1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 /** 34 * The "cpufreq driver" - the arch- or hardware-dependent low 35 * level driver of CPUFreq support, and its spinlock. This lock 36 * also protects the cpufreq_cpu_data array. 37 */ 38 static struct cpufreq_driver *cpufreq_driver; 39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 41 static DEFINE_RWLOCK(cpufreq_driver_lock); 42 static DEFINE_MUTEX(cpufreq_governor_lock); 43 static LIST_HEAD(cpufreq_policy_list); 44 45 #ifdef CONFIG_HOTPLUG_CPU 46 /* This one keeps track of the previously set governor of a removed CPU */ 47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 48 #endif 49 50 static inline bool has_target(void) 51 { 52 return cpufreq_driver->target_index || cpufreq_driver->target; 53 } 54 55 /* 56 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 57 * sections 58 */ 59 static DECLARE_RWSEM(cpufreq_rwsem); 60 61 /* internal prototypes */ 62 static int __cpufreq_governor(struct cpufreq_policy *policy, 63 unsigned int event); 64 static unsigned int __cpufreq_get(unsigned int cpu); 65 static void handle_update(struct work_struct *work); 66 67 /** 68 * Two notifier lists: the "policy" list is involved in the 69 * validation process for a new CPU frequency policy; the 70 * "transition" list for kernel code that needs to handle 71 * changes to devices when the CPU clock speed changes. 72 * The mutex locks both lists. 73 */ 74 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 75 static struct srcu_notifier_head cpufreq_transition_notifier_list; 76 77 static bool init_cpufreq_transition_notifier_list_called; 78 static int __init init_cpufreq_transition_notifier_list(void) 79 { 80 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 81 init_cpufreq_transition_notifier_list_called = true; 82 return 0; 83 } 84 pure_initcall(init_cpufreq_transition_notifier_list); 85 86 static int off __read_mostly; 87 static int cpufreq_disabled(void) 88 { 89 return off; 90 } 91 void disable_cpufreq(void) 92 { 93 off = 1; 94 } 95 static LIST_HEAD(cpufreq_governor_list); 96 static DEFINE_MUTEX(cpufreq_governor_mutex); 97 98 bool have_governor_per_policy(void) 99 { 100 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 101 } 102 EXPORT_SYMBOL_GPL(have_governor_per_policy); 103 104 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 105 { 106 if (have_governor_per_policy()) 107 return &policy->kobj; 108 else 109 return cpufreq_global_kobject; 110 } 111 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 112 113 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 114 { 115 u64 idle_time; 116 u64 cur_wall_time; 117 u64 busy_time; 118 119 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 120 121 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 122 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 127 128 idle_time = cur_wall_time - busy_time; 129 if (wall) 130 *wall = cputime_to_usecs(cur_wall_time); 131 132 return cputime_to_usecs(idle_time); 133 } 134 135 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 136 { 137 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 138 139 if (idle_time == -1ULL) 140 return get_cpu_idle_time_jiffy(cpu, wall); 141 else if (!io_busy) 142 idle_time += get_cpu_iowait_time_us(cpu, wall); 143 144 return idle_time; 145 } 146 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 147 148 /* 149 * This is a generic cpufreq init() routine which can be used by cpufreq 150 * drivers of SMP systems. It will do following: 151 * - validate & show freq table passed 152 * - set policies transition latency 153 * - policy->cpus with all possible CPUs 154 */ 155 int cpufreq_generic_init(struct cpufreq_policy *policy, 156 struct cpufreq_frequency_table *table, 157 unsigned int transition_latency) 158 { 159 int ret; 160 161 ret = cpufreq_table_validate_and_show(policy, table); 162 if (ret) { 163 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 164 return ret; 165 } 166 167 policy->cpuinfo.transition_latency = transition_latency; 168 169 /* 170 * The driver only supports the SMP configuartion where all processors 171 * share the clock and voltage and clock. 172 */ 173 cpumask_setall(policy->cpus); 174 175 return 0; 176 } 177 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 178 179 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 180 { 181 struct cpufreq_policy *policy = NULL; 182 unsigned long flags; 183 184 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 185 return NULL; 186 187 if (!down_read_trylock(&cpufreq_rwsem)) 188 return NULL; 189 190 /* get the cpufreq driver */ 191 read_lock_irqsave(&cpufreq_driver_lock, flags); 192 193 if (cpufreq_driver) { 194 /* get the CPU */ 195 policy = per_cpu(cpufreq_cpu_data, cpu); 196 if (policy) 197 kobject_get(&policy->kobj); 198 } 199 200 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 201 202 if (!policy) 203 up_read(&cpufreq_rwsem); 204 205 return policy; 206 } 207 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 208 209 void cpufreq_cpu_put(struct cpufreq_policy *policy) 210 { 211 if (cpufreq_disabled()) 212 return; 213 214 kobject_put(&policy->kobj); 215 up_read(&cpufreq_rwsem); 216 } 217 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 218 219 /********************************************************************* 220 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 221 *********************************************************************/ 222 223 /** 224 * adjust_jiffies - adjust the system "loops_per_jiffy" 225 * 226 * This function alters the system "loops_per_jiffy" for the clock 227 * speed change. Note that loops_per_jiffy cannot be updated on SMP 228 * systems as each CPU might be scaled differently. So, use the arch 229 * per-CPU loops_per_jiffy value wherever possible. 230 */ 231 #ifndef CONFIG_SMP 232 static unsigned long l_p_j_ref; 233 static unsigned int l_p_j_ref_freq; 234 235 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 236 { 237 if (ci->flags & CPUFREQ_CONST_LOOPS) 238 return; 239 240 if (!l_p_j_ref_freq) { 241 l_p_j_ref = loops_per_jiffy; 242 l_p_j_ref_freq = ci->old; 243 pr_debug("saving %lu as reference value for loops_per_jiffy; " 244 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 245 } 246 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) || 247 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 248 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 249 ci->new); 250 pr_debug("scaling loops_per_jiffy to %lu " 251 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 252 } 253 } 254 #else 255 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 256 { 257 return; 258 } 259 #endif 260 261 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 262 struct cpufreq_freqs *freqs, unsigned int state) 263 { 264 BUG_ON(irqs_disabled()); 265 266 if (cpufreq_disabled()) 267 return; 268 269 freqs->flags = cpufreq_driver->flags; 270 pr_debug("notification %u of frequency transition to %u kHz\n", 271 state, freqs->new); 272 273 switch (state) { 274 275 case CPUFREQ_PRECHANGE: 276 /* detect if the driver reported a value as "old frequency" 277 * which is not equal to what the cpufreq core thinks is 278 * "old frequency". 279 */ 280 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 281 if ((policy) && (policy->cpu == freqs->cpu) && 282 (policy->cur) && (policy->cur != freqs->old)) { 283 pr_debug("Warning: CPU frequency is" 284 " %u, cpufreq assumed %u kHz.\n", 285 freqs->old, policy->cur); 286 freqs->old = policy->cur; 287 } 288 } 289 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 290 CPUFREQ_PRECHANGE, freqs); 291 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 292 break; 293 294 case CPUFREQ_POSTCHANGE: 295 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 296 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 297 (unsigned long)freqs->cpu); 298 trace_cpu_frequency(freqs->new, freqs->cpu); 299 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 300 CPUFREQ_POSTCHANGE, freqs); 301 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 302 policy->cur = freqs->new; 303 break; 304 } 305 } 306 307 /** 308 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 309 * on frequency transition. 310 * 311 * This function calls the transition notifiers and the "adjust_jiffies" 312 * function. It is called twice on all CPU frequency changes that have 313 * external effects. 314 */ 315 void cpufreq_notify_transition(struct cpufreq_policy *policy, 316 struct cpufreq_freqs *freqs, unsigned int state) 317 { 318 for_each_cpu(freqs->cpu, policy->cpus) 319 __cpufreq_notify_transition(policy, freqs, state); 320 } 321 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 322 323 324 /********************************************************************* 325 * SYSFS INTERFACE * 326 *********************************************************************/ 327 328 static struct cpufreq_governor *__find_governor(const char *str_governor) 329 { 330 struct cpufreq_governor *t; 331 332 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 333 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 334 return t; 335 336 return NULL; 337 } 338 339 /** 340 * cpufreq_parse_governor - parse a governor string 341 */ 342 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 343 struct cpufreq_governor **governor) 344 { 345 int err = -EINVAL; 346 347 if (!cpufreq_driver) 348 goto out; 349 350 if (cpufreq_driver->setpolicy) { 351 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 352 *policy = CPUFREQ_POLICY_PERFORMANCE; 353 err = 0; 354 } else if (!strnicmp(str_governor, "powersave", 355 CPUFREQ_NAME_LEN)) { 356 *policy = CPUFREQ_POLICY_POWERSAVE; 357 err = 0; 358 } 359 } else if (has_target()) { 360 struct cpufreq_governor *t; 361 362 mutex_lock(&cpufreq_governor_mutex); 363 364 t = __find_governor(str_governor); 365 366 if (t == NULL) { 367 int ret; 368 369 mutex_unlock(&cpufreq_governor_mutex); 370 ret = request_module("cpufreq_%s", str_governor); 371 mutex_lock(&cpufreq_governor_mutex); 372 373 if (ret == 0) 374 t = __find_governor(str_governor); 375 } 376 377 if (t != NULL) { 378 *governor = t; 379 err = 0; 380 } 381 382 mutex_unlock(&cpufreq_governor_mutex); 383 } 384 out: 385 return err; 386 } 387 388 /** 389 * cpufreq_per_cpu_attr_read() / show_##file_name() - 390 * print out cpufreq information 391 * 392 * Write out information from cpufreq_driver->policy[cpu]; object must be 393 * "unsigned int". 394 */ 395 396 #define show_one(file_name, object) \ 397 static ssize_t show_##file_name \ 398 (struct cpufreq_policy *policy, char *buf) \ 399 { \ 400 return sprintf(buf, "%u\n", policy->object); \ 401 } 402 403 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 404 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 405 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 406 show_one(scaling_min_freq, min); 407 show_one(scaling_max_freq, max); 408 show_one(scaling_cur_freq, cur); 409 410 static int cpufreq_set_policy(struct cpufreq_policy *policy, 411 struct cpufreq_policy *new_policy); 412 413 /** 414 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 415 */ 416 #define store_one(file_name, object) \ 417 static ssize_t store_##file_name \ 418 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 419 { \ 420 int ret; \ 421 struct cpufreq_policy new_policy; \ 422 \ 423 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 424 if (ret) \ 425 return -EINVAL; \ 426 \ 427 ret = sscanf(buf, "%u", &new_policy.object); \ 428 if (ret != 1) \ 429 return -EINVAL; \ 430 \ 431 ret = cpufreq_set_policy(policy, &new_policy); \ 432 policy->user_policy.object = policy->object; \ 433 \ 434 return ret ? ret : count; \ 435 } 436 437 store_one(scaling_min_freq, min); 438 store_one(scaling_max_freq, max); 439 440 /** 441 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 442 */ 443 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 444 char *buf) 445 { 446 unsigned int cur_freq = __cpufreq_get(policy->cpu); 447 if (!cur_freq) 448 return sprintf(buf, "<unknown>"); 449 return sprintf(buf, "%u\n", cur_freq); 450 } 451 452 /** 453 * show_scaling_governor - show the current policy for the specified CPU 454 */ 455 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 456 { 457 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 458 return sprintf(buf, "powersave\n"); 459 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 460 return sprintf(buf, "performance\n"); 461 else if (policy->governor) 462 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 463 policy->governor->name); 464 return -EINVAL; 465 } 466 467 /** 468 * store_scaling_governor - store policy for the specified CPU 469 */ 470 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 471 const char *buf, size_t count) 472 { 473 int ret; 474 char str_governor[16]; 475 struct cpufreq_policy new_policy; 476 477 ret = cpufreq_get_policy(&new_policy, policy->cpu); 478 if (ret) 479 return ret; 480 481 ret = sscanf(buf, "%15s", str_governor); 482 if (ret != 1) 483 return -EINVAL; 484 485 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 486 &new_policy.governor)) 487 return -EINVAL; 488 489 ret = cpufreq_set_policy(policy, &new_policy); 490 491 policy->user_policy.policy = policy->policy; 492 policy->user_policy.governor = policy->governor; 493 494 if (ret) 495 return ret; 496 else 497 return count; 498 } 499 500 /** 501 * show_scaling_driver - show the cpufreq driver currently loaded 502 */ 503 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 504 { 505 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 506 } 507 508 /** 509 * show_scaling_available_governors - show the available CPUfreq governors 510 */ 511 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 512 char *buf) 513 { 514 ssize_t i = 0; 515 struct cpufreq_governor *t; 516 517 if (!has_target()) { 518 i += sprintf(buf, "performance powersave"); 519 goto out; 520 } 521 522 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 523 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 524 - (CPUFREQ_NAME_LEN + 2))) 525 goto out; 526 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 527 } 528 out: 529 i += sprintf(&buf[i], "\n"); 530 return i; 531 } 532 533 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 534 { 535 ssize_t i = 0; 536 unsigned int cpu; 537 538 for_each_cpu(cpu, mask) { 539 if (i) 540 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 541 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 542 if (i >= (PAGE_SIZE - 5)) 543 break; 544 } 545 i += sprintf(&buf[i], "\n"); 546 return i; 547 } 548 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 549 550 /** 551 * show_related_cpus - show the CPUs affected by each transition even if 552 * hw coordination is in use 553 */ 554 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 555 { 556 return cpufreq_show_cpus(policy->related_cpus, buf); 557 } 558 559 /** 560 * show_affected_cpus - show the CPUs affected by each transition 561 */ 562 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 563 { 564 return cpufreq_show_cpus(policy->cpus, buf); 565 } 566 567 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 568 const char *buf, size_t count) 569 { 570 unsigned int freq = 0; 571 unsigned int ret; 572 573 if (!policy->governor || !policy->governor->store_setspeed) 574 return -EINVAL; 575 576 ret = sscanf(buf, "%u", &freq); 577 if (ret != 1) 578 return -EINVAL; 579 580 policy->governor->store_setspeed(policy, freq); 581 582 return count; 583 } 584 585 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 586 { 587 if (!policy->governor || !policy->governor->show_setspeed) 588 return sprintf(buf, "<unsupported>\n"); 589 590 return policy->governor->show_setspeed(policy, buf); 591 } 592 593 /** 594 * show_bios_limit - show the current cpufreq HW/BIOS limitation 595 */ 596 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 597 { 598 unsigned int limit; 599 int ret; 600 if (cpufreq_driver->bios_limit) { 601 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 602 if (!ret) 603 return sprintf(buf, "%u\n", limit); 604 } 605 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 606 } 607 608 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 609 cpufreq_freq_attr_ro(cpuinfo_min_freq); 610 cpufreq_freq_attr_ro(cpuinfo_max_freq); 611 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 612 cpufreq_freq_attr_ro(scaling_available_governors); 613 cpufreq_freq_attr_ro(scaling_driver); 614 cpufreq_freq_attr_ro(scaling_cur_freq); 615 cpufreq_freq_attr_ro(bios_limit); 616 cpufreq_freq_attr_ro(related_cpus); 617 cpufreq_freq_attr_ro(affected_cpus); 618 cpufreq_freq_attr_rw(scaling_min_freq); 619 cpufreq_freq_attr_rw(scaling_max_freq); 620 cpufreq_freq_attr_rw(scaling_governor); 621 cpufreq_freq_attr_rw(scaling_setspeed); 622 623 static struct attribute *default_attrs[] = { 624 &cpuinfo_min_freq.attr, 625 &cpuinfo_max_freq.attr, 626 &cpuinfo_transition_latency.attr, 627 &scaling_min_freq.attr, 628 &scaling_max_freq.attr, 629 &affected_cpus.attr, 630 &related_cpus.attr, 631 &scaling_governor.attr, 632 &scaling_driver.attr, 633 &scaling_available_governors.attr, 634 &scaling_setspeed.attr, 635 NULL 636 }; 637 638 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 639 #define to_attr(a) container_of(a, struct freq_attr, attr) 640 641 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 642 { 643 struct cpufreq_policy *policy = to_policy(kobj); 644 struct freq_attr *fattr = to_attr(attr); 645 ssize_t ret; 646 647 if (!down_read_trylock(&cpufreq_rwsem)) 648 return -EINVAL; 649 650 down_read(&policy->rwsem); 651 652 if (fattr->show) 653 ret = fattr->show(policy, buf); 654 else 655 ret = -EIO; 656 657 up_read(&policy->rwsem); 658 up_read(&cpufreq_rwsem); 659 660 return ret; 661 } 662 663 static ssize_t store(struct kobject *kobj, struct attribute *attr, 664 const char *buf, size_t count) 665 { 666 struct cpufreq_policy *policy = to_policy(kobj); 667 struct freq_attr *fattr = to_attr(attr); 668 ssize_t ret = -EINVAL; 669 670 get_online_cpus(); 671 672 if (!cpu_online(policy->cpu)) 673 goto unlock; 674 675 if (!down_read_trylock(&cpufreq_rwsem)) 676 goto unlock; 677 678 down_write(&policy->rwsem); 679 680 if (fattr->store) 681 ret = fattr->store(policy, buf, count); 682 else 683 ret = -EIO; 684 685 up_write(&policy->rwsem); 686 687 up_read(&cpufreq_rwsem); 688 unlock: 689 put_online_cpus(); 690 691 return ret; 692 } 693 694 static void cpufreq_sysfs_release(struct kobject *kobj) 695 { 696 struct cpufreq_policy *policy = to_policy(kobj); 697 pr_debug("last reference is dropped\n"); 698 complete(&policy->kobj_unregister); 699 } 700 701 static const struct sysfs_ops sysfs_ops = { 702 .show = show, 703 .store = store, 704 }; 705 706 static struct kobj_type ktype_cpufreq = { 707 .sysfs_ops = &sysfs_ops, 708 .default_attrs = default_attrs, 709 .release = cpufreq_sysfs_release, 710 }; 711 712 struct kobject *cpufreq_global_kobject; 713 EXPORT_SYMBOL(cpufreq_global_kobject); 714 715 static int cpufreq_global_kobject_usage; 716 717 int cpufreq_get_global_kobject(void) 718 { 719 if (!cpufreq_global_kobject_usage++) 720 return kobject_add(cpufreq_global_kobject, 721 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 722 723 return 0; 724 } 725 EXPORT_SYMBOL(cpufreq_get_global_kobject); 726 727 void cpufreq_put_global_kobject(void) 728 { 729 if (!--cpufreq_global_kobject_usage) 730 kobject_del(cpufreq_global_kobject); 731 } 732 EXPORT_SYMBOL(cpufreq_put_global_kobject); 733 734 int cpufreq_sysfs_create_file(const struct attribute *attr) 735 { 736 int ret = cpufreq_get_global_kobject(); 737 738 if (!ret) { 739 ret = sysfs_create_file(cpufreq_global_kobject, attr); 740 if (ret) 741 cpufreq_put_global_kobject(); 742 } 743 744 return ret; 745 } 746 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 747 748 void cpufreq_sysfs_remove_file(const struct attribute *attr) 749 { 750 sysfs_remove_file(cpufreq_global_kobject, attr); 751 cpufreq_put_global_kobject(); 752 } 753 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 754 755 /* symlink affected CPUs */ 756 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 757 { 758 unsigned int j; 759 int ret = 0; 760 761 for_each_cpu(j, policy->cpus) { 762 struct device *cpu_dev; 763 764 if (j == policy->cpu) 765 continue; 766 767 pr_debug("Adding link for CPU: %u\n", j); 768 cpu_dev = get_cpu_device(j); 769 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 770 "cpufreq"); 771 if (ret) 772 break; 773 } 774 return ret; 775 } 776 777 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 778 struct device *dev) 779 { 780 struct freq_attr **drv_attr; 781 int ret = 0; 782 783 /* prepare interface data */ 784 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 785 &dev->kobj, "cpufreq"); 786 if (ret) 787 return ret; 788 789 /* set up files for this cpu device */ 790 drv_attr = cpufreq_driver->attr; 791 while ((drv_attr) && (*drv_attr)) { 792 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 793 if (ret) 794 goto err_out_kobj_put; 795 drv_attr++; 796 } 797 if (cpufreq_driver->get) { 798 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 799 if (ret) 800 goto err_out_kobj_put; 801 } 802 if (has_target()) { 803 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 804 if (ret) 805 goto err_out_kobj_put; 806 } 807 if (cpufreq_driver->bios_limit) { 808 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 809 if (ret) 810 goto err_out_kobj_put; 811 } 812 813 ret = cpufreq_add_dev_symlink(policy); 814 if (ret) 815 goto err_out_kobj_put; 816 817 return ret; 818 819 err_out_kobj_put: 820 kobject_put(&policy->kobj); 821 wait_for_completion(&policy->kobj_unregister); 822 return ret; 823 } 824 825 static void cpufreq_init_policy(struct cpufreq_policy *policy) 826 { 827 struct cpufreq_policy new_policy; 828 int ret = 0; 829 830 memcpy(&new_policy, policy, sizeof(*policy)); 831 /* assure that the starting sequence is run in cpufreq_set_policy */ 832 policy->governor = NULL; 833 834 /* set default policy */ 835 ret = cpufreq_set_policy(policy, &new_policy); 836 policy->user_policy.policy = policy->policy; 837 policy->user_policy.governor = policy->governor; 838 839 if (ret) { 840 pr_debug("setting policy failed\n"); 841 if (cpufreq_driver->exit) 842 cpufreq_driver->exit(policy); 843 } 844 } 845 846 #ifdef CONFIG_HOTPLUG_CPU 847 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 848 unsigned int cpu, struct device *dev, 849 bool frozen) 850 { 851 int ret = 0; 852 unsigned long flags; 853 854 if (has_target()) { 855 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 856 if (ret) { 857 pr_err("%s: Failed to stop governor\n", __func__); 858 return ret; 859 } 860 } 861 862 down_write(&policy->rwsem); 863 864 write_lock_irqsave(&cpufreq_driver_lock, flags); 865 866 cpumask_set_cpu(cpu, policy->cpus); 867 per_cpu(cpufreq_cpu_data, cpu) = policy; 868 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 869 870 up_write(&policy->rwsem); 871 872 if (has_target()) { 873 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 874 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 875 pr_err("%s: Failed to start governor\n", __func__); 876 return ret; 877 } 878 } 879 880 /* Don't touch sysfs links during light-weight init */ 881 if (!frozen) 882 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 883 884 return ret; 885 } 886 #endif 887 888 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 889 { 890 struct cpufreq_policy *policy; 891 unsigned long flags; 892 893 read_lock_irqsave(&cpufreq_driver_lock, flags); 894 895 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 896 897 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 898 899 return policy; 900 } 901 902 static struct cpufreq_policy *cpufreq_policy_alloc(void) 903 { 904 struct cpufreq_policy *policy; 905 906 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 907 if (!policy) 908 return NULL; 909 910 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 911 goto err_free_policy; 912 913 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 914 goto err_free_cpumask; 915 916 INIT_LIST_HEAD(&policy->policy_list); 917 init_rwsem(&policy->rwsem); 918 919 return policy; 920 921 err_free_cpumask: 922 free_cpumask_var(policy->cpus); 923 err_free_policy: 924 kfree(policy); 925 926 return NULL; 927 } 928 929 static void cpufreq_policy_free(struct cpufreq_policy *policy) 930 { 931 free_cpumask_var(policy->related_cpus); 932 free_cpumask_var(policy->cpus); 933 kfree(policy); 934 } 935 936 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 937 { 938 if (WARN_ON(cpu == policy->cpu)) 939 return; 940 941 down_write(&policy->rwsem); 942 943 policy->last_cpu = policy->cpu; 944 policy->cpu = cpu; 945 946 up_write(&policy->rwsem); 947 948 cpufreq_frequency_table_update_policy_cpu(policy); 949 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 950 CPUFREQ_UPDATE_POLICY_CPU, policy); 951 } 952 953 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif, 954 bool frozen) 955 { 956 unsigned int j, cpu = dev->id; 957 int ret = -ENOMEM; 958 struct cpufreq_policy *policy; 959 unsigned long flags; 960 #ifdef CONFIG_HOTPLUG_CPU 961 struct cpufreq_policy *tpolicy; 962 struct cpufreq_governor *gov; 963 #endif 964 965 if (cpu_is_offline(cpu)) 966 return 0; 967 968 pr_debug("adding CPU %u\n", cpu); 969 970 #ifdef CONFIG_SMP 971 /* check whether a different CPU already registered this 972 * CPU because it is in the same boat. */ 973 policy = cpufreq_cpu_get(cpu); 974 if (unlikely(policy)) { 975 cpufreq_cpu_put(policy); 976 return 0; 977 } 978 #endif 979 980 if (!down_read_trylock(&cpufreq_rwsem)) 981 return 0; 982 983 #ifdef CONFIG_HOTPLUG_CPU 984 /* Check if this cpu was hot-unplugged earlier and has siblings */ 985 read_lock_irqsave(&cpufreq_driver_lock, flags); 986 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) { 987 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) { 988 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 989 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen); 990 up_read(&cpufreq_rwsem); 991 return ret; 992 } 993 } 994 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 995 #endif 996 997 if (frozen) 998 /* Restore the saved policy when doing light-weight init */ 999 policy = cpufreq_policy_restore(cpu); 1000 else 1001 policy = cpufreq_policy_alloc(); 1002 1003 if (!policy) 1004 goto nomem_out; 1005 1006 1007 /* 1008 * In the resume path, since we restore a saved policy, the assignment 1009 * to policy->cpu is like an update of the existing policy, rather than 1010 * the creation of a brand new one. So we need to perform this update 1011 * by invoking update_policy_cpu(). 1012 */ 1013 if (frozen && cpu != policy->cpu) 1014 update_policy_cpu(policy, cpu); 1015 else 1016 policy->cpu = cpu; 1017 1018 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1019 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1020 1021 init_completion(&policy->kobj_unregister); 1022 INIT_WORK(&policy->update, handle_update); 1023 1024 /* call driver. From then on the cpufreq must be able 1025 * to accept all calls to ->verify and ->setpolicy for this CPU 1026 */ 1027 ret = cpufreq_driver->init(policy); 1028 if (ret) { 1029 pr_debug("initialization failed\n"); 1030 goto err_set_policy_cpu; 1031 } 1032 1033 if (cpufreq_driver->get) { 1034 policy->cur = cpufreq_driver->get(policy->cpu); 1035 if (!policy->cur) { 1036 pr_err("%s: ->get() failed\n", __func__); 1037 goto err_get_freq; 1038 } 1039 } 1040 1041 /* related cpus should atleast have policy->cpus */ 1042 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1043 1044 /* 1045 * affected cpus must always be the one, which are online. We aren't 1046 * managing offline cpus here. 1047 */ 1048 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1049 1050 policy->user_policy.min = policy->min; 1051 policy->user_policy.max = policy->max; 1052 1053 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1054 CPUFREQ_START, policy); 1055 1056 #ifdef CONFIG_HOTPLUG_CPU 1057 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 1058 if (gov) { 1059 policy->governor = gov; 1060 pr_debug("Restoring governor %s for cpu %d\n", 1061 policy->governor->name, cpu); 1062 } 1063 #endif 1064 1065 write_lock_irqsave(&cpufreq_driver_lock, flags); 1066 for_each_cpu(j, policy->cpus) 1067 per_cpu(cpufreq_cpu_data, j) = policy; 1068 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1069 1070 if (!frozen) { 1071 ret = cpufreq_add_dev_interface(policy, dev); 1072 if (ret) 1073 goto err_out_unregister; 1074 } 1075 1076 write_lock_irqsave(&cpufreq_driver_lock, flags); 1077 list_add(&policy->policy_list, &cpufreq_policy_list); 1078 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1079 1080 cpufreq_init_policy(policy); 1081 1082 kobject_uevent(&policy->kobj, KOBJ_ADD); 1083 up_read(&cpufreq_rwsem); 1084 1085 pr_debug("initialization complete\n"); 1086 1087 return 0; 1088 1089 err_out_unregister: 1090 write_lock_irqsave(&cpufreq_driver_lock, flags); 1091 for_each_cpu(j, policy->cpus) 1092 per_cpu(cpufreq_cpu_data, j) = NULL; 1093 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1094 1095 err_get_freq: 1096 if (cpufreq_driver->exit) 1097 cpufreq_driver->exit(policy); 1098 err_set_policy_cpu: 1099 cpufreq_policy_free(policy); 1100 nomem_out: 1101 up_read(&cpufreq_rwsem); 1102 1103 return ret; 1104 } 1105 1106 /** 1107 * cpufreq_add_dev - add a CPU device 1108 * 1109 * Adds the cpufreq interface for a CPU device. 1110 * 1111 * The Oracle says: try running cpufreq registration/unregistration concurrently 1112 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1113 * mess up, but more thorough testing is needed. - Mathieu 1114 */ 1115 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1116 { 1117 return __cpufreq_add_dev(dev, sif, false); 1118 } 1119 1120 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy, 1121 unsigned int old_cpu, bool frozen) 1122 { 1123 struct device *cpu_dev; 1124 int ret; 1125 1126 /* first sibling now owns the new sysfs dir */ 1127 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu)); 1128 1129 /* Don't touch sysfs files during light-weight tear-down */ 1130 if (frozen) 1131 return cpu_dev->id; 1132 1133 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1134 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1135 if (ret) { 1136 pr_err("%s: Failed to move kobj: %d", __func__, ret); 1137 1138 down_write(&policy->rwsem); 1139 cpumask_set_cpu(old_cpu, policy->cpus); 1140 up_write(&policy->rwsem); 1141 1142 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1143 "cpufreq"); 1144 1145 return -EINVAL; 1146 } 1147 1148 return cpu_dev->id; 1149 } 1150 1151 static int __cpufreq_remove_dev_prepare(struct device *dev, 1152 struct subsys_interface *sif, 1153 bool frozen) 1154 { 1155 unsigned int cpu = dev->id, cpus; 1156 int new_cpu, ret; 1157 unsigned long flags; 1158 struct cpufreq_policy *policy; 1159 1160 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1161 1162 write_lock_irqsave(&cpufreq_driver_lock, flags); 1163 1164 policy = per_cpu(cpufreq_cpu_data, cpu); 1165 1166 /* Save the policy somewhere when doing a light-weight tear-down */ 1167 if (frozen) 1168 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1169 1170 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1171 1172 if (!policy) { 1173 pr_debug("%s: No cpu_data found\n", __func__); 1174 return -EINVAL; 1175 } 1176 1177 if (has_target()) { 1178 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1179 if (ret) { 1180 pr_err("%s: Failed to stop governor\n", __func__); 1181 return ret; 1182 } 1183 } 1184 1185 #ifdef CONFIG_HOTPLUG_CPU 1186 if (!cpufreq_driver->setpolicy) 1187 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1188 policy->governor->name, CPUFREQ_NAME_LEN); 1189 #endif 1190 1191 down_read(&policy->rwsem); 1192 cpus = cpumask_weight(policy->cpus); 1193 up_read(&policy->rwsem); 1194 1195 if (cpu != policy->cpu) { 1196 if (!frozen) 1197 sysfs_remove_link(&dev->kobj, "cpufreq"); 1198 } else if (cpus > 1) { 1199 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen); 1200 if (new_cpu >= 0) { 1201 update_policy_cpu(policy, new_cpu); 1202 1203 if (!frozen) { 1204 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1205 __func__, new_cpu, cpu); 1206 } 1207 } 1208 } 1209 1210 return 0; 1211 } 1212 1213 static int __cpufreq_remove_dev_finish(struct device *dev, 1214 struct subsys_interface *sif, 1215 bool frozen) 1216 { 1217 unsigned int cpu = dev->id, cpus; 1218 int ret; 1219 unsigned long flags; 1220 struct cpufreq_policy *policy; 1221 struct kobject *kobj; 1222 struct completion *cmp; 1223 1224 read_lock_irqsave(&cpufreq_driver_lock, flags); 1225 policy = per_cpu(cpufreq_cpu_data, cpu); 1226 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1227 1228 if (!policy) { 1229 pr_debug("%s: No cpu_data found\n", __func__); 1230 return -EINVAL; 1231 } 1232 1233 down_write(&policy->rwsem); 1234 cpus = cpumask_weight(policy->cpus); 1235 1236 if (cpus > 1) 1237 cpumask_clear_cpu(cpu, policy->cpus); 1238 up_write(&policy->rwsem); 1239 1240 /* If cpu is last user of policy, free policy */ 1241 if (cpus == 1) { 1242 if (has_target()) { 1243 ret = __cpufreq_governor(policy, 1244 CPUFREQ_GOV_POLICY_EXIT); 1245 if (ret) { 1246 pr_err("%s: Failed to exit governor\n", 1247 __func__); 1248 return ret; 1249 } 1250 } 1251 1252 if (!frozen) { 1253 down_read(&policy->rwsem); 1254 kobj = &policy->kobj; 1255 cmp = &policy->kobj_unregister; 1256 up_read(&policy->rwsem); 1257 kobject_put(kobj); 1258 1259 /* 1260 * We need to make sure that the underlying kobj is 1261 * actually not referenced anymore by anybody before we 1262 * proceed with unloading. 1263 */ 1264 pr_debug("waiting for dropping of refcount\n"); 1265 wait_for_completion(cmp); 1266 pr_debug("wait complete\n"); 1267 } 1268 1269 /* 1270 * Perform the ->exit() even during light-weight tear-down, 1271 * since this is a core component, and is essential for the 1272 * subsequent light-weight ->init() to succeed. 1273 */ 1274 if (cpufreq_driver->exit) 1275 cpufreq_driver->exit(policy); 1276 1277 /* Remove policy from list of active policies */ 1278 write_lock_irqsave(&cpufreq_driver_lock, flags); 1279 list_del(&policy->policy_list); 1280 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1281 1282 if (!frozen) 1283 cpufreq_policy_free(policy); 1284 } else { 1285 if (has_target()) { 1286 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 1287 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 1288 pr_err("%s: Failed to start governor\n", 1289 __func__); 1290 return ret; 1291 } 1292 } 1293 } 1294 1295 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1296 return 0; 1297 } 1298 1299 /** 1300 * cpufreq_remove_dev - remove a CPU device 1301 * 1302 * Removes the cpufreq interface for a CPU device. 1303 */ 1304 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1305 { 1306 unsigned int cpu = dev->id; 1307 int ret; 1308 1309 if (cpu_is_offline(cpu)) 1310 return 0; 1311 1312 ret = __cpufreq_remove_dev_prepare(dev, sif, false); 1313 1314 if (!ret) 1315 ret = __cpufreq_remove_dev_finish(dev, sif, false); 1316 1317 return ret; 1318 } 1319 1320 static void handle_update(struct work_struct *work) 1321 { 1322 struct cpufreq_policy *policy = 1323 container_of(work, struct cpufreq_policy, update); 1324 unsigned int cpu = policy->cpu; 1325 pr_debug("handle_update for cpu %u called\n", cpu); 1326 cpufreq_update_policy(cpu); 1327 } 1328 1329 /** 1330 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1331 * in deep trouble. 1332 * @cpu: cpu number 1333 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1334 * @new_freq: CPU frequency the CPU actually runs at 1335 * 1336 * We adjust to current frequency first, and need to clean up later. 1337 * So either call to cpufreq_update_policy() or schedule handle_update()). 1338 */ 1339 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1340 unsigned int new_freq) 1341 { 1342 struct cpufreq_policy *policy; 1343 struct cpufreq_freqs freqs; 1344 unsigned long flags; 1345 1346 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1347 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1348 1349 freqs.old = old_freq; 1350 freqs.new = new_freq; 1351 1352 read_lock_irqsave(&cpufreq_driver_lock, flags); 1353 policy = per_cpu(cpufreq_cpu_data, cpu); 1354 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1355 1356 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); 1357 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); 1358 } 1359 1360 /** 1361 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1362 * @cpu: CPU number 1363 * 1364 * This is the last known freq, without actually getting it from the driver. 1365 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1366 */ 1367 unsigned int cpufreq_quick_get(unsigned int cpu) 1368 { 1369 struct cpufreq_policy *policy; 1370 unsigned int ret_freq = 0; 1371 1372 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1373 return cpufreq_driver->get(cpu); 1374 1375 policy = cpufreq_cpu_get(cpu); 1376 if (policy) { 1377 ret_freq = policy->cur; 1378 cpufreq_cpu_put(policy); 1379 } 1380 1381 return ret_freq; 1382 } 1383 EXPORT_SYMBOL(cpufreq_quick_get); 1384 1385 /** 1386 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1387 * @cpu: CPU number 1388 * 1389 * Just return the max possible frequency for a given CPU. 1390 */ 1391 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1392 { 1393 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1394 unsigned int ret_freq = 0; 1395 1396 if (policy) { 1397 ret_freq = policy->max; 1398 cpufreq_cpu_put(policy); 1399 } 1400 1401 return ret_freq; 1402 } 1403 EXPORT_SYMBOL(cpufreq_quick_get_max); 1404 1405 static unsigned int __cpufreq_get(unsigned int cpu) 1406 { 1407 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1408 unsigned int ret_freq = 0; 1409 1410 if (!cpufreq_driver->get) 1411 return ret_freq; 1412 1413 ret_freq = cpufreq_driver->get(cpu); 1414 1415 if (ret_freq && policy->cur && 1416 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1417 /* verify no discrepancy between actual and 1418 saved value exists */ 1419 if (unlikely(ret_freq != policy->cur)) { 1420 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1421 schedule_work(&policy->update); 1422 } 1423 } 1424 1425 return ret_freq; 1426 } 1427 1428 /** 1429 * cpufreq_get - get the current CPU frequency (in kHz) 1430 * @cpu: CPU number 1431 * 1432 * Get the CPU current (static) CPU frequency 1433 */ 1434 unsigned int cpufreq_get(unsigned int cpu) 1435 { 1436 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1437 unsigned int ret_freq = 0; 1438 1439 if (cpufreq_disabled() || !cpufreq_driver) 1440 return -ENOENT; 1441 1442 BUG_ON(!policy); 1443 1444 if (!down_read_trylock(&cpufreq_rwsem)) 1445 return 0; 1446 1447 down_read(&policy->rwsem); 1448 1449 ret_freq = __cpufreq_get(cpu); 1450 1451 up_read(&policy->rwsem); 1452 up_read(&cpufreq_rwsem); 1453 1454 return ret_freq; 1455 } 1456 EXPORT_SYMBOL(cpufreq_get); 1457 1458 static struct subsys_interface cpufreq_interface = { 1459 .name = "cpufreq", 1460 .subsys = &cpu_subsys, 1461 .add_dev = cpufreq_add_dev, 1462 .remove_dev = cpufreq_remove_dev, 1463 }; 1464 1465 /** 1466 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1467 * 1468 * This function is only executed for the boot processor. The other CPUs 1469 * have been put offline by means of CPU hotplug. 1470 */ 1471 static int cpufreq_bp_suspend(void) 1472 { 1473 int ret = 0; 1474 1475 int cpu = smp_processor_id(); 1476 struct cpufreq_policy *policy; 1477 1478 pr_debug("suspending cpu %u\n", cpu); 1479 1480 /* If there's no policy for the boot CPU, we have nothing to do. */ 1481 policy = cpufreq_cpu_get(cpu); 1482 if (!policy) 1483 return 0; 1484 1485 if (cpufreq_driver->suspend) { 1486 ret = cpufreq_driver->suspend(policy); 1487 if (ret) 1488 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1489 "step on CPU %u\n", policy->cpu); 1490 } 1491 1492 cpufreq_cpu_put(policy); 1493 return ret; 1494 } 1495 1496 /** 1497 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1498 * 1499 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1500 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1501 * restored. It will verify that the current freq is in sync with 1502 * what we believe it to be. This is a bit later than when it 1503 * should be, but nonethteless it's better than calling 1504 * cpufreq_driver->get() here which might re-enable interrupts... 1505 * 1506 * This function is only executed for the boot CPU. The other CPUs have not 1507 * been turned on yet. 1508 */ 1509 static void cpufreq_bp_resume(void) 1510 { 1511 int ret = 0; 1512 1513 int cpu = smp_processor_id(); 1514 struct cpufreq_policy *policy; 1515 1516 pr_debug("resuming cpu %u\n", cpu); 1517 1518 /* If there's no policy for the boot CPU, we have nothing to do. */ 1519 policy = cpufreq_cpu_get(cpu); 1520 if (!policy) 1521 return; 1522 1523 if (cpufreq_driver->resume) { 1524 ret = cpufreq_driver->resume(policy); 1525 if (ret) { 1526 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1527 "step on CPU %u\n", policy->cpu); 1528 goto fail; 1529 } 1530 } 1531 1532 schedule_work(&policy->update); 1533 1534 fail: 1535 cpufreq_cpu_put(policy); 1536 } 1537 1538 static struct syscore_ops cpufreq_syscore_ops = { 1539 .suspend = cpufreq_bp_suspend, 1540 .resume = cpufreq_bp_resume, 1541 }; 1542 1543 /** 1544 * cpufreq_get_current_driver - return current driver's name 1545 * 1546 * Return the name string of the currently loaded cpufreq driver 1547 * or NULL, if none. 1548 */ 1549 const char *cpufreq_get_current_driver(void) 1550 { 1551 if (cpufreq_driver) 1552 return cpufreq_driver->name; 1553 1554 return NULL; 1555 } 1556 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1557 1558 /********************************************************************* 1559 * NOTIFIER LISTS INTERFACE * 1560 *********************************************************************/ 1561 1562 /** 1563 * cpufreq_register_notifier - register a driver with cpufreq 1564 * @nb: notifier function to register 1565 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1566 * 1567 * Add a driver to one of two lists: either a list of drivers that 1568 * are notified about clock rate changes (once before and once after 1569 * the transition), or a list of drivers that are notified about 1570 * changes in cpufreq policy. 1571 * 1572 * This function may sleep, and has the same return conditions as 1573 * blocking_notifier_chain_register. 1574 */ 1575 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1576 { 1577 int ret; 1578 1579 if (cpufreq_disabled()) 1580 return -EINVAL; 1581 1582 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1583 1584 switch (list) { 1585 case CPUFREQ_TRANSITION_NOTIFIER: 1586 ret = srcu_notifier_chain_register( 1587 &cpufreq_transition_notifier_list, nb); 1588 break; 1589 case CPUFREQ_POLICY_NOTIFIER: 1590 ret = blocking_notifier_chain_register( 1591 &cpufreq_policy_notifier_list, nb); 1592 break; 1593 default: 1594 ret = -EINVAL; 1595 } 1596 1597 return ret; 1598 } 1599 EXPORT_SYMBOL(cpufreq_register_notifier); 1600 1601 /** 1602 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1603 * @nb: notifier block to be unregistered 1604 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1605 * 1606 * Remove a driver from the CPU frequency notifier list. 1607 * 1608 * This function may sleep, and has the same return conditions as 1609 * blocking_notifier_chain_unregister. 1610 */ 1611 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1612 { 1613 int ret; 1614 1615 if (cpufreq_disabled()) 1616 return -EINVAL; 1617 1618 switch (list) { 1619 case CPUFREQ_TRANSITION_NOTIFIER: 1620 ret = srcu_notifier_chain_unregister( 1621 &cpufreq_transition_notifier_list, nb); 1622 break; 1623 case CPUFREQ_POLICY_NOTIFIER: 1624 ret = blocking_notifier_chain_unregister( 1625 &cpufreq_policy_notifier_list, nb); 1626 break; 1627 default: 1628 ret = -EINVAL; 1629 } 1630 1631 return ret; 1632 } 1633 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1634 1635 1636 /********************************************************************* 1637 * GOVERNORS * 1638 *********************************************************************/ 1639 1640 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1641 unsigned int target_freq, 1642 unsigned int relation) 1643 { 1644 int retval = -EINVAL; 1645 unsigned int old_target_freq = target_freq; 1646 1647 if (cpufreq_disabled()) 1648 return -ENODEV; 1649 1650 /* Make sure that target_freq is within supported range */ 1651 if (target_freq > policy->max) 1652 target_freq = policy->max; 1653 if (target_freq < policy->min) 1654 target_freq = policy->min; 1655 1656 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1657 policy->cpu, target_freq, relation, old_target_freq); 1658 1659 /* 1660 * This might look like a redundant call as we are checking it again 1661 * after finding index. But it is left intentionally for cases where 1662 * exactly same freq is called again and so we can save on few function 1663 * calls. 1664 */ 1665 if (target_freq == policy->cur) 1666 return 0; 1667 1668 if (cpufreq_driver->target) 1669 retval = cpufreq_driver->target(policy, target_freq, relation); 1670 else if (cpufreq_driver->target_index) { 1671 struct cpufreq_frequency_table *freq_table; 1672 struct cpufreq_freqs freqs; 1673 bool notify; 1674 int index; 1675 1676 freq_table = cpufreq_frequency_get_table(policy->cpu); 1677 if (unlikely(!freq_table)) { 1678 pr_err("%s: Unable to find freq_table\n", __func__); 1679 goto out; 1680 } 1681 1682 retval = cpufreq_frequency_table_target(policy, freq_table, 1683 target_freq, relation, &index); 1684 if (unlikely(retval)) { 1685 pr_err("%s: Unable to find matching freq\n", __func__); 1686 goto out; 1687 } 1688 1689 if (freq_table[index].frequency == policy->cur) { 1690 retval = 0; 1691 goto out; 1692 } 1693 1694 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1695 1696 if (notify) { 1697 freqs.old = policy->cur; 1698 freqs.new = freq_table[index].frequency; 1699 freqs.flags = 0; 1700 1701 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1702 __func__, policy->cpu, freqs.old, 1703 freqs.new); 1704 1705 cpufreq_notify_transition(policy, &freqs, 1706 CPUFREQ_PRECHANGE); 1707 } 1708 1709 retval = cpufreq_driver->target_index(policy, index); 1710 if (retval) 1711 pr_err("%s: Failed to change cpu frequency: %d\n", 1712 __func__, retval); 1713 1714 if (notify) { 1715 /* 1716 * Notify with old freq in case we failed to change 1717 * frequency 1718 */ 1719 if (retval) 1720 freqs.new = freqs.old; 1721 1722 cpufreq_notify_transition(policy, &freqs, 1723 CPUFREQ_POSTCHANGE); 1724 } 1725 } 1726 1727 out: 1728 return retval; 1729 } 1730 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1731 1732 int cpufreq_driver_target(struct cpufreq_policy *policy, 1733 unsigned int target_freq, 1734 unsigned int relation) 1735 { 1736 int ret = -EINVAL; 1737 1738 down_write(&policy->rwsem); 1739 1740 ret = __cpufreq_driver_target(policy, target_freq, relation); 1741 1742 up_write(&policy->rwsem); 1743 1744 return ret; 1745 } 1746 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1747 1748 /* 1749 * when "event" is CPUFREQ_GOV_LIMITS 1750 */ 1751 1752 static int __cpufreq_governor(struct cpufreq_policy *policy, 1753 unsigned int event) 1754 { 1755 int ret; 1756 1757 /* Only must be defined when default governor is known to have latency 1758 restrictions, like e.g. conservative or ondemand. 1759 That this is the case is already ensured in Kconfig 1760 */ 1761 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1762 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1763 #else 1764 struct cpufreq_governor *gov = NULL; 1765 #endif 1766 1767 if (policy->governor->max_transition_latency && 1768 policy->cpuinfo.transition_latency > 1769 policy->governor->max_transition_latency) { 1770 if (!gov) 1771 return -EINVAL; 1772 else { 1773 printk(KERN_WARNING "%s governor failed, too long" 1774 " transition latency of HW, fallback" 1775 " to %s governor\n", 1776 policy->governor->name, 1777 gov->name); 1778 policy->governor = gov; 1779 } 1780 } 1781 1782 if (event == CPUFREQ_GOV_POLICY_INIT) 1783 if (!try_module_get(policy->governor->owner)) 1784 return -EINVAL; 1785 1786 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1787 policy->cpu, event); 1788 1789 mutex_lock(&cpufreq_governor_lock); 1790 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 1791 || (!policy->governor_enabled 1792 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 1793 mutex_unlock(&cpufreq_governor_lock); 1794 return -EBUSY; 1795 } 1796 1797 if (event == CPUFREQ_GOV_STOP) 1798 policy->governor_enabled = false; 1799 else if (event == CPUFREQ_GOV_START) 1800 policy->governor_enabled = true; 1801 1802 mutex_unlock(&cpufreq_governor_lock); 1803 1804 ret = policy->governor->governor(policy, event); 1805 1806 if (!ret) { 1807 if (event == CPUFREQ_GOV_POLICY_INIT) 1808 policy->governor->initialized++; 1809 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1810 policy->governor->initialized--; 1811 } else { 1812 /* Restore original values */ 1813 mutex_lock(&cpufreq_governor_lock); 1814 if (event == CPUFREQ_GOV_STOP) 1815 policy->governor_enabled = true; 1816 else if (event == CPUFREQ_GOV_START) 1817 policy->governor_enabled = false; 1818 mutex_unlock(&cpufreq_governor_lock); 1819 } 1820 1821 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 1822 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 1823 module_put(policy->governor->owner); 1824 1825 return ret; 1826 } 1827 1828 int cpufreq_register_governor(struct cpufreq_governor *governor) 1829 { 1830 int err; 1831 1832 if (!governor) 1833 return -EINVAL; 1834 1835 if (cpufreq_disabled()) 1836 return -ENODEV; 1837 1838 mutex_lock(&cpufreq_governor_mutex); 1839 1840 governor->initialized = 0; 1841 err = -EBUSY; 1842 if (__find_governor(governor->name) == NULL) { 1843 err = 0; 1844 list_add(&governor->governor_list, &cpufreq_governor_list); 1845 } 1846 1847 mutex_unlock(&cpufreq_governor_mutex); 1848 return err; 1849 } 1850 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1851 1852 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1853 { 1854 #ifdef CONFIG_HOTPLUG_CPU 1855 int cpu; 1856 #endif 1857 1858 if (!governor) 1859 return; 1860 1861 if (cpufreq_disabled()) 1862 return; 1863 1864 #ifdef CONFIG_HOTPLUG_CPU 1865 for_each_present_cpu(cpu) { 1866 if (cpu_online(cpu)) 1867 continue; 1868 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1869 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1870 } 1871 #endif 1872 1873 mutex_lock(&cpufreq_governor_mutex); 1874 list_del(&governor->governor_list); 1875 mutex_unlock(&cpufreq_governor_mutex); 1876 return; 1877 } 1878 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1879 1880 1881 /********************************************************************* 1882 * POLICY INTERFACE * 1883 *********************************************************************/ 1884 1885 /** 1886 * cpufreq_get_policy - get the current cpufreq_policy 1887 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1888 * is written 1889 * 1890 * Reads the current cpufreq policy. 1891 */ 1892 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1893 { 1894 struct cpufreq_policy *cpu_policy; 1895 if (!policy) 1896 return -EINVAL; 1897 1898 cpu_policy = cpufreq_cpu_get(cpu); 1899 if (!cpu_policy) 1900 return -EINVAL; 1901 1902 memcpy(policy, cpu_policy, sizeof(*policy)); 1903 1904 cpufreq_cpu_put(cpu_policy); 1905 return 0; 1906 } 1907 EXPORT_SYMBOL(cpufreq_get_policy); 1908 1909 /* 1910 * policy : current policy. 1911 * new_policy: policy to be set. 1912 */ 1913 static int cpufreq_set_policy(struct cpufreq_policy *policy, 1914 struct cpufreq_policy *new_policy) 1915 { 1916 int ret = 0, failed = 1; 1917 1918 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu, 1919 new_policy->min, new_policy->max); 1920 1921 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 1922 1923 if (new_policy->min > policy->max || new_policy->max < policy->min) { 1924 ret = -EINVAL; 1925 goto error_out; 1926 } 1927 1928 /* verify the cpu speed can be set within this limit */ 1929 ret = cpufreq_driver->verify(new_policy); 1930 if (ret) 1931 goto error_out; 1932 1933 /* adjust if necessary - all reasons */ 1934 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1935 CPUFREQ_ADJUST, new_policy); 1936 1937 /* adjust if necessary - hardware incompatibility*/ 1938 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1939 CPUFREQ_INCOMPATIBLE, new_policy); 1940 1941 /* 1942 * verify the cpu speed can be set within this limit, which might be 1943 * different to the first one 1944 */ 1945 ret = cpufreq_driver->verify(new_policy); 1946 if (ret) 1947 goto error_out; 1948 1949 /* notification of the new policy */ 1950 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1951 CPUFREQ_NOTIFY, new_policy); 1952 1953 policy->min = new_policy->min; 1954 policy->max = new_policy->max; 1955 1956 pr_debug("new min and max freqs are %u - %u kHz\n", 1957 policy->min, policy->max); 1958 1959 if (cpufreq_driver->setpolicy) { 1960 policy->policy = new_policy->policy; 1961 pr_debug("setting range\n"); 1962 ret = cpufreq_driver->setpolicy(new_policy); 1963 } else { 1964 if (new_policy->governor != policy->governor) { 1965 /* save old, working values */ 1966 struct cpufreq_governor *old_gov = policy->governor; 1967 1968 pr_debug("governor switch\n"); 1969 1970 /* end old governor */ 1971 if (policy->governor) { 1972 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1973 up_write(&policy->rwsem); 1974 __cpufreq_governor(policy, 1975 CPUFREQ_GOV_POLICY_EXIT); 1976 down_write(&policy->rwsem); 1977 } 1978 1979 /* start new governor */ 1980 policy->governor = new_policy->governor; 1981 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 1982 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) { 1983 failed = 0; 1984 } else { 1985 up_write(&policy->rwsem); 1986 __cpufreq_governor(policy, 1987 CPUFREQ_GOV_POLICY_EXIT); 1988 down_write(&policy->rwsem); 1989 } 1990 } 1991 1992 if (failed) { 1993 /* new governor failed, so re-start old one */ 1994 pr_debug("starting governor %s failed\n", 1995 policy->governor->name); 1996 if (old_gov) { 1997 policy->governor = old_gov; 1998 __cpufreq_governor(policy, 1999 CPUFREQ_GOV_POLICY_INIT); 2000 __cpufreq_governor(policy, 2001 CPUFREQ_GOV_START); 2002 } 2003 ret = -EINVAL; 2004 goto error_out; 2005 } 2006 /* might be a policy change, too, so fall through */ 2007 } 2008 pr_debug("governor: change or update limits\n"); 2009 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2010 } 2011 2012 error_out: 2013 return ret; 2014 } 2015 2016 /** 2017 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2018 * @cpu: CPU which shall be re-evaluated 2019 * 2020 * Useful for policy notifiers which have different necessities 2021 * at different times. 2022 */ 2023 int cpufreq_update_policy(unsigned int cpu) 2024 { 2025 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2026 struct cpufreq_policy new_policy; 2027 int ret; 2028 2029 if (!policy) { 2030 ret = -ENODEV; 2031 goto no_policy; 2032 } 2033 2034 down_write(&policy->rwsem); 2035 2036 pr_debug("updating policy for CPU %u\n", cpu); 2037 memcpy(&new_policy, policy, sizeof(*policy)); 2038 new_policy.min = policy->user_policy.min; 2039 new_policy.max = policy->user_policy.max; 2040 new_policy.policy = policy->user_policy.policy; 2041 new_policy.governor = policy->user_policy.governor; 2042 2043 /* 2044 * BIOS might change freq behind our back 2045 * -> ask driver for current freq and notify governors about a change 2046 */ 2047 if (cpufreq_driver->get) { 2048 new_policy.cur = cpufreq_driver->get(cpu); 2049 if (!policy->cur) { 2050 pr_debug("Driver did not initialize current freq"); 2051 policy->cur = new_policy.cur; 2052 } else { 2053 if (policy->cur != new_policy.cur && has_target()) 2054 cpufreq_out_of_sync(cpu, policy->cur, 2055 new_policy.cur); 2056 } 2057 } 2058 2059 ret = cpufreq_set_policy(policy, &new_policy); 2060 2061 up_write(&policy->rwsem); 2062 2063 cpufreq_cpu_put(policy); 2064 no_policy: 2065 return ret; 2066 } 2067 EXPORT_SYMBOL(cpufreq_update_policy); 2068 2069 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2070 unsigned long action, void *hcpu) 2071 { 2072 unsigned int cpu = (unsigned long)hcpu; 2073 struct device *dev; 2074 bool frozen = false; 2075 2076 dev = get_cpu_device(cpu); 2077 if (dev) { 2078 2079 if (action & CPU_TASKS_FROZEN) 2080 frozen = true; 2081 2082 switch (action & ~CPU_TASKS_FROZEN) { 2083 case CPU_ONLINE: 2084 __cpufreq_add_dev(dev, NULL, frozen); 2085 cpufreq_update_policy(cpu); 2086 break; 2087 2088 case CPU_DOWN_PREPARE: 2089 __cpufreq_remove_dev_prepare(dev, NULL, frozen); 2090 break; 2091 2092 case CPU_POST_DEAD: 2093 __cpufreq_remove_dev_finish(dev, NULL, frozen); 2094 break; 2095 2096 case CPU_DOWN_FAILED: 2097 __cpufreq_add_dev(dev, NULL, frozen); 2098 break; 2099 } 2100 } 2101 return NOTIFY_OK; 2102 } 2103 2104 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2105 .notifier_call = cpufreq_cpu_callback, 2106 }; 2107 2108 /********************************************************************* 2109 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2110 *********************************************************************/ 2111 2112 /** 2113 * cpufreq_register_driver - register a CPU Frequency driver 2114 * @driver_data: A struct cpufreq_driver containing the values# 2115 * submitted by the CPU Frequency driver. 2116 * 2117 * Registers a CPU Frequency driver to this core code. This code 2118 * returns zero on success, -EBUSY when another driver got here first 2119 * (and isn't unregistered in the meantime). 2120 * 2121 */ 2122 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2123 { 2124 unsigned long flags; 2125 int ret; 2126 2127 if (cpufreq_disabled()) 2128 return -ENODEV; 2129 2130 if (!driver_data || !driver_data->verify || !driver_data->init || 2131 !(driver_data->setpolicy || driver_data->target_index || 2132 driver_data->target)) 2133 return -EINVAL; 2134 2135 pr_debug("trying to register driver %s\n", driver_data->name); 2136 2137 if (driver_data->setpolicy) 2138 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2139 2140 write_lock_irqsave(&cpufreq_driver_lock, flags); 2141 if (cpufreq_driver) { 2142 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2143 return -EEXIST; 2144 } 2145 cpufreq_driver = driver_data; 2146 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2147 2148 ret = subsys_interface_register(&cpufreq_interface); 2149 if (ret) 2150 goto err_null_driver; 2151 2152 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2153 int i; 2154 ret = -ENODEV; 2155 2156 /* check for at least one working CPU */ 2157 for (i = 0; i < nr_cpu_ids; i++) 2158 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2159 ret = 0; 2160 break; 2161 } 2162 2163 /* if all ->init() calls failed, unregister */ 2164 if (ret) { 2165 pr_debug("no CPU initialized for driver %s\n", 2166 driver_data->name); 2167 goto err_if_unreg; 2168 } 2169 } 2170 2171 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2172 pr_debug("driver %s up and running\n", driver_data->name); 2173 2174 return 0; 2175 err_if_unreg: 2176 subsys_interface_unregister(&cpufreq_interface); 2177 err_null_driver: 2178 write_lock_irqsave(&cpufreq_driver_lock, flags); 2179 cpufreq_driver = NULL; 2180 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2181 return ret; 2182 } 2183 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2184 2185 /** 2186 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2187 * 2188 * Unregister the current CPUFreq driver. Only call this if you have 2189 * the right to do so, i.e. if you have succeeded in initialising before! 2190 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2191 * currently not initialised. 2192 */ 2193 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2194 { 2195 unsigned long flags; 2196 2197 if (!cpufreq_driver || (driver != cpufreq_driver)) 2198 return -EINVAL; 2199 2200 pr_debug("unregistering driver %s\n", driver->name); 2201 2202 subsys_interface_unregister(&cpufreq_interface); 2203 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2204 2205 down_write(&cpufreq_rwsem); 2206 write_lock_irqsave(&cpufreq_driver_lock, flags); 2207 2208 cpufreq_driver = NULL; 2209 2210 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2211 up_write(&cpufreq_rwsem); 2212 2213 return 0; 2214 } 2215 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2216 2217 static int __init cpufreq_core_init(void) 2218 { 2219 if (cpufreq_disabled()) 2220 return -ENODEV; 2221 2222 cpufreq_global_kobject = kobject_create(); 2223 BUG_ON(!cpufreq_global_kobject); 2224 register_syscore_ops(&cpufreq_syscore_ops); 2225 2226 return 0; 2227 } 2228 core_initcall(cpufreq_core_init); 2229