xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision c4849f88)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 /* Iterate over governors */
46 static LIST_HEAD(cpufreq_governor_list);
47 #define for_each_governor(__governor)				\
48 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
49 
50 static char default_governor[CPUFREQ_NAME_LEN];
51 
52 /*
53  * The "cpufreq driver" - the arch- or hardware-dependent low
54  * level driver of CPUFreq support, and its spinlock. This lock
55  * also protects the cpufreq_cpu_data array.
56  */
57 static struct cpufreq_driver *cpufreq_driver;
58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
59 static DEFINE_RWLOCK(cpufreq_driver_lock);
60 
61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
62 bool cpufreq_supports_freq_invariance(void)
63 {
64 	return static_branch_likely(&cpufreq_freq_invariance);
65 }
66 
67 /* Flag to suspend/resume CPUFreq governors */
68 static bool cpufreq_suspended;
69 
70 static inline bool has_target(void)
71 {
72 	return cpufreq_driver->target_index || cpufreq_driver->target;
73 }
74 
75 /* internal prototypes */
76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
77 static int cpufreq_init_governor(struct cpufreq_policy *policy);
78 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
79 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
80 static int cpufreq_set_policy(struct cpufreq_policy *policy,
81 			      struct cpufreq_governor *new_gov,
82 			      unsigned int new_pol);
83 
84 /*
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93 
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97 	return off;
98 }
99 void disable_cpufreq(void)
100 {
101 	off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104 
105 bool have_governor_per_policy(void)
106 {
107 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110 
111 static struct kobject *cpufreq_global_kobject;
112 
113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
114 {
115 	if (have_governor_per_policy())
116 		return &policy->kobj;
117 	else
118 		return cpufreq_global_kobject;
119 }
120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
121 
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124 	struct kernel_cpustat kcpustat;
125 	u64 cur_wall_time;
126 	u64 idle_time;
127 	u64 busy_time;
128 
129 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
130 
131 	kcpustat_cpu_fetch(&kcpustat, cpu);
132 
133 	busy_time = kcpustat.cpustat[CPUTIME_USER];
134 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
135 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
136 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
137 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
138 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
139 
140 	idle_time = cur_wall_time - busy_time;
141 	if (wall)
142 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
143 
144 	return div_u64(idle_time, NSEC_PER_USEC);
145 }
146 
147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
148 {
149 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
150 
151 	if (idle_time == -1ULL)
152 		return get_cpu_idle_time_jiffy(cpu, wall);
153 	else if (!io_busy)
154 		idle_time += get_cpu_iowait_time_us(cpu, wall);
155 
156 	return idle_time;
157 }
158 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
159 
160 /*
161  * This is a generic cpufreq init() routine which can be used by cpufreq
162  * drivers of SMP systems. It will do following:
163  * - validate & show freq table passed
164  * - set policies transition latency
165  * - policy->cpus with all possible CPUs
166  */
167 void cpufreq_generic_init(struct cpufreq_policy *policy,
168 		struct cpufreq_frequency_table *table,
169 		unsigned int transition_latency)
170 {
171 	policy->freq_table = table;
172 	policy->cpuinfo.transition_latency = transition_latency;
173 
174 	/*
175 	 * The driver only supports the SMP configuration where all processors
176 	 * share the clock and voltage and clock.
177 	 */
178 	cpumask_setall(policy->cpus);
179 }
180 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
181 
182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
183 {
184 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
185 
186 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
187 }
188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
189 
190 unsigned int cpufreq_generic_get(unsigned int cpu)
191 {
192 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
193 
194 	if (!policy || IS_ERR(policy->clk)) {
195 		pr_err("%s: No %s associated to cpu: %d\n",
196 		       __func__, policy ? "clk" : "policy", cpu);
197 		return 0;
198 	}
199 
200 	return clk_get_rate(policy->clk) / 1000;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
203 
204 /**
205  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
206  * @cpu: CPU to find the policy for.
207  *
208  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
209  * the kobject reference counter of that policy.  Return a valid policy on
210  * success or NULL on failure.
211  *
212  * The policy returned by this function has to be released with the help of
213  * cpufreq_cpu_put() to balance its kobject reference counter properly.
214  */
215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
216 {
217 	struct cpufreq_policy *policy = NULL;
218 	unsigned long flags;
219 
220 	if (WARN_ON(cpu >= nr_cpu_ids))
221 		return NULL;
222 
223 	/* get the cpufreq driver */
224 	read_lock_irqsave(&cpufreq_driver_lock, flags);
225 
226 	if (cpufreq_driver) {
227 		/* get the CPU */
228 		policy = cpufreq_cpu_get_raw(cpu);
229 		if (policy)
230 			kobject_get(&policy->kobj);
231 	}
232 
233 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
234 
235 	return policy;
236 }
237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
238 
239 /**
240  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
241  * @policy: cpufreq policy returned by cpufreq_cpu_get().
242  */
243 void cpufreq_cpu_put(struct cpufreq_policy *policy)
244 {
245 	kobject_put(&policy->kobj);
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
248 
249 /**
250  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
251  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
252  */
253 void cpufreq_cpu_release(struct cpufreq_policy *policy)
254 {
255 	if (WARN_ON(!policy))
256 		return;
257 
258 	lockdep_assert_held(&policy->rwsem);
259 
260 	up_write(&policy->rwsem);
261 
262 	cpufreq_cpu_put(policy);
263 }
264 
265 /**
266  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
267  * @cpu: CPU to find the policy for.
268  *
269  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
270  * if the policy returned by it is not NULL, acquire its rwsem for writing.
271  * Return the policy if it is active or release it and return NULL otherwise.
272  *
273  * The policy returned by this function has to be released with the help of
274  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
275  * counter properly.
276  */
277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
278 {
279 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
280 
281 	if (!policy)
282 		return NULL;
283 
284 	down_write(&policy->rwsem);
285 
286 	if (policy_is_inactive(policy)) {
287 		cpufreq_cpu_release(policy);
288 		return NULL;
289 	}
290 
291 	return policy;
292 }
293 
294 /*********************************************************************
295  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
296  *********************************************************************/
297 
298 /**
299  * adjust_jiffies - Adjust the system "loops_per_jiffy".
300  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
301  * @ci: Frequency change information.
302  *
303  * This function alters the system "loops_per_jiffy" for the clock
304  * speed change. Note that loops_per_jiffy cannot be updated on SMP
305  * systems as each CPU might be scaled differently. So, use the arch
306  * per-CPU loops_per_jiffy value wherever possible.
307  */
308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 #ifndef CONFIG_SMP
311 	static unsigned long l_p_j_ref;
312 	static unsigned int l_p_j_ref_freq;
313 
314 	if (ci->flags & CPUFREQ_CONST_LOOPS)
315 		return;
316 
317 	if (!l_p_j_ref_freq) {
318 		l_p_j_ref = loops_per_jiffy;
319 		l_p_j_ref_freq = ci->old;
320 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
321 			 l_p_j_ref, l_p_j_ref_freq);
322 	}
323 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
324 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
325 								ci->new);
326 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
327 			 loops_per_jiffy, ci->new);
328 	}
329 #endif
330 }
331 
332 /**
333  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
334  * @policy: cpufreq policy to enable fast frequency switching for.
335  * @freqs: contain details of the frequency update.
336  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
337  *
338  * This function calls the transition notifiers and adjust_jiffies().
339  *
340  * It is called twice on all CPU frequency changes that have external effects.
341  */
342 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
343 				      struct cpufreq_freqs *freqs,
344 				      unsigned int state)
345 {
346 	int cpu;
347 
348 	BUG_ON(irqs_disabled());
349 
350 	if (cpufreq_disabled())
351 		return;
352 
353 	freqs->policy = policy;
354 	freqs->flags = cpufreq_driver->flags;
355 	pr_debug("notification %u of frequency transition to %u kHz\n",
356 		 state, freqs->new);
357 
358 	switch (state) {
359 	case CPUFREQ_PRECHANGE:
360 		/*
361 		 * Detect if the driver reported a value as "old frequency"
362 		 * which is not equal to what the cpufreq core thinks is
363 		 * "old frequency".
364 		 */
365 		if (policy->cur && policy->cur != freqs->old) {
366 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
367 				 freqs->old, policy->cur);
368 			freqs->old = policy->cur;
369 		}
370 
371 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
372 					 CPUFREQ_PRECHANGE, freqs);
373 
374 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
375 		break;
376 
377 	case CPUFREQ_POSTCHANGE:
378 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
379 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
380 			 cpumask_pr_args(policy->cpus));
381 
382 		for_each_cpu(cpu, policy->cpus)
383 			trace_cpu_frequency(freqs->new, cpu);
384 
385 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
386 					 CPUFREQ_POSTCHANGE, freqs);
387 
388 		cpufreq_stats_record_transition(policy, freqs->new);
389 		policy->cur = freqs->new;
390 	}
391 }
392 
393 /* Do post notifications when there are chances that transition has failed */
394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
395 		struct cpufreq_freqs *freqs, int transition_failed)
396 {
397 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
398 	if (!transition_failed)
399 		return;
400 
401 	swap(freqs->old, freqs->new);
402 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 }
405 
406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
407 		struct cpufreq_freqs *freqs)
408 {
409 
410 	/*
411 	 * Catch double invocations of _begin() which lead to self-deadlock.
412 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
413 	 * doesn't invoke _begin() on their behalf, and hence the chances of
414 	 * double invocations are very low. Moreover, there are scenarios
415 	 * where these checks can emit false-positive warnings in these
416 	 * drivers; so we avoid that by skipping them altogether.
417 	 */
418 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
419 				&& current == policy->transition_task);
420 
421 wait:
422 	wait_event(policy->transition_wait, !policy->transition_ongoing);
423 
424 	spin_lock(&policy->transition_lock);
425 
426 	if (unlikely(policy->transition_ongoing)) {
427 		spin_unlock(&policy->transition_lock);
428 		goto wait;
429 	}
430 
431 	policy->transition_ongoing = true;
432 	policy->transition_task = current;
433 
434 	spin_unlock(&policy->transition_lock);
435 
436 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
437 }
438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
439 
440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
441 		struct cpufreq_freqs *freqs, int transition_failed)
442 {
443 	if (WARN_ON(!policy->transition_ongoing))
444 		return;
445 
446 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
447 
448 	arch_set_freq_scale(policy->related_cpus,
449 			    policy->cur,
450 			    policy->cpuinfo.max_freq);
451 
452 	policy->transition_ongoing = false;
453 	policy->transition_task = NULL;
454 
455 	wake_up(&policy->transition_wait);
456 }
457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
458 
459 /*
460  * Fast frequency switching status count.  Positive means "enabled", negative
461  * means "disabled" and 0 means "not decided yet".
462  */
463 static int cpufreq_fast_switch_count;
464 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
465 
466 static void cpufreq_list_transition_notifiers(void)
467 {
468 	struct notifier_block *nb;
469 
470 	pr_info("Registered transition notifiers:\n");
471 
472 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
473 
474 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
475 		pr_info("%pS\n", nb->notifier_call);
476 
477 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
478 }
479 
480 /**
481  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
482  * @policy: cpufreq policy to enable fast frequency switching for.
483  *
484  * Try to enable fast frequency switching for @policy.
485  *
486  * The attempt will fail if there is at least one transition notifier registered
487  * at this point, as fast frequency switching is quite fundamentally at odds
488  * with transition notifiers.  Thus if successful, it will make registration of
489  * transition notifiers fail going forward.
490  */
491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
492 {
493 	lockdep_assert_held(&policy->rwsem);
494 
495 	if (!policy->fast_switch_possible)
496 		return;
497 
498 	mutex_lock(&cpufreq_fast_switch_lock);
499 	if (cpufreq_fast_switch_count >= 0) {
500 		cpufreq_fast_switch_count++;
501 		policy->fast_switch_enabled = true;
502 	} else {
503 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
504 			policy->cpu);
505 		cpufreq_list_transition_notifiers();
506 	}
507 	mutex_unlock(&cpufreq_fast_switch_lock);
508 }
509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
510 
511 /**
512  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
513  * @policy: cpufreq policy to disable fast frequency switching for.
514  */
515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
516 {
517 	mutex_lock(&cpufreq_fast_switch_lock);
518 	if (policy->fast_switch_enabled) {
519 		policy->fast_switch_enabled = false;
520 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
521 			cpufreq_fast_switch_count--;
522 	}
523 	mutex_unlock(&cpufreq_fast_switch_lock);
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
526 
527 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
528 		unsigned int target_freq, unsigned int relation)
529 {
530 	unsigned int idx;
531 
532 	target_freq = clamp_val(target_freq, policy->min, policy->max);
533 
534 	if (!cpufreq_driver->target_index)
535 		return target_freq;
536 
537 	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
538 	policy->cached_resolved_idx = idx;
539 	policy->cached_target_freq = target_freq;
540 	return policy->freq_table[idx].frequency;
541 }
542 
543 /**
544  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
545  * one.
546  * @policy: associated policy to interrogate
547  * @target_freq: target frequency to resolve.
548  *
549  * The target to driver frequency mapping is cached in the policy.
550  *
551  * Return: Lowest driver-supported frequency greater than or equal to the
552  * given target_freq, subject to policy (min/max) and driver limitations.
553  */
554 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
555 					 unsigned int target_freq)
556 {
557 	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
560 
561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
562 {
563 	unsigned int latency;
564 
565 	if (policy->transition_delay_us)
566 		return policy->transition_delay_us;
567 
568 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
569 	if (latency) {
570 		/*
571 		 * For platforms that can change the frequency very fast (< 10
572 		 * us), the above formula gives a decent transition delay. But
573 		 * for platforms where transition_latency is in milliseconds, it
574 		 * ends up giving unrealistic values.
575 		 *
576 		 * Cap the default transition delay to 10 ms, which seems to be
577 		 * a reasonable amount of time after which we should reevaluate
578 		 * the frequency.
579 		 */
580 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
581 	}
582 
583 	return LATENCY_MULTIPLIER;
584 }
585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
586 
587 /*********************************************************************
588  *                          SYSFS INTERFACE                          *
589  *********************************************************************/
590 static ssize_t show_boost(struct kobject *kobj,
591 			  struct kobj_attribute *attr, char *buf)
592 {
593 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
594 }
595 
596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
597 			   const char *buf, size_t count)
598 {
599 	int ret, enable;
600 
601 	ret = sscanf(buf, "%d", &enable);
602 	if (ret != 1 || enable < 0 || enable > 1)
603 		return -EINVAL;
604 
605 	if (cpufreq_boost_trigger_state(enable)) {
606 		pr_err("%s: Cannot %s BOOST!\n",
607 		       __func__, enable ? "enable" : "disable");
608 		return -EINVAL;
609 	}
610 
611 	pr_debug("%s: cpufreq BOOST %s\n",
612 		 __func__, enable ? "enabled" : "disabled");
613 
614 	return count;
615 }
616 define_one_global_rw(boost);
617 
618 static struct cpufreq_governor *find_governor(const char *str_governor)
619 {
620 	struct cpufreq_governor *t;
621 
622 	for_each_governor(t)
623 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
624 			return t;
625 
626 	return NULL;
627 }
628 
629 static struct cpufreq_governor *get_governor(const char *str_governor)
630 {
631 	struct cpufreq_governor *t;
632 
633 	mutex_lock(&cpufreq_governor_mutex);
634 	t = find_governor(str_governor);
635 	if (!t)
636 		goto unlock;
637 
638 	if (!try_module_get(t->owner))
639 		t = NULL;
640 
641 unlock:
642 	mutex_unlock(&cpufreq_governor_mutex);
643 
644 	return t;
645 }
646 
647 static unsigned int cpufreq_parse_policy(char *str_governor)
648 {
649 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
650 		return CPUFREQ_POLICY_PERFORMANCE;
651 
652 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
653 		return CPUFREQ_POLICY_POWERSAVE;
654 
655 	return CPUFREQ_POLICY_UNKNOWN;
656 }
657 
658 /**
659  * cpufreq_parse_governor - parse a governor string only for has_target()
660  * @str_governor: Governor name.
661  */
662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
663 {
664 	struct cpufreq_governor *t;
665 
666 	t = get_governor(str_governor);
667 	if (t)
668 		return t;
669 
670 	if (request_module("cpufreq_%s", str_governor))
671 		return NULL;
672 
673 	return get_governor(str_governor);
674 }
675 
676 /*
677  * cpufreq_per_cpu_attr_read() / show_##file_name() -
678  * print out cpufreq information
679  *
680  * Write out information from cpufreq_driver->policy[cpu]; object must be
681  * "unsigned int".
682  */
683 
684 #define show_one(file_name, object)			\
685 static ssize_t show_##file_name				\
686 (struct cpufreq_policy *policy, char *buf)		\
687 {							\
688 	return sprintf(buf, "%u\n", policy->object);	\
689 }
690 
691 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
692 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
694 show_one(scaling_min_freq, min);
695 show_one(scaling_max_freq, max);
696 
697 __weak unsigned int arch_freq_get_on_cpu(int cpu)
698 {
699 	return 0;
700 }
701 
702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
703 {
704 	ssize_t ret;
705 	unsigned int freq;
706 
707 	freq = arch_freq_get_on_cpu(policy->cpu);
708 	if (freq)
709 		ret = sprintf(buf, "%u\n", freq);
710 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
711 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712 	else
713 		ret = sprintf(buf, "%u\n", policy->cur);
714 	return ret;
715 }
716 
717 /*
718  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719  */
720 #define store_one(file_name, object)			\
721 static ssize_t store_##file_name					\
722 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
723 {									\
724 	unsigned long val;						\
725 	int ret;							\
726 									\
727 	ret = sscanf(buf, "%lu", &val);					\
728 	if (ret != 1)							\
729 		return -EINVAL;						\
730 									\
731 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
732 	return ret >= 0 ? count : ret;					\
733 }
734 
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737 
738 /*
739  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740  */
741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742 					char *buf)
743 {
744 	unsigned int cur_freq = __cpufreq_get(policy);
745 
746 	if (cur_freq)
747 		return sprintf(buf, "%u\n", cur_freq);
748 
749 	return sprintf(buf, "<unknown>\n");
750 }
751 
752 /*
753  * show_scaling_governor - show the current policy for the specified CPU
754  */
755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758 		return sprintf(buf, "powersave\n");
759 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760 		return sprintf(buf, "performance\n");
761 	else if (policy->governor)
762 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763 				policy->governor->name);
764 	return -EINVAL;
765 }
766 
767 /*
768  * store_scaling_governor - store policy for the specified CPU
769  */
770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771 					const char *buf, size_t count)
772 {
773 	char str_governor[16];
774 	int ret;
775 
776 	ret = sscanf(buf, "%15s", str_governor);
777 	if (ret != 1)
778 		return -EINVAL;
779 
780 	if (cpufreq_driver->setpolicy) {
781 		unsigned int new_pol;
782 
783 		new_pol = cpufreq_parse_policy(str_governor);
784 		if (!new_pol)
785 			return -EINVAL;
786 
787 		ret = cpufreq_set_policy(policy, NULL, new_pol);
788 	} else {
789 		struct cpufreq_governor *new_gov;
790 
791 		new_gov = cpufreq_parse_governor(str_governor);
792 		if (!new_gov)
793 			return -EINVAL;
794 
795 		ret = cpufreq_set_policy(policy, new_gov,
796 					 CPUFREQ_POLICY_UNKNOWN);
797 
798 		module_put(new_gov->owner);
799 	}
800 
801 	return ret ? ret : count;
802 }
803 
804 /*
805  * show_scaling_driver - show the cpufreq driver currently loaded
806  */
807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811 
812 /*
813  * show_scaling_available_governors - show the available CPUfreq governors
814  */
815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816 						char *buf)
817 {
818 	ssize_t i = 0;
819 	struct cpufreq_governor *t;
820 
821 	if (!has_target()) {
822 		i += sprintf(buf, "performance powersave");
823 		goto out;
824 	}
825 
826 	mutex_lock(&cpufreq_governor_mutex);
827 	for_each_governor(t) {
828 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829 		    - (CPUFREQ_NAME_LEN + 2)))
830 			break;
831 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832 	}
833 	mutex_unlock(&cpufreq_governor_mutex);
834 out:
835 	i += sprintf(&buf[i], "\n");
836 	return i;
837 }
838 
839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
840 {
841 	ssize_t i = 0;
842 	unsigned int cpu;
843 
844 	for_each_cpu(cpu, mask) {
845 		if (i)
846 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
847 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
848 		if (i >= (PAGE_SIZE - 5))
849 			break;
850 	}
851 	i += sprintf(&buf[i], "\n");
852 	return i;
853 }
854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
855 
856 /*
857  * show_related_cpus - show the CPUs affected by each transition even if
858  * hw coordination is in use
859  */
860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
861 {
862 	return cpufreq_show_cpus(policy->related_cpus, buf);
863 }
864 
865 /*
866  * show_affected_cpus - show the CPUs affected by each transition
867  */
868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
869 {
870 	return cpufreq_show_cpus(policy->cpus, buf);
871 }
872 
873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
874 					const char *buf, size_t count)
875 {
876 	unsigned int freq = 0;
877 	unsigned int ret;
878 
879 	if (!policy->governor || !policy->governor->store_setspeed)
880 		return -EINVAL;
881 
882 	ret = sscanf(buf, "%u", &freq);
883 	if (ret != 1)
884 		return -EINVAL;
885 
886 	policy->governor->store_setspeed(policy, freq);
887 
888 	return count;
889 }
890 
891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
892 {
893 	if (!policy->governor || !policy->governor->show_setspeed)
894 		return sprintf(buf, "<unsupported>\n");
895 
896 	return policy->governor->show_setspeed(policy, buf);
897 }
898 
899 /*
900  * show_bios_limit - show the current cpufreq HW/BIOS limitation
901  */
902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
903 {
904 	unsigned int limit;
905 	int ret;
906 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
907 	if (!ret)
908 		return sprintf(buf, "%u\n", limit);
909 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
910 }
911 
912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
913 cpufreq_freq_attr_ro(cpuinfo_min_freq);
914 cpufreq_freq_attr_ro(cpuinfo_max_freq);
915 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
916 cpufreq_freq_attr_ro(scaling_available_governors);
917 cpufreq_freq_attr_ro(scaling_driver);
918 cpufreq_freq_attr_ro(scaling_cur_freq);
919 cpufreq_freq_attr_ro(bios_limit);
920 cpufreq_freq_attr_ro(related_cpus);
921 cpufreq_freq_attr_ro(affected_cpus);
922 cpufreq_freq_attr_rw(scaling_min_freq);
923 cpufreq_freq_attr_rw(scaling_max_freq);
924 cpufreq_freq_attr_rw(scaling_governor);
925 cpufreq_freq_attr_rw(scaling_setspeed);
926 
927 static struct attribute *default_attrs[] = {
928 	&cpuinfo_min_freq.attr,
929 	&cpuinfo_max_freq.attr,
930 	&cpuinfo_transition_latency.attr,
931 	&scaling_min_freq.attr,
932 	&scaling_max_freq.attr,
933 	&affected_cpus.attr,
934 	&related_cpus.attr,
935 	&scaling_governor.attr,
936 	&scaling_driver.attr,
937 	&scaling_available_governors.attr,
938 	&scaling_setspeed.attr,
939 	NULL
940 };
941 
942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
943 #define to_attr(a) container_of(a, struct freq_attr, attr)
944 
945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
946 {
947 	struct cpufreq_policy *policy = to_policy(kobj);
948 	struct freq_attr *fattr = to_attr(attr);
949 	ssize_t ret;
950 
951 	if (!fattr->show)
952 		return -EIO;
953 
954 	down_read(&policy->rwsem);
955 	ret = fattr->show(policy, buf);
956 	up_read(&policy->rwsem);
957 
958 	return ret;
959 }
960 
961 static ssize_t store(struct kobject *kobj, struct attribute *attr,
962 		     const char *buf, size_t count)
963 {
964 	struct cpufreq_policy *policy = to_policy(kobj);
965 	struct freq_attr *fattr = to_attr(attr);
966 	ssize_t ret = -EINVAL;
967 
968 	if (!fattr->store)
969 		return -EIO;
970 
971 	/*
972 	 * cpus_read_trylock() is used here to work around a circular lock
973 	 * dependency problem with respect to the cpufreq_register_driver().
974 	 */
975 	if (!cpus_read_trylock())
976 		return -EBUSY;
977 
978 	if (cpu_online(policy->cpu)) {
979 		down_write(&policy->rwsem);
980 		ret = fattr->store(policy, buf, count);
981 		up_write(&policy->rwsem);
982 	}
983 
984 	cpus_read_unlock();
985 
986 	return ret;
987 }
988 
989 static void cpufreq_sysfs_release(struct kobject *kobj)
990 {
991 	struct cpufreq_policy *policy = to_policy(kobj);
992 	pr_debug("last reference is dropped\n");
993 	complete(&policy->kobj_unregister);
994 }
995 
996 static const struct sysfs_ops sysfs_ops = {
997 	.show	= show,
998 	.store	= store,
999 };
1000 
1001 static struct kobj_type ktype_cpufreq = {
1002 	.sysfs_ops	= &sysfs_ops,
1003 	.default_attrs	= default_attrs,
1004 	.release	= cpufreq_sysfs_release,
1005 };
1006 
1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1008 				struct device *dev)
1009 {
1010 	if (unlikely(!dev))
1011 		return;
1012 
1013 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1014 		return;
1015 
1016 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1017 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1018 		dev_err(dev, "cpufreq symlink creation failed\n");
1019 }
1020 
1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1022 				   struct device *dev)
1023 {
1024 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1025 	sysfs_remove_link(&dev->kobj, "cpufreq");
1026 }
1027 
1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1029 {
1030 	struct freq_attr **drv_attr;
1031 	int ret = 0;
1032 
1033 	/* set up files for this cpu device */
1034 	drv_attr = cpufreq_driver->attr;
1035 	while (drv_attr && *drv_attr) {
1036 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1037 		if (ret)
1038 			return ret;
1039 		drv_attr++;
1040 	}
1041 	if (cpufreq_driver->get) {
1042 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1043 		if (ret)
1044 			return ret;
1045 	}
1046 
1047 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1048 	if (ret)
1049 		return ret;
1050 
1051 	if (cpufreq_driver->bios_limit) {
1052 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1053 		if (ret)
1054 			return ret;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1061 {
1062 	struct cpufreq_governor *gov = NULL;
1063 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1064 	int ret;
1065 
1066 	if (has_target()) {
1067 		/* Update policy governor to the one used before hotplug. */
1068 		gov = get_governor(policy->last_governor);
1069 		if (gov) {
1070 			pr_debug("Restoring governor %s for cpu %d\n",
1071 				 gov->name, policy->cpu);
1072 		} else {
1073 			gov = get_governor(default_governor);
1074 		}
1075 
1076 		if (!gov) {
1077 			gov = cpufreq_default_governor();
1078 			__module_get(gov->owner);
1079 		}
1080 
1081 	} else {
1082 
1083 		/* Use the default policy if there is no last_policy. */
1084 		if (policy->last_policy) {
1085 			pol = policy->last_policy;
1086 		} else {
1087 			pol = cpufreq_parse_policy(default_governor);
1088 			/*
1089 			 * In case the default governor is neither "performance"
1090 			 * nor "powersave", fall back to the initial policy
1091 			 * value set by the driver.
1092 			 */
1093 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1094 				pol = policy->policy;
1095 		}
1096 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1097 		    pol != CPUFREQ_POLICY_POWERSAVE)
1098 			return -ENODATA;
1099 	}
1100 
1101 	ret = cpufreq_set_policy(policy, gov, pol);
1102 	if (gov)
1103 		module_put(gov->owner);
1104 
1105 	return ret;
1106 }
1107 
1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1109 {
1110 	int ret = 0;
1111 
1112 	/* Has this CPU been taken care of already? */
1113 	if (cpumask_test_cpu(cpu, policy->cpus))
1114 		return 0;
1115 
1116 	down_write(&policy->rwsem);
1117 	if (has_target())
1118 		cpufreq_stop_governor(policy);
1119 
1120 	cpumask_set_cpu(cpu, policy->cpus);
1121 
1122 	if (has_target()) {
1123 		ret = cpufreq_start_governor(policy);
1124 		if (ret)
1125 			pr_err("%s: Failed to start governor\n", __func__);
1126 	}
1127 	up_write(&policy->rwsem);
1128 	return ret;
1129 }
1130 
1131 void refresh_frequency_limits(struct cpufreq_policy *policy)
1132 {
1133 	if (!policy_is_inactive(policy)) {
1134 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1135 
1136 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1137 	}
1138 }
1139 EXPORT_SYMBOL(refresh_frequency_limits);
1140 
1141 static void handle_update(struct work_struct *work)
1142 {
1143 	struct cpufreq_policy *policy =
1144 		container_of(work, struct cpufreq_policy, update);
1145 
1146 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1147 	down_write(&policy->rwsem);
1148 	refresh_frequency_limits(policy);
1149 	up_write(&policy->rwsem);
1150 }
1151 
1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1153 				void *data)
1154 {
1155 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1156 
1157 	schedule_work(&policy->update);
1158 	return 0;
1159 }
1160 
1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1162 				void *data)
1163 {
1164 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1165 
1166 	schedule_work(&policy->update);
1167 	return 0;
1168 }
1169 
1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1171 {
1172 	struct kobject *kobj;
1173 	struct completion *cmp;
1174 
1175 	down_write(&policy->rwsem);
1176 	cpufreq_stats_free_table(policy);
1177 	kobj = &policy->kobj;
1178 	cmp = &policy->kobj_unregister;
1179 	up_write(&policy->rwsem);
1180 	kobject_put(kobj);
1181 
1182 	/*
1183 	 * We need to make sure that the underlying kobj is
1184 	 * actually not referenced anymore by anybody before we
1185 	 * proceed with unloading.
1186 	 */
1187 	pr_debug("waiting for dropping of refcount\n");
1188 	wait_for_completion(cmp);
1189 	pr_debug("wait complete\n");
1190 }
1191 
1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1193 {
1194 	struct cpufreq_policy *policy;
1195 	struct device *dev = get_cpu_device(cpu);
1196 	int ret;
1197 
1198 	if (!dev)
1199 		return NULL;
1200 
1201 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1202 	if (!policy)
1203 		return NULL;
1204 
1205 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1206 		goto err_free_policy;
1207 
1208 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1209 		goto err_free_cpumask;
1210 
1211 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1212 		goto err_free_rcpumask;
1213 
1214 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1215 				   cpufreq_global_kobject, "policy%u", cpu);
1216 	if (ret) {
1217 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1218 		/*
1219 		 * The entire policy object will be freed below, but the extra
1220 		 * memory allocated for the kobject name needs to be freed by
1221 		 * releasing the kobject.
1222 		 */
1223 		kobject_put(&policy->kobj);
1224 		goto err_free_real_cpus;
1225 	}
1226 
1227 	freq_constraints_init(&policy->constraints);
1228 
1229 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1230 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1231 
1232 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1233 				    &policy->nb_min);
1234 	if (ret) {
1235 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1236 			ret, cpumask_pr_args(policy->cpus));
1237 		goto err_kobj_remove;
1238 	}
1239 
1240 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1241 				    &policy->nb_max);
1242 	if (ret) {
1243 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1244 			ret, cpumask_pr_args(policy->cpus));
1245 		goto err_min_qos_notifier;
1246 	}
1247 
1248 	INIT_LIST_HEAD(&policy->policy_list);
1249 	init_rwsem(&policy->rwsem);
1250 	spin_lock_init(&policy->transition_lock);
1251 	init_waitqueue_head(&policy->transition_wait);
1252 	init_completion(&policy->kobj_unregister);
1253 	INIT_WORK(&policy->update, handle_update);
1254 
1255 	policy->cpu = cpu;
1256 	return policy;
1257 
1258 err_min_qos_notifier:
1259 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1260 				 &policy->nb_min);
1261 err_kobj_remove:
1262 	cpufreq_policy_put_kobj(policy);
1263 err_free_real_cpus:
1264 	free_cpumask_var(policy->real_cpus);
1265 err_free_rcpumask:
1266 	free_cpumask_var(policy->related_cpus);
1267 err_free_cpumask:
1268 	free_cpumask_var(policy->cpus);
1269 err_free_policy:
1270 	kfree(policy);
1271 
1272 	return NULL;
1273 }
1274 
1275 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1276 {
1277 	unsigned long flags;
1278 	int cpu;
1279 
1280 	/* Remove policy from list */
1281 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1282 	list_del(&policy->policy_list);
1283 
1284 	for_each_cpu(cpu, policy->related_cpus)
1285 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1286 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1287 
1288 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1289 				 &policy->nb_max);
1290 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1291 				 &policy->nb_min);
1292 
1293 	/* Cancel any pending policy->update work before freeing the policy. */
1294 	cancel_work_sync(&policy->update);
1295 
1296 	if (policy->max_freq_req) {
1297 		/*
1298 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1299 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1300 		 * sent after adding max_freq_req earlier.
1301 		 */
1302 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1303 					     CPUFREQ_REMOVE_POLICY, policy);
1304 		freq_qos_remove_request(policy->max_freq_req);
1305 	}
1306 
1307 	freq_qos_remove_request(policy->min_freq_req);
1308 	kfree(policy->min_freq_req);
1309 
1310 	cpufreq_policy_put_kobj(policy);
1311 	free_cpumask_var(policy->real_cpus);
1312 	free_cpumask_var(policy->related_cpus);
1313 	free_cpumask_var(policy->cpus);
1314 	kfree(policy);
1315 }
1316 
1317 static int cpufreq_online(unsigned int cpu)
1318 {
1319 	struct cpufreq_policy *policy;
1320 	bool new_policy;
1321 	unsigned long flags;
1322 	unsigned int j;
1323 	int ret;
1324 
1325 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1326 
1327 	/* Check if this CPU already has a policy to manage it */
1328 	policy = per_cpu(cpufreq_cpu_data, cpu);
1329 	if (policy) {
1330 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1331 		if (!policy_is_inactive(policy))
1332 			return cpufreq_add_policy_cpu(policy, cpu);
1333 
1334 		/* This is the only online CPU for the policy.  Start over. */
1335 		new_policy = false;
1336 		down_write(&policy->rwsem);
1337 		policy->cpu = cpu;
1338 		policy->governor = NULL;
1339 		up_write(&policy->rwsem);
1340 	} else {
1341 		new_policy = true;
1342 		policy = cpufreq_policy_alloc(cpu);
1343 		if (!policy)
1344 			return -ENOMEM;
1345 	}
1346 
1347 	if (!new_policy && cpufreq_driver->online) {
1348 		ret = cpufreq_driver->online(policy);
1349 		if (ret) {
1350 			pr_debug("%s: %d: initialization failed\n", __func__,
1351 				 __LINE__);
1352 			goto out_exit_policy;
1353 		}
1354 
1355 		/* Recover policy->cpus using related_cpus */
1356 		cpumask_copy(policy->cpus, policy->related_cpus);
1357 	} else {
1358 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1359 
1360 		/*
1361 		 * Call driver. From then on the cpufreq must be able
1362 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1363 		 */
1364 		ret = cpufreq_driver->init(policy);
1365 		if (ret) {
1366 			pr_debug("%s: %d: initialization failed\n", __func__,
1367 				 __LINE__);
1368 			goto out_free_policy;
1369 		}
1370 
1371 		/*
1372 		 * The initialization has succeeded and the policy is online.
1373 		 * If there is a problem with its frequency table, take it
1374 		 * offline and drop it.
1375 		 */
1376 		ret = cpufreq_table_validate_and_sort(policy);
1377 		if (ret)
1378 			goto out_offline_policy;
1379 
1380 		/* related_cpus should at least include policy->cpus. */
1381 		cpumask_copy(policy->related_cpus, policy->cpus);
1382 	}
1383 
1384 	down_write(&policy->rwsem);
1385 	/*
1386 	 * affected cpus must always be the one, which are online. We aren't
1387 	 * managing offline cpus here.
1388 	 */
1389 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1390 
1391 	if (new_policy) {
1392 		for_each_cpu(j, policy->related_cpus) {
1393 			per_cpu(cpufreq_cpu_data, j) = policy;
1394 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1395 		}
1396 
1397 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1398 					       GFP_KERNEL);
1399 		if (!policy->min_freq_req) {
1400 			ret = -ENOMEM;
1401 			goto out_destroy_policy;
1402 		}
1403 
1404 		ret = freq_qos_add_request(&policy->constraints,
1405 					   policy->min_freq_req, FREQ_QOS_MIN,
1406 					   policy->min);
1407 		if (ret < 0) {
1408 			/*
1409 			 * So we don't call freq_qos_remove_request() for an
1410 			 * uninitialized request.
1411 			 */
1412 			kfree(policy->min_freq_req);
1413 			policy->min_freq_req = NULL;
1414 			goto out_destroy_policy;
1415 		}
1416 
1417 		/*
1418 		 * This must be initialized right here to avoid calling
1419 		 * freq_qos_remove_request() on uninitialized request in case
1420 		 * of errors.
1421 		 */
1422 		policy->max_freq_req = policy->min_freq_req + 1;
1423 
1424 		ret = freq_qos_add_request(&policy->constraints,
1425 					   policy->max_freq_req, FREQ_QOS_MAX,
1426 					   policy->max);
1427 		if (ret < 0) {
1428 			policy->max_freq_req = NULL;
1429 			goto out_destroy_policy;
1430 		}
1431 
1432 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1433 				CPUFREQ_CREATE_POLICY, policy);
1434 	}
1435 
1436 	if (cpufreq_driver->get && has_target()) {
1437 		policy->cur = cpufreq_driver->get(policy->cpu);
1438 		if (!policy->cur) {
1439 			ret = -EIO;
1440 			pr_err("%s: ->get() failed\n", __func__);
1441 			goto out_destroy_policy;
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * Sometimes boot loaders set CPU frequency to a value outside of
1447 	 * frequency table present with cpufreq core. In such cases CPU might be
1448 	 * unstable if it has to run on that frequency for long duration of time
1449 	 * and so its better to set it to a frequency which is specified in
1450 	 * freq-table. This also makes cpufreq stats inconsistent as
1451 	 * cpufreq-stats would fail to register because current frequency of CPU
1452 	 * isn't found in freq-table.
1453 	 *
1454 	 * Because we don't want this change to effect boot process badly, we go
1455 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1456 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1457 	 * is initialized to zero).
1458 	 *
1459 	 * We are passing target-freq as "policy->cur - 1" otherwise
1460 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1461 	 * equal to target-freq.
1462 	 */
1463 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1464 	    && has_target()) {
1465 		unsigned int old_freq = policy->cur;
1466 
1467 		/* Are we running at unknown frequency ? */
1468 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1469 		if (ret == -EINVAL) {
1470 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1471 						      CPUFREQ_RELATION_L);
1472 
1473 			/*
1474 			 * Reaching here after boot in a few seconds may not
1475 			 * mean that system will remain stable at "unknown"
1476 			 * frequency for longer duration. Hence, a BUG_ON().
1477 			 */
1478 			BUG_ON(ret);
1479 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1480 				__func__, policy->cpu, old_freq, policy->cur);
1481 		}
1482 	}
1483 
1484 	if (new_policy) {
1485 		ret = cpufreq_add_dev_interface(policy);
1486 		if (ret)
1487 			goto out_destroy_policy;
1488 
1489 		cpufreq_stats_create_table(policy);
1490 
1491 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1492 		list_add(&policy->policy_list, &cpufreq_policy_list);
1493 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1494 
1495 		/*
1496 		 * Register with the energy model before
1497 		 * sched_cpufreq_governor_change() is called, which will result
1498 		 * in rebuilding of the sched domains, which should only be done
1499 		 * once the energy model is properly initialized for the policy
1500 		 * first.
1501 		 *
1502 		 * Also, this should be called before the policy is registered
1503 		 * with cooling framework.
1504 		 */
1505 		if (cpufreq_driver->register_em)
1506 			cpufreq_driver->register_em(policy);
1507 	}
1508 
1509 	ret = cpufreq_init_policy(policy);
1510 	if (ret) {
1511 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1512 		       __func__, cpu, ret);
1513 		goto out_destroy_policy;
1514 	}
1515 
1516 	up_write(&policy->rwsem);
1517 
1518 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1519 
1520 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1521 		policy->cdev = of_cpufreq_cooling_register(policy);
1522 
1523 	pr_debug("initialization complete\n");
1524 
1525 	return 0;
1526 
1527 out_destroy_policy:
1528 	for_each_cpu(j, policy->real_cpus)
1529 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1530 
1531 	up_write(&policy->rwsem);
1532 
1533 out_offline_policy:
1534 	if (cpufreq_driver->offline)
1535 		cpufreq_driver->offline(policy);
1536 
1537 out_exit_policy:
1538 	if (cpufreq_driver->exit)
1539 		cpufreq_driver->exit(policy);
1540 
1541 out_free_policy:
1542 	cpufreq_policy_free(policy);
1543 	return ret;
1544 }
1545 
1546 /**
1547  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1548  * @dev: CPU device.
1549  * @sif: Subsystem interface structure pointer (not used)
1550  */
1551 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1552 {
1553 	struct cpufreq_policy *policy;
1554 	unsigned cpu = dev->id;
1555 	int ret;
1556 
1557 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1558 
1559 	if (cpu_online(cpu)) {
1560 		ret = cpufreq_online(cpu);
1561 		if (ret)
1562 			return ret;
1563 	}
1564 
1565 	/* Create sysfs link on CPU registration */
1566 	policy = per_cpu(cpufreq_cpu_data, cpu);
1567 	if (policy)
1568 		add_cpu_dev_symlink(policy, cpu, dev);
1569 
1570 	return 0;
1571 }
1572 
1573 static int cpufreq_offline(unsigned int cpu)
1574 {
1575 	struct cpufreq_policy *policy;
1576 	int ret;
1577 
1578 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1579 
1580 	policy = cpufreq_cpu_get_raw(cpu);
1581 	if (!policy) {
1582 		pr_debug("%s: No cpu_data found\n", __func__);
1583 		return 0;
1584 	}
1585 
1586 	down_write(&policy->rwsem);
1587 	if (has_target())
1588 		cpufreq_stop_governor(policy);
1589 
1590 	cpumask_clear_cpu(cpu, policy->cpus);
1591 
1592 	if (policy_is_inactive(policy)) {
1593 		if (has_target())
1594 			strncpy(policy->last_governor, policy->governor->name,
1595 				CPUFREQ_NAME_LEN);
1596 		else
1597 			policy->last_policy = policy->policy;
1598 	} else if (cpu == policy->cpu) {
1599 		/* Nominate new CPU */
1600 		policy->cpu = cpumask_any(policy->cpus);
1601 	}
1602 
1603 	/* Start governor again for active policy */
1604 	if (!policy_is_inactive(policy)) {
1605 		if (has_target()) {
1606 			ret = cpufreq_start_governor(policy);
1607 			if (ret)
1608 				pr_err("%s: Failed to start governor\n", __func__);
1609 		}
1610 
1611 		goto unlock;
1612 	}
1613 
1614 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1615 		cpufreq_cooling_unregister(policy->cdev);
1616 		policy->cdev = NULL;
1617 	}
1618 
1619 	if (has_target())
1620 		cpufreq_exit_governor(policy);
1621 
1622 	/*
1623 	 * Perform the ->offline() during light-weight tear-down, as
1624 	 * that allows fast recovery when the CPU comes back.
1625 	 */
1626 	if (cpufreq_driver->offline) {
1627 		cpufreq_driver->offline(policy);
1628 	} else if (cpufreq_driver->exit) {
1629 		cpufreq_driver->exit(policy);
1630 		policy->freq_table = NULL;
1631 	}
1632 
1633 unlock:
1634 	up_write(&policy->rwsem);
1635 	return 0;
1636 }
1637 
1638 /*
1639  * cpufreq_remove_dev - remove a CPU device
1640  *
1641  * Removes the cpufreq interface for a CPU device.
1642  */
1643 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1644 {
1645 	unsigned int cpu = dev->id;
1646 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1647 
1648 	if (!policy)
1649 		return;
1650 
1651 	if (cpu_online(cpu))
1652 		cpufreq_offline(cpu);
1653 
1654 	cpumask_clear_cpu(cpu, policy->real_cpus);
1655 	remove_cpu_dev_symlink(policy, dev);
1656 
1657 	if (cpumask_empty(policy->real_cpus)) {
1658 		/* We did light-weight exit earlier, do full tear down now */
1659 		if (cpufreq_driver->offline)
1660 			cpufreq_driver->exit(policy);
1661 
1662 		cpufreq_policy_free(policy);
1663 	}
1664 }
1665 
1666 /**
1667  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1668  * @policy: Policy managing CPUs.
1669  * @new_freq: New CPU frequency.
1670  *
1671  * Adjust to the current frequency first and clean up later by either calling
1672  * cpufreq_update_policy(), or scheduling handle_update().
1673  */
1674 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1675 				unsigned int new_freq)
1676 {
1677 	struct cpufreq_freqs freqs;
1678 
1679 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1680 		 policy->cur, new_freq);
1681 
1682 	freqs.old = policy->cur;
1683 	freqs.new = new_freq;
1684 
1685 	cpufreq_freq_transition_begin(policy, &freqs);
1686 	cpufreq_freq_transition_end(policy, &freqs, 0);
1687 }
1688 
1689 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1690 {
1691 	unsigned int new_freq;
1692 
1693 	new_freq = cpufreq_driver->get(policy->cpu);
1694 	if (!new_freq)
1695 		return 0;
1696 
1697 	/*
1698 	 * If fast frequency switching is used with the given policy, the check
1699 	 * against policy->cur is pointless, so skip it in that case.
1700 	 */
1701 	if (policy->fast_switch_enabled || !has_target())
1702 		return new_freq;
1703 
1704 	if (policy->cur != new_freq) {
1705 		cpufreq_out_of_sync(policy, new_freq);
1706 		if (update)
1707 			schedule_work(&policy->update);
1708 	}
1709 
1710 	return new_freq;
1711 }
1712 
1713 /**
1714  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1715  * @cpu: CPU number
1716  *
1717  * This is the last known freq, without actually getting it from the driver.
1718  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1719  */
1720 unsigned int cpufreq_quick_get(unsigned int cpu)
1721 {
1722 	struct cpufreq_policy *policy;
1723 	unsigned int ret_freq = 0;
1724 	unsigned long flags;
1725 
1726 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1727 
1728 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1729 		ret_freq = cpufreq_driver->get(cpu);
1730 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1731 		return ret_freq;
1732 	}
1733 
1734 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1735 
1736 	policy = cpufreq_cpu_get(cpu);
1737 	if (policy) {
1738 		ret_freq = policy->cur;
1739 		cpufreq_cpu_put(policy);
1740 	}
1741 
1742 	return ret_freq;
1743 }
1744 EXPORT_SYMBOL(cpufreq_quick_get);
1745 
1746 /**
1747  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1748  * @cpu: CPU number
1749  *
1750  * Just return the max possible frequency for a given CPU.
1751  */
1752 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1753 {
1754 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1755 	unsigned int ret_freq = 0;
1756 
1757 	if (policy) {
1758 		ret_freq = policy->max;
1759 		cpufreq_cpu_put(policy);
1760 	}
1761 
1762 	return ret_freq;
1763 }
1764 EXPORT_SYMBOL(cpufreq_quick_get_max);
1765 
1766 /**
1767  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1768  * @cpu: CPU number
1769  *
1770  * The default return value is the max_freq field of cpuinfo.
1771  */
1772 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1773 {
1774 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1775 	unsigned int ret_freq = 0;
1776 
1777 	if (policy) {
1778 		ret_freq = policy->cpuinfo.max_freq;
1779 		cpufreq_cpu_put(policy);
1780 	}
1781 
1782 	return ret_freq;
1783 }
1784 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1785 
1786 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1787 {
1788 	if (unlikely(policy_is_inactive(policy)))
1789 		return 0;
1790 
1791 	return cpufreq_verify_current_freq(policy, true);
1792 }
1793 
1794 /**
1795  * cpufreq_get - get the current CPU frequency (in kHz)
1796  * @cpu: CPU number
1797  *
1798  * Get the CPU current (static) CPU frequency
1799  */
1800 unsigned int cpufreq_get(unsigned int cpu)
1801 {
1802 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1803 	unsigned int ret_freq = 0;
1804 
1805 	if (policy) {
1806 		down_read(&policy->rwsem);
1807 		if (cpufreq_driver->get)
1808 			ret_freq = __cpufreq_get(policy);
1809 		up_read(&policy->rwsem);
1810 
1811 		cpufreq_cpu_put(policy);
1812 	}
1813 
1814 	return ret_freq;
1815 }
1816 EXPORT_SYMBOL(cpufreq_get);
1817 
1818 static struct subsys_interface cpufreq_interface = {
1819 	.name		= "cpufreq",
1820 	.subsys		= &cpu_subsys,
1821 	.add_dev	= cpufreq_add_dev,
1822 	.remove_dev	= cpufreq_remove_dev,
1823 };
1824 
1825 /*
1826  * In case platform wants some specific frequency to be configured
1827  * during suspend..
1828  */
1829 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1830 {
1831 	int ret;
1832 
1833 	if (!policy->suspend_freq) {
1834 		pr_debug("%s: suspend_freq not defined\n", __func__);
1835 		return 0;
1836 	}
1837 
1838 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1839 			policy->suspend_freq);
1840 
1841 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1842 			CPUFREQ_RELATION_H);
1843 	if (ret)
1844 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1845 				__func__, policy->suspend_freq, ret);
1846 
1847 	return ret;
1848 }
1849 EXPORT_SYMBOL(cpufreq_generic_suspend);
1850 
1851 /**
1852  * cpufreq_suspend() - Suspend CPUFreq governors.
1853  *
1854  * Called during system wide Suspend/Hibernate cycles for suspending governors
1855  * as some platforms can't change frequency after this point in suspend cycle.
1856  * Because some of the devices (like: i2c, regulators, etc) they use for
1857  * changing frequency are suspended quickly after this point.
1858  */
1859 void cpufreq_suspend(void)
1860 {
1861 	struct cpufreq_policy *policy;
1862 
1863 	if (!cpufreq_driver)
1864 		return;
1865 
1866 	if (!has_target() && !cpufreq_driver->suspend)
1867 		goto suspend;
1868 
1869 	pr_debug("%s: Suspending Governors\n", __func__);
1870 
1871 	for_each_active_policy(policy) {
1872 		if (has_target()) {
1873 			down_write(&policy->rwsem);
1874 			cpufreq_stop_governor(policy);
1875 			up_write(&policy->rwsem);
1876 		}
1877 
1878 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1879 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1880 				cpufreq_driver->name);
1881 	}
1882 
1883 suspend:
1884 	cpufreq_suspended = true;
1885 }
1886 
1887 /**
1888  * cpufreq_resume() - Resume CPUFreq governors.
1889  *
1890  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1891  * are suspended with cpufreq_suspend().
1892  */
1893 void cpufreq_resume(void)
1894 {
1895 	struct cpufreq_policy *policy;
1896 	int ret;
1897 
1898 	if (!cpufreq_driver)
1899 		return;
1900 
1901 	if (unlikely(!cpufreq_suspended))
1902 		return;
1903 
1904 	cpufreq_suspended = false;
1905 
1906 	if (!has_target() && !cpufreq_driver->resume)
1907 		return;
1908 
1909 	pr_debug("%s: Resuming Governors\n", __func__);
1910 
1911 	for_each_active_policy(policy) {
1912 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1913 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1914 				policy);
1915 		} else if (has_target()) {
1916 			down_write(&policy->rwsem);
1917 			ret = cpufreq_start_governor(policy);
1918 			up_write(&policy->rwsem);
1919 
1920 			if (ret)
1921 				pr_err("%s: Failed to start governor for policy: %p\n",
1922 				       __func__, policy);
1923 		}
1924 	}
1925 }
1926 
1927 /**
1928  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1929  * @flags: Flags to test against the current cpufreq driver's flags.
1930  *
1931  * Assumes that the driver is there, so callers must ensure that this is the
1932  * case.
1933  */
1934 bool cpufreq_driver_test_flags(u16 flags)
1935 {
1936 	return !!(cpufreq_driver->flags & flags);
1937 }
1938 
1939 /**
1940  * cpufreq_get_current_driver - Return the current driver's name.
1941  *
1942  * Return the name string of the currently registered cpufreq driver or NULL if
1943  * none.
1944  */
1945 const char *cpufreq_get_current_driver(void)
1946 {
1947 	if (cpufreq_driver)
1948 		return cpufreq_driver->name;
1949 
1950 	return NULL;
1951 }
1952 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1953 
1954 /**
1955  * cpufreq_get_driver_data - Return current driver data.
1956  *
1957  * Return the private data of the currently registered cpufreq driver, or NULL
1958  * if no cpufreq driver has been registered.
1959  */
1960 void *cpufreq_get_driver_data(void)
1961 {
1962 	if (cpufreq_driver)
1963 		return cpufreq_driver->driver_data;
1964 
1965 	return NULL;
1966 }
1967 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1968 
1969 /*********************************************************************
1970  *                     NOTIFIER LISTS INTERFACE                      *
1971  *********************************************************************/
1972 
1973 /**
1974  * cpufreq_register_notifier - Register a notifier with cpufreq.
1975  * @nb: notifier function to register.
1976  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1977  *
1978  * Add a notifier to one of two lists: either a list of notifiers that run on
1979  * clock rate changes (once before and once after every transition), or a list
1980  * of notifiers that ron on cpufreq policy changes.
1981  *
1982  * This function may sleep and it has the same return values as
1983  * blocking_notifier_chain_register().
1984  */
1985 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1986 {
1987 	int ret;
1988 
1989 	if (cpufreq_disabled())
1990 		return -EINVAL;
1991 
1992 	switch (list) {
1993 	case CPUFREQ_TRANSITION_NOTIFIER:
1994 		mutex_lock(&cpufreq_fast_switch_lock);
1995 
1996 		if (cpufreq_fast_switch_count > 0) {
1997 			mutex_unlock(&cpufreq_fast_switch_lock);
1998 			return -EBUSY;
1999 		}
2000 		ret = srcu_notifier_chain_register(
2001 				&cpufreq_transition_notifier_list, nb);
2002 		if (!ret)
2003 			cpufreq_fast_switch_count--;
2004 
2005 		mutex_unlock(&cpufreq_fast_switch_lock);
2006 		break;
2007 	case CPUFREQ_POLICY_NOTIFIER:
2008 		ret = blocking_notifier_chain_register(
2009 				&cpufreq_policy_notifier_list, nb);
2010 		break;
2011 	default:
2012 		ret = -EINVAL;
2013 	}
2014 
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL(cpufreq_register_notifier);
2018 
2019 /**
2020  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2021  * @nb: notifier block to be unregistered.
2022  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2023  *
2024  * Remove a notifier from one of the cpufreq notifier lists.
2025  *
2026  * This function may sleep and it has the same return values as
2027  * blocking_notifier_chain_unregister().
2028  */
2029 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2030 {
2031 	int ret;
2032 
2033 	if (cpufreq_disabled())
2034 		return -EINVAL;
2035 
2036 	switch (list) {
2037 	case CPUFREQ_TRANSITION_NOTIFIER:
2038 		mutex_lock(&cpufreq_fast_switch_lock);
2039 
2040 		ret = srcu_notifier_chain_unregister(
2041 				&cpufreq_transition_notifier_list, nb);
2042 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2043 			cpufreq_fast_switch_count++;
2044 
2045 		mutex_unlock(&cpufreq_fast_switch_lock);
2046 		break;
2047 	case CPUFREQ_POLICY_NOTIFIER:
2048 		ret = blocking_notifier_chain_unregister(
2049 				&cpufreq_policy_notifier_list, nb);
2050 		break;
2051 	default:
2052 		ret = -EINVAL;
2053 	}
2054 
2055 	return ret;
2056 }
2057 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2058 
2059 
2060 /*********************************************************************
2061  *                              GOVERNORS                            *
2062  *********************************************************************/
2063 
2064 /**
2065  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2066  * @policy: cpufreq policy to switch the frequency for.
2067  * @target_freq: New frequency to set (may be approximate).
2068  *
2069  * Carry out a fast frequency switch without sleeping.
2070  *
2071  * The driver's ->fast_switch() callback invoked by this function must be
2072  * suitable for being called from within RCU-sched read-side critical sections
2073  * and it is expected to select the minimum available frequency greater than or
2074  * equal to @target_freq (CPUFREQ_RELATION_L).
2075  *
2076  * This function must not be called if policy->fast_switch_enabled is unset.
2077  *
2078  * Governors calling this function must guarantee that it will never be invoked
2079  * twice in parallel for the same policy and that it will never be called in
2080  * parallel with either ->target() or ->target_index() for the same policy.
2081  *
2082  * Returns the actual frequency set for the CPU.
2083  *
2084  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2085  * error condition, the hardware configuration must be preserved.
2086  */
2087 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2088 					unsigned int target_freq)
2089 {
2090 	unsigned int freq;
2091 	int cpu;
2092 
2093 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2094 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2095 
2096 	if (!freq)
2097 		return 0;
2098 
2099 	policy->cur = freq;
2100 	arch_set_freq_scale(policy->related_cpus, freq,
2101 			    policy->cpuinfo.max_freq);
2102 	cpufreq_stats_record_transition(policy, freq);
2103 
2104 	if (trace_cpu_frequency_enabled()) {
2105 		for_each_cpu(cpu, policy->cpus)
2106 			trace_cpu_frequency(freq, cpu);
2107 	}
2108 
2109 	return freq;
2110 }
2111 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2112 
2113 /**
2114  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2115  * @cpu: Target CPU.
2116  * @min_perf: Minimum (required) performance level (units of @capacity).
2117  * @target_perf: Target (desired) performance level (units of @capacity).
2118  * @capacity: Capacity of the target CPU.
2119  *
2120  * Carry out a fast performance level switch of @cpu without sleeping.
2121  *
2122  * The driver's ->adjust_perf() callback invoked by this function must be
2123  * suitable for being called from within RCU-sched read-side critical sections
2124  * and it is expected to select a suitable performance level equal to or above
2125  * @min_perf and preferably equal to or below @target_perf.
2126  *
2127  * This function must not be called if policy->fast_switch_enabled is unset.
2128  *
2129  * Governors calling this function must guarantee that it will never be invoked
2130  * twice in parallel for the same CPU and that it will never be called in
2131  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2132  * the same CPU.
2133  */
2134 void cpufreq_driver_adjust_perf(unsigned int cpu,
2135 				 unsigned long min_perf,
2136 				 unsigned long target_perf,
2137 				 unsigned long capacity)
2138 {
2139 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2140 }
2141 
2142 /**
2143  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2144  *
2145  * Return 'true' if the ->adjust_perf callback is present for the
2146  * current driver or 'false' otherwise.
2147  */
2148 bool cpufreq_driver_has_adjust_perf(void)
2149 {
2150 	return !!cpufreq_driver->adjust_perf;
2151 }
2152 
2153 /* Must set freqs->new to intermediate frequency */
2154 static int __target_intermediate(struct cpufreq_policy *policy,
2155 				 struct cpufreq_freqs *freqs, int index)
2156 {
2157 	int ret;
2158 
2159 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2160 
2161 	/* We don't need to switch to intermediate freq */
2162 	if (!freqs->new)
2163 		return 0;
2164 
2165 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2166 		 __func__, policy->cpu, freqs->old, freqs->new);
2167 
2168 	cpufreq_freq_transition_begin(policy, freqs);
2169 	ret = cpufreq_driver->target_intermediate(policy, index);
2170 	cpufreq_freq_transition_end(policy, freqs, ret);
2171 
2172 	if (ret)
2173 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2174 		       __func__, ret);
2175 
2176 	return ret;
2177 }
2178 
2179 static int __target_index(struct cpufreq_policy *policy, int index)
2180 {
2181 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2182 	unsigned int restore_freq, intermediate_freq = 0;
2183 	unsigned int newfreq = policy->freq_table[index].frequency;
2184 	int retval = -EINVAL;
2185 	bool notify;
2186 
2187 	if (newfreq == policy->cur)
2188 		return 0;
2189 
2190 	/* Save last value to restore later on errors */
2191 	restore_freq = policy->cur;
2192 
2193 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2194 	if (notify) {
2195 		/* Handle switching to intermediate frequency */
2196 		if (cpufreq_driver->get_intermediate) {
2197 			retval = __target_intermediate(policy, &freqs, index);
2198 			if (retval)
2199 				return retval;
2200 
2201 			intermediate_freq = freqs.new;
2202 			/* Set old freq to intermediate */
2203 			if (intermediate_freq)
2204 				freqs.old = freqs.new;
2205 		}
2206 
2207 		freqs.new = newfreq;
2208 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2209 			 __func__, policy->cpu, freqs.old, freqs.new);
2210 
2211 		cpufreq_freq_transition_begin(policy, &freqs);
2212 	}
2213 
2214 	retval = cpufreq_driver->target_index(policy, index);
2215 	if (retval)
2216 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2217 		       retval);
2218 
2219 	if (notify) {
2220 		cpufreq_freq_transition_end(policy, &freqs, retval);
2221 
2222 		/*
2223 		 * Failed after setting to intermediate freq? Driver should have
2224 		 * reverted back to initial frequency and so should we. Check
2225 		 * here for intermediate_freq instead of get_intermediate, in
2226 		 * case we haven't switched to intermediate freq at all.
2227 		 */
2228 		if (unlikely(retval && intermediate_freq)) {
2229 			freqs.old = intermediate_freq;
2230 			freqs.new = restore_freq;
2231 			cpufreq_freq_transition_begin(policy, &freqs);
2232 			cpufreq_freq_transition_end(policy, &freqs, 0);
2233 		}
2234 	}
2235 
2236 	return retval;
2237 }
2238 
2239 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2240 			    unsigned int target_freq,
2241 			    unsigned int relation)
2242 {
2243 	unsigned int old_target_freq = target_freq;
2244 
2245 	if (cpufreq_disabled())
2246 		return -ENODEV;
2247 
2248 	target_freq = __resolve_freq(policy, target_freq, relation);
2249 
2250 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2251 		 policy->cpu, target_freq, relation, old_target_freq);
2252 
2253 	/*
2254 	 * This might look like a redundant call as we are checking it again
2255 	 * after finding index. But it is left intentionally for cases where
2256 	 * exactly same freq is called again and so we can save on few function
2257 	 * calls.
2258 	 */
2259 	if (target_freq == policy->cur &&
2260 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2261 		return 0;
2262 
2263 	if (cpufreq_driver->target) {
2264 		/*
2265 		 * If the driver hasn't setup a single inefficient frequency,
2266 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2267 		 */
2268 		if (!policy->efficiencies_available)
2269 			relation &= ~CPUFREQ_RELATION_E;
2270 
2271 		return cpufreq_driver->target(policy, target_freq, relation);
2272 	}
2273 
2274 	if (!cpufreq_driver->target_index)
2275 		return -EINVAL;
2276 
2277 	return __target_index(policy, policy->cached_resolved_idx);
2278 }
2279 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2280 
2281 int cpufreq_driver_target(struct cpufreq_policy *policy,
2282 			  unsigned int target_freq,
2283 			  unsigned int relation)
2284 {
2285 	int ret;
2286 
2287 	down_write(&policy->rwsem);
2288 
2289 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2290 
2291 	up_write(&policy->rwsem);
2292 
2293 	return ret;
2294 }
2295 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2296 
2297 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2298 {
2299 	return NULL;
2300 }
2301 
2302 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2303 {
2304 	int ret;
2305 
2306 	/* Don't start any governor operations if we are entering suspend */
2307 	if (cpufreq_suspended)
2308 		return 0;
2309 	/*
2310 	 * Governor might not be initiated here if ACPI _PPC changed
2311 	 * notification happened, so check it.
2312 	 */
2313 	if (!policy->governor)
2314 		return -EINVAL;
2315 
2316 	/* Platform doesn't want dynamic frequency switching ? */
2317 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2318 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2319 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2320 
2321 		if (gov) {
2322 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2323 				policy->governor->name, gov->name);
2324 			policy->governor = gov;
2325 		} else {
2326 			return -EINVAL;
2327 		}
2328 	}
2329 
2330 	if (!try_module_get(policy->governor->owner))
2331 		return -EINVAL;
2332 
2333 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2334 
2335 	if (policy->governor->init) {
2336 		ret = policy->governor->init(policy);
2337 		if (ret) {
2338 			module_put(policy->governor->owner);
2339 			return ret;
2340 		}
2341 	}
2342 
2343 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2344 
2345 	return 0;
2346 }
2347 
2348 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2349 {
2350 	if (cpufreq_suspended || !policy->governor)
2351 		return;
2352 
2353 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2354 
2355 	if (policy->governor->exit)
2356 		policy->governor->exit(policy);
2357 
2358 	module_put(policy->governor->owner);
2359 }
2360 
2361 int cpufreq_start_governor(struct cpufreq_policy *policy)
2362 {
2363 	int ret;
2364 
2365 	if (cpufreq_suspended)
2366 		return 0;
2367 
2368 	if (!policy->governor)
2369 		return -EINVAL;
2370 
2371 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2372 
2373 	if (cpufreq_driver->get)
2374 		cpufreq_verify_current_freq(policy, false);
2375 
2376 	if (policy->governor->start) {
2377 		ret = policy->governor->start(policy);
2378 		if (ret)
2379 			return ret;
2380 	}
2381 
2382 	if (policy->governor->limits)
2383 		policy->governor->limits(policy);
2384 
2385 	return 0;
2386 }
2387 
2388 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2389 {
2390 	if (cpufreq_suspended || !policy->governor)
2391 		return;
2392 
2393 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2394 
2395 	if (policy->governor->stop)
2396 		policy->governor->stop(policy);
2397 }
2398 
2399 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2400 {
2401 	if (cpufreq_suspended || !policy->governor)
2402 		return;
2403 
2404 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2405 
2406 	if (policy->governor->limits)
2407 		policy->governor->limits(policy);
2408 }
2409 
2410 int cpufreq_register_governor(struct cpufreq_governor *governor)
2411 {
2412 	int err;
2413 
2414 	if (!governor)
2415 		return -EINVAL;
2416 
2417 	if (cpufreq_disabled())
2418 		return -ENODEV;
2419 
2420 	mutex_lock(&cpufreq_governor_mutex);
2421 
2422 	err = -EBUSY;
2423 	if (!find_governor(governor->name)) {
2424 		err = 0;
2425 		list_add(&governor->governor_list, &cpufreq_governor_list);
2426 	}
2427 
2428 	mutex_unlock(&cpufreq_governor_mutex);
2429 	return err;
2430 }
2431 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2432 
2433 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2434 {
2435 	struct cpufreq_policy *policy;
2436 	unsigned long flags;
2437 
2438 	if (!governor)
2439 		return;
2440 
2441 	if (cpufreq_disabled())
2442 		return;
2443 
2444 	/* clear last_governor for all inactive policies */
2445 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2446 	for_each_inactive_policy(policy) {
2447 		if (!strcmp(policy->last_governor, governor->name)) {
2448 			policy->governor = NULL;
2449 			strcpy(policy->last_governor, "\0");
2450 		}
2451 	}
2452 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2453 
2454 	mutex_lock(&cpufreq_governor_mutex);
2455 	list_del(&governor->governor_list);
2456 	mutex_unlock(&cpufreq_governor_mutex);
2457 }
2458 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2459 
2460 
2461 /*********************************************************************
2462  *                          POLICY INTERFACE                         *
2463  *********************************************************************/
2464 
2465 /**
2466  * cpufreq_get_policy - get the current cpufreq_policy
2467  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2468  *	is written
2469  * @cpu: CPU to find the policy for
2470  *
2471  * Reads the current cpufreq policy.
2472  */
2473 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2474 {
2475 	struct cpufreq_policy *cpu_policy;
2476 	if (!policy)
2477 		return -EINVAL;
2478 
2479 	cpu_policy = cpufreq_cpu_get(cpu);
2480 	if (!cpu_policy)
2481 		return -EINVAL;
2482 
2483 	memcpy(policy, cpu_policy, sizeof(*policy));
2484 
2485 	cpufreq_cpu_put(cpu_policy);
2486 	return 0;
2487 }
2488 EXPORT_SYMBOL(cpufreq_get_policy);
2489 
2490 /**
2491  * cpufreq_set_policy - Modify cpufreq policy parameters.
2492  * @policy: Policy object to modify.
2493  * @new_gov: Policy governor pointer.
2494  * @new_pol: Policy value (for drivers with built-in governors).
2495  *
2496  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2497  * limits to be set for the policy, update @policy with the verified limits
2498  * values and either invoke the driver's ->setpolicy() callback (if present) or
2499  * carry out a governor update for @policy.  That is, run the current governor's
2500  * ->limits() callback (if @new_gov points to the same object as the one in
2501  * @policy) or replace the governor for @policy with @new_gov.
2502  *
2503  * The cpuinfo part of @policy is not updated by this function.
2504  */
2505 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2506 			      struct cpufreq_governor *new_gov,
2507 			      unsigned int new_pol)
2508 {
2509 	struct cpufreq_policy_data new_data;
2510 	struct cpufreq_governor *old_gov;
2511 	int ret;
2512 
2513 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2514 	new_data.freq_table = policy->freq_table;
2515 	new_data.cpu = policy->cpu;
2516 	/*
2517 	 * PM QoS framework collects all the requests from users and provide us
2518 	 * the final aggregated value here.
2519 	 */
2520 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2521 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2522 
2523 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2524 		 new_data.cpu, new_data.min, new_data.max);
2525 
2526 	/*
2527 	 * Verify that the CPU speed can be set within these limits and make sure
2528 	 * that min <= max.
2529 	 */
2530 	ret = cpufreq_driver->verify(&new_data);
2531 	if (ret)
2532 		return ret;
2533 
2534 	/*
2535 	 * Resolve policy min/max to available frequencies. It ensures
2536 	 * no frequency resolution will neither overshoot the requested maximum
2537 	 * nor undershoot the requested minimum.
2538 	 */
2539 	policy->min = new_data.min;
2540 	policy->max = new_data.max;
2541 	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2542 	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2543 	trace_cpu_frequency_limits(policy);
2544 
2545 	policy->cached_target_freq = UINT_MAX;
2546 
2547 	pr_debug("new min and max freqs are %u - %u kHz\n",
2548 		 policy->min, policy->max);
2549 
2550 	if (cpufreq_driver->setpolicy) {
2551 		policy->policy = new_pol;
2552 		pr_debug("setting range\n");
2553 		return cpufreq_driver->setpolicy(policy);
2554 	}
2555 
2556 	if (new_gov == policy->governor) {
2557 		pr_debug("governor limits update\n");
2558 		cpufreq_governor_limits(policy);
2559 		return 0;
2560 	}
2561 
2562 	pr_debug("governor switch\n");
2563 
2564 	/* save old, working values */
2565 	old_gov = policy->governor;
2566 	/* end old governor */
2567 	if (old_gov) {
2568 		cpufreq_stop_governor(policy);
2569 		cpufreq_exit_governor(policy);
2570 	}
2571 
2572 	/* start new governor */
2573 	policy->governor = new_gov;
2574 	ret = cpufreq_init_governor(policy);
2575 	if (!ret) {
2576 		ret = cpufreq_start_governor(policy);
2577 		if (!ret) {
2578 			pr_debug("governor change\n");
2579 			sched_cpufreq_governor_change(policy, old_gov);
2580 			return 0;
2581 		}
2582 		cpufreq_exit_governor(policy);
2583 	}
2584 
2585 	/* new governor failed, so re-start old one */
2586 	pr_debug("starting governor %s failed\n", policy->governor->name);
2587 	if (old_gov) {
2588 		policy->governor = old_gov;
2589 		if (cpufreq_init_governor(policy))
2590 			policy->governor = NULL;
2591 		else
2592 			cpufreq_start_governor(policy);
2593 	}
2594 
2595 	return ret;
2596 }
2597 
2598 /**
2599  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2600  * @cpu: CPU to re-evaluate the policy for.
2601  *
2602  * Update the current frequency for the cpufreq policy of @cpu and use
2603  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2604  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2605  * for the policy in question, among other things.
2606  */
2607 void cpufreq_update_policy(unsigned int cpu)
2608 {
2609 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2610 
2611 	if (!policy)
2612 		return;
2613 
2614 	/*
2615 	 * BIOS might change freq behind our back
2616 	 * -> ask driver for current freq and notify governors about a change
2617 	 */
2618 	if (cpufreq_driver->get && has_target() &&
2619 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2620 		goto unlock;
2621 
2622 	refresh_frequency_limits(policy);
2623 
2624 unlock:
2625 	cpufreq_cpu_release(policy);
2626 }
2627 EXPORT_SYMBOL(cpufreq_update_policy);
2628 
2629 /**
2630  * cpufreq_update_limits - Update policy limits for a given CPU.
2631  * @cpu: CPU to update the policy limits for.
2632  *
2633  * Invoke the driver's ->update_limits callback if present or call
2634  * cpufreq_update_policy() for @cpu.
2635  */
2636 void cpufreq_update_limits(unsigned int cpu)
2637 {
2638 	if (cpufreq_driver->update_limits)
2639 		cpufreq_driver->update_limits(cpu);
2640 	else
2641 		cpufreq_update_policy(cpu);
2642 }
2643 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2644 
2645 /*********************************************************************
2646  *               BOOST						     *
2647  *********************************************************************/
2648 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2649 {
2650 	int ret;
2651 
2652 	if (!policy->freq_table)
2653 		return -ENXIO;
2654 
2655 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2656 	if (ret) {
2657 		pr_err("%s: Policy frequency update failed\n", __func__);
2658 		return ret;
2659 	}
2660 
2661 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2662 	if (ret < 0)
2663 		return ret;
2664 
2665 	return 0;
2666 }
2667 
2668 int cpufreq_boost_trigger_state(int state)
2669 {
2670 	struct cpufreq_policy *policy;
2671 	unsigned long flags;
2672 	int ret = 0;
2673 
2674 	if (cpufreq_driver->boost_enabled == state)
2675 		return 0;
2676 
2677 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2678 	cpufreq_driver->boost_enabled = state;
2679 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2680 
2681 	cpus_read_lock();
2682 	for_each_active_policy(policy) {
2683 		ret = cpufreq_driver->set_boost(policy, state);
2684 		if (ret)
2685 			goto err_reset_state;
2686 	}
2687 	cpus_read_unlock();
2688 
2689 	return 0;
2690 
2691 err_reset_state:
2692 	cpus_read_unlock();
2693 
2694 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2695 	cpufreq_driver->boost_enabled = !state;
2696 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2697 
2698 	pr_err("%s: Cannot %s BOOST\n",
2699 	       __func__, state ? "enable" : "disable");
2700 
2701 	return ret;
2702 }
2703 
2704 static bool cpufreq_boost_supported(void)
2705 {
2706 	return cpufreq_driver->set_boost;
2707 }
2708 
2709 static int create_boost_sysfs_file(void)
2710 {
2711 	int ret;
2712 
2713 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2714 	if (ret)
2715 		pr_err("%s: cannot register global BOOST sysfs file\n",
2716 		       __func__);
2717 
2718 	return ret;
2719 }
2720 
2721 static void remove_boost_sysfs_file(void)
2722 {
2723 	if (cpufreq_boost_supported())
2724 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2725 }
2726 
2727 int cpufreq_enable_boost_support(void)
2728 {
2729 	if (!cpufreq_driver)
2730 		return -EINVAL;
2731 
2732 	if (cpufreq_boost_supported())
2733 		return 0;
2734 
2735 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2736 
2737 	/* This will get removed on driver unregister */
2738 	return create_boost_sysfs_file();
2739 }
2740 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2741 
2742 int cpufreq_boost_enabled(void)
2743 {
2744 	return cpufreq_driver->boost_enabled;
2745 }
2746 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2747 
2748 /*********************************************************************
2749  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2750  *********************************************************************/
2751 static enum cpuhp_state hp_online;
2752 
2753 static int cpuhp_cpufreq_online(unsigned int cpu)
2754 {
2755 	cpufreq_online(cpu);
2756 
2757 	return 0;
2758 }
2759 
2760 static int cpuhp_cpufreq_offline(unsigned int cpu)
2761 {
2762 	cpufreq_offline(cpu);
2763 
2764 	return 0;
2765 }
2766 
2767 /**
2768  * cpufreq_register_driver - register a CPU Frequency driver
2769  * @driver_data: A struct cpufreq_driver containing the values#
2770  * submitted by the CPU Frequency driver.
2771  *
2772  * Registers a CPU Frequency driver to this core code. This code
2773  * returns zero on success, -EEXIST when another driver got here first
2774  * (and isn't unregistered in the meantime).
2775  *
2776  */
2777 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2778 {
2779 	unsigned long flags;
2780 	int ret;
2781 
2782 	if (cpufreq_disabled())
2783 		return -ENODEV;
2784 
2785 	/*
2786 	 * The cpufreq core depends heavily on the availability of device
2787 	 * structure, make sure they are available before proceeding further.
2788 	 */
2789 	if (!get_cpu_device(0))
2790 		return -EPROBE_DEFER;
2791 
2792 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2793 	    !(driver_data->setpolicy || driver_data->target_index ||
2794 		    driver_data->target) ||
2795 	     (driver_data->setpolicy && (driver_data->target_index ||
2796 		    driver_data->target)) ||
2797 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2798 	     (!driver_data->online != !driver_data->offline))
2799 		return -EINVAL;
2800 
2801 	pr_debug("trying to register driver %s\n", driver_data->name);
2802 
2803 	/* Protect against concurrent CPU online/offline. */
2804 	cpus_read_lock();
2805 
2806 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2807 	if (cpufreq_driver) {
2808 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2809 		ret = -EEXIST;
2810 		goto out;
2811 	}
2812 	cpufreq_driver = driver_data;
2813 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2814 
2815 	/*
2816 	 * Mark support for the scheduler's frequency invariance engine for
2817 	 * drivers that implement target(), target_index() or fast_switch().
2818 	 */
2819 	if (!cpufreq_driver->setpolicy) {
2820 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2821 		pr_debug("supports frequency invariance");
2822 	}
2823 
2824 	if (driver_data->setpolicy)
2825 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2826 
2827 	if (cpufreq_boost_supported()) {
2828 		ret = create_boost_sysfs_file();
2829 		if (ret)
2830 			goto err_null_driver;
2831 	}
2832 
2833 	ret = subsys_interface_register(&cpufreq_interface);
2834 	if (ret)
2835 		goto err_boost_unreg;
2836 
2837 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2838 		/* if all ->init() calls failed, unregister */
2839 		ret = -ENODEV;
2840 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2841 			 driver_data->name);
2842 		goto err_if_unreg;
2843 	}
2844 
2845 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2846 						   "cpufreq:online",
2847 						   cpuhp_cpufreq_online,
2848 						   cpuhp_cpufreq_offline);
2849 	if (ret < 0)
2850 		goto err_if_unreg;
2851 	hp_online = ret;
2852 	ret = 0;
2853 
2854 	pr_debug("driver %s up and running\n", driver_data->name);
2855 	goto out;
2856 
2857 err_if_unreg:
2858 	subsys_interface_unregister(&cpufreq_interface);
2859 err_boost_unreg:
2860 	remove_boost_sysfs_file();
2861 err_null_driver:
2862 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2863 	cpufreq_driver = NULL;
2864 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2865 out:
2866 	cpus_read_unlock();
2867 	return ret;
2868 }
2869 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2870 
2871 /*
2872  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2873  *
2874  * Unregister the current CPUFreq driver. Only call this if you have
2875  * the right to do so, i.e. if you have succeeded in initialising before!
2876  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2877  * currently not initialised.
2878  */
2879 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2880 {
2881 	unsigned long flags;
2882 
2883 	if (!cpufreq_driver || (driver != cpufreq_driver))
2884 		return -EINVAL;
2885 
2886 	pr_debug("unregistering driver %s\n", driver->name);
2887 
2888 	/* Protect against concurrent cpu hotplug */
2889 	cpus_read_lock();
2890 	subsys_interface_unregister(&cpufreq_interface);
2891 	remove_boost_sysfs_file();
2892 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2893 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2894 
2895 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2896 
2897 	cpufreq_driver = NULL;
2898 
2899 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2900 	cpus_read_unlock();
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2905 
2906 static int __init cpufreq_core_init(void)
2907 {
2908 	struct cpufreq_governor *gov = cpufreq_default_governor();
2909 
2910 	if (cpufreq_disabled())
2911 		return -ENODEV;
2912 
2913 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2914 	BUG_ON(!cpufreq_global_kobject);
2915 
2916 	if (!strlen(default_governor))
2917 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2918 
2919 	return 0;
2920 }
2921 module_param(off, int, 0444);
2922 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2923 core_initcall(cpufreq_core_init);
2924