger_state(enable)) { 599 pr_err("%s: Cannot %s BOOST!\n", 600 __func__, enable ? "enable" : "disable"); 601 return -EINVAL; 602 } 603 604 pr_debug("%s: cpufreq BOOST %s\n", 605 __func__, enable ? "enabled" : "disabled"); 606 607 return count; 608 } 609 define_one_global_rw(boost); 610 611 static struct cpufreq_governor *find_governor(const char *str_governor) 612 { 613 struct cpufreq_governor *t; 614 615 for_each_governor(t) 616 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 617 return t; 618 619 return NULL; 620 } 621 622 static int cpufreq_parse_policy(char *str_governor, 623 struct cpufreq_policy *policy) 624 { 625 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 626 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 627 return 0; 628 } 629 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 630 policy->policy = CPUFREQ_POLICY_POWERSAVE; 631 return 0; 632 } 633 return -EINVAL; 634 } 635 636 /** 637 * cpufreq_parse_governor - parse a governor string only for !setpolicy 638 */ 639 static int cpufreq_parse_governor(char *str_governor, 640 struct cpufreq_policy *policy) 641 { 642 struct cpufreq_governor *t; 643 644 mutex_lock(&cpufreq_governor_mutex); 645 646 t = find_governor(str_governor); 647 if (!t) { 648 int ret; 649 650 mutex_unlock(&cpufreq_governor_mutex); 651 652 ret = request_module("cpufreq_%s", str_governor); 653 if (ret) 654 return -EINVAL; 655 656 mutex_lock(&cpufreq_governor_mutex); 657 658 t = find_governor(str_governor); 659 } 660 if (t && !try_module_get(t->owner)) 661 t = NULL; 662 663 mutex_unlock(&cpufreq_governor_mutex); 664 665 if (t) { 666 policy->governor = t; 667 return 0; 668 } 669 670 return -EINVAL; 671 } 672 673 /** 674 * cpufreq_per_cpu_attr_read() / show_##file_name() - 675 * print out cpufreq information 676 * 677 * Write out information from cpufreq_driver->policy[cpu]; object must be 678 * "unsigned int". 679 */ 680 681 #define show_one(file_name, object) \ 682 static ssize_t show_##file_name \ 683 (struct cpufreq_policy *policy, char *buf) \ 684 { \ 685 return sprintf(buf, "%u\n", policy->object); \ 686 } 687 688 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 689 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 690 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 691 show_one(scaling_min_freq, min); 692 show_one(scaling_max_freq, max); 693 694 __weak unsigned int arch_freq_get_on_cpu(int cpu) 695 { 696 return 0; 697 } 698 699 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 700 { 701 ssize_t ret; 702 unsigned int freq; 703 704 freq = arch_freq_get_on_cpu(policy->cpu); 705 if (freq) 706 ret = sprintf(buf, "%u\n", freq); 707 else if (cpufreq_driver && cpufreq_driver->setpolicy && 708 cpufreq_driver->get) 709 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 710 else 711 ret = sprintf(buf, "%u\n", policy->cur); 712 return ret; 713 } 714 715 /** 716 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 717 */ 718 #define store_one(file_name, object) \ 719 static ssize_t store_##file_name \ 720 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 721 { \ 722 int ret, temp; \ 723 struct cpufreq_policy new_policy; \ 724 \ 725 memcpy(&new_policy, policy, sizeof(*policy)); \ 726 new_policy.min = policy->user_policy.min; \ 727 new_policy.max = policy->user_policy.max; \ 728 \ 729 ret = sscanf(buf, "%u", &new_policy.object); \ 730 if (ret != 1) \ 731 return -EINVAL; \ 732 \ 733 temp = new_policy.object; \ 734 ret = cpufreq_set_policy(policy, &new_policy); \ 735 if (!ret) \ 736 policy->user_policy.object = temp; \ 737 \ 738 return ret ? ret : count; \ 739 } 740 741 store_one(scaling_min_freq, min); 742 store_one(scaling_max_freq, max); 743 744 /** 745 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 746 */ 747 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 748 char *buf) 749 { 750 unsigned int cur_freq = __cpufreq_get(policy); 751 752 if (cur_freq) 753 return sprintf(buf, "%u\n", cur_freq); 754 755 return sprintf(buf, "<unknown>\n"); 756 } 757 758 /** 759 * show_scaling_governor - show the current policy for the specified CPU 760 */ 761 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 762 { 763 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 764 return sprintf(buf, "powersave\n"); 765 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 766 return sprintf(buf, "performance\n"); 767 else if (policy->governor) 768 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 769 policy->governor->name); 770 return -EINVAL; 771 } 772 773 /** 774 * store_scaling_governor - store policy for the specified CPU 775 */ 776 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 777 const char *buf, size_t count) 778 { 779 int ret; 780 char str_governor[16]; 781 struct cpufreq_policy new_policy; 782 783 memcpy(&new_policy, policy, sizeof(*policy)); 784 785 ret = sscanf(buf, "%15s", str_governor); 786 if (ret != 1) 787 return -EINVAL; 788 789 if (cpufreq_driver->setpolicy) { 790 if (cpufreq_parse_policy(str_governor, &new_policy)) 791 return -EINVAL; 792 } else { 793 if (cpufreq_parse_governor(str_governor, &new_policy)) 794 return -EINVAL; 795 } 796 797 ret = cpufreq_set_policy(policy, &new_policy); 798 799 if (new_policy.governor) 800 module_put(new_policy.governor->owner); 801 802 return ret ? ret : count; 803 } 804 805 /** 806 * show_scaling_driver - show the cpufreq driver currently loaded 807 */ 808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 809 { 810 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 811 } 812 813 /** 814 * show_scaling_available_governors - show the available CPUfreq governors 815 */ 816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 817 char *buf) 818 { 819 ssize_t i = 0; 820 struct cpufreq_governor *t; 821 822 if (!has_target()) { 823 i += sprintf(buf, "performance powersave"); 824 goto out; 825 } 826 827 for_each_governor(t) { 828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 829 - (CPUFREQ_NAME_LEN + 2))) 830 goto out; 831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 832 } 833 out: 834 i += sprintf(&buf[i], "\n"); 835 return i; 836 } 837 838 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 839 { 840 ssize_t i = 0; 841 unsigned int cpu; 842 843 for_each_cpu(cpu, mask) { 844 if (i) 845 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 847 if (i >= (PAGE_SIZE - 5)) 848 break; 849 } 850 i += sprintf(&buf[i], "\n"); 851 return i; 852 } 853 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 854 855 /** 856 * show_related_cpus - show the CPUs affected by each transition even if 857 * hw coordination is in use 858 */ 859 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 860 { 861 return cpufreq_show_cpus(policy->related_cpus, buf); 862 } 863 864 /** 865 * show_affected_cpus - show the CPUs affected by each transition 866 */ 867 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 868 { 869 return cpufreq_show_cpus(policy->cpus, buf); 870 } 871 872 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 873 const char *buf, size_t count) 874 { 875 unsigned int freq = 0; 876 unsigned int ret; 877 878 if (!policy->governor || !policy->governor->store_setspeed) 879 return -EINVAL; 880 881 ret = sscanf(buf, "%u", &freq); 882 if (ret != 1) 883 return -EINVAL; 884 885 policy->governor->store_setspeed(policy, freq); 886 887 return count; 888 } 889 890 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 891 { 892 if (!policy->governor || !policy->governor->show_setspeed) 893 return sprintf(buf, "<unsupported>\n"); 894 895 return policy->governor->show_setspeed(policy, buf); 896 } 897 898 /** 899 * show_bios_limit - show the current cpufreq HW/BIOS limitation 900 */ 901 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 902 { 903 unsigned int limit; 904 int ret; 905 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 906 if (!ret) 907 return sprintf(buf, "%u\n", limit); 908 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 909 } 910 911 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 912 cpufreq_freq_attr_ro(cpuinfo_min_freq); 913 cpufreq_freq_attr_ro(cpuinfo_max_freq); 914 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 915 cpufreq_freq_attr_ro(scaling_available_governors); 916 cpufreq_freq_attr_ro(scaling_driver); 917 cpufreq_freq_attr_ro(scaling_cur_freq); 918 cpufreq_freq_attr_ro(bios_limit); 919 cpufreq_freq_attr_ro(related_cpus); 920 cpufreq_freq_attr_ro(affected_cpus); 921 cpufreq_freq_attr_rw(scaling_min_freq); 922 cpufreq_freq_attr_rw(scaling_max_freq); 923 cpufreq_freq_attr_rw(scaling_governor); 924 cpufreq_freq_attr_rw(scaling_setspeed); 925 926 static struct attribute *default_attrs[] = { 927 &cpuinfo_min_freq.attr, 928 &cpuinfo_max_freq.attr, 929 &cpuinfo_transition_latency.attr, 930 &scaling_min_freq.attr, 931 &scaling_max_freq.attr, 932 &affected_cpus.attr, 933 &related_cpus.attr, 934 &scaling_governor.attr, 935 &scaling_driver.attr, 936 &scaling_available_governors.attr, 937 &scaling_setspeed.attr, 938 NULL 939 }; 940 941 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 942 #define to_attr(a) container_of(a, struct freq_attr, attr) 943 944 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 945 { 946 struct cpufreq_policy *policy = to_policy(kobj); 947 struct freq_attr *fattr = to_attr(attr); 948 ssize_t ret; 949 950 down_read(&policy->rwsem); 951 ret = fattr->show(policy, buf); 952 up_read(&policy->rwsem); 953 954 return ret; 955 } 956 957 static ssize_t store(struct kobject *kobj, struct attribute *attr, 958 const char *buf, size_t count) 959 { 960 struct cpufreq_policy *policy = to_policy(kobj); 961 struct freq_attr *fattr = to_attr(attr); 962 ssize_t ret = -EINVAL; 963 964 /* 965 * cpus_read_trylock() is used here to work around a circular lock 966 * dependency problem with respect to the cpufreq_register_driver(). 967 */ 968 if (!cpus_read_trylock()) 969 return -EBUSY; 970 971 if (cpu_online(policy->cpu)) { 972 down_write(&policy->rwsem); 973 ret = fattr->store(policy, buf, count); 974 up_write(&policy->rwsem); 975 } 976 977 cpus_read_unlock(); 978 979 return ret; 980 } 981 982 static void cpufreq_sysfs_release(struct kobject *kobj) 983 { 984 struct cpufreq_policy *policy = to_policy(kobj); 985 pr_debug("last reference is dropped\n"); 986 complete(&policy->kobj_unregister); 987 } 988 989 static const struct sysfs_ops sysfs_ops = { 990 .show = show, 991 .store = store, 992 }; 993 994 static struct kobj_type ktype_cpufreq = { 995 .sysfs_ops = &sysfs_ops, 996 .default_attrs = default_attrs, 997 .release = cpufreq_sysfs_release, 998 }; 999 1000 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1001 { 1002 struct device *dev = get_cpu_device(cpu); 1003 1004 if (!dev) 1005 return; 1006 1007 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1008 return; 1009 1010 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1011 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1012 dev_err(dev, "cpufreq symlink creation failed\n"); 1013 } 1014 1015 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1016 struct device *dev) 1017 { 1018 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1019 sysfs_remove_link(&dev->kobj, "cpufreq"); 1020 } 1021 1022 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1023 { 1024 struct freq_attr **drv_attr; 1025 int ret = 0; 1026 1027 /* set up files for this cpu device */ 1028 drv_attr = cpufreq_driver->attr; 1029 while (drv_attr && *drv_attr) { 1030 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1031 if (ret) 1032 return ret; 1033 drv_attr++; 1034 } 1035 if (cpufreq_driver->get) { 1036 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1037 if (ret) 1038 return ret; 1039 } 1040 1041 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1042 if (ret) 1043 return ret; 1044 1045 if (cpufreq_driver->bios_limit) { 1046 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1047 if (ret) 1048 return ret; 1049 } 1050 1051 return 0; 1052 } 1053 1054 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1055 { 1056 return NULL; 1057 } 1058 1059 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1060 { 1061 struct cpufreq_governor *gov = NULL, *def_gov = NULL; 1062 struct cpufreq_policy new_policy; 1063 1064 memcpy(&new_policy, policy, sizeof(*policy)); 1065 1066 def_gov = cpufreq_default_governor(); 1067 1068 if (has_target()) { 1069 /* 1070 * Update governor of new_policy to the governor used before 1071 * hotplug 1072 */ 1073 gov = find_governor(policy->last_governor); 1074 if (gov) { 1075 pr_debug("Restoring governor %s for cpu %d\n", 1076 policy->governor->name, policy->cpu); 1077 } else { 1078 if (!def_gov) 1079 return -ENODATA; 1080 gov = def_gov; 1081 } 1082 new_policy.governor = gov; 1083 } else { 1084 /* Use the default policy if there is no last_policy. */ 1085 if (policy->last_policy) { 1086 new_policy.policy = policy->last_policy; 1087 } else { 1088 if (!def_gov) 1089 return -ENODATA; 1090 cpufreq_parse_policy(def_gov->name, &new_policy); 1091 } 1092 } 1093 1094 return cpufreq_set_policy(policy, &new_policy); 1095 } 1096 1097 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1098 { 1099 int ret = 0; 1100 1101 /* Has this CPU been taken care of already? */ 1102 if (cpumask_test_cpu(cpu, policy->cpus)) 1103 return 0; 1104 1105 down_write(&policy->rwsem); 1106 if (has_target()) 1107 cpufreq_stop_governor(policy); 1108 1109 cpumask_set_cpu(cpu, policy->cpus); 1110 1111 if (has_target()) { 1112 ret = cpufreq_start_governor(policy); 1113 if (ret) 1114 pr_err("%s: Failed to start governor\n", __func__); 1115 } 1116 up_write(&policy->rwsem); 1117 return ret; 1118 } 1119 1120 static void handle_update(struct work_struct *work) 1121 { 1122 struct cpufreq_policy *policy = 1123 container_of(work, struct cpufreq_policy, update); 1124 unsigned int cpu = policy->cpu; 1125 pr_debug("handle_update for cpu %u called\n", cpu); 1126 cpufreq_update_policy(cpu); 1127 } 1128 1129 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1130 { 1131 struct cpufreq_policy *policy; 1132 int ret; 1133 1134 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1135 if (!policy) 1136 return NULL; 1137 1138 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1139 goto err_free_policy; 1140 1141 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1142 goto err_free_cpumask; 1143 1144 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1145 goto err_free_rcpumask; 1146 1147 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1148 cpufreq_global_kobject, "policy%u", cpu); 1149 if (ret) { 1150 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1151 /* 1152 * The entire policy object will be freed below, but the extra 1153 * memory allocated for the kobject name needs to be freed by 1154 * releasing the kobject. 1155 */ 1156 kobject_put(&policy->kobj); 1157 goto err_free_real_cpus; 1158 } 1159 1160 INIT_LIST_HEAD(&policy->policy_list); 1161 init_rwsem(&policy->rwsem); 1162 spin_lock_init(&policy->transition_lock); 1163 init_waitqueue_head(&policy->transition_wait); 1164 init_completion(&policy->kobj_unregister); 1165 INIT_WORK(&policy->update, handle_update); 1166 1167 policy->cpu = cpu; 1168 return policy; 1169 1170 err_free_real_cpus: 1171 free_cpumask_var(policy->real_cpus); 1172 err_free_rcpumask: 1173 free_cpumask_var(policy->related_cpus); 1174 err_free_cpumask: 1175 free_cpumask_var(policy->cpus); 1176 err_free_policy: 1177 kfree(policy); 1178 1179 return NULL; 1180 } 1181 1182 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1183 { 1184 struct kobject *kobj; 1185 struct completion *cmp; 1186 1187 down_write(&policy->rwsem); 1188 cpufreq_stats_free_table(policy); 1189 kobj = &policy->kobj; 1190 cmp = &policy->kobj_unregister; 1191 up_write(&policy->rwsem); 1192 kobject_put(kobj); 1193 1194 /* 1195 * We need to make sure that the underlying kobj is 1196 * actually not referenced anymore by anybody before we 1197 * proceed with unloading. 1198 */ 1199 pr_debug("waiting for dropping of refcount\n"); 1200 wait_for_completion(cmp); 1201 pr_debug("wait complete\n"); 1202 } 1203 1204 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1205 { 1206 unsigned long flags; 1207 int cpu; 1208 1209 /* Remove policy from list */ 1210 write_lock_irqsave(&cpufreq_driver_lock, flags); 1211 list_del(&policy->policy_list); 1212 1213 for_each_cpu(cpu, policy->related_cpus) 1214 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1215 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1216 1217 cpufreq_policy_put_kobj(policy); 1218 free_cpumask_var(policy->real_cpus); 1219 free_cpumask_var(policy->related_cpus); 1220 free_cpumask_var(policy->cpus); 1221 kfree(policy); 1222 } 1223 1224 static int cpufreq_online(unsigned int cpu) 1225 { 1226 struct cpufreq_policy *policy; 1227 bool new_policy; 1228 unsigned long flags; 1229 unsigned int j; 1230 int ret; 1231 1232 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1233 1234 /* Check if this CPU already has a policy to manage it */ 1235 policy = per_cpu(cpufreq_cpu_data, cpu); 1236 if (policy) { 1237 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1238 if (!policy_is_inactive(policy)) 1239 return cpufreq_add_policy_cpu(policy, cpu); 1240 1241 /* This is the only online CPU for the policy. Start over. */ 1242 new_policy = false; 1243 down_write(&policy->rwsem); 1244 policy->cpu = cpu; 1245 policy->governor = NULL; 1246 up_write(&policy->rwsem); 1247 } else { 1248 new_policy = true; 1249 policy = cpufreq_policy_alloc(cpu); 1250 if (!policy) 1251 return -ENOMEM; 1252 } 1253 1254 if (!new_policy && cpufreq_driver->online) { 1255 ret = cpufreq_driver->online(policy); 1256 if (ret) { 1257 pr_debug("%s: %d: initialization failed\n", __func__, 1258 __LINE__); 1259 goto out_exit_policy; 1260 } 1261 1262 /* Recover policy->cpus using related_cpus */ 1263 cpumask_copy(policy->cpus, policy->related_cpus); 1264 } else { 1265 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1266 1267 /* 1268 * Call driver. From then on the cpufreq must be able 1269 * to accept all calls to ->verify and ->setpolicy for this CPU. 1270 */ 1271 ret = cpufreq_driver->init(policy); 1272 if (ret) { 1273 pr_debug("%s: %d: initialization failed\n", __func__, 1274 __LINE__); 1275 goto out_free_policy; 1276 } 1277 1278 ret = cpufreq_table_validate_and_sort(policy); 1279 if (ret) 1280 goto out_exit_policy; 1281 1282 /* related_cpus should at least include policy->cpus. */ 1283 cpumask_copy(policy->related_cpus, policy->cpus); 1284 } 1285 1286 down_write(&policy->rwsem); 1287 /* 1288 * affected cpus must always be the one, which are online. We aren't 1289 * managing offline cpus here. 1290 */ 1291 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1292 1293 if (new_policy) { 1294 policy->user_policy.min = policy->min; 1295 policy->user_policy.max = policy->max; 1296 1297 for_each_cpu(j, policy->related_cpus) { 1298 per_cpu(cpufreq_cpu_data, j) = policy; 1299 add_cpu_dev_symlink(policy, j); 1300 } 1301 } else { 1302 policy->min = policy->user_policy.min; 1303 policy->max = policy->user_policy.max; 1304 } 1305 1306 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1307 policy->cur = cpufreq_driver->get(policy->cpu); 1308 if (!policy->cur) { 1309 pr_err("%s: ->get() failed\n", __func__); 1310 goto out_destroy_policy; 1311 } 1312 } 1313 1314 /* 1315 * Sometimes boot loaders set CPU frequency to a value outside of 1316 * frequency table present with cpufreq core. In such cases CPU might be 1317 * unstable if it has to run on that frequency for long duration of time 1318 * and so its better to set it to a frequency which is specified in 1319 * freq-table. This also makes cpufreq stats inconsistent as 1320 * cpufreq-stats would fail to register because current frequency of CPU 1321 * isn't found in freq-table. 1322 * 1323 * Because we don't want this change to effect boot process badly, we go 1324 * for the next freq which is >= policy->cur ('cur' must be set by now, 1325 * otherwise we will end up setting freq to lowest of the table as 'cur' 1326 * is initialized to zero). 1327 * 1328 * We are passing target-freq as "policy->cur - 1" otherwise 1329 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1330 * equal to target-freq. 1331 */ 1332 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1333 && has_target()) { 1334 /* Are we running at unknown frequency ? */ 1335 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1336 if (ret == -EINVAL) { 1337 /* Warn user and fix it */ 1338 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1339 __func__, policy->cpu, policy->cur); 1340 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1341 CPUFREQ_RELATION_L); 1342 1343 /* 1344 * Reaching here after boot in a few seconds may not 1345 * mean that system will remain stable at "unknown" 1346 * frequency for longer duration. Hence, a BUG_ON(). 1347 */ 1348 BUG_ON(ret); 1349 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1350 __func__, policy->cpu, policy->cur); 1351 } 1352 } 1353 1354 if (new_policy) { 1355 ret = cpufreq_add_dev_interface(policy); 1356 if (ret) 1357 goto out_destroy_policy; 1358 1359 cpufreq_stats_create_table(policy); 1360 1361 write_lock_irqsave(&cpufreq_driver_lock, flags); 1362 list_add(&policy->policy_list, &cpufreq_policy_list); 1363 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1364 } 1365 1366 ret = cpufreq_init_policy(policy); 1367 if (ret) { 1368 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1369 __func__, cpu, ret); 1370 goto out_destroy_policy; 1371 } 1372 1373 up_write(&policy->rwsem); 1374 1375 kobject_uevent(&policy->kobj, KOBJ_ADD); 1376 1377 /* Callback for handling stuff after policy is ready */ 1378 if (cpufreq_driver->ready) 1379 cpufreq_driver->ready(policy); 1380 1381 if (IS_ENABLED(CONFIG_CPU_THERMAL) && 1382 cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) 1383 policy->cdev = of_cpufreq_cooling_register(policy); 1384 1385 pr_debug("initialization complete\n"); 1386 1387 return 0; 1388 1389 out_destroy_policy: 1390 for_each_cpu(j, policy->real_cpus) 1391 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1392 1393 up_write(&policy->rwsem); 1394 1395 out_exit_policy: 1396 if (cpufreq_driver->exit) 1397 cpufreq_driver->exit(policy); 1398 1399 out_free_policy: 1400 cpufreq_policy_free(policy); 1401 return ret; 1402 } 1403 1404 /** 1405 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1406 * @dev: CPU device. 1407 * @sif: Subsystem interface structure pointer (not used) 1408 */ 1409 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1410 { 1411 struct cpufreq_policy *policy; 1412 unsigned cpu = dev->id; 1413 int ret; 1414 1415 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1416 1417 if (cpu_online(cpu)) { 1418 ret = cpufreq_online(cpu); 1419 if (ret) 1420 return ret; 1421 } 1422 1423 /* Create sysfs link on CPU registration */ 1424 policy = per_cpu(cpufreq_cpu_data, cpu); 1425 if (policy) 1426 add_cpu_dev_symlink(policy, cpu); 1427 1428 return 0; 1429 } 1430 1431 static int cpufreq_offline(unsigned int cpu) 1432 { 1433 struct cpufreq_policy *policy; 1434 int ret; 1435 1436 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1437 1438 policy = cpufreq_cpu_get_raw(cpu); 1439 if (!policy) { 1440 pr_debug("%s: No cpu_data found\n", __func__); 1441 return 0; 1442 } 1443 1444 down_write(&policy->rwsem); 1445 if (has_target()) 1446 cpufreq_stop_governor(policy); 1447 1448 cpumask_clear_cpu(cpu, policy->cpus); 1449 1450 if (policy_is_inactive(policy)) { 1451 if (has_target()) 1452 strncpy(policy->last_governor, policy->governor->name, 1453 CPUFREQ_NAME_LEN); 1454 else 1455 policy->last_policy = policy->policy; 1456 } else if (cpu == policy->cpu) { 1457 /* Nominate new CPU */ 1458 policy->cpu = cpumask_any(policy->cpus); 1459 } 1460 1461 /* Start governor again for active policy */ 1462 if (!policy_is_inactive(policy)) { 1463 if (has_target()) { 1464 ret = cpufreq_start_governor(policy); 1465 if (ret) 1466 pr_err("%s: Failed to start governor\n", __func__); 1467 } 1468 1469 goto unlock; 1470 } 1471 1472 if (IS_ENABLED(CONFIG_CPU_THERMAL) && 1473 cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) { 1474 cpufreq_cooling_unregister(policy->cdev); 1475 policy->cdev = NULL; 1476 } 1477 1478 if (cpufreq_driver->stop_cpu) 1479 cpufreq_driver->stop_cpu(policy); 1480 1481 if (has_target()) 1482 cpufreq_exit_governor(policy); 1483 1484 /* 1485 * Perform the ->offline() during light-weight tear-down, as 1486 * that allows fast recovery when the CPU comes back. 1487 */ 1488 if (cpufreq_driver->offline) { 1489 cpufreq_driver->offline(policy); 1490 } else if (cpufreq_driver->exit) { 1491 cpufreq_driver->exit(policy); 1492 policy->freq_table = NULL; 1493 } 1494 1495 unlock: 1496 up_write(&policy->rwsem); 1497 return 0; 1498 } 1499 1500 /** 1501 * cpufreq_remove_dev - remove a CPU device 1502 * 1503 * Removes the cpufreq interface for a CPU device. 1504 */ 1505 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1506 { 1507 unsigned int cpu = dev->id; 1508 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1509 1510 if (!policy) 1511 return; 1512 1513 if (cpu_online(cpu)) 1514 cpufreq_offline(cpu); 1515 1516 cpumask_clear_cpu(cpu, policy->real_cpus); 1517 remove_cpu_dev_symlink(policy, dev); 1518 1519 if (cpumask_empty(policy->real_cpus)) { 1520 /* We did light-weight exit earlier, do full tear down now */ 1521 if (cpufreq_driver->offline) 1522 cpufreq_driver->exit(policy); 1523 1524 cpufreq_policy_free(policy); 1525 } 1526 } 1527 1528 /** 1529 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1530 * in deep trouble. 1531 * @policy: policy managing CPUs 1532 * @new_freq: CPU frequency the CPU actually runs at 1533 * 1534 * We adjust to current frequency first, and need to clean up later. 1535 * So either call to cpufreq_update_policy() or schedule handle_update()). 1536 */ 1537 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1538 unsigned int new_freq) 1539 { 1540 struct cpufreq_freqs freqs; 1541 1542 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1543 policy->cur, new_freq); 1544 1545 freqs.old = policy->cur; 1546 freqs.new = new_freq; 1547 1548 cpufreq_freq_transition_begin(policy, &freqs); 1549 cpufreq_freq_transition_end(policy, &freqs, 0); 1550 } 1551 1552 /** 1553 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1554 * @cpu: CPU number 1555 * 1556 * This is the last known freq, without actually getting it from the driver. 1557 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1558 */ 1559 unsigned int cpufreq_quick_get(unsigned int cpu) 1560 { 1561 struct cpufreq_policy *policy; 1562 unsigned int ret_freq = 0; 1563 unsigned long flags; 1564 1565 read_lock_irqsave(&cpufreq_driver_lock, flags); 1566 1567 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1568 ret_freq = cpufreq_driver->get(cpu); 1569 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1570 return ret_freq; 1571 } 1572 1573 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1574 1575 policy = cpufreq_cpu_get(cpu); 1576 if (policy) { 1577 ret_freq = policy->cur; 1578 cpufreq_cpu_put(policy); 1579 } 1580 1581 return ret_freq; 1582 } 1583 EXPORT_SYMBOL(cpufreq_quick_get); 1584 1585 /** 1586 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1587 * @cpu: CPU number 1588 * 1589 * Just return the max possible frequency for a given CPU. 1590 */ 1591 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1592 { 1593 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1594 unsigned int ret_freq = 0; 1595 1596 if (policy) { 1597 ret_freq = policy->max; 1598 cpufreq_cpu_put(policy); 1599 } 1600 1601 return ret_freq; 1602 } 1603 EXPORT_SYMBOL(cpufreq_quick_get_max); 1604 1605 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1606 { 1607 unsigned int ret_freq = 0; 1608 1609 if (unlikely(policy_is_inactive(policy))) 1610 return ret_freq; 1611 1612 ret_freq = cpufreq_driver->get(policy->cpu); 1613 1614 /* 1615 * If fast frequency switching is used with the given policy, the check 1616 * against policy->cur is pointless, so skip it in that case too. 1617 */ 1618 if (policy->fast_switch_enabled) 1619 return ret_freq; 1620 1621 if (ret_freq && policy->cur && 1622 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1623 /* verify no discrepancy between actual and 1624 saved value exists */ 1625 if (unlikely(ret_freq != policy->cur)) { 1626 cpufreq_out_of_sync(policy, ret_freq); 1627 schedule_work(&policy->update); 1628 } 1629 } 1630 1631 return ret_freq; 1632 } 1633 1634 /** 1635 * cpufreq_get - get the current CPU frequency (in kHz) 1636 * @cpu: CPU number 1637 * 1638 * Get the CPU current (static) CPU frequency 1639 */ 1640 unsigned int cpufreq_get(unsigned int cpu) 1641 { 1642 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1643 unsigned int ret_freq = 0; 1644 1645 if (policy) { 1646 down_read(&policy->rwsem); 1647 if (cpufreq_driver->get) 1648 ret_freq = __cpufreq_get(policy); 1649 up_read(&policy->rwsem); 1650 1651 cpufreq_cpu_put(policy); 1652 } 1653 1654 return ret_freq; 1655 } 1656 EXPORT_SYMBOL(cpufreq_get); 1657 1658 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy) 1659 { 1660 unsigned int new_freq; 1661 1662 new_freq = cpufreq_driver->get(policy->cpu); 1663 if (!new_freq) 1664 return 0; 1665 1666 if (!policy->cur) { 1667 pr_debug("cpufreq: Driver did not initialize current freq\n"); 1668 policy->cur = new_freq; 1669 } else if (policy->cur != new_freq && has_target()) { 1670 cpufreq_out_of_sync(policy, new_freq); 1671 } 1672 1673 return new_freq; 1674 } 1675 1676 static struct subsys_interface cpufreq_interface = { 1677 .name = "cpufreq", 1678 .subsys = &cpu_subsys, 1679 .add_dev = cpufreq_add_dev, 1680 .remove_dev = cpufreq_remove_dev, 1681 }; 1682 1683 /* 1684 * In case platform wants some specific frequency to be configured 1685 * during suspend.. 1686 */ 1687 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1688 { 1689 int ret; 1690 1691 if (!policy->suspend_freq) { 1692 pr_debug("%s: suspend_freq not defined\n", __func__); 1693 return 0; 1694 } 1695 1696 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1697 policy->suspend_freq); 1698 1699 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1700 CPUFREQ_RELATION_H); 1701 if (ret) 1702 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1703 __func__, policy->suspend_freq, ret); 1704 1705 return ret; 1706 } 1707 EXPORT_SYMBOL(cpufreq_generic_suspend); 1708 1709 /** 1710 * cpufreq_suspend() - Suspend CPUFreq governors 1711 * 1712 * Called during system wide Suspend/Hibernate cycles for suspending governors 1713 * as some platforms can't change frequency after this point in suspend cycle. 1714 * Because some of the devices (like: i2c, regulators, etc) they use for 1715 * changing frequency are suspended quickly after this point. 1716 */ 1717 void cpufreq_suspend(void) 1718 { 1719 struct cpufreq_policy *policy; 1720 1721 if (!cpufreq_driver) 1722 return; 1723 1724 if (!has_target() && !cpufreq_driver->suspend) 1725 goto suspend; 1726 1727 pr_debug("%s: Suspending Governors\n", __func__); 1728 1729 for_each_active_policy(policy) { 1730 if (has_target()) { 1731 down_write(&policy->rwsem); 1732 cpufreq_stop_governor(policy); 1733 up_write(&policy->rwsem); 1734 } 1735 1736 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1737 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1738 policy); 1739 } 1740 1741 suspend: 1742 cpufreq_suspended = true; 1743 } 1744 1745 /** 1746 * cpufreq_resume() - Resume CPUFreq governors 1747 * 1748 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1749 * are suspended with cpufreq_suspend(). 1750 */ 1751 void cpufreq_resume(void) 1752 { 1753 struct cpufreq_policy *policy; 1754 int ret; 1755 1756 if (!cpufreq_driver) 1757 return; 1758 1759 if (unlikely(!cpufreq_suspended)) 1760 return; 1761 1762 cpufreq_suspended = false; 1763 1764 if (!has_target() && !cpufreq_driver->resume) 1765 return; 1766 1767 pr_debug("%s: Resuming Governors\n", __func__); 1768 1769 for_each_active_policy(policy) { 1770 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1771 pr_err("%s: Failed to resume driver: %p\n", __func__, 1772 policy); 1773 } else if (has_target()) { 1774 down_write(&policy->rwsem); 1775 ret = cpufreq_start_governor(policy); 1776 up_write(&policy->rwsem); 1777 1778 if (ret) 1779 pr_err("%s: Failed to start governor for policy: %p\n", 1780 __func__, policy); 1781 } 1782 } 1783 } 1784 1785 /** 1786 * cpufreq_get_current_driver - return current driver's name 1787 * 1788 * Return the name string of the currently loaded cpufreq driver 1789 * or NULL, if none. 1790 */ 1791 const char *cpufreq_get_current_driver(void) 1792 { 1793 if (cpufreq_driver) 1794 return cpufreq_driver->name; 1795 1796 return NULL; 1797 } 1798 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1799 1800 /** 1801 * cpufreq_get_driver_data - return current driver data 1802 * 1803 * Return the private data of the currently loaded cpufreq 1804 * driver, or NULL if no cpufreq driver is loaded. 1805 */ 1806 void *cpufreq_get_driver_data(void) 1807 { 1808 if (cpufreq_driver) 1809 return cpufreq_driver->driver_data; 1810 1811 return NULL; 1812 } 1813 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1814 1815 /********************************************************************* 1816 * NOTIFIER LISTS INTERFACE * 1817 *********************************************************************/ 1818 1819 /** 1820 * cpufreq_register_notifier - register a driver with cpufreq 1821 * @nb: notifier function to register 1822 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1823 * 1824 * Add a driver to one of two lists: either a list of drivers that 1825 * are notified about clock rate changes (once before and once after 1826 * the transition), or a list of drivers that are notified about 1827 * changes in cpufreq policy. 1828 * 1829 * This function may sleep, and has the same return conditions as 1830 * blocking_notifier_chain_register. 1831 */ 1832 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1833 { 1834 int ret; 1835 1836 if (cpufreq_disabled()) 1837 return -EINVAL; 1838 1839 switch (list) { 1840 case CPUFREQ_TRANSITION_NOTIFIER: 1841 mutex_lock(&cpufreq_fast_switch_lock); 1842 1843 if (cpufreq_fast_switch_count > 0) { 1844 mutex_unlock(&cpufreq_fast_switch_lock); 1845 return -EBUSY; 1846 } 1847 ret = srcu_notifier_chain_register( 1848 &cpufreq_transition_notifier_list, nb); 1849 if (!ret) 1850 cpufreq_fast_switch_count--; 1851 1852 mutex_unlock(&cpufreq_fast_switch_lock); 1853 break; 1854 case CPUFREQ_POLICY_NOTIFIER: 1855 ret = blocking_notifier_chain_register( 1856 &cpufreq_policy_notifier_list, nb); 1857 break; 1858 default: 1859 ret = -EINVAL; 1860 } 1861 1862 return ret; 1863 } 1864 EXPORT_SYMBOL(cpufreq_register_notifier); 1865 1866 /** 1867 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1868 * @nb: notifier block to be unregistered 1869 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1870 * 1871 * Remove a driver from the CPU frequency notifier list. 1872 * 1873 * This function may sleep, and has the same return conditions as 1874 * blocking_notifier_chain_unregister. 1875 */ 1876 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1877 { 1878 int ret; 1879 1880 if (cpufreq_disabled()) 1881 return -EINVAL; 1882 1883 switch (list) { 1884 case CPUFREQ_TRANSITION_NOTIFIER: 1885 mutex_lock(&cpufreq_fast_switch_lock); 1886 1887 ret = srcu_notifier_chain_unregister( 1888 &cpufreq_transition_notifier_list, nb); 1889 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1890 cpufreq_fast_switch_count++; 1891 1892 mutex_unlock(&cpufreq_fast_switch_lock); 1893 break; 1894 case CPUFREQ_POLICY_NOTIFIER: 1895 ret = blocking_notifier_chain_unregister( 1896 &cpufreq_policy_notifier_list, nb); 1897 break; 1898 default: 1899 ret = -EINVAL; 1900 } 1901 1902 return ret; 1903 } 1904 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1905 1906 1907 /********************************************************************* 1908 * GOVERNORS * 1909 *********************************************************************/ 1910 1911 /** 1912 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1913 * @policy: cpufreq policy to switch the frequency for. 1914 * @target_freq: New frequency to set (may be approximate). 1915 * 1916 * Carry out a fast frequency switch without sleeping. 1917 * 1918 * The driver's ->fast_switch() callback invoked by this function must be 1919 * suitable for being called from within RCU-sched read-side critical sections 1920 * and it is expected to select the minimum available frequency greater than or 1921 * equal to @target_freq (CPUFREQ_RELATION_L). 1922 * 1923 * This function must not be called if policy->fast_switch_enabled is unset. 1924 * 1925 * Governors calling this function must guarantee that it will never be invoked 1926 * twice in parallel for the same policy and that it will never be called in 1927 * parallel with either ->target() or ->target_index() for the same policy. 1928 * 1929 * Returns the actual frequency set for the CPU. 1930 * 1931 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 1932 * error condition, the hardware configuration must be preserved. 1933 */ 1934 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1935 unsigned int target_freq) 1936 { 1937 target_freq = clamp_val(target_freq, policy->min, policy->max); 1938 1939 return cpufreq_driver->fast_switch(policy, target_freq); 1940 } 1941 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1942 1943 /* Must set freqs->new to intermediate frequency */ 1944 static int __target_intermediate(struct cpufreq_policy *policy, 1945 struct cpufreq_freqs *freqs, int index) 1946 { 1947 int ret; 1948 1949 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1950 1951 /* We don't need to switch to intermediate freq */ 1952 if (!freqs->new) 1953 return 0; 1954 1955 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1956 __func__, policy->cpu, freqs->old, freqs->new); 1957 1958 cpufreq_freq_transition_begin(policy, freqs); 1959 ret = cpufreq_driver->target_intermediate(policy, index); 1960 cpufreq_freq_transition_end(policy, freqs, ret); 1961 1962 if (ret) 1963 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1964 __func__, ret); 1965 1966 return ret; 1967 } 1968 1969 static int __target_index(struct cpufreq_policy *policy, int index) 1970 { 1971 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1972 unsigned int intermediate_freq = 0; 1973 unsigned int newfreq = policy->freq_table[index].frequency; 1974 int retval = -EINVAL; 1975 bool notify; 1976 1977 if (newfreq == policy->cur) 1978 return 0; 1979 1980 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1981 if (notify) { 1982 /* Handle switching to intermediate frequency */ 1983 if (cpufreq_driver->get_intermediate) { 1984 retval = __target_intermediate(policy, &freqs, index); 1985 if (retval) 1986 return retval; 1987 1988 intermediate_freq = freqs.new; 1989 /* Set old freq to intermediate */ 1990 if (intermediate_freq) 1991 freqs.old = freqs.new; 1992 } 1993 1994 freqs.new = newfreq; 1995 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1996 __func__, policy->cpu, freqs.old, freqs.new); 1997 1998 cpufreq_freq_transition_begin(policy, &freqs); 1999 } 2000 2001 retval = cpufreq_driver->target_index(policy, index); 2002 if (retval) 2003 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2004 retval); 2005 2006 if (notify) { 2007 cpufreq_freq_transition_end(policy, &freqs, retval); 2008 2009 /* 2010 * Failed after setting to intermediate freq? Driver should have 2011 * reverted back to initial frequency and so should we. Check 2012 * here for intermediate_freq instead of get_intermediate, in 2013 * case we haven't switched to intermediate freq at all. 2014 */ 2015 if (unlikely(retval && intermediate_freq)) { 2016 freqs.old = intermediate_freq; 2017 freqs.new = policy->restore_freq; 2018 cpufreq_freq_transition_begin(policy, &freqs); 2019 cpufreq_freq_transition_end(policy, &freqs, 0); 2020 } 2021 } 2022 2023 return retval; 2024 } 2025 2026 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2027 unsigned int target_freq, 2028 unsigned int relation) 2029 { 2030 unsigned int old_target_freq = target_freq; 2031 int index; 2032 2033 if (cpufreq_disabled()) 2034 return -ENODEV; 2035 2036 /* Make sure that target_freq is within supported range */ 2037 target_freq = clamp_val(target_freq, policy->min, policy->max); 2038 2039 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2040 policy->cpu, target_freq, relation, old_target_freq); 2041 2042 /* 2043 * This might look like a redundant call as we are checking it again 2044 * after finding index. But it is left intentionally for cases where 2045 * exactly same freq is called again and so we can save on few function 2046 * calls. 2047 */ 2048 if (target_freq == policy->cur) 2049 return 0; 2050 2051 /* Save last value to restore later on errors */ 2052 policy->restore_freq = policy->cur; 2053 2054 if (cpufreq_driver->target) 2055 return cpufreq_driver->target(policy, target_freq, relation); 2056 2057 if (!cpufreq_driver->target_index) 2058 return -EINVAL; 2059 2060 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2061 2062 return __target_index(policy, index); 2063 } 2064 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2065 2066 int cpufreq_driver_target(struct cpufreq_policy *policy, 2067 unsigned int target_freq, 2068 unsigned int relation) 2069 { 2070 int ret = -EINVAL; 2071 2072 down_write(&policy->rwsem); 2073 2074 ret = __cpufreq_driver_target(policy, target_freq, relation); 2075 2076 up_write(&policy->rwsem); 2077 2078 return ret; 2079 } 2080 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2081 2082 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2083 { 2084 return NULL; 2085 } 2086 2087 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2088 { 2089 int ret; 2090 2091 /* Don't start any governor operations if we are entering suspend */ 2092 if (cpufreq_suspended) 2093 return 0; 2094 /* 2095 * Governor might not be initiated here if ACPI _PPC changed 2096 * notification happened, so check it. 2097 */ 2098 if (!policy->governor) 2099 return -EINVAL; 2100 2101 /* Platform doesn't want dynamic frequency switching ? */ 2102 if (policy->governor->dynamic_switching && 2103 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2104 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2105 2106 if (gov) { 2107 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2108 policy->governor->name, gov->name); 2109 policy->governor = gov; 2110 } else { 2111 return -EINVAL; 2112 } 2113 } 2114 2115 if (!try_module_get(policy->governor->owner)) 2116 return -EINVAL; 2117 2118 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2119 2120 if (policy->governor->init) { 2121 ret = policy->governor->init(policy); 2122 if (ret) { 2123 module_put(policy->governor->owner); 2124 return ret; 2125 } 2126 } 2127 2128 return 0; 2129 } 2130 2131 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2132 { 2133 if (cpufreq_suspended || !policy->governor) 2134 return; 2135 2136 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2137 2138 if (policy->governor->exit) 2139 policy->governor->exit(policy); 2140 2141 module_put(policy->governor->owner); 2142 } 2143 2144 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2145 { 2146 int ret; 2147 2148 if (cpufreq_suspended) 2149 return 0; 2150 2151 if (!policy->governor) 2152 return -EINVAL; 2153 2154 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2155 2156 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) 2157 cpufreq_update_current_freq(policy); 2158 2159 if (policy->governor->start) { 2160 ret = policy->governor->start(policy); 2161 if (ret) 2162 return ret; 2163 } 2164 2165 if (policy->governor->limits) 2166 policy->governor->limits(policy); 2167 2168 return 0; 2169 } 2170 2171 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2172 { 2173 if (cpufreq_suspended || !policy->governor) 2174 return; 2175 2176 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2177 2178 if (policy->governor->stop) 2179 policy->governor->stop(policy); 2180 } 2181 2182 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2183 { 2184 if (cpufreq_suspended || !policy->governor) 2185 return; 2186 2187 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2188 2189 if (policy->governor->limits) 2190 policy->governor->limits(policy); 2191 } 2192 2193 int cpufreq_register_governor(struct cpufreq_governor *governor) 2194 { 2195 int err; 2196 2197 if (!governor) 2198 return -EINVAL; 2199 2200 if (cpufreq_disabled()) 2201 return -ENODEV; 2202 2203 mutex_lock(&cpufreq_governor_mutex); 2204 2205 err = -EBUSY; 2206 if (!find_governor(governor->name)) { 2207 err = 0; 2208 list_add(&governor->governor_list, &cpufreq_governor_list); 2209 } 2210 2211 mutex_unlock(&cpufreq_governor_mutex); 2212 return err; 2213 } 2214 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2215 2216 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2217 { 2218 struct cpufreq_policy *policy; 2219 unsigned long flags; 2220 2221 if (!governor) 2222 return; 2223 2224 if (cpufreq_disabled()) 2225 return; 2226 2227 /* clear last_governor for all inactive policies */ 2228 read_lock_irqsave(&cpufreq_driver_lock, flags); 2229 for_each_inactive_policy(policy) { 2230 if (!strcmp(policy->last_governor, governor->name)) { 2231 policy->governor = NULL; 2232 strcpy(policy->last_governor, "\0"); 2233 } 2234 } 2235 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2236 2237 mutex_lock(&cpufreq_governor_mutex); 2238 list_del(&governor->governor_list); 2239 mutex_unlock(&cpufreq_governor_mutex); 2240 } 2241 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2242 2243 2244 /********************************************************************* 2245 * POLICY INTERFACE * 2246 *********************************************************************/ 2247 2248 /** 2249 * cpufreq_get_policy - get the current cpufreq_policy 2250 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2251 * is written 2252 * 2253 * Reads the current cpufreq policy. 2254 */ 2255 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2256 { 2257 struct cpufreq_policy *cpu_policy; 2258 if (!policy) 2259 return -EINVAL; 2260 2261 cpu_policy = cpufreq_cpu_get(cpu); 2262 if (!cpu_policy) 2263 return -EINVAL; 2264 2265 memcpy(policy, cpu_policy, sizeof(*policy)); 2266 2267 cpufreq_cpu_put(cpu_policy); 2268 return 0; 2269 } 2270 EXPORT_SYMBOL(cpufreq_get_policy); 2271 2272 /** 2273 * cpufreq_set_policy - Modify cpufreq policy parameters. 2274 * @policy: Policy object to modify. 2275 * @new_policy: New policy data. 2276 * 2277 * Pass @new_policy to the cpufreq driver's ->verify() callback, run the 2278 * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to 2279 * the driver's ->verify() callback again and run the notifiers for it again 2280 * with the CPUFREQ_NOTIFY value. Next, copy the min and max parameters 2281 * of @new_policy to @policy and either invoke the driver's ->setpolicy() 2282 * callback (if present) or carry out a governor update for @policy. That is, 2283 * run the current governor's ->limits() callback (if the governor field in 2284 * @new_policy points to the same object as the one in @policy) or replace the 2285 * governor for @policy with the new one stored in @new_policy. 2286 * 2287 * The cpuinfo part of @policy is not updated by this function. 2288 */ 2289 int cpufreq_set_policy(struct cpufreq_policy *policy, 2290 struct cpufreq_policy *new_policy) 2291 { 2292 struct cpufreq_governor *old_gov; 2293 int ret; 2294 2295 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2296 new_policy->cpu, new_policy->min, new_policy->max); 2297 2298 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2299 2300 /* 2301 * This check works well when we store new min/max freq attributes, 2302 * because new_policy is a copy of policy with one field updated. 2303 */ 2304 if (new_policy->min > new_policy->max) 2305 return -EINVAL; 2306 2307 /* verify the cpu speed can be set within this limit */ 2308 ret = cpufreq_driver->verify(new_policy); 2309 if (ret) 2310 return ret; 2311 2312 /* adjust if necessary - all reasons */ 2313 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2314 CPUFREQ_ADJUST, new_policy); 2315 2316 /* 2317 * verify the cpu speed can be set within this limit, which might be 2318 * different to the first one 2319 */ 2320 ret = cpufreq_driver->verify(new_policy); 2321 if (ret) 2322 return ret; 2323 2324 /* notification of the new policy */ 2325 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2326 CPUFREQ_NOTIFY, new_policy); 2327 2328 policy->min = new_policy->min; 2329 policy->max = new_policy->max; 2330 trace_cpu_frequency_limits(policy); 2331 2332 policy->cached_target_freq = UINT_MAX; 2333 2334 pr_debug("new min and max freqs are %u - %u kHz\n", 2335 policy->min, policy->max); 2336 2337 if (cpufreq_driver->setpolicy) { 2338 policy->policy = new_policy->policy; 2339 pr_debug("setting range\n"); 2340 return cpufreq_driver->setpolicy(policy); 2341 } 2342 2343 if (new_policy->governor == policy->governor) { 2344 pr_debug("governor limits update\n"); 2345 cpufreq_governor_limits(policy); 2346 return 0; 2347 } 2348 2349 pr_debug("governor switch\n"); 2350 2351 /* save old, working values */ 2352 old_gov = policy->governor; 2353 /* end old governor */ 2354 if (old_gov) { 2355 cpufreq_stop_governor(policy); 2356 cpufreq_exit_governor(policy); 2357 } 2358 2359 /* start new governor */ 2360 policy->governor = new_policy->governor; 2361 ret = cpufreq_init_governor(policy); 2362 if (!ret) { 2363 ret = cpufreq_start_governor(policy); 2364 if (!ret) { 2365 pr_debug("governor change\n"); 2366 sched_cpufreq_governor_change(policy, old_gov); 2367 return 0; 2368 } 2369 cpufreq_exit_governor(policy); 2370 } 2371 2372 /* new governor failed, so re-start old one */ 2373 pr_debug("starting governor %s failed\n", policy->governor->name); 2374 if (old_gov) { 2375 policy->governor = old_gov; 2376 if (cpufreq_init_governor(policy)) 2377 policy->governor = NULL; 2378 else 2379 cpufreq_start_governor(policy); 2380 } 2381 2382 return ret; 2383 } 2384 2385 /** 2386 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2387 * @cpu: CPU to re-evaluate the policy for. 2388 * 2389 * Update the current frequency for the cpufreq policy of @cpu and use 2390 * cpufreq_set_policy() to re-apply the min and max limits saved in the 2391 * user_policy sub-structure of that policy, which triggers the evaluation 2392 * of policy notifiers and the cpufreq driver's ->verify() callback for the 2393 * policy in question, among other things. 2394 */ 2395 void cpufreq_update_policy(unsigned int cpu) 2396 { 2397 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2398 struct cpufreq_policy new_policy; 2399 2400 if (!policy) 2401 return; 2402 2403 /* 2404 * BIOS might change freq behind our back 2405 * -> ask driver for current freq and notify governors about a change 2406 */ 2407 if (cpufreq_driver->get && !cpufreq_driver->setpolicy && 2408 (cpufreq_suspended || WARN_ON(!cpufreq_update_current_freq(policy)))) 2409 goto unlock; 2410 2411 pr_debug("updating policy for CPU %u\n", cpu); 2412 memcpy(&new_policy, policy, sizeof(*policy)); 2413 new_policy.min = policy->user_policy.min; 2414 new_policy.max = policy->user_policy.max; 2415 2416 cpufreq_set_policy(policy, &new_policy); 2417 2418 unlock: 2419 cpufreq_cpu_release(policy); 2420 } 2421 EXPORT_SYMBOL(cpufreq_update_policy); 2422 2423 /** 2424 * cpufreq_update_limits - Update policy limits for a given CPU. 2425 * @cpu: CPU to update the policy limits for. 2426 * 2427 * Invoke the driver's ->update_limits callback if present or call 2428 * cpufreq_update_policy() for @cpu. 2429 */ 2430 void cpufreq_update_limits(unsigned int cpu) 2431 { 2432 if (cpufreq_driver->update_limits) 2433 cpufreq_driver->update_limits(cpu); 2434 else 2435 cpufreq_update_policy(cpu); 2436 } 2437 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2438 2439 /********************************************************************* 2440 * BOOST * 2441 *********************************************************************/ 2442 static int cpufreq_boost_set_sw(int state) 2443 { 2444 struct cpufreq_policy *policy; 2445 int ret = -EINVAL; 2446 2447 for_each_active_policy(policy) { 2448 if (!policy->freq_table) 2449 continue; 2450 2451 ret = cpufreq_frequency_table_cpuinfo(policy, 2452 policy->freq_table); 2453 if (ret) { 2454 pr_err("%s: Policy frequency update failed\n", 2455 __func__); 2456 break; 2457 } 2458 2459 down_write(&policy->rwsem); 2460 policy->user_policy.max = policy->max; 2461 cpufreq_governor_limits(policy); 2462 up_write(&policy->rwsem); 2463 } 2464 2465 return ret; 2466 } 2467 2468 int cpufreq_boost_trigger_state(int state) 2469 { 2470 unsigned long flags; 2471 int ret = 0; 2472 2473 if (cpufreq_driver->boost_enabled == state) 2474 return 0; 2475 2476 write_lock_irqsave(&cpufreq_driver_lock, flags); 2477 cpufreq_driver->boost_enabled = state; 2478 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2479 2480 ret = cpufreq_driver->set_boost(state); 2481 if (ret) { 2482 write_lock_irqsave(&cpufreq_driver_lock, flags); 2483 cpufreq_driver->boost_enabled = !state; 2484 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2485 2486 pr_err("%s: Cannot %s BOOST\n", 2487 __func__, state ? "enable" : "disable"); 2488 } 2489 2490 return ret; 2491 } 2492 2493 static bool cpufreq_boost_supported(void) 2494 { 2495 return cpufreq_driver->set_boost; 2496 } 2497 2498 static int create_boost_sysfs_file(void) 2499 { 2500 int ret; 2501 2502 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2503 if (ret) 2504 pr_err("%s: cannot register global BOOST sysfs file\n", 2505 __func__); 2506 2507 return ret; 2508 } 2509 2510 static void remove_boost_sysfs_file(void) 2511 { 2512 if (cpufreq_boost_supported()) 2513 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2514 } 2515 2516 int cpufreq_enable_boost_support(void) 2517 { 2518 if (!cpufreq_driver) 2519 return -EINVAL; 2520 2521 if (cpufreq_boost_supported()) 2522 return 0; 2523 2524 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2525 2526 /* This will get removed on driver unregister */ 2527 return create_boost_sysfs_file(); 2528 } 2529 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2530 2531 int cpufreq_boost_enabled(void) 2532 { 2533 return cpufreq_driver->boost_enabled; 2534 } 2535 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2536 2537 /********************************************************************* 2538 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2539 *********************************************************************/ 2540 static enum cpuhp_state hp_online; 2541 2542 static int cpuhp_cpufreq_online(unsigned int cpu) 2543 { 2544 cpufreq_online(cpu); 2545 2546 return 0; 2547 } 2548 2549 static int cpuhp_cpufreq_offline(unsigned int cpu) 2550 { 2551 cpufreq_offline(cpu); 2552 2553 return 0; 2554 } 2555 2556 /** 2557 * cpufreq_register_driver - register a CPU Frequency driver 2558 * @driver_data: A struct cpufreq_driver containing the values# 2559 * submitted by the CPU Frequency driver. 2560 * 2561 * Registers a CPU Frequency driver to this core code. This code 2562 * returns zero on success, -EEXIST when another driver got here first 2563 * (and isn't unregistered in the meantime). 2564 * 2565 */ 2566 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2567 { 2568 unsigned long flags; 2569 int ret; 2570 2571 if (cpufreq_disabled()) 2572 return -ENODEV; 2573 2574 if (!driver_data || !driver_data->verify || !driver_data->init || 2575 !(driver_data->setpolicy || driver_data->target_index || 2576 driver_data->target) || 2577 (driver_data->setpolicy && (driver_data->target_index || 2578 driver_data->target)) || 2579 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2580 (!driver_data->online != !driver_data->offline)) 2581 return -EINVAL; 2582 2583 pr_debug("trying to register driver %s\n", driver_data->name); 2584 2585 /* Protect against concurrent CPU online/offline. */ 2586 cpus_read_lock(); 2587 2588 write_lock_irqsave(&cpufreq_driver_lock, flags); 2589 if (cpufreq_driver) { 2590 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2591 ret = -EEXIST; 2592 goto out; 2593 } 2594 cpufreq_driver = driver_data; 2595 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2596 2597 if (driver_data->setpolicy) 2598 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2599 2600 if (cpufreq_boost_supported()) { 2601 ret = create_boost_sysfs_file(); 2602 if (ret) 2603 goto err_null_driver; 2604 } 2605 2606 ret = subsys_interface_register(&cpufreq_interface); 2607 if (ret) 2608 goto err_boost_unreg; 2609 2610 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2611 list_empty(&cpufreq_policy_list)) { 2612 /* if all ->init() calls failed, unregister */ 2613 ret = -ENODEV; 2614 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2615 driver_data->name); 2616 goto err_if_unreg; 2617 } 2618 2619 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2620 "cpufreq:online", 2621 cpuhp_cpufreq_online, 2622 cpuhp_cpufreq_offline); 2623 if (ret < 0) 2624 goto err_if_unreg; 2625 hp_online = ret; 2626 ret = 0; 2627 2628 pr_debug("driver %s up and running\n", driver_data->name); 2629 goto out; 2630 2631 err_if_unreg: 2632 subsys_interface_unregister(&cpufreq_interface); 2633 err_boost_unreg: 2634 remove_boost_sysfs_file(); 2635 err_null_driver: 2636 write_lock_irqsave(&cpufreq_driver_lock, flags); 2637 cpufreq_driver = NULL; 2638 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2639 out: 2640 cpus_read_unlock(); 2641 return ret; 2642 } 2643 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2644 2645 /** 2646 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2647 * 2648 * Unregister the current CPUFreq driver. Only call this if you have 2649 * the right to do so, i.e. if you have succeeded in initialising before! 2650 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2651 * currently not initialised. 2652 */ 2653 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2654 { 2655 unsigned long flags; 2656 2657 if (!cpufreq_driver || (driver != cpufreq_driver)) 2658 return -EINVAL; 2659 2660 pr_debug("unregistering driver %s\n", driver->name); 2661 2662 /* Protect against concurrent cpu hotplug */ 2663 cpus_read_lock(); 2664 subsys_interface_unregister(&cpufreq_interface); 2665 remove_boost_sysfs_file(); 2666 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2667 2668 write_lock_irqsave(&cpufreq_driver_lock, flags); 2669 2670 cpufreq_driver = NULL; 2671 2672 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2673 cpus_read_unlock(); 2674 2675 return 0; 2676 } 2677 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2678 2679 /* 2680 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2681 * or mutexes when secondary CPUs are halted. 2682 */ 2683 static struct syscore_ops cpufreq_syscore_ops = { 2684 .shutdown = cpufreq_suspend, 2685 }; 2686 2687 struct kobject *cpufreq_global_kobject; 2688 EXPORT_SYMBOL(cpufreq_global_kobject); 2689 2690 static int __init cpufreq_core_init(void) 2691 { 2692 if (cpufreq_disabled()) 2693 return -ENODEV; 2694 2695 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2696 BUG_ON(!cpufreq_global_kobject); 2697 2698 register_syscore_ops(&cpufreq_syscore_ops); 2699 2700 return 0; 2701 } 2702 module_param(off, int, 0444); 2703 core_initcall(cpufreq_core_init); 2704