xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision bf070bb0)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)			 \
43 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 		if ((__active) == !policy_is_inactive(__policy))
45 
46 #define for_each_active_policy(__policy)		\
47 	for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)		\
49 	for_each_suitable_policy(__policy, false)
50 
51 #define for_each_policy(__policy)			\
52 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53 
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)				\
57 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58 
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93 
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 	init_cpufreq_transition_notifier_list_called = true;
99 	return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102 
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 	return off;
107 }
108 void disable_cpufreq(void)
109 {
110 	off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113 
114 bool have_governor_per_policy(void)
115 {
116 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119 
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 	if (have_governor_per_policy())
123 		return &policy->kobj;
124 	else
125 		return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128 
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 	u64 idle_time;
132 	u64 cur_wall_time;
133 	u64 busy_time;
134 
135 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
136 
137 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143 
144 	idle_time = cur_wall_time - busy_time;
145 	if (wall)
146 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
147 
148 	return div_u64(idle_time, NSEC_PER_USEC);
149 }
150 
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154 
155 	if (idle_time == -1ULL)
156 		return get_cpu_idle_time_jiffy(cpu, wall);
157 	else if (!io_busy)
158 		idle_time += get_cpu_iowait_time_us(cpu, wall);
159 
160 	return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163 
164 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
165 		unsigned long max_freq)
166 {
167 }
168 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
169 
170 /*
171  * This is a generic cpufreq init() routine which can be used by cpufreq
172  * drivers of SMP systems. It will do following:
173  * - validate & show freq table passed
174  * - set policies transition latency
175  * - policy->cpus with all possible CPUs
176  */
177 int cpufreq_generic_init(struct cpufreq_policy *policy,
178 		struct cpufreq_frequency_table *table,
179 		unsigned int transition_latency)
180 {
181 	int ret;
182 
183 	ret = cpufreq_table_validate_and_show(policy, table);
184 	if (ret) {
185 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
186 		return ret;
187 	}
188 
189 	policy->cpuinfo.transition_latency = transition_latency;
190 
191 	/*
192 	 * The driver only supports the SMP configuration where all processors
193 	 * share the clock and voltage and clock.
194 	 */
195 	cpumask_setall(policy->cpus);
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
200 
201 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
202 {
203 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
204 
205 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
206 }
207 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
208 
209 unsigned int cpufreq_generic_get(unsigned int cpu)
210 {
211 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
212 
213 	if (!policy || IS_ERR(policy->clk)) {
214 		pr_err("%s: No %s associated to cpu: %d\n",
215 		       __func__, policy ? "clk" : "policy", cpu);
216 		return 0;
217 	}
218 
219 	return clk_get_rate(policy->clk) / 1000;
220 }
221 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
222 
223 /**
224  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
225  *
226  * @cpu: cpu to find policy for.
227  *
228  * This returns policy for 'cpu', returns NULL if it doesn't exist.
229  * It also increments the kobject reference count to mark it busy and so would
230  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
231  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
232  * freed as that depends on the kobj count.
233  *
234  * Return: A valid policy on success, otherwise NULL on failure.
235  */
236 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
237 {
238 	struct cpufreq_policy *policy = NULL;
239 	unsigned long flags;
240 
241 	if (WARN_ON(cpu >= nr_cpu_ids))
242 		return NULL;
243 
244 	/* get the cpufreq driver */
245 	read_lock_irqsave(&cpufreq_driver_lock, flags);
246 
247 	if (cpufreq_driver) {
248 		/* get the CPU */
249 		policy = cpufreq_cpu_get_raw(cpu);
250 		if (policy)
251 			kobject_get(&policy->kobj);
252 	}
253 
254 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
255 
256 	return policy;
257 }
258 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
259 
260 /**
261  * cpufreq_cpu_put: Decrements the usage count of a policy
262  *
263  * @policy: policy earlier returned by cpufreq_cpu_get().
264  *
265  * This decrements the kobject reference count incremented earlier by calling
266  * cpufreq_cpu_get().
267  */
268 void cpufreq_cpu_put(struct cpufreq_policy *policy)
269 {
270 	kobject_put(&policy->kobj);
271 }
272 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
273 
274 /*********************************************************************
275  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
276  *********************************************************************/
277 
278 /**
279  * adjust_jiffies - adjust the system "loops_per_jiffy"
280  *
281  * This function alters the system "loops_per_jiffy" for the clock
282  * speed change. Note that loops_per_jiffy cannot be updated on SMP
283  * systems as each CPU might be scaled differently. So, use the arch
284  * per-CPU loops_per_jiffy value wherever possible.
285  */
286 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
287 {
288 #ifndef CONFIG_SMP
289 	static unsigned long l_p_j_ref;
290 	static unsigned int l_p_j_ref_freq;
291 
292 	if (ci->flags & CPUFREQ_CONST_LOOPS)
293 		return;
294 
295 	if (!l_p_j_ref_freq) {
296 		l_p_j_ref = loops_per_jiffy;
297 		l_p_j_ref_freq = ci->old;
298 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
299 			 l_p_j_ref, l_p_j_ref_freq);
300 	}
301 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
302 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
303 								ci->new);
304 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
305 			 loops_per_jiffy, ci->new);
306 	}
307 #endif
308 }
309 
310 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
311 		struct cpufreq_freqs *freqs, unsigned int state)
312 {
313 	BUG_ON(irqs_disabled());
314 
315 	if (cpufreq_disabled())
316 		return;
317 
318 	freqs->flags = cpufreq_driver->flags;
319 	pr_debug("notification %u of frequency transition to %u kHz\n",
320 		 state, freqs->new);
321 
322 	switch (state) {
323 
324 	case CPUFREQ_PRECHANGE:
325 		/* detect if the driver reported a value as "old frequency"
326 		 * which is not equal to what the cpufreq core thinks is
327 		 * "old frequency".
328 		 */
329 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
330 			if ((policy) && (policy->cpu == freqs->cpu) &&
331 			    (policy->cur) && (policy->cur != freqs->old)) {
332 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
333 					 freqs->old, policy->cur);
334 				freqs->old = policy->cur;
335 			}
336 		}
337 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
338 				CPUFREQ_PRECHANGE, freqs);
339 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
340 		break;
341 
342 	case CPUFREQ_POSTCHANGE:
343 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
344 		pr_debug("FREQ: %lu - CPU: %lu\n",
345 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
346 		trace_cpu_frequency(freqs->new, freqs->cpu);
347 		cpufreq_stats_record_transition(policy, freqs->new);
348 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
349 				CPUFREQ_POSTCHANGE, freqs);
350 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
351 			policy->cur = freqs->new;
352 		break;
353 	}
354 }
355 
356 /**
357  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
358  * on frequency transition.
359  *
360  * This function calls the transition notifiers and the "adjust_jiffies"
361  * function. It is called twice on all CPU frequency changes that have
362  * external effects.
363  */
364 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
365 		struct cpufreq_freqs *freqs, unsigned int state)
366 {
367 	for_each_cpu(freqs->cpu, policy->cpus)
368 		__cpufreq_notify_transition(policy, freqs, state);
369 }
370 
371 /* Do post notifications when there are chances that transition has failed */
372 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
373 		struct cpufreq_freqs *freqs, int transition_failed)
374 {
375 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 	if (!transition_failed)
377 		return;
378 
379 	swap(freqs->old, freqs->new);
380 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
381 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
382 }
383 
384 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
385 		struct cpufreq_freqs *freqs)
386 {
387 
388 	/*
389 	 * Catch double invocations of _begin() which lead to self-deadlock.
390 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
391 	 * doesn't invoke _begin() on their behalf, and hence the chances of
392 	 * double invocations are very low. Moreover, there are scenarios
393 	 * where these checks can emit false-positive warnings in these
394 	 * drivers; so we avoid that by skipping them altogether.
395 	 */
396 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
397 				&& current == policy->transition_task);
398 
399 wait:
400 	wait_event(policy->transition_wait, !policy->transition_ongoing);
401 
402 	spin_lock(&policy->transition_lock);
403 
404 	if (unlikely(policy->transition_ongoing)) {
405 		spin_unlock(&policy->transition_lock);
406 		goto wait;
407 	}
408 
409 	policy->transition_ongoing = true;
410 	policy->transition_task = current;
411 
412 	spin_unlock(&policy->transition_lock);
413 
414 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
415 }
416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
417 
418 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
419 		struct cpufreq_freqs *freqs, int transition_failed)
420 {
421 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
422 		return;
423 
424 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
425 
426 	policy->transition_ongoing = false;
427 	policy->transition_task = NULL;
428 
429 	wake_up(&policy->transition_wait);
430 }
431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
432 
433 /*
434  * Fast frequency switching status count.  Positive means "enabled", negative
435  * means "disabled" and 0 means "not decided yet".
436  */
437 static int cpufreq_fast_switch_count;
438 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
439 
440 static void cpufreq_list_transition_notifiers(void)
441 {
442 	struct notifier_block *nb;
443 
444 	pr_info("Registered transition notifiers:\n");
445 
446 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
447 
448 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
449 		pr_info("%pF\n", nb->notifier_call);
450 
451 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
452 }
453 
454 /**
455  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
456  * @policy: cpufreq policy to enable fast frequency switching for.
457  *
458  * Try to enable fast frequency switching for @policy.
459  *
460  * The attempt will fail if there is at least one transition notifier registered
461  * at this point, as fast frequency switching is quite fundamentally at odds
462  * with transition notifiers.  Thus if successful, it will make registration of
463  * transition notifiers fail going forward.
464  */
465 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
466 {
467 	lockdep_assert_held(&policy->rwsem);
468 
469 	if (!policy->fast_switch_possible)
470 		return;
471 
472 	mutex_lock(&cpufreq_fast_switch_lock);
473 	if (cpufreq_fast_switch_count >= 0) {
474 		cpufreq_fast_switch_count++;
475 		policy->fast_switch_enabled = true;
476 	} else {
477 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
478 			policy->cpu);
479 		cpufreq_list_transition_notifiers();
480 	}
481 	mutex_unlock(&cpufreq_fast_switch_lock);
482 }
483 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
484 
485 /**
486  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
487  * @policy: cpufreq policy to disable fast frequency switching for.
488  */
489 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
490 {
491 	mutex_lock(&cpufreq_fast_switch_lock);
492 	if (policy->fast_switch_enabled) {
493 		policy->fast_switch_enabled = false;
494 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
495 			cpufreq_fast_switch_count--;
496 	}
497 	mutex_unlock(&cpufreq_fast_switch_lock);
498 }
499 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
500 
501 /**
502  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
503  * one.
504  * @target_freq: target frequency to resolve.
505  *
506  * The target to driver frequency mapping is cached in the policy.
507  *
508  * Return: Lowest driver-supported frequency greater than or equal to the
509  * given target_freq, subject to policy (min/max) and driver limitations.
510  */
511 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
512 					 unsigned int target_freq)
513 {
514 	target_freq = clamp_val(target_freq, policy->min, policy->max);
515 	policy->cached_target_freq = target_freq;
516 
517 	if (cpufreq_driver->target_index) {
518 		int idx;
519 
520 		idx = cpufreq_frequency_table_target(policy, target_freq,
521 						     CPUFREQ_RELATION_L);
522 		policy->cached_resolved_idx = idx;
523 		return policy->freq_table[idx].frequency;
524 	}
525 
526 	if (cpufreq_driver->resolve_freq)
527 		return cpufreq_driver->resolve_freq(policy, target_freq);
528 
529 	return target_freq;
530 }
531 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
532 
533 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
534 {
535 	unsigned int latency;
536 
537 	if (policy->transition_delay_us)
538 		return policy->transition_delay_us;
539 
540 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
541 	if (latency) {
542 		/*
543 		 * For platforms that can change the frequency very fast (< 10
544 		 * us), the above formula gives a decent transition delay. But
545 		 * for platforms where transition_latency is in milliseconds, it
546 		 * ends up giving unrealistic values.
547 		 *
548 		 * Cap the default transition delay to 10 ms, which seems to be
549 		 * a reasonable amount of time after which we should reevaluate
550 		 * the frequency.
551 		 */
552 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
553 	}
554 
555 	return LATENCY_MULTIPLIER;
556 }
557 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
558 
559 /*********************************************************************
560  *                          SYSFS INTERFACE                          *
561  *********************************************************************/
562 static ssize_t show_boost(struct kobject *kobj,
563 				 struct attribute *attr, char *buf)
564 {
565 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
566 }
567 
568 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
569 				  const char *buf, size_t count)
570 {
571 	int ret, enable;
572 
573 	ret = sscanf(buf, "%d", &enable);
574 	if (ret != 1 || enable < 0 || enable > 1)
575 		return -EINVAL;
576 
577 	if (cpufreq_boost_trigger_state(enable)) {
578 		pr_err("%s: Cannot %s BOOST!\n",
579 		       __func__, enable ? "enable" : "disable");
580 		return -EINVAL;
581 	}
582 
583 	pr_debug("%s: cpufreq BOOST %s\n",
584 		 __func__, enable ? "enabled" : "disabled");
585 
586 	return count;
587 }
588 define_one_global_rw(boost);
589 
590 static struct cpufreq_governor *find_governor(const char *str_governor)
591 {
592 	struct cpufreq_governor *t;
593 
594 	for_each_governor(t)
595 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
596 			return t;
597 
598 	return NULL;
599 }
600 
601 /**
602  * cpufreq_parse_governor - parse a governor string
603  */
604 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
605 				struct cpufreq_governor **governor)
606 {
607 	int err = -EINVAL;
608 
609 	if (cpufreq_driver->setpolicy) {
610 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
611 			*policy = CPUFREQ_POLICY_PERFORMANCE;
612 			err = 0;
613 		} else if (!strncasecmp(str_governor, "powersave",
614 						CPUFREQ_NAME_LEN)) {
615 			*policy = CPUFREQ_POLICY_POWERSAVE;
616 			err = 0;
617 		}
618 	} else {
619 		struct cpufreq_governor *t;
620 
621 		mutex_lock(&cpufreq_governor_mutex);
622 
623 		t = find_governor(str_governor);
624 
625 		if (t == NULL) {
626 			int ret;
627 
628 			mutex_unlock(&cpufreq_governor_mutex);
629 			ret = request_module("cpufreq_%s", str_governor);
630 			mutex_lock(&cpufreq_governor_mutex);
631 
632 			if (ret == 0)
633 				t = find_governor(str_governor);
634 		}
635 
636 		if (t != NULL) {
637 			*governor = t;
638 			err = 0;
639 		}
640 
641 		mutex_unlock(&cpufreq_governor_mutex);
642 	}
643 	return err;
644 }
645 
646 /**
647  * cpufreq_per_cpu_attr_read() / show_##file_name() -
648  * print out cpufreq information
649  *
650  * Write out information from cpufreq_driver->policy[cpu]; object must be
651  * "unsigned int".
652  */
653 
654 #define show_one(file_name, object)			\
655 static ssize_t show_##file_name				\
656 (struct cpufreq_policy *policy, char *buf)		\
657 {							\
658 	return sprintf(buf, "%u\n", policy->object);	\
659 }
660 
661 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
662 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
663 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
664 show_one(scaling_min_freq, min);
665 show_one(scaling_max_freq, max);
666 
667 __weak unsigned int arch_freq_get_on_cpu(int cpu)
668 {
669 	return 0;
670 }
671 
672 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
673 {
674 	ssize_t ret;
675 	unsigned int freq;
676 
677 	freq = arch_freq_get_on_cpu(policy->cpu);
678 	if (freq)
679 		ret = sprintf(buf, "%u\n", freq);
680 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
681 			cpufreq_driver->get)
682 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
683 	else
684 		ret = sprintf(buf, "%u\n", policy->cur);
685 	return ret;
686 }
687 
688 static int cpufreq_set_policy(struct cpufreq_policy *policy,
689 				struct cpufreq_policy *new_policy);
690 
691 /**
692  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
693  */
694 #define store_one(file_name, object)			\
695 static ssize_t store_##file_name					\
696 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
697 {									\
698 	int ret, temp;							\
699 	struct cpufreq_policy new_policy;				\
700 									\
701 	memcpy(&new_policy, policy, sizeof(*policy));			\
702 									\
703 	ret = sscanf(buf, "%u", &new_policy.object);			\
704 	if (ret != 1)							\
705 		return -EINVAL;						\
706 									\
707 	temp = new_policy.object;					\
708 	ret = cpufreq_set_policy(policy, &new_policy);		\
709 	if (!ret)							\
710 		policy->user_policy.object = temp;			\
711 									\
712 	return ret ? ret : count;					\
713 }
714 
715 store_one(scaling_min_freq, min);
716 store_one(scaling_max_freq, max);
717 
718 /**
719  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
720  */
721 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
722 					char *buf)
723 {
724 	unsigned int cur_freq = __cpufreq_get(policy);
725 
726 	if (cur_freq)
727 		return sprintf(buf, "%u\n", cur_freq);
728 
729 	return sprintf(buf, "<unknown>\n");
730 }
731 
732 /**
733  * show_scaling_governor - show the current policy for the specified CPU
734  */
735 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
736 {
737 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
738 		return sprintf(buf, "powersave\n");
739 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
740 		return sprintf(buf, "performance\n");
741 	else if (policy->governor)
742 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
743 				policy->governor->name);
744 	return -EINVAL;
745 }
746 
747 /**
748  * store_scaling_governor - store policy for the specified CPU
749  */
750 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
751 					const char *buf, size_t count)
752 {
753 	int ret;
754 	char	str_governor[16];
755 	struct cpufreq_policy new_policy;
756 
757 	memcpy(&new_policy, policy, sizeof(*policy));
758 
759 	ret = sscanf(buf, "%15s", str_governor);
760 	if (ret != 1)
761 		return -EINVAL;
762 
763 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
764 						&new_policy.governor))
765 		return -EINVAL;
766 
767 	ret = cpufreq_set_policy(policy, &new_policy);
768 	return ret ? ret : count;
769 }
770 
771 /**
772  * show_scaling_driver - show the cpufreq driver currently loaded
773  */
774 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
775 {
776 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
777 }
778 
779 /**
780  * show_scaling_available_governors - show the available CPUfreq governors
781  */
782 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
783 						char *buf)
784 {
785 	ssize_t i = 0;
786 	struct cpufreq_governor *t;
787 
788 	if (!has_target()) {
789 		i += sprintf(buf, "performance powersave");
790 		goto out;
791 	}
792 
793 	for_each_governor(t) {
794 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
795 		    - (CPUFREQ_NAME_LEN + 2)))
796 			goto out;
797 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
798 	}
799 out:
800 	i += sprintf(&buf[i], "\n");
801 	return i;
802 }
803 
804 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
805 {
806 	ssize_t i = 0;
807 	unsigned int cpu;
808 
809 	for_each_cpu(cpu, mask) {
810 		if (i)
811 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
812 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
813 		if (i >= (PAGE_SIZE - 5))
814 			break;
815 	}
816 	i += sprintf(&buf[i], "\n");
817 	return i;
818 }
819 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
820 
821 /**
822  * show_related_cpus - show the CPUs affected by each transition even if
823  * hw coordination is in use
824  */
825 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
826 {
827 	return cpufreq_show_cpus(policy->related_cpus, buf);
828 }
829 
830 /**
831  * show_affected_cpus - show the CPUs affected by each transition
832  */
833 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
834 {
835 	return cpufreq_show_cpus(policy->cpus, buf);
836 }
837 
838 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
839 					const char *buf, size_t count)
840 {
841 	unsigned int freq = 0;
842 	unsigned int ret;
843 
844 	if (!policy->governor || !policy->governor->store_setspeed)
845 		return -EINVAL;
846 
847 	ret = sscanf(buf, "%u", &freq);
848 	if (ret != 1)
849 		return -EINVAL;
850 
851 	policy->governor->store_setspeed(policy, freq);
852 
853 	return count;
854 }
855 
856 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
857 {
858 	if (!policy->governor || !policy->governor->show_setspeed)
859 		return sprintf(buf, "<unsupported>\n");
860 
861 	return policy->governor->show_setspeed(policy, buf);
862 }
863 
864 /**
865  * show_bios_limit - show the current cpufreq HW/BIOS limitation
866  */
867 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
868 {
869 	unsigned int limit;
870 	int ret;
871 	if (cpufreq_driver->bios_limit) {
872 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
873 		if (!ret)
874 			return sprintf(buf, "%u\n", limit);
875 	}
876 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
877 }
878 
879 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
880 cpufreq_freq_attr_ro(cpuinfo_min_freq);
881 cpufreq_freq_attr_ro(cpuinfo_max_freq);
882 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
883 cpufreq_freq_attr_ro(scaling_available_governors);
884 cpufreq_freq_attr_ro(scaling_driver);
885 cpufreq_freq_attr_ro(scaling_cur_freq);
886 cpufreq_freq_attr_ro(bios_limit);
887 cpufreq_freq_attr_ro(related_cpus);
888 cpufreq_freq_attr_ro(affected_cpus);
889 cpufreq_freq_attr_rw(scaling_min_freq);
890 cpufreq_freq_attr_rw(scaling_max_freq);
891 cpufreq_freq_attr_rw(scaling_governor);
892 cpufreq_freq_attr_rw(scaling_setspeed);
893 
894 static struct attribute *default_attrs[] = {
895 	&cpuinfo_min_freq.attr,
896 	&cpuinfo_max_freq.attr,
897 	&cpuinfo_transition_latency.attr,
898 	&scaling_min_freq.attr,
899 	&scaling_max_freq.attr,
900 	&affected_cpus.attr,
901 	&related_cpus.attr,
902 	&scaling_governor.attr,
903 	&scaling_driver.attr,
904 	&scaling_available_governors.attr,
905 	&scaling_setspeed.attr,
906 	NULL
907 };
908 
909 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
910 #define to_attr(a) container_of(a, struct freq_attr, attr)
911 
912 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
913 {
914 	struct cpufreq_policy *policy = to_policy(kobj);
915 	struct freq_attr *fattr = to_attr(attr);
916 	ssize_t ret;
917 
918 	down_read(&policy->rwsem);
919 	ret = fattr->show(policy, buf);
920 	up_read(&policy->rwsem);
921 
922 	return ret;
923 }
924 
925 static ssize_t store(struct kobject *kobj, struct attribute *attr,
926 		     const char *buf, size_t count)
927 {
928 	struct cpufreq_policy *policy = to_policy(kobj);
929 	struct freq_attr *fattr = to_attr(attr);
930 	ssize_t ret = -EINVAL;
931 
932 	cpus_read_lock();
933 
934 	if (cpu_online(policy->cpu)) {
935 		down_write(&policy->rwsem);
936 		ret = fattr->store(policy, buf, count);
937 		up_write(&policy->rwsem);
938 	}
939 
940 	cpus_read_unlock();
941 
942 	return ret;
943 }
944 
945 static void cpufreq_sysfs_release(struct kobject *kobj)
946 {
947 	struct cpufreq_policy *policy = to_policy(kobj);
948 	pr_debug("last reference is dropped\n");
949 	complete(&policy->kobj_unregister);
950 }
951 
952 static const struct sysfs_ops sysfs_ops = {
953 	.show	= show,
954 	.store	= store,
955 };
956 
957 static struct kobj_type ktype_cpufreq = {
958 	.sysfs_ops	= &sysfs_ops,
959 	.default_attrs	= default_attrs,
960 	.release	= cpufreq_sysfs_release,
961 };
962 
963 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
964 {
965 	struct device *dev = get_cpu_device(cpu);
966 
967 	if (!dev)
968 		return;
969 
970 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
971 		return;
972 
973 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
974 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
975 		dev_err(dev, "cpufreq symlink creation failed\n");
976 }
977 
978 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
979 				   struct device *dev)
980 {
981 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
982 	sysfs_remove_link(&dev->kobj, "cpufreq");
983 }
984 
985 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
986 {
987 	struct freq_attr **drv_attr;
988 	int ret = 0;
989 
990 	/* set up files for this cpu device */
991 	drv_attr = cpufreq_driver->attr;
992 	while (drv_attr && *drv_attr) {
993 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
994 		if (ret)
995 			return ret;
996 		drv_attr++;
997 	}
998 	if (cpufreq_driver->get) {
999 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1005 	if (ret)
1006 		return ret;
1007 
1008 	if (cpufreq_driver->bios_limit) {
1009 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1010 		if (ret)
1011 			return ret;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1018 {
1019 	return NULL;
1020 }
1021 
1022 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1023 {
1024 	struct cpufreq_governor *gov = NULL;
1025 	struct cpufreq_policy new_policy;
1026 
1027 	memcpy(&new_policy, policy, sizeof(*policy));
1028 
1029 	/* Update governor of new_policy to the governor used before hotplug */
1030 	gov = find_governor(policy->last_governor);
1031 	if (gov) {
1032 		pr_debug("Restoring governor %s for cpu %d\n",
1033 				policy->governor->name, policy->cpu);
1034 	} else {
1035 		gov = cpufreq_default_governor();
1036 		if (!gov)
1037 			return -ENODATA;
1038 	}
1039 
1040 	new_policy.governor = gov;
1041 
1042 	/* Use the default policy if there is no last_policy. */
1043 	if (cpufreq_driver->setpolicy) {
1044 		if (policy->last_policy)
1045 			new_policy.policy = policy->last_policy;
1046 		else
1047 			cpufreq_parse_governor(gov->name, &new_policy.policy,
1048 					       NULL);
1049 	}
1050 	/* set default policy */
1051 	return cpufreq_set_policy(policy, &new_policy);
1052 }
1053 
1054 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1055 {
1056 	int ret = 0;
1057 
1058 	/* Has this CPU been taken care of already? */
1059 	if (cpumask_test_cpu(cpu, policy->cpus))
1060 		return 0;
1061 
1062 	down_write(&policy->rwsem);
1063 	if (has_target())
1064 		cpufreq_stop_governor(policy);
1065 
1066 	cpumask_set_cpu(cpu, policy->cpus);
1067 
1068 	if (has_target()) {
1069 		ret = cpufreq_start_governor(policy);
1070 		if (ret)
1071 			pr_err("%s: Failed to start governor\n", __func__);
1072 	}
1073 	up_write(&policy->rwsem);
1074 	return ret;
1075 }
1076 
1077 static void handle_update(struct work_struct *work)
1078 {
1079 	struct cpufreq_policy *policy =
1080 		container_of(work, struct cpufreq_policy, update);
1081 	unsigned int cpu = policy->cpu;
1082 	pr_debug("handle_update for cpu %u called\n", cpu);
1083 	cpufreq_update_policy(cpu);
1084 }
1085 
1086 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1087 {
1088 	struct cpufreq_policy *policy;
1089 	int ret;
1090 
1091 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1092 	if (!policy)
1093 		return NULL;
1094 
1095 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1096 		goto err_free_policy;
1097 
1098 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1099 		goto err_free_cpumask;
1100 
1101 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1102 		goto err_free_rcpumask;
1103 
1104 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1105 				   cpufreq_global_kobject, "policy%u", cpu);
1106 	if (ret) {
1107 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1108 		goto err_free_real_cpus;
1109 	}
1110 
1111 	INIT_LIST_HEAD(&policy->policy_list);
1112 	init_rwsem(&policy->rwsem);
1113 	spin_lock_init(&policy->transition_lock);
1114 	init_waitqueue_head(&policy->transition_wait);
1115 	init_completion(&policy->kobj_unregister);
1116 	INIT_WORK(&policy->update, handle_update);
1117 
1118 	policy->cpu = cpu;
1119 	return policy;
1120 
1121 err_free_real_cpus:
1122 	free_cpumask_var(policy->real_cpus);
1123 err_free_rcpumask:
1124 	free_cpumask_var(policy->related_cpus);
1125 err_free_cpumask:
1126 	free_cpumask_var(policy->cpus);
1127 err_free_policy:
1128 	kfree(policy);
1129 
1130 	return NULL;
1131 }
1132 
1133 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1134 {
1135 	struct kobject *kobj;
1136 	struct completion *cmp;
1137 
1138 	down_write(&policy->rwsem);
1139 	cpufreq_stats_free_table(policy);
1140 	kobj = &policy->kobj;
1141 	cmp = &policy->kobj_unregister;
1142 	up_write(&policy->rwsem);
1143 	kobject_put(kobj);
1144 
1145 	/*
1146 	 * We need to make sure that the underlying kobj is
1147 	 * actually not referenced anymore by anybody before we
1148 	 * proceed with unloading.
1149 	 */
1150 	pr_debug("waiting for dropping of refcount\n");
1151 	wait_for_completion(cmp);
1152 	pr_debug("wait complete\n");
1153 }
1154 
1155 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1156 {
1157 	unsigned long flags;
1158 	int cpu;
1159 
1160 	/* Remove policy from list */
1161 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1162 	list_del(&policy->policy_list);
1163 
1164 	for_each_cpu(cpu, policy->related_cpus)
1165 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1166 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1167 
1168 	cpufreq_policy_put_kobj(policy);
1169 	free_cpumask_var(policy->real_cpus);
1170 	free_cpumask_var(policy->related_cpus);
1171 	free_cpumask_var(policy->cpus);
1172 	kfree(policy);
1173 }
1174 
1175 static int cpufreq_online(unsigned int cpu)
1176 {
1177 	struct cpufreq_policy *policy;
1178 	bool new_policy;
1179 	unsigned long flags;
1180 	unsigned int j;
1181 	int ret;
1182 
1183 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1184 
1185 	/* Check if this CPU already has a policy to manage it */
1186 	policy = per_cpu(cpufreq_cpu_data, cpu);
1187 	if (policy) {
1188 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1189 		if (!policy_is_inactive(policy))
1190 			return cpufreq_add_policy_cpu(policy, cpu);
1191 
1192 		/* This is the only online CPU for the policy.  Start over. */
1193 		new_policy = false;
1194 		down_write(&policy->rwsem);
1195 		policy->cpu = cpu;
1196 		policy->governor = NULL;
1197 		up_write(&policy->rwsem);
1198 	} else {
1199 		new_policy = true;
1200 		policy = cpufreq_policy_alloc(cpu);
1201 		if (!policy)
1202 			return -ENOMEM;
1203 	}
1204 
1205 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1206 
1207 	/* call driver. From then on the cpufreq must be able
1208 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1209 	 */
1210 	ret = cpufreq_driver->init(policy);
1211 	if (ret) {
1212 		pr_debug("initialization failed\n");
1213 		goto out_free_policy;
1214 	}
1215 
1216 	down_write(&policy->rwsem);
1217 
1218 	if (new_policy) {
1219 		/* related_cpus should at least include policy->cpus. */
1220 		cpumask_copy(policy->related_cpus, policy->cpus);
1221 	}
1222 
1223 	/*
1224 	 * affected cpus must always be the one, which are online. We aren't
1225 	 * managing offline cpus here.
1226 	 */
1227 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1228 
1229 	if (new_policy) {
1230 		policy->user_policy.min = policy->min;
1231 		policy->user_policy.max = policy->max;
1232 
1233 		for_each_cpu(j, policy->related_cpus) {
1234 			per_cpu(cpufreq_cpu_data, j) = policy;
1235 			add_cpu_dev_symlink(policy, j);
1236 		}
1237 	} else {
1238 		policy->min = policy->user_policy.min;
1239 		policy->max = policy->user_policy.max;
1240 	}
1241 
1242 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1243 		policy->cur = cpufreq_driver->get(policy->cpu);
1244 		if (!policy->cur) {
1245 			pr_err("%s: ->get() failed\n", __func__);
1246 			goto out_exit_policy;
1247 		}
1248 	}
1249 
1250 	/*
1251 	 * Sometimes boot loaders set CPU frequency to a value outside of
1252 	 * frequency table present with cpufreq core. In such cases CPU might be
1253 	 * unstable if it has to run on that frequency for long duration of time
1254 	 * and so its better to set it to a frequency which is specified in
1255 	 * freq-table. This also makes cpufreq stats inconsistent as
1256 	 * cpufreq-stats would fail to register because current frequency of CPU
1257 	 * isn't found in freq-table.
1258 	 *
1259 	 * Because we don't want this change to effect boot process badly, we go
1260 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1261 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1262 	 * is initialized to zero).
1263 	 *
1264 	 * We are passing target-freq as "policy->cur - 1" otherwise
1265 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1266 	 * equal to target-freq.
1267 	 */
1268 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1269 	    && has_target()) {
1270 		/* Are we running at unknown frequency ? */
1271 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1272 		if (ret == -EINVAL) {
1273 			/* Warn user and fix it */
1274 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1275 				__func__, policy->cpu, policy->cur);
1276 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1277 				CPUFREQ_RELATION_L);
1278 
1279 			/*
1280 			 * Reaching here after boot in a few seconds may not
1281 			 * mean that system will remain stable at "unknown"
1282 			 * frequency for longer duration. Hence, a BUG_ON().
1283 			 */
1284 			BUG_ON(ret);
1285 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1286 				__func__, policy->cpu, policy->cur);
1287 		}
1288 	}
1289 
1290 	if (new_policy) {
1291 		ret = cpufreq_add_dev_interface(policy);
1292 		if (ret)
1293 			goto out_exit_policy;
1294 
1295 		cpufreq_stats_create_table(policy);
1296 
1297 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1298 		list_add(&policy->policy_list, &cpufreq_policy_list);
1299 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1300 	}
1301 
1302 	ret = cpufreq_init_policy(policy);
1303 	if (ret) {
1304 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1305 		       __func__, cpu, ret);
1306 		/* cpufreq_policy_free() will notify based on this */
1307 		new_policy = false;
1308 		goto out_exit_policy;
1309 	}
1310 
1311 	up_write(&policy->rwsem);
1312 
1313 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1314 
1315 	/* Callback for handling stuff after policy is ready */
1316 	if (cpufreq_driver->ready)
1317 		cpufreq_driver->ready(policy);
1318 
1319 	pr_debug("initialization complete\n");
1320 
1321 	return 0;
1322 
1323 out_exit_policy:
1324 	up_write(&policy->rwsem);
1325 
1326 	if (cpufreq_driver->exit)
1327 		cpufreq_driver->exit(policy);
1328 
1329 	for_each_cpu(j, policy->real_cpus)
1330 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1331 
1332 out_free_policy:
1333 	cpufreq_policy_free(policy);
1334 	return ret;
1335 }
1336 
1337 /**
1338  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1339  * @dev: CPU device.
1340  * @sif: Subsystem interface structure pointer (not used)
1341  */
1342 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1343 {
1344 	struct cpufreq_policy *policy;
1345 	unsigned cpu = dev->id;
1346 	int ret;
1347 
1348 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1349 
1350 	if (cpu_online(cpu)) {
1351 		ret = cpufreq_online(cpu);
1352 		if (ret)
1353 			return ret;
1354 	}
1355 
1356 	/* Create sysfs link on CPU registration */
1357 	policy = per_cpu(cpufreq_cpu_data, cpu);
1358 	if (policy)
1359 		add_cpu_dev_symlink(policy, cpu);
1360 
1361 	return 0;
1362 }
1363 
1364 static int cpufreq_offline(unsigned int cpu)
1365 {
1366 	struct cpufreq_policy *policy;
1367 	int ret;
1368 
1369 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1370 
1371 	policy = cpufreq_cpu_get_raw(cpu);
1372 	if (!policy) {
1373 		pr_debug("%s: No cpu_data found\n", __func__);
1374 		return 0;
1375 	}
1376 
1377 	down_write(&policy->rwsem);
1378 	if (has_target())
1379 		cpufreq_stop_governor(policy);
1380 
1381 	cpumask_clear_cpu(cpu, policy->cpus);
1382 
1383 	if (policy_is_inactive(policy)) {
1384 		if (has_target())
1385 			strncpy(policy->last_governor, policy->governor->name,
1386 				CPUFREQ_NAME_LEN);
1387 		else
1388 			policy->last_policy = policy->policy;
1389 	} else if (cpu == policy->cpu) {
1390 		/* Nominate new CPU */
1391 		policy->cpu = cpumask_any(policy->cpus);
1392 	}
1393 
1394 	/* Start governor again for active policy */
1395 	if (!policy_is_inactive(policy)) {
1396 		if (has_target()) {
1397 			ret = cpufreq_start_governor(policy);
1398 			if (ret)
1399 				pr_err("%s: Failed to start governor\n", __func__);
1400 		}
1401 
1402 		goto unlock;
1403 	}
1404 
1405 	if (cpufreq_driver->stop_cpu)
1406 		cpufreq_driver->stop_cpu(policy);
1407 
1408 	if (has_target())
1409 		cpufreq_exit_governor(policy);
1410 
1411 	/*
1412 	 * Perform the ->exit() even during light-weight tear-down,
1413 	 * since this is a core component, and is essential for the
1414 	 * subsequent light-weight ->init() to succeed.
1415 	 */
1416 	if (cpufreq_driver->exit) {
1417 		cpufreq_driver->exit(policy);
1418 		policy->freq_table = NULL;
1419 	}
1420 
1421 unlock:
1422 	up_write(&policy->rwsem);
1423 	return 0;
1424 }
1425 
1426 /**
1427  * cpufreq_remove_dev - remove a CPU device
1428  *
1429  * Removes the cpufreq interface for a CPU device.
1430  */
1431 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1432 {
1433 	unsigned int cpu = dev->id;
1434 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1435 
1436 	if (!policy)
1437 		return;
1438 
1439 	if (cpu_online(cpu))
1440 		cpufreq_offline(cpu);
1441 
1442 	cpumask_clear_cpu(cpu, policy->real_cpus);
1443 	remove_cpu_dev_symlink(policy, dev);
1444 
1445 	if (cpumask_empty(policy->real_cpus))
1446 		cpufreq_policy_free(policy);
1447 }
1448 
1449 /**
1450  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1451  *	in deep trouble.
1452  *	@policy: policy managing CPUs
1453  *	@new_freq: CPU frequency the CPU actually runs at
1454  *
1455  *	We adjust to current frequency first, and need to clean up later.
1456  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1457  */
1458 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1459 				unsigned int new_freq)
1460 {
1461 	struct cpufreq_freqs freqs;
1462 
1463 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1464 		 policy->cur, new_freq);
1465 
1466 	freqs.old = policy->cur;
1467 	freqs.new = new_freq;
1468 
1469 	cpufreq_freq_transition_begin(policy, &freqs);
1470 	cpufreq_freq_transition_end(policy, &freqs, 0);
1471 }
1472 
1473 /**
1474  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1475  * @cpu: CPU number
1476  *
1477  * This is the last known freq, without actually getting it from the driver.
1478  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1479  */
1480 unsigned int cpufreq_quick_get(unsigned int cpu)
1481 {
1482 	struct cpufreq_policy *policy;
1483 	unsigned int ret_freq = 0;
1484 	unsigned long flags;
1485 
1486 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1487 
1488 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1489 		ret_freq = cpufreq_driver->get(cpu);
1490 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1491 		return ret_freq;
1492 	}
1493 
1494 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1495 
1496 	policy = cpufreq_cpu_get(cpu);
1497 	if (policy) {
1498 		ret_freq = policy->cur;
1499 		cpufreq_cpu_put(policy);
1500 	}
1501 
1502 	return ret_freq;
1503 }
1504 EXPORT_SYMBOL(cpufreq_quick_get);
1505 
1506 /**
1507  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1508  * @cpu: CPU number
1509  *
1510  * Just return the max possible frequency for a given CPU.
1511  */
1512 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1513 {
1514 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1515 	unsigned int ret_freq = 0;
1516 
1517 	if (policy) {
1518 		ret_freq = policy->max;
1519 		cpufreq_cpu_put(policy);
1520 	}
1521 
1522 	return ret_freq;
1523 }
1524 EXPORT_SYMBOL(cpufreq_quick_get_max);
1525 
1526 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1527 {
1528 	unsigned int ret_freq = 0;
1529 
1530 	if (!cpufreq_driver->get)
1531 		return ret_freq;
1532 
1533 	ret_freq = cpufreq_driver->get(policy->cpu);
1534 
1535 	/*
1536 	 * Updating inactive policies is invalid, so avoid doing that.  Also
1537 	 * if fast frequency switching is used with the given policy, the check
1538 	 * against policy->cur is pointless, so skip it in that case too.
1539 	 */
1540 	if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1541 		return ret_freq;
1542 
1543 	if (ret_freq && policy->cur &&
1544 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1545 		/* verify no discrepancy between actual and
1546 					saved value exists */
1547 		if (unlikely(ret_freq != policy->cur)) {
1548 			cpufreq_out_of_sync(policy, ret_freq);
1549 			schedule_work(&policy->update);
1550 		}
1551 	}
1552 
1553 	return ret_freq;
1554 }
1555 
1556 /**
1557  * cpufreq_get - get the current CPU frequency (in kHz)
1558  * @cpu: CPU number
1559  *
1560  * Get the CPU current (static) CPU frequency
1561  */
1562 unsigned int cpufreq_get(unsigned int cpu)
1563 {
1564 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1565 	unsigned int ret_freq = 0;
1566 
1567 	if (policy) {
1568 		down_read(&policy->rwsem);
1569 
1570 		if (!policy_is_inactive(policy))
1571 			ret_freq = __cpufreq_get(policy);
1572 
1573 		up_read(&policy->rwsem);
1574 
1575 		cpufreq_cpu_put(policy);
1576 	}
1577 
1578 	return ret_freq;
1579 }
1580 EXPORT_SYMBOL(cpufreq_get);
1581 
1582 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1583 {
1584 	unsigned int new_freq;
1585 
1586 	new_freq = cpufreq_driver->get(policy->cpu);
1587 	if (!new_freq)
1588 		return 0;
1589 
1590 	if (!policy->cur) {
1591 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1592 		policy->cur = new_freq;
1593 	} else if (policy->cur != new_freq && has_target()) {
1594 		cpufreq_out_of_sync(policy, new_freq);
1595 	}
1596 
1597 	return new_freq;
1598 }
1599 
1600 static struct subsys_interface cpufreq_interface = {
1601 	.name		= "cpufreq",
1602 	.subsys		= &cpu_subsys,
1603 	.add_dev	= cpufreq_add_dev,
1604 	.remove_dev	= cpufreq_remove_dev,
1605 };
1606 
1607 /*
1608  * In case platform wants some specific frequency to be configured
1609  * during suspend..
1610  */
1611 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1612 {
1613 	int ret;
1614 
1615 	if (!policy->suspend_freq) {
1616 		pr_debug("%s: suspend_freq not defined\n", __func__);
1617 		return 0;
1618 	}
1619 
1620 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1621 			policy->suspend_freq);
1622 
1623 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1624 			CPUFREQ_RELATION_H);
1625 	if (ret)
1626 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1627 				__func__, policy->suspend_freq, ret);
1628 
1629 	return ret;
1630 }
1631 EXPORT_SYMBOL(cpufreq_generic_suspend);
1632 
1633 /**
1634  * cpufreq_suspend() - Suspend CPUFreq governors
1635  *
1636  * Called during system wide Suspend/Hibernate cycles for suspending governors
1637  * as some platforms can't change frequency after this point in suspend cycle.
1638  * Because some of the devices (like: i2c, regulators, etc) they use for
1639  * changing frequency are suspended quickly after this point.
1640  */
1641 void cpufreq_suspend(void)
1642 {
1643 	struct cpufreq_policy *policy;
1644 
1645 	if (!cpufreq_driver)
1646 		return;
1647 
1648 	if (!has_target() && !cpufreq_driver->suspend)
1649 		goto suspend;
1650 
1651 	pr_debug("%s: Suspending Governors\n", __func__);
1652 
1653 	for_each_active_policy(policy) {
1654 		if (has_target()) {
1655 			down_write(&policy->rwsem);
1656 			cpufreq_stop_governor(policy);
1657 			up_write(&policy->rwsem);
1658 		}
1659 
1660 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1661 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1662 				policy);
1663 	}
1664 
1665 suspend:
1666 	cpufreq_suspended = true;
1667 }
1668 
1669 /**
1670  * cpufreq_resume() - Resume CPUFreq governors
1671  *
1672  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673  * are suspended with cpufreq_suspend().
1674  */
1675 void cpufreq_resume(void)
1676 {
1677 	struct cpufreq_policy *policy;
1678 	int ret;
1679 
1680 	if (!cpufreq_driver)
1681 		return;
1682 
1683 	cpufreq_suspended = false;
1684 
1685 	if (!has_target() && !cpufreq_driver->resume)
1686 		return;
1687 
1688 	pr_debug("%s: Resuming Governors\n", __func__);
1689 
1690 	for_each_active_policy(policy) {
1691 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1692 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1693 				policy);
1694 		} else if (has_target()) {
1695 			down_write(&policy->rwsem);
1696 			ret = cpufreq_start_governor(policy);
1697 			up_write(&policy->rwsem);
1698 
1699 			if (ret)
1700 				pr_err("%s: Failed to start governor for policy: %p\n",
1701 				       __func__, policy);
1702 		}
1703 	}
1704 }
1705 
1706 /**
1707  *	cpufreq_get_current_driver - return current driver's name
1708  *
1709  *	Return the name string of the currently loaded cpufreq driver
1710  *	or NULL, if none.
1711  */
1712 const char *cpufreq_get_current_driver(void)
1713 {
1714 	if (cpufreq_driver)
1715 		return cpufreq_driver->name;
1716 
1717 	return NULL;
1718 }
1719 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1720 
1721 /**
1722  *	cpufreq_get_driver_data - return current driver data
1723  *
1724  *	Return the private data of the currently loaded cpufreq
1725  *	driver, or NULL if no cpufreq driver is loaded.
1726  */
1727 void *cpufreq_get_driver_data(void)
1728 {
1729 	if (cpufreq_driver)
1730 		return cpufreq_driver->driver_data;
1731 
1732 	return NULL;
1733 }
1734 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1735 
1736 /*********************************************************************
1737  *                     NOTIFIER LISTS INTERFACE                      *
1738  *********************************************************************/
1739 
1740 /**
1741  *	cpufreq_register_notifier - register a driver with cpufreq
1742  *	@nb: notifier function to register
1743  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1744  *
1745  *	Add a driver to one of two lists: either a list of drivers that
1746  *      are notified about clock rate changes (once before and once after
1747  *      the transition), or a list of drivers that are notified about
1748  *      changes in cpufreq policy.
1749  *
1750  *	This function may sleep, and has the same return conditions as
1751  *	blocking_notifier_chain_register.
1752  */
1753 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1754 {
1755 	int ret;
1756 
1757 	if (cpufreq_disabled())
1758 		return -EINVAL;
1759 
1760 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1761 
1762 	switch (list) {
1763 	case CPUFREQ_TRANSITION_NOTIFIER:
1764 		mutex_lock(&cpufreq_fast_switch_lock);
1765 
1766 		if (cpufreq_fast_switch_count > 0) {
1767 			mutex_unlock(&cpufreq_fast_switch_lock);
1768 			return -EBUSY;
1769 		}
1770 		ret = srcu_notifier_chain_register(
1771 				&cpufreq_transition_notifier_list, nb);
1772 		if (!ret)
1773 			cpufreq_fast_switch_count--;
1774 
1775 		mutex_unlock(&cpufreq_fast_switch_lock);
1776 		break;
1777 	case CPUFREQ_POLICY_NOTIFIER:
1778 		ret = blocking_notifier_chain_register(
1779 				&cpufreq_policy_notifier_list, nb);
1780 		break;
1781 	default:
1782 		ret = -EINVAL;
1783 	}
1784 
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL(cpufreq_register_notifier);
1788 
1789 /**
1790  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1791  *	@nb: notifier block to be unregistered
1792  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1793  *
1794  *	Remove a driver from the CPU frequency notifier list.
1795  *
1796  *	This function may sleep, and has the same return conditions as
1797  *	blocking_notifier_chain_unregister.
1798  */
1799 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1800 {
1801 	int ret;
1802 
1803 	if (cpufreq_disabled())
1804 		return -EINVAL;
1805 
1806 	switch (list) {
1807 	case CPUFREQ_TRANSITION_NOTIFIER:
1808 		mutex_lock(&cpufreq_fast_switch_lock);
1809 
1810 		ret = srcu_notifier_chain_unregister(
1811 				&cpufreq_transition_notifier_list, nb);
1812 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1813 			cpufreq_fast_switch_count++;
1814 
1815 		mutex_unlock(&cpufreq_fast_switch_lock);
1816 		break;
1817 	case CPUFREQ_POLICY_NOTIFIER:
1818 		ret = blocking_notifier_chain_unregister(
1819 				&cpufreq_policy_notifier_list, nb);
1820 		break;
1821 	default:
1822 		ret = -EINVAL;
1823 	}
1824 
1825 	return ret;
1826 }
1827 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1828 
1829 
1830 /*********************************************************************
1831  *                              GOVERNORS                            *
1832  *********************************************************************/
1833 
1834 /**
1835  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1836  * @policy: cpufreq policy to switch the frequency for.
1837  * @target_freq: New frequency to set (may be approximate).
1838  *
1839  * Carry out a fast frequency switch without sleeping.
1840  *
1841  * The driver's ->fast_switch() callback invoked by this function must be
1842  * suitable for being called from within RCU-sched read-side critical sections
1843  * and it is expected to select the minimum available frequency greater than or
1844  * equal to @target_freq (CPUFREQ_RELATION_L).
1845  *
1846  * This function must not be called if policy->fast_switch_enabled is unset.
1847  *
1848  * Governors calling this function must guarantee that it will never be invoked
1849  * twice in parallel for the same policy and that it will never be called in
1850  * parallel with either ->target() or ->target_index() for the same policy.
1851  *
1852  * Returns the actual frequency set for the CPU.
1853  *
1854  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1855  * error condition, the hardware configuration must be preserved.
1856  */
1857 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1858 					unsigned int target_freq)
1859 {
1860 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1861 
1862 	return cpufreq_driver->fast_switch(policy, target_freq);
1863 }
1864 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1865 
1866 /* Must set freqs->new to intermediate frequency */
1867 static int __target_intermediate(struct cpufreq_policy *policy,
1868 				 struct cpufreq_freqs *freqs, int index)
1869 {
1870 	int ret;
1871 
1872 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1873 
1874 	/* We don't need to switch to intermediate freq */
1875 	if (!freqs->new)
1876 		return 0;
1877 
1878 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1879 		 __func__, policy->cpu, freqs->old, freqs->new);
1880 
1881 	cpufreq_freq_transition_begin(policy, freqs);
1882 	ret = cpufreq_driver->target_intermediate(policy, index);
1883 	cpufreq_freq_transition_end(policy, freqs, ret);
1884 
1885 	if (ret)
1886 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1887 		       __func__, ret);
1888 
1889 	return ret;
1890 }
1891 
1892 static int __target_index(struct cpufreq_policy *policy, int index)
1893 {
1894 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1895 	unsigned int intermediate_freq = 0;
1896 	unsigned int newfreq = policy->freq_table[index].frequency;
1897 	int retval = -EINVAL;
1898 	bool notify;
1899 
1900 	if (newfreq == policy->cur)
1901 		return 0;
1902 
1903 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1904 	if (notify) {
1905 		/* Handle switching to intermediate frequency */
1906 		if (cpufreq_driver->get_intermediate) {
1907 			retval = __target_intermediate(policy, &freqs, index);
1908 			if (retval)
1909 				return retval;
1910 
1911 			intermediate_freq = freqs.new;
1912 			/* Set old freq to intermediate */
1913 			if (intermediate_freq)
1914 				freqs.old = freqs.new;
1915 		}
1916 
1917 		freqs.new = newfreq;
1918 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1919 			 __func__, policy->cpu, freqs.old, freqs.new);
1920 
1921 		cpufreq_freq_transition_begin(policy, &freqs);
1922 	}
1923 
1924 	retval = cpufreq_driver->target_index(policy, index);
1925 	if (retval)
1926 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1927 		       retval);
1928 
1929 	if (notify) {
1930 		cpufreq_freq_transition_end(policy, &freqs, retval);
1931 
1932 		/*
1933 		 * Failed after setting to intermediate freq? Driver should have
1934 		 * reverted back to initial frequency and so should we. Check
1935 		 * here for intermediate_freq instead of get_intermediate, in
1936 		 * case we haven't switched to intermediate freq at all.
1937 		 */
1938 		if (unlikely(retval && intermediate_freq)) {
1939 			freqs.old = intermediate_freq;
1940 			freqs.new = policy->restore_freq;
1941 			cpufreq_freq_transition_begin(policy, &freqs);
1942 			cpufreq_freq_transition_end(policy, &freqs, 0);
1943 		}
1944 	}
1945 
1946 	return retval;
1947 }
1948 
1949 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1950 			    unsigned int target_freq,
1951 			    unsigned int relation)
1952 {
1953 	unsigned int old_target_freq = target_freq;
1954 	int index;
1955 
1956 	if (cpufreq_disabled())
1957 		return -ENODEV;
1958 
1959 	/* Make sure that target_freq is within supported range */
1960 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1961 
1962 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1963 		 policy->cpu, target_freq, relation, old_target_freq);
1964 
1965 	/*
1966 	 * This might look like a redundant call as we are checking it again
1967 	 * after finding index. But it is left intentionally for cases where
1968 	 * exactly same freq is called again and so we can save on few function
1969 	 * calls.
1970 	 */
1971 	if (target_freq == policy->cur)
1972 		return 0;
1973 
1974 	/* Save last value to restore later on errors */
1975 	policy->restore_freq = policy->cur;
1976 
1977 	if (cpufreq_driver->target)
1978 		return cpufreq_driver->target(policy, target_freq, relation);
1979 
1980 	if (!cpufreq_driver->target_index)
1981 		return -EINVAL;
1982 
1983 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1984 
1985 	return __target_index(policy, index);
1986 }
1987 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1988 
1989 int cpufreq_driver_target(struct cpufreq_policy *policy,
1990 			  unsigned int target_freq,
1991 			  unsigned int relation)
1992 {
1993 	int ret = -EINVAL;
1994 
1995 	down_write(&policy->rwsem);
1996 
1997 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1998 
1999 	up_write(&policy->rwsem);
2000 
2001 	return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2004 
2005 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2006 {
2007 	return NULL;
2008 }
2009 
2010 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2011 {
2012 	int ret;
2013 
2014 	/* Don't start any governor operations if we are entering suspend */
2015 	if (cpufreq_suspended)
2016 		return 0;
2017 	/*
2018 	 * Governor might not be initiated here if ACPI _PPC changed
2019 	 * notification happened, so check it.
2020 	 */
2021 	if (!policy->governor)
2022 		return -EINVAL;
2023 
2024 	/* Platform doesn't want dynamic frequency switching ? */
2025 	if (policy->governor->dynamic_switching &&
2026 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2027 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2028 
2029 		if (gov) {
2030 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2031 				policy->governor->name, gov->name);
2032 			policy->governor = gov;
2033 		} else {
2034 			return -EINVAL;
2035 		}
2036 	}
2037 
2038 	if (!try_module_get(policy->governor->owner))
2039 		return -EINVAL;
2040 
2041 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2042 
2043 	if (policy->governor->init) {
2044 		ret = policy->governor->init(policy);
2045 		if (ret) {
2046 			module_put(policy->governor->owner);
2047 			return ret;
2048 		}
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2055 {
2056 	if (cpufreq_suspended || !policy->governor)
2057 		return;
2058 
2059 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2060 
2061 	if (policy->governor->exit)
2062 		policy->governor->exit(policy);
2063 
2064 	module_put(policy->governor->owner);
2065 }
2066 
2067 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2068 {
2069 	int ret;
2070 
2071 	if (cpufreq_suspended)
2072 		return 0;
2073 
2074 	if (!policy->governor)
2075 		return -EINVAL;
2076 
2077 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2078 
2079 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2080 		cpufreq_update_current_freq(policy);
2081 
2082 	if (policy->governor->start) {
2083 		ret = policy->governor->start(policy);
2084 		if (ret)
2085 			return ret;
2086 	}
2087 
2088 	if (policy->governor->limits)
2089 		policy->governor->limits(policy);
2090 
2091 	return 0;
2092 }
2093 
2094 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2095 {
2096 	if (cpufreq_suspended || !policy->governor)
2097 		return;
2098 
2099 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2100 
2101 	if (policy->governor->stop)
2102 		policy->governor->stop(policy);
2103 }
2104 
2105 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2106 {
2107 	if (cpufreq_suspended || !policy->governor)
2108 		return;
2109 
2110 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2111 
2112 	if (policy->governor->limits)
2113 		policy->governor->limits(policy);
2114 }
2115 
2116 int cpufreq_register_governor(struct cpufreq_governor *governor)
2117 {
2118 	int err;
2119 
2120 	if (!governor)
2121 		return -EINVAL;
2122 
2123 	if (cpufreq_disabled())
2124 		return -ENODEV;
2125 
2126 	mutex_lock(&cpufreq_governor_mutex);
2127 
2128 	err = -EBUSY;
2129 	if (!find_governor(governor->name)) {
2130 		err = 0;
2131 		list_add(&governor->governor_list, &cpufreq_governor_list);
2132 	}
2133 
2134 	mutex_unlock(&cpufreq_governor_mutex);
2135 	return err;
2136 }
2137 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2138 
2139 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2140 {
2141 	struct cpufreq_policy *policy;
2142 	unsigned long flags;
2143 
2144 	if (!governor)
2145 		return;
2146 
2147 	if (cpufreq_disabled())
2148 		return;
2149 
2150 	/* clear last_governor for all inactive policies */
2151 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2152 	for_each_inactive_policy(policy) {
2153 		if (!strcmp(policy->last_governor, governor->name)) {
2154 			policy->governor = NULL;
2155 			strcpy(policy->last_governor, "\0");
2156 		}
2157 	}
2158 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2159 
2160 	mutex_lock(&cpufreq_governor_mutex);
2161 	list_del(&governor->governor_list);
2162 	mutex_unlock(&cpufreq_governor_mutex);
2163 	return;
2164 }
2165 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2166 
2167 
2168 /*********************************************************************
2169  *                          POLICY INTERFACE                         *
2170  *********************************************************************/
2171 
2172 /**
2173  * cpufreq_get_policy - get the current cpufreq_policy
2174  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2175  *	is written
2176  *
2177  * Reads the current cpufreq policy.
2178  */
2179 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2180 {
2181 	struct cpufreq_policy *cpu_policy;
2182 	if (!policy)
2183 		return -EINVAL;
2184 
2185 	cpu_policy = cpufreq_cpu_get(cpu);
2186 	if (!cpu_policy)
2187 		return -EINVAL;
2188 
2189 	memcpy(policy, cpu_policy, sizeof(*policy));
2190 
2191 	cpufreq_cpu_put(cpu_policy);
2192 	return 0;
2193 }
2194 EXPORT_SYMBOL(cpufreq_get_policy);
2195 
2196 /*
2197  * policy : current policy.
2198  * new_policy: policy to be set.
2199  */
2200 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2201 				struct cpufreq_policy *new_policy)
2202 {
2203 	struct cpufreq_governor *old_gov;
2204 	int ret;
2205 
2206 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2207 		 new_policy->cpu, new_policy->min, new_policy->max);
2208 
2209 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2210 
2211 	/*
2212 	* This check works well when we store new min/max freq attributes,
2213 	* because new_policy is a copy of policy with one field updated.
2214 	*/
2215 	if (new_policy->min > new_policy->max)
2216 		return -EINVAL;
2217 
2218 	/* verify the cpu speed can be set within this limit */
2219 	ret = cpufreq_driver->verify(new_policy);
2220 	if (ret)
2221 		return ret;
2222 
2223 	/* adjust if necessary - all reasons */
2224 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2225 			CPUFREQ_ADJUST, new_policy);
2226 
2227 	/*
2228 	 * verify the cpu speed can be set within this limit, which might be
2229 	 * different to the first one
2230 	 */
2231 	ret = cpufreq_driver->verify(new_policy);
2232 	if (ret)
2233 		return ret;
2234 
2235 	/* notification of the new policy */
2236 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2237 			CPUFREQ_NOTIFY, new_policy);
2238 
2239 	policy->min = new_policy->min;
2240 	policy->max = new_policy->max;
2241 
2242 	policy->cached_target_freq = UINT_MAX;
2243 
2244 	pr_debug("new min and max freqs are %u - %u kHz\n",
2245 		 policy->min, policy->max);
2246 
2247 	if (cpufreq_driver->setpolicy) {
2248 		policy->policy = new_policy->policy;
2249 		pr_debug("setting range\n");
2250 		return cpufreq_driver->setpolicy(new_policy);
2251 	}
2252 
2253 	if (new_policy->governor == policy->governor) {
2254 		pr_debug("cpufreq: governor limits update\n");
2255 		cpufreq_governor_limits(policy);
2256 		return 0;
2257 	}
2258 
2259 	pr_debug("governor switch\n");
2260 
2261 	/* save old, working values */
2262 	old_gov = policy->governor;
2263 	/* end old governor */
2264 	if (old_gov) {
2265 		cpufreq_stop_governor(policy);
2266 		cpufreq_exit_governor(policy);
2267 	}
2268 
2269 	/* start new governor */
2270 	policy->governor = new_policy->governor;
2271 	ret = cpufreq_init_governor(policy);
2272 	if (!ret) {
2273 		ret = cpufreq_start_governor(policy);
2274 		if (!ret) {
2275 			pr_debug("cpufreq: governor change\n");
2276 			return 0;
2277 		}
2278 		cpufreq_exit_governor(policy);
2279 	}
2280 
2281 	/* new governor failed, so re-start old one */
2282 	pr_debug("starting governor %s failed\n", policy->governor->name);
2283 	if (old_gov) {
2284 		policy->governor = old_gov;
2285 		if (cpufreq_init_governor(policy))
2286 			policy->governor = NULL;
2287 		else
2288 			cpufreq_start_governor(policy);
2289 	}
2290 
2291 	return ret;
2292 }
2293 
2294 /**
2295  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2296  *	@cpu: CPU which shall be re-evaluated
2297  *
2298  *	Useful for policy notifiers which have different necessities
2299  *	at different times.
2300  */
2301 void cpufreq_update_policy(unsigned int cpu)
2302 {
2303 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2304 	struct cpufreq_policy new_policy;
2305 
2306 	if (!policy)
2307 		return;
2308 
2309 	down_write(&policy->rwsem);
2310 
2311 	if (policy_is_inactive(policy))
2312 		goto unlock;
2313 
2314 	pr_debug("updating policy for CPU %u\n", cpu);
2315 	memcpy(&new_policy, policy, sizeof(*policy));
2316 	new_policy.min = policy->user_policy.min;
2317 	new_policy.max = policy->user_policy.max;
2318 
2319 	/*
2320 	 * BIOS might change freq behind our back
2321 	 * -> ask driver for current freq and notify governors about a change
2322 	 */
2323 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2324 		if (cpufreq_suspended)
2325 			goto unlock;
2326 
2327 		new_policy.cur = cpufreq_update_current_freq(policy);
2328 		if (WARN_ON(!new_policy.cur))
2329 			goto unlock;
2330 	}
2331 
2332 	cpufreq_set_policy(policy, &new_policy);
2333 
2334 unlock:
2335 	up_write(&policy->rwsem);
2336 
2337 	cpufreq_cpu_put(policy);
2338 }
2339 EXPORT_SYMBOL(cpufreq_update_policy);
2340 
2341 /*********************************************************************
2342  *               BOOST						     *
2343  *********************************************************************/
2344 static int cpufreq_boost_set_sw(int state)
2345 {
2346 	struct cpufreq_policy *policy;
2347 	int ret = -EINVAL;
2348 
2349 	for_each_active_policy(policy) {
2350 		if (!policy->freq_table)
2351 			continue;
2352 
2353 		ret = cpufreq_frequency_table_cpuinfo(policy,
2354 						      policy->freq_table);
2355 		if (ret) {
2356 			pr_err("%s: Policy frequency update failed\n",
2357 			       __func__);
2358 			break;
2359 		}
2360 
2361 		down_write(&policy->rwsem);
2362 		policy->user_policy.max = policy->max;
2363 		cpufreq_governor_limits(policy);
2364 		up_write(&policy->rwsem);
2365 	}
2366 
2367 	return ret;
2368 }
2369 
2370 int cpufreq_boost_trigger_state(int state)
2371 {
2372 	unsigned long flags;
2373 	int ret = 0;
2374 
2375 	if (cpufreq_driver->boost_enabled == state)
2376 		return 0;
2377 
2378 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2379 	cpufreq_driver->boost_enabled = state;
2380 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2381 
2382 	ret = cpufreq_driver->set_boost(state);
2383 	if (ret) {
2384 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2385 		cpufreq_driver->boost_enabled = !state;
2386 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2387 
2388 		pr_err("%s: Cannot %s BOOST\n",
2389 		       __func__, state ? "enable" : "disable");
2390 	}
2391 
2392 	return ret;
2393 }
2394 
2395 static bool cpufreq_boost_supported(void)
2396 {
2397 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2398 }
2399 
2400 static int create_boost_sysfs_file(void)
2401 {
2402 	int ret;
2403 
2404 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2405 	if (ret)
2406 		pr_err("%s: cannot register global BOOST sysfs file\n",
2407 		       __func__);
2408 
2409 	return ret;
2410 }
2411 
2412 static void remove_boost_sysfs_file(void)
2413 {
2414 	if (cpufreq_boost_supported())
2415 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2416 }
2417 
2418 int cpufreq_enable_boost_support(void)
2419 {
2420 	if (!cpufreq_driver)
2421 		return -EINVAL;
2422 
2423 	if (cpufreq_boost_supported())
2424 		return 0;
2425 
2426 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2427 
2428 	/* This will get removed on driver unregister */
2429 	return create_boost_sysfs_file();
2430 }
2431 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2432 
2433 int cpufreq_boost_enabled(void)
2434 {
2435 	return cpufreq_driver->boost_enabled;
2436 }
2437 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2438 
2439 /*********************************************************************
2440  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2441  *********************************************************************/
2442 static enum cpuhp_state hp_online;
2443 
2444 static int cpuhp_cpufreq_online(unsigned int cpu)
2445 {
2446 	cpufreq_online(cpu);
2447 
2448 	return 0;
2449 }
2450 
2451 static int cpuhp_cpufreq_offline(unsigned int cpu)
2452 {
2453 	cpufreq_offline(cpu);
2454 
2455 	return 0;
2456 }
2457 
2458 /**
2459  * cpufreq_register_driver - register a CPU Frequency driver
2460  * @driver_data: A struct cpufreq_driver containing the values#
2461  * submitted by the CPU Frequency driver.
2462  *
2463  * Registers a CPU Frequency driver to this core code. This code
2464  * returns zero on success, -EEXIST when another driver got here first
2465  * (and isn't unregistered in the meantime).
2466  *
2467  */
2468 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2469 {
2470 	unsigned long flags;
2471 	int ret;
2472 
2473 	if (cpufreq_disabled())
2474 		return -ENODEV;
2475 
2476 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2477 	    !(driver_data->setpolicy || driver_data->target_index ||
2478 		    driver_data->target) ||
2479 	     (driver_data->setpolicy && (driver_data->target_index ||
2480 		    driver_data->target)) ||
2481 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2482 		return -EINVAL;
2483 
2484 	pr_debug("trying to register driver %s\n", driver_data->name);
2485 
2486 	/* Protect against concurrent CPU online/offline. */
2487 	cpus_read_lock();
2488 
2489 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2490 	if (cpufreq_driver) {
2491 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2492 		ret = -EEXIST;
2493 		goto out;
2494 	}
2495 	cpufreq_driver = driver_data;
2496 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2497 
2498 	if (driver_data->setpolicy)
2499 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2500 
2501 	if (cpufreq_boost_supported()) {
2502 		ret = create_boost_sysfs_file();
2503 		if (ret)
2504 			goto err_null_driver;
2505 	}
2506 
2507 	ret = subsys_interface_register(&cpufreq_interface);
2508 	if (ret)
2509 		goto err_boost_unreg;
2510 
2511 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2512 	    list_empty(&cpufreq_policy_list)) {
2513 		/* if all ->init() calls failed, unregister */
2514 		ret = -ENODEV;
2515 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2516 			 driver_data->name);
2517 		goto err_if_unreg;
2518 	}
2519 
2520 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2521 						   "cpufreq:online",
2522 						   cpuhp_cpufreq_online,
2523 						   cpuhp_cpufreq_offline);
2524 	if (ret < 0)
2525 		goto err_if_unreg;
2526 	hp_online = ret;
2527 	ret = 0;
2528 
2529 	pr_debug("driver %s up and running\n", driver_data->name);
2530 	goto out;
2531 
2532 err_if_unreg:
2533 	subsys_interface_unregister(&cpufreq_interface);
2534 err_boost_unreg:
2535 	remove_boost_sysfs_file();
2536 err_null_driver:
2537 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2538 	cpufreq_driver = NULL;
2539 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2540 out:
2541 	cpus_read_unlock();
2542 	return ret;
2543 }
2544 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2545 
2546 /**
2547  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2548  *
2549  * Unregister the current CPUFreq driver. Only call this if you have
2550  * the right to do so, i.e. if you have succeeded in initialising before!
2551  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2552  * currently not initialised.
2553  */
2554 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2555 {
2556 	unsigned long flags;
2557 
2558 	if (!cpufreq_driver || (driver != cpufreq_driver))
2559 		return -EINVAL;
2560 
2561 	pr_debug("unregistering driver %s\n", driver->name);
2562 
2563 	/* Protect against concurrent cpu hotplug */
2564 	cpus_read_lock();
2565 	subsys_interface_unregister(&cpufreq_interface);
2566 	remove_boost_sysfs_file();
2567 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2568 
2569 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2570 
2571 	cpufreq_driver = NULL;
2572 
2573 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2574 	cpus_read_unlock();
2575 
2576 	return 0;
2577 }
2578 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2579 
2580 /*
2581  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2582  * or mutexes when secondary CPUs are halted.
2583  */
2584 static struct syscore_ops cpufreq_syscore_ops = {
2585 	.shutdown = cpufreq_suspend,
2586 };
2587 
2588 struct kobject *cpufreq_global_kobject;
2589 EXPORT_SYMBOL(cpufreq_global_kobject);
2590 
2591 static int __init cpufreq_core_init(void)
2592 {
2593 	if (cpufreq_disabled())
2594 		return -ENODEV;
2595 
2596 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2597 	BUG_ON(!cpufreq_global_kobject);
2598 
2599 	register_syscore_ops(&cpufreq_syscore_ops);
2600 
2601 	return 0;
2602 }
2603 module_param(off, int, 0444);
2604 core_initcall(cpufreq_core_init);
2605