1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * 7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 8 * Added handling for CPU hotplug 9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 10 * Fix handling for CPU hotplug -- affected CPUs 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/init.h> 21 #include <linux/notifier.h> 22 #include <linux/cpufreq.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/slab.h> 28 #include <linux/cpu.h> 29 #include <linux/completion.h> 30 #include <linux/mutex.h> 31 32 #include <trace/events/power.h> 33 34 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \ 35 "cpufreq-core", msg) 36 37 /** 38 * The "cpufreq driver" - the arch- or hardware-dependent low 39 * level driver of CPUFreq support, and its spinlock. This lock 40 * also protects the cpufreq_cpu_data array. 41 */ 42 static struct cpufreq_driver *cpufreq_driver; 43 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 44 #ifdef CONFIG_HOTPLUG_CPU 45 /* This one keeps track of the previously set governor of a removed CPU */ 46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 47 #endif 48 static DEFINE_SPINLOCK(cpufreq_driver_lock); 49 50 /* 51 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 52 * all cpufreq/hotplug/workqueue/etc related lock issues. 53 * 54 * The rules for this semaphore: 55 * - Any routine that wants to read from the policy structure will 56 * do a down_read on this semaphore. 57 * - Any routine that will write to the policy structure and/or may take away 58 * the policy altogether (eg. CPU hotplug), will hold this lock in write 59 * mode before doing so. 60 * 61 * Additional rules: 62 * - All holders of the lock should check to make sure that the CPU they 63 * are concerned with are online after they get the lock. 64 * - Governor routines that can be called in cpufreq hotplug path should not 65 * take this sem as top level hotplug notifier handler takes this. 66 * - Lock should not be held across 67 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 68 */ 69 static DEFINE_PER_CPU(int, cpufreq_policy_cpu); 70 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 71 72 #define lock_policy_rwsem(mode, cpu) \ 73 static int lock_policy_rwsem_##mode \ 74 (int cpu) \ 75 { \ 76 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 77 BUG_ON(policy_cpu == -1); \ 78 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 79 if (unlikely(!cpu_online(cpu))) { \ 80 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 81 return -1; \ 82 } \ 83 \ 84 return 0; \ 85 } 86 87 lock_policy_rwsem(read, cpu); 88 89 lock_policy_rwsem(write, cpu); 90 91 static void unlock_policy_rwsem_read(int cpu) 92 { 93 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); 94 BUG_ON(policy_cpu == -1); 95 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu)); 96 } 97 98 static void unlock_policy_rwsem_write(int cpu) 99 { 100 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); 101 BUG_ON(policy_cpu == -1); 102 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu)); 103 } 104 105 106 /* internal prototypes */ 107 static int __cpufreq_governor(struct cpufreq_policy *policy, 108 unsigned int event); 109 static unsigned int __cpufreq_get(unsigned int cpu); 110 static void handle_update(struct work_struct *work); 111 112 /** 113 * Two notifier lists: the "policy" list is involved in the 114 * validation process for a new CPU frequency policy; the 115 * "transition" list for kernel code that needs to handle 116 * changes to devices when the CPU clock speed changes. 117 * The mutex locks both lists. 118 */ 119 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 120 static struct srcu_notifier_head cpufreq_transition_notifier_list; 121 122 static bool init_cpufreq_transition_notifier_list_called; 123 static int __init init_cpufreq_transition_notifier_list(void) 124 { 125 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 126 init_cpufreq_transition_notifier_list_called = true; 127 return 0; 128 } 129 pure_initcall(init_cpufreq_transition_notifier_list); 130 131 static LIST_HEAD(cpufreq_governor_list); 132 static DEFINE_MUTEX(cpufreq_governor_mutex); 133 134 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 135 { 136 struct cpufreq_policy *data; 137 unsigned long flags; 138 139 if (cpu >= nr_cpu_ids) 140 goto err_out; 141 142 /* get the cpufreq driver */ 143 spin_lock_irqsave(&cpufreq_driver_lock, flags); 144 145 if (!cpufreq_driver) 146 goto err_out_unlock; 147 148 if (!try_module_get(cpufreq_driver->owner)) 149 goto err_out_unlock; 150 151 152 /* get the CPU */ 153 data = per_cpu(cpufreq_cpu_data, cpu); 154 155 if (!data) 156 goto err_out_put_module; 157 158 if (!kobject_get(&data->kobj)) 159 goto err_out_put_module; 160 161 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 162 return data; 163 164 err_out_put_module: 165 module_put(cpufreq_driver->owner); 166 err_out_unlock: 167 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 168 err_out: 169 return NULL; 170 } 171 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 172 173 174 void cpufreq_cpu_put(struct cpufreq_policy *data) 175 { 176 kobject_put(&data->kobj); 177 module_put(cpufreq_driver->owner); 178 } 179 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 180 181 182 /********************************************************************* 183 * UNIFIED DEBUG HELPERS * 184 *********************************************************************/ 185 #ifdef CONFIG_CPU_FREQ_DEBUG 186 187 /* what part(s) of the CPUfreq subsystem are debugged? */ 188 static unsigned int debug; 189 190 /* is the debug output ratelimit'ed using printk_ratelimit? User can 191 * set or modify this value. 192 */ 193 static unsigned int debug_ratelimit = 1; 194 195 /* is the printk_ratelimit'ing enabled? It's enabled after a successful 196 * loading of a cpufreq driver, temporarily disabled when a new policy 197 * is set, and disabled upon cpufreq driver removal 198 */ 199 static unsigned int disable_ratelimit = 1; 200 static DEFINE_SPINLOCK(disable_ratelimit_lock); 201 202 static void cpufreq_debug_enable_ratelimit(void) 203 { 204 unsigned long flags; 205 206 spin_lock_irqsave(&disable_ratelimit_lock, flags); 207 if (disable_ratelimit) 208 disable_ratelimit--; 209 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 210 } 211 212 static void cpufreq_debug_disable_ratelimit(void) 213 { 214 unsigned long flags; 215 216 spin_lock_irqsave(&disable_ratelimit_lock, flags); 217 disable_ratelimit++; 218 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 219 } 220 221 void cpufreq_debug_printk(unsigned int type, const char *prefix, 222 const char *fmt, ...) 223 { 224 char s[256]; 225 va_list args; 226 unsigned int len; 227 unsigned long flags; 228 229 WARN_ON(!prefix); 230 if (type & debug) { 231 spin_lock_irqsave(&disable_ratelimit_lock, flags); 232 if (!disable_ratelimit && debug_ratelimit 233 && !printk_ratelimit()) { 234 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 235 return; 236 } 237 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 238 239 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix); 240 241 va_start(args, fmt); 242 len += vsnprintf(&s[len], (256 - len), fmt, args); 243 va_end(args); 244 245 printk(s); 246 247 WARN_ON(len < 5); 248 } 249 } 250 EXPORT_SYMBOL(cpufreq_debug_printk); 251 252 253 module_param(debug, uint, 0644); 254 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core," 255 " 2 to debug drivers, and 4 to debug governors."); 256 257 module_param(debug_ratelimit, uint, 0644); 258 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:" 259 " set to 0 to disable ratelimiting."); 260 261 #else /* !CONFIG_CPU_FREQ_DEBUG */ 262 263 static inline void cpufreq_debug_enable_ratelimit(void) { return; } 264 static inline void cpufreq_debug_disable_ratelimit(void) { return; } 265 266 #endif /* CONFIG_CPU_FREQ_DEBUG */ 267 268 269 /********************************************************************* 270 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 271 *********************************************************************/ 272 273 /** 274 * adjust_jiffies - adjust the system "loops_per_jiffy" 275 * 276 * This function alters the system "loops_per_jiffy" for the clock 277 * speed change. Note that loops_per_jiffy cannot be updated on SMP 278 * systems as each CPU might be scaled differently. So, use the arch 279 * per-CPU loops_per_jiffy value wherever possible. 280 */ 281 #ifndef CONFIG_SMP 282 static unsigned long l_p_j_ref; 283 static unsigned int l_p_j_ref_freq; 284 285 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 286 { 287 if (ci->flags & CPUFREQ_CONST_LOOPS) 288 return; 289 290 if (!l_p_j_ref_freq) { 291 l_p_j_ref = loops_per_jiffy; 292 l_p_j_ref_freq = ci->old; 293 dprintk("saving %lu as reference value for loops_per_jiffy; " 294 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 295 } 296 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) || 297 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) || 298 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 299 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 300 ci->new); 301 dprintk("scaling loops_per_jiffy to %lu " 302 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 303 } 304 } 305 #else 306 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 307 { 308 return; 309 } 310 #endif 311 312 313 /** 314 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 315 * on frequency transition. 316 * 317 * This function calls the transition notifiers and the "adjust_jiffies" 318 * function. It is called twice on all CPU frequency changes that have 319 * external effects. 320 */ 321 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state) 322 { 323 struct cpufreq_policy *policy; 324 325 BUG_ON(irqs_disabled()); 326 327 freqs->flags = cpufreq_driver->flags; 328 dprintk("notification %u of frequency transition to %u kHz\n", 329 state, freqs->new); 330 331 policy = per_cpu(cpufreq_cpu_data, freqs->cpu); 332 switch (state) { 333 334 case CPUFREQ_PRECHANGE: 335 /* detect if the driver reported a value as "old frequency" 336 * which is not equal to what the cpufreq core thinks is 337 * "old frequency". 338 */ 339 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 340 if ((policy) && (policy->cpu == freqs->cpu) && 341 (policy->cur) && (policy->cur != freqs->old)) { 342 dprintk("Warning: CPU frequency is" 343 " %u, cpufreq assumed %u kHz.\n", 344 freqs->old, policy->cur); 345 freqs->old = policy->cur; 346 } 347 } 348 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 349 CPUFREQ_PRECHANGE, freqs); 350 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 351 break; 352 353 case CPUFREQ_POSTCHANGE: 354 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 355 dprintk("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 356 (unsigned long)freqs->cpu); 357 trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu); 358 trace_cpu_frequency(freqs->new, freqs->cpu); 359 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 360 CPUFREQ_POSTCHANGE, freqs); 361 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 362 policy->cur = freqs->new; 363 break; 364 } 365 } 366 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 367 368 369 370 /********************************************************************* 371 * SYSFS INTERFACE * 372 *********************************************************************/ 373 374 static struct cpufreq_governor *__find_governor(const char *str_governor) 375 { 376 struct cpufreq_governor *t; 377 378 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 379 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 380 return t; 381 382 return NULL; 383 } 384 385 /** 386 * cpufreq_parse_governor - parse a governor string 387 */ 388 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 389 struct cpufreq_governor **governor) 390 { 391 int err = -EINVAL; 392 393 if (!cpufreq_driver) 394 goto out; 395 396 if (cpufreq_driver->setpolicy) { 397 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 398 *policy = CPUFREQ_POLICY_PERFORMANCE; 399 err = 0; 400 } else if (!strnicmp(str_governor, "powersave", 401 CPUFREQ_NAME_LEN)) { 402 *policy = CPUFREQ_POLICY_POWERSAVE; 403 err = 0; 404 } 405 } else if (cpufreq_driver->target) { 406 struct cpufreq_governor *t; 407 408 mutex_lock(&cpufreq_governor_mutex); 409 410 t = __find_governor(str_governor); 411 412 if (t == NULL) { 413 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s", 414 str_governor); 415 416 if (name) { 417 int ret; 418 419 mutex_unlock(&cpufreq_governor_mutex); 420 ret = request_module("%s", name); 421 mutex_lock(&cpufreq_governor_mutex); 422 423 if (ret == 0) 424 t = __find_governor(str_governor); 425 } 426 427 kfree(name); 428 } 429 430 if (t != NULL) { 431 *governor = t; 432 err = 0; 433 } 434 435 mutex_unlock(&cpufreq_governor_mutex); 436 } 437 out: 438 return err; 439 } 440 441 442 /** 443 * cpufreq_per_cpu_attr_read() / show_##file_name() - 444 * print out cpufreq information 445 * 446 * Write out information from cpufreq_driver->policy[cpu]; object must be 447 * "unsigned int". 448 */ 449 450 #define show_one(file_name, object) \ 451 static ssize_t show_##file_name \ 452 (struct cpufreq_policy *policy, char *buf) \ 453 { \ 454 return sprintf(buf, "%u\n", policy->object); \ 455 } 456 457 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 458 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 459 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 460 show_one(scaling_min_freq, min); 461 show_one(scaling_max_freq, max); 462 show_one(scaling_cur_freq, cur); 463 464 static int __cpufreq_set_policy(struct cpufreq_policy *data, 465 struct cpufreq_policy *policy); 466 467 /** 468 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 469 */ 470 #define store_one(file_name, object) \ 471 static ssize_t store_##file_name \ 472 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 473 { \ 474 unsigned int ret = -EINVAL; \ 475 struct cpufreq_policy new_policy; \ 476 \ 477 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 478 if (ret) \ 479 return -EINVAL; \ 480 \ 481 ret = sscanf(buf, "%u", &new_policy.object); \ 482 if (ret != 1) \ 483 return -EINVAL; \ 484 \ 485 ret = __cpufreq_set_policy(policy, &new_policy); \ 486 policy->user_policy.object = policy->object; \ 487 \ 488 return ret ? ret : count; \ 489 } 490 491 store_one(scaling_min_freq, min); 492 store_one(scaling_max_freq, max); 493 494 /** 495 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 496 */ 497 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 498 char *buf) 499 { 500 unsigned int cur_freq = __cpufreq_get(policy->cpu); 501 if (!cur_freq) 502 return sprintf(buf, "<unknown>"); 503 return sprintf(buf, "%u\n", cur_freq); 504 } 505 506 507 /** 508 * show_scaling_governor - show the current policy for the specified CPU 509 */ 510 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 511 { 512 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 513 return sprintf(buf, "powersave\n"); 514 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 515 return sprintf(buf, "performance\n"); 516 else if (policy->governor) 517 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", 518 policy->governor->name); 519 return -EINVAL; 520 } 521 522 523 /** 524 * store_scaling_governor - store policy for the specified CPU 525 */ 526 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 527 const char *buf, size_t count) 528 { 529 unsigned int ret = -EINVAL; 530 char str_governor[16]; 531 struct cpufreq_policy new_policy; 532 533 ret = cpufreq_get_policy(&new_policy, policy->cpu); 534 if (ret) 535 return ret; 536 537 ret = sscanf(buf, "%15s", str_governor); 538 if (ret != 1) 539 return -EINVAL; 540 541 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 542 &new_policy.governor)) 543 return -EINVAL; 544 545 /* Do not use cpufreq_set_policy here or the user_policy.max 546 will be wrongly overridden */ 547 ret = __cpufreq_set_policy(policy, &new_policy); 548 549 policy->user_policy.policy = policy->policy; 550 policy->user_policy.governor = policy->governor; 551 552 if (ret) 553 return ret; 554 else 555 return count; 556 } 557 558 /** 559 * show_scaling_driver - show the cpufreq driver currently loaded 560 */ 561 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 562 { 563 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name); 564 } 565 566 /** 567 * show_scaling_available_governors - show the available CPUfreq governors 568 */ 569 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 570 char *buf) 571 { 572 ssize_t i = 0; 573 struct cpufreq_governor *t; 574 575 if (!cpufreq_driver->target) { 576 i += sprintf(buf, "performance powersave"); 577 goto out; 578 } 579 580 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 581 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 582 - (CPUFREQ_NAME_LEN + 2))) 583 goto out; 584 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name); 585 } 586 out: 587 i += sprintf(&buf[i], "\n"); 588 return i; 589 } 590 591 static ssize_t show_cpus(const struct cpumask *mask, char *buf) 592 { 593 ssize_t i = 0; 594 unsigned int cpu; 595 596 for_each_cpu(cpu, mask) { 597 if (i) 598 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 599 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 600 if (i >= (PAGE_SIZE - 5)) 601 break; 602 } 603 i += sprintf(&buf[i], "\n"); 604 return i; 605 } 606 607 /** 608 * show_related_cpus - show the CPUs affected by each transition even if 609 * hw coordination is in use 610 */ 611 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 612 { 613 if (cpumask_empty(policy->related_cpus)) 614 return show_cpus(policy->cpus, buf); 615 return show_cpus(policy->related_cpus, buf); 616 } 617 618 /** 619 * show_affected_cpus - show the CPUs affected by each transition 620 */ 621 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 622 { 623 return show_cpus(policy->cpus, buf); 624 } 625 626 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 627 const char *buf, size_t count) 628 { 629 unsigned int freq = 0; 630 unsigned int ret; 631 632 if (!policy->governor || !policy->governor->store_setspeed) 633 return -EINVAL; 634 635 ret = sscanf(buf, "%u", &freq); 636 if (ret != 1) 637 return -EINVAL; 638 639 policy->governor->store_setspeed(policy, freq); 640 641 return count; 642 } 643 644 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 645 { 646 if (!policy->governor || !policy->governor->show_setspeed) 647 return sprintf(buf, "<unsupported>\n"); 648 649 return policy->governor->show_setspeed(policy, buf); 650 } 651 652 /** 653 * show_scaling_driver - show the current cpufreq HW/BIOS limitation 654 */ 655 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 656 { 657 unsigned int limit; 658 int ret; 659 if (cpufreq_driver->bios_limit) { 660 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 661 if (!ret) 662 return sprintf(buf, "%u\n", limit); 663 } 664 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 665 } 666 667 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 668 cpufreq_freq_attr_ro(cpuinfo_min_freq); 669 cpufreq_freq_attr_ro(cpuinfo_max_freq); 670 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 671 cpufreq_freq_attr_ro(scaling_available_governors); 672 cpufreq_freq_attr_ro(scaling_driver); 673 cpufreq_freq_attr_ro(scaling_cur_freq); 674 cpufreq_freq_attr_ro(bios_limit); 675 cpufreq_freq_attr_ro(related_cpus); 676 cpufreq_freq_attr_ro(affected_cpus); 677 cpufreq_freq_attr_rw(scaling_min_freq); 678 cpufreq_freq_attr_rw(scaling_max_freq); 679 cpufreq_freq_attr_rw(scaling_governor); 680 cpufreq_freq_attr_rw(scaling_setspeed); 681 682 static struct attribute *default_attrs[] = { 683 &cpuinfo_min_freq.attr, 684 &cpuinfo_max_freq.attr, 685 &cpuinfo_transition_latency.attr, 686 &scaling_min_freq.attr, 687 &scaling_max_freq.attr, 688 &affected_cpus.attr, 689 &related_cpus.attr, 690 &scaling_governor.attr, 691 &scaling_driver.attr, 692 &scaling_available_governors.attr, 693 &scaling_setspeed.attr, 694 NULL 695 }; 696 697 struct kobject *cpufreq_global_kobject; 698 EXPORT_SYMBOL(cpufreq_global_kobject); 699 700 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 701 #define to_attr(a) container_of(a, struct freq_attr, attr) 702 703 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 704 { 705 struct cpufreq_policy *policy = to_policy(kobj); 706 struct freq_attr *fattr = to_attr(attr); 707 ssize_t ret = -EINVAL; 708 policy = cpufreq_cpu_get(policy->cpu); 709 if (!policy) 710 goto no_policy; 711 712 if (lock_policy_rwsem_read(policy->cpu) < 0) 713 goto fail; 714 715 if (fattr->show) 716 ret = fattr->show(policy, buf); 717 else 718 ret = -EIO; 719 720 unlock_policy_rwsem_read(policy->cpu); 721 fail: 722 cpufreq_cpu_put(policy); 723 no_policy: 724 return ret; 725 } 726 727 static ssize_t store(struct kobject *kobj, struct attribute *attr, 728 const char *buf, size_t count) 729 { 730 struct cpufreq_policy *policy = to_policy(kobj); 731 struct freq_attr *fattr = to_attr(attr); 732 ssize_t ret = -EINVAL; 733 policy = cpufreq_cpu_get(policy->cpu); 734 if (!policy) 735 goto no_policy; 736 737 if (lock_policy_rwsem_write(policy->cpu) < 0) 738 goto fail; 739 740 if (fattr->store) 741 ret = fattr->store(policy, buf, count); 742 else 743 ret = -EIO; 744 745 unlock_policy_rwsem_write(policy->cpu); 746 fail: 747 cpufreq_cpu_put(policy); 748 no_policy: 749 return ret; 750 } 751 752 static void cpufreq_sysfs_release(struct kobject *kobj) 753 { 754 struct cpufreq_policy *policy = to_policy(kobj); 755 dprintk("last reference is dropped\n"); 756 complete(&policy->kobj_unregister); 757 } 758 759 static const struct sysfs_ops sysfs_ops = { 760 .show = show, 761 .store = store, 762 }; 763 764 static struct kobj_type ktype_cpufreq = { 765 .sysfs_ops = &sysfs_ops, 766 .default_attrs = default_attrs, 767 .release = cpufreq_sysfs_release, 768 }; 769 770 /* 771 * Returns: 772 * Negative: Failure 773 * 0: Success 774 * Positive: When we have a managed CPU and the sysfs got symlinked 775 */ 776 static int cpufreq_add_dev_policy(unsigned int cpu, 777 struct cpufreq_policy *policy, 778 struct sys_device *sys_dev) 779 { 780 int ret = 0; 781 #ifdef CONFIG_SMP 782 unsigned long flags; 783 unsigned int j; 784 #ifdef CONFIG_HOTPLUG_CPU 785 struct cpufreq_governor *gov; 786 787 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 788 if (gov) { 789 policy->governor = gov; 790 dprintk("Restoring governor %s for cpu %d\n", 791 policy->governor->name, cpu); 792 } 793 #endif 794 795 for_each_cpu(j, policy->cpus) { 796 struct cpufreq_policy *managed_policy; 797 798 if (cpu == j) 799 continue; 800 801 /* Check for existing affected CPUs. 802 * They may not be aware of it due to CPU Hotplug. 803 * cpufreq_cpu_put is called when the device is removed 804 * in __cpufreq_remove_dev() 805 */ 806 managed_policy = cpufreq_cpu_get(j); 807 if (unlikely(managed_policy)) { 808 809 /* Set proper policy_cpu */ 810 unlock_policy_rwsem_write(cpu); 811 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu; 812 813 if (lock_policy_rwsem_write(cpu) < 0) { 814 /* Should not go through policy unlock path */ 815 if (cpufreq_driver->exit) 816 cpufreq_driver->exit(policy); 817 cpufreq_cpu_put(managed_policy); 818 return -EBUSY; 819 } 820 821 spin_lock_irqsave(&cpufreq_driver_lock, flags); 822 cpumask_copy(managed_policy->cpus, policy->cpus); 823 per_cpu(cpufreq_cpu_data, cpu) = managed_policy; 824 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 825 826 dprintk("CPU already managed, adding link\n"); 827 ret = sysfs_create_link(&sys_dev->kobj, 828 &managed_policy->kobj, 829 "cpufreq"); 830 if (ret) 831 cpufreq_cpu_put(managed_policy); 832 /* 833 * Success. We only needed to be added to the mask. 834 * Call driver->exit() because only the cpu parent of 835 * the kobj needed to call init(). 836 */ 837 if (cpufreq_driver->exit) 838 cpufreq_driver->exit(policy); 839 840 if (!ret) 841 return 1; 842 else 843 return ret; 844 } 845 } 846 #endif 847 return ret; 848 } 849 850 851 /* symlink affected CPUs */ 852 static int cpufreq_add_dev_symlink(unsigned int cpu, 853 struct cpufreq_policy *policy) 854 { 855 unsigned int j; 856 int ret = 0; 857 858 for_each_cpu(j, policy->cpus) { 859 struct cpufreq_policy *managed_policy; 860 struct sys_device *cpu_sys_dev; 861 862 if (j == cpu) 863 continue; 864 if (!cpu_online(j)) 865 continue; 866 867 dprintk("CPU %u already managed, adding link\n", j); 868 managed_policy = cpufreq_cpu_get(cpu); 869 cpu_sys_dev = get_cpu_sysdev(j); 870 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj, 871 "cpufreq"); 872 if (ret) { 873 cpufreq_cpu_put(managed_policy); 874 return ret; 875 } 876 } 877 return ret; 878 } 879 880 static int cpufreq_add_dev_interface(unsigned int cpu, 881 struct cpufreq_policy *policy, 882 struct sys_device *sys_dev) 883 { 884 struct cpufreq_policy new_policy; 885 struct freq_attr **drv_attr; 886 unsigned long flags; 887 int ret = 0; 888 unsigned int j; 889 890 /* prepare interface data */ 891 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 892 &sys_dev->kobj, "cpufreq"); 893 if (ret) 894 return ret; 895 896 /* set up files for this cpu device */ 897 drv_attr = cpufreq_driver->attr; 898 while ((drv_attr) && (*drv_attr)) { 899 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 900 if (ret) 901 goto err_out_kobj_put; 902 drv_attr++; 903 } 904 if (cpufreq_driver->get) { 905 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 906 if (ret) 907 goto err_out_kobj_put; 908 } 909 if (cpufreq_driver->target) { 910 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 911 if (ret) 912 goto err_out_kobj_put; 913 } 914 if (cpufreq_driver->bios_limit) { 915 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 916 if (ret) 917 goto err_out_kobj_put; 918 } 919 920 spin_lock_irqsave(&cpufreq_driver_lock, flags); 921 for_each_cpu(j, policy->cpus) { 922 if (!cpu_online(j)) 923 continue; 924 per_cpu(cpufreq_cpu_data, j) = policy; 925 per_cpu(cpufreq_policy_cpu, j) = policy->cpu; 926 } 927 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 928 929 ret = cpufreq_add_dev_symlink(cpu, policy); 930 if (ret) 931 goto err_out_kobj_put; 932 933 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 934 /* assure that the starting sequence is run in __cpufreq_set_policy */ 935 policy->governor = NULL; 936 937 /* set default policy */ 938 ret = __cpufreq_set_policy(policy, &new_policy); 939 policy->user_policy.policy = policy->policy; 940 policy->user_policy.governor = policy->governor; 941 942 if (ret) { 943 dprintk("setting policy failed\n"); 944 if (cpufreq_driver->exit) 945 cpufreq_driver->exit(policy); 946 } 947 return ret; 948 949 err_out_kobj_put: 950 kobject_put(&policy->kobj); 951 wait_for_completion(&policy->kobj_unregister); 952 return ret; 953 } 954 955 956 /** 957 * cpufreq_add_dev - add a CPU device 958 * 959 * Adds the cpufreq interface for a CPU device. 960 * 961 * The Oracle says: try running cpufreq registration/unregistration concurrently 962 * with with cpu hotplugging and all hell will break loose. Tried to clean this 963 * mess up, but more thorough testing is needed. - Mathieu 964 */ 965 static int cpufreq_add_dev(struct sys_device *sys_dev) 966 { 967 unsigned int cpu = sys_dev->id; 968 int ret = 0, found = 0; 969 struct cpufreq_policy *policy; 970 unsigned long flags; 971 unsigned int j; 972 #ifdef CONFIG_HOTPLUG_CPU 973 int sibling; 974 #endif 975 976 if (cpu_is_offline(cpu)) 977 return 0; 978 979 cpufreq_debug_disable_ratelimit(); 980 dprintk("adding CPU %u\n", cpu); 981 982 #ifdef CONFIG_SMP 983 /* check whether a different CPU already registered this 984 * CPU because it is in the same boat. */ 985 policy = cpufreq_cpu_get(cpu); 986 if (unlikely(policy)) { 987 cpufreq_cpu_put(policy); 988 cpufreq_debug_enable_ratelimit(); 989 return 0; 990 } 991 #endif 992 993 if (!try_module_get(cpufreq_driver->owner)) { 994 ret = -EINVAL; 995 goto module_out; 996 } 997 998 ret = -ENOMEM; 999 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 1000 if (!policy) 1001 goto nomem_out; 1002 1003 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1004 goto err_free_policy; 1005 1006 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1007 goto err_free_cpumask; 1008 1009 policy->cpu = cpu; 1010 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1011 1012 /* Initially set CPU itself as the policy_cpu */ 1013 per_cpu(cpufreq_policy_cpu, cpu) = cpu; 1014 ret = (lock_policy_rwsem_write(cpu) < 0); 1015 WARN_ON(ret); 1016 1017 init_completion(&policy->kobj_unregister); 1018 INIT_WORK(&policy->update, handle_update); 1019 1020 /* Set governor before ->init, so that driver could check it */ 1021 #ifdef CONFIG_HOTPLUG_CPU 1022 for_each_online_cpu(sibling) { 1023 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling); 1024 if (cp && cp->governor && 1025 (cpumask_test_cpu(cpu, cp->related_cpus))) { 1026 policy->governor = cp->governor; 1027 found = 1; 1028 break; 1029 } 1030 } 1031 #endif 1032 if (!found) 1033 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1034 /* call driver. From then on the cpufreq must be able 1035 * to accept all calls to ->verify and ->setpolicy for this CPU 1036 */ 1037 ret = cpufreq_driver->init(policy); 1038 if (ret) { 1039 dprintk("initialization failed\n"); 1040 goto err_unlock_policy; 1041 } 1042 policy->user_policy.min = policy->min; 1043 policy->user_policy.max = policy->max; 1044 1045 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1046 CPUFREQ_START, policy); 1047 1048 ret = cpufreq_add_dev_policy(cpu, policy, sys_dev); 1049 if (ret) { 1050 if (ret > 0) 1051 /* This is a managed cpu, symlink created, 1052 exit with 0 */ 1053 ret = 0; 1054 goto err_unlock_policy; 1055 } 1056 1057 ret = cpufreq_add_dev_interface(cpu, policy, sys_dev); 1058 if (ret) 1059 goto err_out_unregister; 1060 1061 unlock_policy_rwsem_write(cpu); 1062 1063 kobject_uevent(&policy->kobj, KOBJ_ADD); 1064 module_put(cpufreq_driver->owner); 1065 dprintk("initialization complete\n"); 1066 cpufreq_debug_enable_ratelimit(); 1067 1068 return 0; 1069 1070 1071 err_out_unregister: 1072 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1073 for_each_cpu(j, policy->cpus) 1074 per_cpu(cpufreq_cpu_data, j) = NULL; 1075 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1076 1077 kobject_put(&policy->kobj); 1078 wait_for_completion(&policy->kobj_unregister); 1079 1080 err_unlock_policy: 1081 unlock_policy_rwsem_write(cpu); 1082 free_cpumask_var(policy->related_cpus); 1083 err_free_cpumask: 1084 free_cpumask_var(policy->cpus); 1085 err_free_policy: 1086 kfree(policy); 1087 nomem_out: 1088 module_put(cpufreq_driver->owner); 1089 module_out: 1090 cpufreq_debug_enable_ratelimit(); 1091 return ret; 1092 } 1093 1094 1095 /** 1096 * __cpufreq_remove_dev - remove a CPU device 1097 * 1098 * Removes the cpufreq interface for a CPU device. 1099 * Caller should already have policy_rwsem in write mode for this CPU. 1100 * This routine frees the rwsem before returning. 1101 */ 1102 static int __cpufreq_remove_dev(struct sys_device *sys_dev) 1103 { 1104 unsigned int cpu = sys_dev->id; 1105 unsigned long flags; 1106 struct cpufreq_policy *data; 1107 struct kobject *kobj; 1108 struct completion *cmp; 1109 #ifdef CONFIG_SMP 1110 struct sys_device *cpu_sys_dev; 1111 unsigned int j; 1112 #endif 1113 1114 cpufreq_debug_disable_ratelimit(); 1115 dprintk("unregistering CPU %u\n", cpu); 1116 1117 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1118 data = per_cpu(cpufreq_cpu_data, cpu); 1119 1120 if (!data) { 1121 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1122 cpufreq_debug_enable_ratelimit(); 1123 unlock_policy_rwsem_write(cpu); 1124 return -EINVAL; 1125 } 1126 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1127 1128 1129 #ifdef CONFIG_SMP 1130 /* if this isn't the CPU which is the parent of the kobj, we 1131 * only need to unlink, put and exit 1132 */ 1133 if (unlikely(cpu != data->cpu)) { 1134 dprintk("removing link\n"); 1135 cpumask_clear_cpu(cpu, data->cpus); 1136 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1137 kobj = &sys_dev->kobj; 1138 cpufreq_cpu_put(data); 1139 cpufreq_debug_enable_ratelimit(); 1140 unlock_policy_rwsem_write(cpu); 1141 sysfs_remove_link(kobj, "cpufreq"); 1142 return 0; 1143 } 1144 #endif 1145 1146 #ifdef CONFIG_SMP 1147 1148 #ifdef CONFIG_HOTPLUG_CPU 1149 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name, 1150 CPUFREQ_NAME_LEN); 1151 #endif 1152 1153 /* if we have other CPUs still registered, we need to unlink them, 1154 * or else wait_for_completion below will lock up. Clean the 1155 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove 1156 * the sysfs links afterwards. 1157 */ 1158 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1159 for_each_cpu(j, data->cpus) { 1160 if (j == cpu) 1161 continue; 1162 per_cpu(cpufreq_cpu_data, j) = NULL; 1163 } 1164 } 1165 1166 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1167 1168 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1169 for_each_cpu(j, data->cpus) { 1170 if (j == cpu) 1171 continue; 1172 dprintk("removing link for cpu %u\n", j); 1173 #ifdef CONFIG_HOTPLUG_CPU 1174 strncpy(per_cpu(cpufreq_cpu_governor, j), 1175 data->governor->name, CPUFREQ_NAME_LEN); 1176 #endif 1177 cpu_sys_dev = get_cpu_sysdev(j); 1178 kobj = &cpu_sys_dev->kobj; 1179 unlock_policy_rwsem_write(cpu); 1180 sysfs_remove_link(kobj, "cpufreq"); 1181 lock_policy_rwsem_write(cpu); 1182 cpufreq_cpu_put(data); 1183 } 1184 } 1185 #else 1186 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1187 #endif 1188 1189 if (cpufreq_driver->target) 1190 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1191 1192 kobj = &data->kobj; 1193 cmp = &data->kobj_unregister; 1194 unlock_policy_rwsem_write(cpu); 1195 kobject_put(kobj); 1196 1197 /* we need to make sure that the underlying kobj is actually 1198 * not referenced anymore by anybody before we proceed with 1199 * unloading. 1200 */ 1201 dprintk("waiting for dropping of refcount\n"); 1202 wait_for_completion(cmp); 1203 dprintk("wait complete\n"); 1204 1205 lock_policy_rwsem_write(cpu); 1206 if (cpufreq_driver->exit) 1207 cpufreq_driver->exit(data); 1208 unlock_policy_rwsem_write(cpu); 1209 1210 free_cpumask_var(data->related_cpus); 1211 free_cpumask_var(data->cpus); 1212 kfree(data); 1213 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1214 1215 cpufreq_debug_enable_ratelimit(); 1216 return 0; 1217 } 1218 1219 1220 static int cpufreq_remove_dev(struct sys_device *sys_dev) 1221 { 1222 unsigned int cpu = sys_dev->id; 1223 int retval; 1224 1225 if (cpu_is_offline(cpu)) 1226 return 0; 1227 1228 if (unlikely(lock_policy_rwsem_write(cpu))) 1229 BUG(); 1230 1231 retval = __cpufreq_remove_dev(sys_dev); 1232 return retval; 1233 } 1234 1235 1236 static void handle_update(struct work_struct *work) 1237 { 1238 struct cpufreq_policy *policy = 1239 container_of(work, struct cpufreq_policy, update); 1240 unsigned int cpu = policy->cpu; 1241 dprintk("handle_update for cpu %u called\n", cpu); 1242 cpufreq_update_policy(cpu); 1243 } 1244 1245 /** 1246 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble. 1247 * @cpu: cpu number 1248 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1249 * @new_freq: CPU frequency the CPU actually runs at 1250 * 1251 * We adjust to current frequency first, and need to clean up later. 1252 * So either call to cpufreq_update_policy() or schedule handle_update()). 1253 */ 1254 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1255 unsigned int new_freq) 1256 { 1257 struct cpufreq_freqs freqs; 1258 1259 dprintk("Warning: CPU frequency out of sync: cpufreq and timing " 1260 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1261 1262 freqs.cpu = cpu; 1263 freqs.old = old_freq; 1264 freqs.new = new_freq; 1265 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); 1266 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); 1267 } 1268 1269 1270 /** 1271 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1272 * @cpu: CPU number 1273 * 1274 * This is the last known freq, without actually getting it from the driver. 1275 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1276 */ 1277 unsigned int cpufreq_quick_get(unsigned int cpu) 1278 { 1279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1280 unsigned int ret_freq = 0; 1281 1282 if (policy) { 1283 ret_freq = policy->cur; 1284 cpufreq_cpu_put(policy); 1285 } 1286 1287 return ret_freq; 1288 } 1289 EXPORT_SYMBOL(cpufreq_quick_get); 1290 1291 1292 static unsigned int __cpufreq_get(unsigned int cpu) 1293 { 1294 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1295 unsigned int ret_freq = 0; 1296 1297 if (!cpufreq_driver->get) 1298 return ret_freq; 1299 1300 ret_freq = cpufreq_driver->get(cpu); 1301 1302 if (ret_freq && policy->cur && 1303 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1304 /* verify no discrepancy between actual and 1305 saved value exists */ 1306 if (unlikely(ret_freq != policy->cur)) { 1307 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1308 schedule_work(&policy->update); 1309 } 1310 } 1311 1312 return ret_freq; 1313 } 1314 1315 /** 1316 * cpufreq_get - get the current CPU frequency (in kHz) 1317 * @cpu: CPU number 1318 * 1319 * Get the CPU current (static) CPU frequency 1320 */ 1321 unsigned int cpufreq_get(unsigned int cpu) 1322 { 1323 unsigned int ret_freq = 0; 1324 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1325 1326 if (!policy) 1327 goto out; 1328 1329 if (unlikely(lock_policy_rwsem_read(cpu))) 1330 goto out_policy; 1331 1332 ret_freq = __cpufreq_get(cpu); 1333 1334 unlock_policy_rwsem_read(cpu); 1335 1336 out_policy: 1337 cpufreq_cpu_put(policy); 1338 out: 1339 return ret_freq; 1340 } 1341 EXPORT_SYMBOL(cpufreq_get); 1342 1343 1344 /** 1345 * cpufreq_suspend - let the low level driver prepare for suspend 1346 */ 1347 1348 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg) 1349 { 1350 int ret = 0; 1351 1352 int cpu = sysdev->id; 1353 struct cpufreq_policy *cpu_policy; 1354 1355 dprintk("suspending cpu %u\n", cpu); 1356 1357 if (!cpu_online(cpu)) 1358 return 0; 1359 1360 /* we may be lax here as interrupts are off. Nonetheless 1361 * we need to grab the correct cpu policy, as to check 1362 * whether we really run on this CPU. 1363 */ 1364 1365 cpu_policy = cpufreq_cpu_get(cpu); 1366 if (!cpu_policy) 1367 return -EINVAL; 1368 1369 /* only handle each CPU group once */ 1370 if (unlikely(cpu_policy->cpu != cpu)) 1371 goto out; 1372 1373 if (cpufreq_driver->suspend) { 1374 ret = cpufreq_driver->suspend(cpu_policy, pmsg); 1375 if (ret) 1376 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1377 "step on CPU %u\n", cpu_policy->cpu); 1378 } 1379 1380 out: 1381 cpufreq_cpu_put(cpu_policy); 1382 return ret; 1383 } 1384 1385 /** 1386 * cpufreq_resume - restore proper CPU frequency handling after resume 1387 * 1388 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1389 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1390 * restored. It will verify that the current freq is in sync with 1391 * what we believe it to be. This is a bit later than when it 1392 * should be, but nonethteless it's better than calling 1393 * cpufreq_driver->get() here which might re-enable interrupts... 1394 */ 1395 static int cpufreq_resume(struct sys_device *sysdev) 1396 { 1397 int ret = 0; 1398 1399 int cpu = sysdev->id; 1400 struct cpufreq_policy *cpu_policy; 1401 1402 dprintk("resuming cpu %u\n", cpu); 1403 1404 if (!cpu_online(cpu)) 1405 return 0; 1406 1407 /* we may be lax here as interrupts are off. Nonetheless 1408 * we need to grab the correct cpu policy, as to check 1409 * whether we really run on this CPU. 1410 */ 1411 1412 cpu_policy = cpufreq_cpu_get(cpu); 1413 if (!cpu_policy) 1414 return -EINVAL; 1415 1416 /* only handle each CPU group once */ 1417 if (unlikely(cpu_policy->cpu != cpu)) 1418 goto fail; 1419 1420 if (cpufreq_driver->resume) { 1421 ret = cpufreq_driver->resume(cpu_policy); 1422 if (ret) { 1423 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1424 "step on CPU %u\n", cpu_policy->cpu); 1425 goto fail; 1426 } 1427 } 1428 1429 schedule_work(&cpu_policy->update); 1430 1431 fail: 1432 cpufreq_cpu_put(cpu_policy); 1433 return ret; 1434 } 1435 1436 static struct sysdev_driver cpufreq_sysdev_driver = { 1437 .add = cpufreq_add_dev, 1438 .remove = cpufreq_remove_dev, 1439 .suspend = cpufreq_suspend, 1440 .resume = cpufreq_resume, 1441 }; 1442 1443 1444 /********************************************************************* 1445 * NOTIFIER LISTS INTERFACE * 1446 *********************************************************************/ 1447 1448 /** 1449 * cpufreq_register_notifier - register a driver with cpufreq 1450 * @nb: notifier function to register 1451 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1452 * 1453 * Add a driver to one of two lists: either a list of drivers that 1454 * are notified about clock rate changes (once before and once after 1455 * the transition), or a list of drivers that are notified about 1456 * changes in cpufreq policy. 1457 * 1458 * This function may sleep, and has the same return conditions as 1459 * blocking_notifier_chain_register. 1460 */ 1461 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1462 { 1463 int ret; 1464 1465 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1466 1467 switch (list) { 1468 case CPUFREQ_TRANSITION_NOTIFIER: 1469 ret = srcu_notifier_chain_register( 1470 &cpufreq_transition_notifier_list, nb); 1471 break; 1472 case CPUFREQ_POLICY_NOTIFIER: 1473 ret = blocking_notifier_chain_register( 1474 &cpufreq_policy_notifier_list, nb); 1475 break; 1476 default: 1477 ret = -EINVAL; 1478 } 1479 1480 return ret; 1481 } 1482 EXPORT_SYMBOL(cpufreq_register_notifier); 1483 1484 1485 /** 1486 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1487 * @nb: notifier block to be unregistered 1488 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1489 * 1490 * Remove a driver from the CPU frequency notifier list. 1491 * 1492 * This function may sleep, and has the same return conditions as 1493 * blocking_notifier_chain_unregister. 1494 */ 1495 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1496 { 1497 int ret; 1498 1499 switch (list) { 1500 case CPUFREQ_TRANSITION_NOTIFIER: 1501 ret = srcu_notifier_chain_unregister( 1502 &cpufreq_transition_notifier_list, nb); 1503 break; 1504 case CPUFREQ_POLICY_NOTIFIER: 1505 ret = blocking_notifier_chain_unregister( 1506 &cpufreq_policy_notifier_list, nb); 1507 break; 1508 default: 1509 ret = -EINVAL; 1510 } 1511 1512 return ret; 1513 } 1514 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1515 1516 1517 /********************************************************************* 1518 * GOVERNORS * 1519 *********************************************************************/ 1520 1521 1522 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1523 unsigned int target_freq, 1524 unsigned int relation) 1525 { 1526 int retval = -EINVAL; 1527 1528 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu, 1529 target_freq, relation); 1530 if (cpu_online(policy->cpu) && cpufreq_driver->target) 1531 retval = cpufreq_driver->target(policy, target_freq, relation); 1532 1533 return retval; 1534 } 1535 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1536 1537 int cpufreq_driver_target(struct cpufreq_policy *policy, 1538 unsigned int target_freq, 1539 unsigned int relation) 1540 { 1541 int ret = -EINVAL; 1542 1543 policy = cpufreq_cpu_get(policy->cpu); 1544 if (!policy) 1545 goto no_policy; 1546 1547 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1548 goto fail; 1549 1550 ret = __cpufreq_driver_target(policy, target_freq, relation); 1551 1552 unlock_policy_rwsem_write(policy->cpu); 1553 1554 fail: 1555 cpufreq_cpu_put(policy); 1556 no_policy: 1557 return ret; 1558 } 1559 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1560 1561 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu) 1562 { 1563 int ret = 0; 1564 1565 policy = cpufreq_cpu_get(policy->cpu); 1566 if (!policy) 1567 return -EINVAL; 1568 1569 if (cpu_online(cpu) && cpufreq_driver->getavg) 1570 ret = cpufreq_driver->getavg(policy, cpu); 1571 1572 cpufreq_cpu_put(policy); 1573 return ret; 1574 } 1575 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1576 1577 /* 1578 * when "event" is CPUFREQ_GOV_LIMITS 1579 */ 1580 1581 static int __cpufreq_governor(struct cpufreq_policy *policy, 1582 unsigned int event) 1583 { 1584 int ret; 1585 1586 /* Only must be defined when default governor is known to have latency 1587 restrictions, like e.g. conservative or ondemand. 1588 That this is the case is already ensured in Kconfig 1589 */ 1590 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1591 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1592 #else 1593 struct cpufreq_governor *gov = NULL; 1594 #endif 1595 1596 if (policy->governor->max_transition_latency && 1597 policy->cpuinfo.transition_latency > 1598 policy->governor->max_transition_latency) { 1599 if (!gov) 1600 return -EINVAL; 1601 else { 1602 printk(KERN_WARNING "%s governor failed, too long" 1603 " transition latency of HW, fallback" 1604 " to %s governor\n", 1605 policy->governor->name, 1606 gov->name); 1607 policy->governor = gov; 1608 } 1609 } 1610 1611 if (!try_module_get(policy->governor->owner)) 1612 return -EINVAL; 1613 1614 dprintk("__cpufreq_governor for CPU %u, event %u\n", 1615 policy->cpu, event); 1616 ret = policy->governor->governor(policy, event); 1617 1618 /* we keep one module reference alive for 1619 each CPU governed by this CPU */ 1620 if ((event != CPUFREQ_GOV_START) || ret) 1621 module_put(policy->governor->owner); 1622 if ((event == CPUFREQ_GOV_STOP) && !ret) 1623 module_put(policy->governor->owner); 1624 1625 return ret; 1626 } 1627 1628 1629 int cpufreq_register_governor(struct cpufreq_governor *governor) 1630 { 1631 int err; 1632 1633 if (!governor) 1634 return -EINVAL; 1635 1636 mutex_lock(&cpufreq_governor_mutex); 1637 1638 err = -EBUSY; 1639 if (__find_governor(governor->name) == NULL) { 1640 err = 0; 1641 list_add(&governor->governor_list, &cpufreq_governor_list); 1642 } 1643 1644 mutex_unlock(&cpufreq_governor_mutex); 1645 return err; 1646 } 1647 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1648 1649 1650 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1651 { 1652 #ifdef CONFIG_HOTPLUG_CPU 1653 int cpu; 1654 #endif 1655 1656 if (!governor) 1657 return; 1658 1659 #ifdef CONFIG_HOTPLUG_CPU 1660 for_each_present_cpu(cpu) { 1661 if (cpu_online(cpu)) 1662 continue; 1663 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1664 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1665 } 1666 #endif 1667 1668 mutex_lock(&cpufreq_governor_mutex); 1669 list_del(&governor->governor_list); 1670 mutex_unlock(&cpufreq_governor_mutex); 1671 return; 1672 } 1673 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1674 1675 1676 1677 /********************************************************************* 1678 * POLICY INTERFACE * 1679 *********************************************************************/ 1680 1681 /** 1682 * cpufreq_get_policy - get the current cpufreq_policy 1683 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1684 * is written 1685 * 1686 * Reads the current cpufreq policy. 1687 */ 1688 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1689 { 1690 struct cpufreq_policy *cpu_policy; 1691 if (!policy) 1692 return -EINVAL; 1693 1694 cpu_policy = cpufreq_cpu_get(cpu); 1695 if (!cpu_policy) 1696 return -EINVAL; 1697 1698 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1699 1700 cpufreq_cpu_put(cpu_policy); 1701 return 0; 1702 } 1703 EXPORT_SYMBOL(cpufreq_get_policy); 1704 1705 1706 /* 1707 * data : current policy. 1708 * policy : policy to be set. 1709 */ 1710 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1711 struct cpufreq_policy *policy) 1712 { 1713 int ret = 0; 1714 1715 cpufreq_debug_disable_ratelimit(); 1716 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1717 policy->min, policy->max); 1718 1719 memcpy(&policy->cpuinfo, &data->cpuinfo, 1720 sizeof(struct cpufreq_cpuinfo)); 1721 1722 if (policy->min > data->max || policy->max < data->min) { 1723 ret = -EINVAL; 1724 goto error_out; 1725 } 1726 1727 /* verify the cpu speed can be set within this limit */ 1728 ret = cpufreq_driver->verify(policy); 1729 if (ret) 1730 goto error_out; 1731 1732 /* adjust if necessary - all reasons */ 1733 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1734 CPUFREQ_ADJUST, policy); 1735 1736 /* adjust if necessary - hardware incompatibility*/ 1737 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1738 CPUFREQ_INCOMPATIBLE, policy); 1739 1740 /* verify the cpu speed can be set within this limit, 1741 which might be different to the first one */ 1742 ret = cpufreq_driver->verify(policy); 1743 if (ret) 1744 goto error_out; 1745 1746 /* notification of the new policy */ 1747 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1748 CPUFREQ_NOTIFY, policy); 1749 1750 data->min = policy->min; 1751 data->max = policy->max; 1752 1753 dprintk("new min and max freqs are %u - %u kHz\n", 1754 data->min, data->max); 1755 1756 if (cpufreq_driver->setpolicy) { 1757 data->policy = policy->policy; 1758 dprintk("setting range\n"); 1759 ret = cpufreq_driver->setpolicy(policy); 1760 } else { 1761 if (policy->governor != data->governor) { 1762 /* save old, working values */ 1763 struct cpufreq_governor *old_gov = data->governor; 1764 1765 dprintk("governor switch\n"); 1766 1767 /* end old governor */ 1768 if (data->governor) 1769 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1770 1771 /* start new governor */ 1772 data->governor = policy->governor; 1773 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1774 /* new governor failed, so re-start old one */ 1775 dprintk("starting governor %s failed\n", 1776 data->governor->name); 1777 if (old_gov) { 1778 data->governor = old_gov; 1779 __cpufreq_governor(data, 1780 CPUFREQ_GOV_START); 1781 } 1782 ret = -EINVAL; 1783 goto error_out; 1784 } 1785 /* might be a policy change, too, so fall through */ 1786 } 1787 dprintk("governor: change or update limits\n"); 1788 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1789 } 1790 1791 error_out: 1792 cpufreq_debug_enable_ratelimit(); 1793 return ret; 1794 } 1795 1796 /** 1797 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1798 * @cpu: CPU which shall be re-evaluated 1799 * 1800 * Usefull for policy notifiers which have different necessities 1801 * at different times. 1802 */ 1803 int cpufreq_update_policy(unsigned int cpu) 1804 { 1805 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1806 struct cpufreq_policy policy; 1807 int ret; 1808 1809 if (!data) { 1810 ret = -ENODEV; 1811 goto no_policy; 1812 } 1813 1814 if (unlikely(lock_policy_rwsem_write(cpu))) { 1815 ret = -EINVAL; 1816 goto fail; 1817 } 1818 1819 dprintk("updating policy for CPU %u\n", cpu); 1820 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1821 policy.min = data->user_policy.min; 1822 policy.max = data->user_policy.max; 1823 policy.policy = data->user_policy.policy; 1824 policy.governor = data->user_policy.governor; 1825 1826 /* BIOS might change freq behind our back 1827 -> ask driver for current freq and notify governors about a change */ 1828 if (cpufreq_driver->get) { 1829 policy.cur = cpufreq_driver->get(cpu); 1830 if (!data->cur) { 1831 dprintk("Driver did not initialize current freq"); 1832 data->cur = policy.cur; 1833 } else { 1834 if (data->cur != policy.cur) 1835 cpufreq_out_of_sync(cpu, data->cur, 1836 policy.cur); 1837 } 1838 } 1839 1840 ret = __cpufreq_set_policy(data, &policy); 1841 1842 unlock_policy_rwsem_write(cpu); 1843 1844 fail: 1845 cpufreq_cpu_put(data); 1846 no_policy: 1847 return ret; 1848 } 1849 EXPORT_SYMBOL(cpufreq_update_policy); 1850 1851 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb, 1852 unsigned long action, void *hcpu) 1853 { 1854 unsigned int cpu = (unsigned long)hcpu; 1855 struct sys_device *sys_dev; 1856 1857 sys_dev = get_cpu_sysdev(cpu); 1858 if (sys_dev) { 1859 switch (action) { 1860 case CPU_ONLINE: 1861 case CPU_ONLINE_FROZEN: 1862 cpufreq_add_dev(sys_dev); 1863 break; 1864 case CPU_DOWN_PREPARE: 1865 case CPU_DOWN_PREPARE_FROZEN: 1866 if (unlikely(lock_policy_rwsem_write(cpu))) 1867 BUG(); 1868 1869 __cpufreq_remove_dev(sys_dev); 1870 break; 1871 case CPU_DOWN_FAILED: 1872 case CPU_DOWN_FAILED_FROZEN: 1873 cpufreq_add_dev(sys_dev); 1874 break; 1875 } 1876 } 1877 return NOTIFY_OK; 1878 } 1879 1880 static struct notifier_block __refdata cpufreq_cpu_notifier = { 1881 .notifier_call = cpufreq_cpu_callback, 1882 }; 1883 1884 /********************************************************************* 1885 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1886 *********************************************************************/ 1887 1888 /** 1889 * cpufreq_register_driver - register a CPU Frequency driver 1890 * @driver_data: A struct cpufreq_driver containing the values# 1891 * submitted by the CPU Frequency driver. 1892 * 1893 * Registers a CPU Frequency driver to this core code. This code 1894 * returns zero on success, -EBUSY when another driver got here first 1895 * (and isn't unregistered in the meantime). 1896 * 1897 */ 1898 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1899 { 1900 unsigned long flags; 1901 int ret; 1902 1903 if (!driver_data || !driver_data->verify || !driver_data->init || 1904 ((!driver_data->setpolicy) && (!driver_data->target))) 1905 return -EINVAL; 1906 1907 dprintk("trying to register driver %s\n", driver_data->name); 1908 1909 if (driver_data->setpolicy) 1910 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1911 1912 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1913 if (cpufreq_driver) { 1914 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1915 return -EBUSY; 1916 } 1917 cpufreq_driver = driver_data; 1918 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1919 1920 ret = sysdev_driver_register(&cpu_sysdev_class, 1921 &cpufreq_sysdev_driver); 1922 1923 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) { 1924 int i; 1925 ret = -ENODEV; 1926 1927 /* check for at least one working CPU */ 1928 for (i = 0; i < nr_cpu_ids; i++) 1929 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 1930 ret = 0; 1931 break; 1932 } 1933 1934 /* if all ->init() calls failed, unregister */ 1935 if (ret) { 1936 dprintk("no CPU initialized for driver %s\n", 1937 driver_data->name); 1938 sysdev_driver_unregister(&cpu_sysdev_class, 1939 &cpufreq_sysdev_driver); 1940 1941 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1942 cpufreq_driver = NULL; 1943 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1944 } 1945 } 1946 1947 if (!ret) { 1948 register_hotcpu_notifier(&cpufreq_cpu_notifier); 1949 dprintk("driver %s up and running\n", driver_data->name); 1950 cpufreq_debug_enable_ratelimit(); 1951 } 1952 1953 return ret; 1954 } 1955 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 1956 1957 1958 /** 1959 * cpufreq_unregister_driver - unregister the current CPUFreq driver 1960 * 1961 * Unregister the current CPUFreq driver. Only call this if you have 1962 * the right to do so, i.e. if you have succeeded in initialising before! 1963 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 1964 * currently not initialised. 1965 */ 1966 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 1967 { 1968 unsigned long flags; 1969 1970 cpufreq_debug_disable_ratelimit(); 1971 1972 if (!cpufreq_driver || (driver != cpufreq_driver)) { 1973 cpufreq_debug_enable_ratelimit(); 1974 return -EINVAL; 1975 } 1976 1977 dprintk("unregistering driver %s\n", driver->name); 1978 1979 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver); 1980 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 1981 1982 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1983 cpufreq_driver = NULL; 1984 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1985 1986 return 0; 1987 } 1988 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 1989 1990 static int __init cpufreq_core_init(void) 1991 { 1992 int cpu; 1993 1994 for_each_possible_cpu(cpu) { 1995 per_cpu(cpufreq_policy_cpu, cpu) = -1; 1996 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 1997 } 1998 1999 cpufreq_global_kobject = kobject_create_and_add("cpufreq", 2000 &cpu_sysdev_class.kset.kobj); 2001 BUG_ON(!cpufreq_global_kobject); 2002 2003 return 0; 2004 } 2005 core_initcall(cpufreq_core_init); 2006