xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision ba61bb17)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)			 \
43 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 		if ((__active) == !policy_is_inactive(__policy))
45 
46 #define for_each_active_policy(__policy)		\
47 	for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)		\
49 	for_each_suitable_policy(__policy, false)
50 
51 #define for_each_policy(__policy)			\
52 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53 
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)				\
57 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58 
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93 
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97 	return off;
98 }
99 void disable_cpufreq(void)
100 {
101 	off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104 
105 bool have_governor_per_policy(void)
106 {
107 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110 
111 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
112 {
113 	if (have_governor_per_policy())
114 		return &policy->kobj;
115 	else
116 		return cpufreq_global_kobject;
117 }
118 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
119 
120 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
121 {
122 	u64 idle_time;
123 	u64 cur_wall_time;
124 	u64 busy_time;
125 
126 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127 
128 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
129 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
130 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
131 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
132 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
133 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
134 
135 	idle_time = cur_wall_time - busy_time;
136 	if (wall)
137 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
138 
139 	return div_u64(idle_time, NSEC_PER_USEC);
140 }
141 
142 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
143 {
144 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
145 
146 	if (idle_time == -1ULL)
147 		return get_cpu_idle_time_jiffy(cpu, wall);
148 	else if (!io_busy)
149 		idle_time += get_cpu_iowait_time_us(cpu, wall);
150 
151 	return idle_time;
152 }
153 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
154 
155 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
156 		unsigned long max_freq)
157 {
158 }
159 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
160 
161 /*
162  * This is a generic cpufreq init() routine which can be used by cpufreq
163  * drivers of SMP systems. It will do following:
164  * - validate & show freq table passed
165  * - set policies transition latency
166  * - policy->cpus with all possible CPUs
167  */
168 int cpufreq_generic_init(struct cpufreq_policy *policy,
169 		struct cpufreq_frequency_table *table,
170 		unsigned int transition_latency)
171 {
172 	policy->freq_table = table;
173 	policy->cpuinfo.transition_latency = transition_latency;
174 
175 	/*
176 	 * The driver only supports the SMP configuration where all processors
177 	 * share the clock and voltage and clock.
178 	 */
179 	cpumask_setall(policy->cpus);
180 
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
209  *
210  * @cpu: cpu to find policy for.
211  *
212  * This returns policy for 'cpu', returns NULL if it doesn't exist.
213  * It also increments the kobject reference count to mark it busy and so would
214  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
215  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
216  * freed as that depends on the kobj count.
217  *
218  * Return: A valid policy on success, otherwise NULL on failure.
219  */
220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
221 {
222 	struct cpufreq_policy *policy = NULL;
223 	unsigned long flags;
224 
225 	if (WARN_ON(cpu >= nr_cpu_ids))
226 		return NULL;
227 
228 	/* get the cpufreq driver */
229 	read_lock_irqsave(&cpufreq_driver_lock, flags);
230 
231 	if (cpufreq_driver) {
232 		/* get the CPU */
233 		policy = cpufreq_cpu_get_raw(cpu);
234 		if (policy)
235 			kobject_get(&policy->kobj);
236 	}
237 
238 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
239 
240 	return policy;
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
243 
244 /**
245  * cpufreq_cpu_put: Decrements the usage count of a policy
246  *
247  * @policy: policy earlier returned by cpufreq_cpu_get().
248  *
249  * This decrements the kobject reference count incremented earlier by calling
250  * cpufreq_cpu_get().
251  */
252 void cpufreq_cpu_put(struct cpufreq_policy *policy)
253 {
254 	kobject_put(&policy->kobj);
255 }
256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
257 
258 /*********************************************************************
259  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
260  *********************************************************************/
261 
262 /**
263  * adjust_jiffies - adjust the system "loops_per_jiffy"
264  *
265  * This function alters the system "loops_per_jiffy" for the clock
266  * speed change. Note that loops_per_jiffy cannot be updated on SMP
267  * systems as each CPU might be scaled differently. So, use the arch
268  * per-CPU loops_per_jiffy value wherever possible.
269  */
270 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
271 {
272 #ifndef CONFIG_SMP
273 	static unsigned long l_p_j_ref;
274 	static unsigned int l_p_j_ref_freq;
275 
276 	if (ci->flags & CPUFREQ_CONST_LOOPS)
277 		return;
278 
279 	if (!l_p_j_ref_freq) {
280 		l_p_j_ref = loops_per_jiffy;
281 		l_p_j_ref_freq = ci->old;
282 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
283 			 l_p_j_ref, l_p_j_ref_freq);
284 	}
285 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
286 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
287 								ci->new);
288 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
289 			 loops_per_jiffy, ci->new);
290 	}
291 #endif
292 }
293 
294 /**
295  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
296  * @policy: cpufreq policy to enable fast frequency switching for.
297  * @freqs: contain details of the frequency update.
298  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
299  *
300  * This function calls the transition notifiers and the "adjust_jiffies"
301  * function. It is called twice on all CPU frequency changes that have
302  * external effects.
303  */
304 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
305 				      struct cpufreq_freqs *freqs,
306 				      unsigned int state)
307 {
308 	BUG_ON(irqs_disabled());
309 
310 	if (cpufreq_disabled())
311 		return;
312 
313 	freqs->flags = cpufreq_driver->flags;
314 	pr_debug("notification %u of frequency transition to %u kHz\n",
315 		 state, freqs->new);
316 
317 	switch (state) {
318 	case CPUFREQ_PRECHANGE:
319 		/*
320 		 * Detect if the driver reported a value as "old frequency"
321 		 * which is not equal to what the cpufreq core thinks is
322 		 * "old frequency".
323 		 */
324 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
325 			if (policy->cur && (policy->cur != freqs->old)) {
326 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 					 freqs->old, policy->cur);
328 				freqs->old = policy->cur;
329 			}
330 		}
331 
332 		for_each_cpu(freqs->cpu, policy->cpus) {
333 			srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
334 						 CPUFREQ_PRECHANGE, freqs);
335 		}
336 
337 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
338 		break;
339 
340 	case CPUFREQ_POSTCHANGE:
341 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
342 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
343 			 cpumask_pr_args(policy->cpus));
344 
345 		for_each_cpu(freqs->cpu, policy->cpus) {
346 			trace_cpu_frequency(freqs->new, freqs->cpu);
347 			srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
348 						 CPUFREQ_POSTCHANGE, freqs);
349 		}
350 
351 		cpufreq_stats_record_transition(policy, freqs->new);
352 		policy->cur = freqs->new;
353 	}
354 }
355 
356 /* Do post notifications when there are chances that transition has failed */
357 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
358 		struct cpufreq_freqs *freqs, int transition_failed)
359 {
360 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
361 	if (!transition_failed)
362 		return;
363 
364 	swap(freqs->old, freqs->new);
365 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
366 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
367 }
368 
369 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
370 		struct cpufreq_freqs *freqs)
371 {
372 
373 	/*
374 	 * Catch double invocations of _begin() which lead to self-deadlock.
375 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
376 	 * doesn't invoke _begin() on their behalf, and hence the chances of
377 	 * double invocations are very low. Moreover, there are scenarios
378 	 * where these checks can emit false-positive warnings in these
379 	 * drivers; so we avoid that by skipping them altogether.
380 	 */
381 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
382 				&& current == policy->transition_task);
383 
384 wait:
385 	wait_event(policy->transition_wait, !policy->transition_ongoing);
386 
387 	spin_lock(&policy->transition_lock);
388 
389 	if (unlikely(policy->transition_ongoing)) {
390 		spin_unlock(&policy->transition_lock);
391 		goto wait;
392 	}
393 
394 	policy->transition_ongoing = true;
395 	policy->transition_task = current;
396 
397 	spin_unlock(&policy->transition_lock);
398 
399 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
402 
403 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
404 		struct cpufreq_freqs *freqs, int transition_failed)
405 {
406 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
407 		return;
408 
409 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
410 
411 	policy->transition_ongoing = false;
412 	policy->transition_task = NULL;
413 
414 	wake_up(&policy->transition_wait);
415 }
416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
417 
418 /*
419  * Fast frequency switching status count.  Positive means "enabled", negative
420  * means "disabled" and 0 means "not decided yet".
421  */
422 static int cpufreq_fast_switch_count;
423 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
424 
425 static void cpufreq_list_transition_notifiers(void)
426 {
427 	struct notifier_block *nb;
428 
429 	pr_info("Registered transition notifiers:\n");
430 
431 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
432 
433 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
434 		pr_info("%pF\n", nb->notifier_call);
435 
436 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
437 }
438 
439 /**
440  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
441  * @policy: cpufreq policy to enable fast frequency switching for.
442  *
443  * Try to enable fast frequency switching for @policy.
444  *
445  * The attempt will fail if there is at least one transition notifier registered
446  * at this point, as fast frequency switching is quite fundamentally at odds
447  * with transition notifiers.  Thus if successful, it will make registration of
448  * transition notifiers fail going forward.
449  */
450 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
451 {
452 	lockdep_assert_held(&policy->rwsem);
453 
454 	if (!policy->fast_switch_possible)
455 		return;
456 
457 	mutex_lock(&cpufreq_fast_switch_lock);
458 	if (cpufreq_fast_switch_count >= 0) {
459 		cpufreq_fast_switch_count++;
460 		policy->fast_switch_enabled = true;
461 	} else {
462 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
463 			policy->cpu);
464 		cpufreq_list_transition_notifiers();
465 	}
466 	mutex_unlock(&cpufreq_fast_switch_lock);
467 }
468 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
469 
470 /**
471  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
472  * @policy: cpufreq policy to disable fast frequency switching for.
473  */
474 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
475 {
476 	mutex_lock(&cpufreq_fast_switch_lock);
477 	if (policy->fast_switch_enabled) {
478 		policy->fast_switch_enabled = false;
479 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
480 			cpufreq_fast_switch_count--;
481 	}
482 	mutex_unlock(&cpufreq_fast_switch_lock);
483 }
484 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
485 
486 /**
487  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
488  * one.
489  * @target_freq: target frequency to resolve.
490  *
491  * The target to driver frequency mapping is cached in the policy.
492  *
493  * Return: Lowest driver-supported frequency greater than or equal to the
494  * given target_freq, subject to policy (min/max) and driver limitations.
495  */
496 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
497 					 unsigned int target_freq)
498 {
499 	target_freq = clamp_val(target_freq, policy->min, policy->max);
500 	policy->cached_target_freq = target_freq;
501 
502 	if (cpufreq_driver->target_index) {
503 		int idx;
504 
505 		idx = cpufreq_frequency_table_target(policy, target_freq,
506 						     CPUFREQ_RELATION_L);
507 		policy->cached_resolved_idx = idx;
508 		return policy->freq_table[idx].frequency;
509 	}
510 
511 	if (cpufreq_driver->resolve_freq)
512 		return cpufreq_driver->resolve_freq(policy, target_freq);
513 
514 	return target_freq;
515 }
516 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
517 
518 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
519 {
520 	unsigned int latency;
521 
522 	if (policy->transition_delay_us)
523 		return policy->transition_delay_us;
524 
525 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
526 	if (latency) {
527 		/*
528 		 * For platforms that can change the frequency very fast (< 10
529 		 * us), the above formula gives a decent transition delay. But
530 		 * for platforms where transition_latency is in milliseconds, it
531 		 * ends up giving unrealistic values.
532 		 *
533 		 * Cap the default transition delay to 10 ms, which seems to be
534 		 * a reasonable amount of time after which we should reevaluate
535 		 * the frequency.
536 		 */
537 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
538 	}
539 
540 	return LATENCY_MULTIPLIER;
541 }
542 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
543 
544 /*********************************************************************
545  *                          SYSFS INTERFACE                          *
546  *********************************************************************/
547 static ssize_t show_boost(struct kobject *kobj,
548 				 struct attribute *attr, char *buf)
549 {
550 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
551 }
552 
553 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
554 				  const char *buf, size_t count)
555 {
556 	int ret, enable;
557 
558 	ret = sscanf(buf, "%d", &enable);
559 	if (ret != 1 || enable < 0 || enable > 1)
560 		return -EINVAL;
561 
562 	if (cpufreq_boost_trigger_state(enable)) {
563 		pr_err("%s: Cannot %s BOOST!\n",
564 		       __func__, enable ? "enable" : "disable");
565 		return -EINVAL;
566 	}
567 
568 	pr_debug("%s: cpufreq BOOST %s\n",
569 		 __func__, enable ? "enabled" : "disabled");
570 
571 	return count;
572 }
573 define_one_global_rw(boost);
574 
575 static struct cpufreq_governor *find_governor(const char *str_governor)
576 {
577 	struct cpufreq_governor *t;
578 
579 	for_each_governor(t)
580 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
581 			return t;
582 
583 	return NULL;
584 }
585 
586 /**
587  * cpufreq_parse_governor - parse a governor string
588  */
589 static int cpufreq_parse_governor(char *str_governor,
590 				  struct cpufreq_policy *policy)
591 {
592 	if (cpufreq_driver->setpolicy) {
593 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
594 			policy->policy = CPUFREQ_POLICY_PERFORMANCE;
595 			return 0;
596 		}
597 
598 		if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
599 			policy->policy = CPUFREQ_POLICY_POWERSAVE;
600 			return 0;
601 		}
602 	} else {
603 		struct cpufreq_governor *t;
604 
605 		mutex_lock(&cpufreq_governor_mutex);
606 
607 		t = find_governor(str_governor);
608 		if (!t) {
609 			int ret;
610 
611 			mutex_unlock(&cpufreq_governor_mutex);
612 
613 			ret = request_module("cpufreq_%s", str_governor);
614 			if (ret)
615 				return -EINVAL;
616 
617 			mutex_lock(&cpufreq_governor_mutex);
618 
619 			t = find_governor(str_governor);
620 		}
621 		if (t && !try_module_get(t->owner))
622 			t = NULL;
623 
624 		mutex_unlock(&cpufreq_governor_mutex);
625 
626 		if (t) {
627 			policy->governor = t;
628 			return 0;
629 		}
630 	}
631 
632 	return -EINVAL;
633 }
634 
635 /**
636  * cpufreq_per_cpu_attr_read() / show_##file_name() -
637  * print out cpufreq information
638  *
639  * Write out information from cpufreq_driver->policy[cpu]; object must be
640  * "unsigned int".
641  */
642 
643 #define show_one(file_name, object)			\
644 static ssize_t show_##file_name				\
645 (struct cpufreq_policy *policy, char *buf)		\
646 {							\
647 	return sprintf(buf, "%u\n", policy->object);	\
648 }
649 
650 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
651 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
652 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
653 show_one(scaling_min_freq, min);
654 show_one(scaling_max_freq, max);
655 
656 __weak unsigned int arch_freq_get_on_cpu(int cpu)
657 {
658 	return 0;
659 }
660 
661 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
662 {
663 	ssize_t ret;
664 	unsigned int freq;
665 
666 	freq = arch_freq_get_on_cpu(policy->cpu);
667 	if (freq)
668 		ret = sprintf(buf, "%u\n", freq);
669 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
670 			cpufreq_driver->get)
671 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
672 	else
673 		ret = sprintf(buf, "%u\n", policy->cur);
674 	return ret;
675 }
676 
677 static int cpufreq_set_policy(struct cpufreq_policy *policy,
678 				struct cpufreq_policy *new_policy);
679 
680 /**
681  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
682  */
683 #define store_one(file_name, object)			\
684 static ssize_t store_##file_name					\
685 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
686 {									\
687 	int ret, temp;							\
688 	struct cpufreq_policy new_policy;				\
689 									\
690 	memcpy(&new_policy, policy, sizeof(*policy));			\
691 	new_policy.min = policy->user_policy.min;			\
692 	new_policy.max = policy->user_policy.max;			\
693 									\
694 	ret = sscanf(buf, "%u", &new_policy.object);			\
695 	if (ret != 1)							\
696 		return -EINVAL;						\
697 									\
698 	temp = new_policy.object;					\
699 	ret = cpufreq_set_policy(policy, &new_policy);		\
700 	if (!ret)							\
701 		policy->user_policy.object = temp;			\
702 									\
703 	return ret ? ret : count;					\
704 }
705 
706 store_one(scaling_min_freq, min);
707 store_one(scaling_max_freq, max);
708 
709 /**
710  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
711  */
712 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
713 					char *buf)
714 {
715 	unsigned int cur_freq = __cpufreq_get(policy);
716 
717 	if (cur_freq)
718 		return sprintf(buf, "%u\n", cur_freq);
719 
720 	return sprintf(buf, "<unknown>\n");
721 }
722 
723 /**
724  * show_scaling_governor - show the current policy for the specified CPU
725  */
726 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
727 {
728 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
729 		return sprintf(buf, "powersave\n");
730 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
731 		return sprintf(buf, "performance\n");
732 	else if (policy->governor)
733 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
734 				policy->governor->name);
735 	return -EINVAL;
736 }
737 
738 /**
739  * store_scaling_governor - store policy for the specified CPU
740  */
741 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
742 					const char *buf, size_t count)
743 {
744 	int ret;
745 	char	str_governor[16];
746 	struct cpufreq_policy new_policy;
747 
748 	memcpy(&new_policy, policy, sizeof(*policy));
749 
750 	ret = sscanf(buf, "%15s", str_governor);
751 	if (ret != 1)
752 		return -EINVAL;
753 
754 	if (cpufreq_parse_governor(str_governor, &new_policy))
755 		return -EINVAL;
756 
757 	ret = cpufreq_set_policy(policy, &new_policy);
758 
759 	if (new_policy.governor)
760 		module_put(new_policy.governor->owner);
761 
762 	return ret ? ret : count;
763 }
764 
765 /**
766  * show_scaling_driver - show the cpufreq driver currently loaded
767  */
768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
769 {
770 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
771 }
772 
773 /**
774  * show_scaling_available_governors - show the available CPUfreq governors
775  */
776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
777 						char *buf)
778 {
779 	ssize_t i = 0;
780 	struct cpufreq_governor *t;
781 
782 	if (!has_target()) {
783 		i += sprintf(buf, "performance powersave");
784 		goto out;
785 	}
786 
787 	for_each_governor(t) {
788 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
789 		    - (CPUFREQ_NAME_LEN + 2)))
790 			goto out;
791 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
792 	}
793 out:
794 	i += sprintf(&buf[i], "\n");
795 	return i;
796 }
797 
798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
799 {
800 	ssize_t i = 0;
801 	unsigned int cpu;
802 
803 	for_each_cpu(cpu, mask) {
804 		if (i)
805 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
806 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
807 		if (i >= (PAGE_SIZE - 5))
808 			break;
809 	}
810 	i += sprintf(&buf[i], "\n");
811 	return i;
812 }
813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
814 
815 /**
816  * show_related_cpus - show the CPUs affected by each transition even if
817  * hw coordination is in use
818  */
819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
820 {
821 	return cpufreq_show_cpus(policy->related_cpus, buf);
822 }
823 
824 /**
825  * show_affected_cpus - show the CPUs affected by each transition
826  */
827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
828 {
829 	return cpufreq_show_cpus(policy->cpus, buf);
830 }
831 
832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
833 					const char *buf, size_t count)
834 {
835 	unsigned int freq = 0;
836 	unsigned int ret;
837 
838 	if (!policy->governor || !policy->governor->store_setspeed)
839 		return -EINVAL;
840 
841 	ret = sscanf(buf, "%u", &freq);
842 	if (ret != 1)
843 		return -EINVAL;
844 
845 	policy->governor->store_setspeed(policy, freq);
846 
847 	return count;
848 }
849 
850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
851 {
852 	if (!policy->governor || !policy->governor->show_setspeed)
853 		return sprintf(buf, "<unsupported>\n");
854 
855 	return policy->governor->show_setspeed(policy, buf);
856 }
857 
858 /**
859  * show_bios_limit - show the current cpufreq HW/BIOS limitation
860  */
861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
862 {
863 	unsigned int limit;
864 	int ret;
865 	if (cpufreq_driver->bios_limit) {
866 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
867 		if (!ret)
868 			return sprintf(buf, "%u\n", limit);
869 	}
870 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
871 }
872 
873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
874 cpufreq_freq_attr_ro(cpuinfo_min_freq);
875 cpufreq_freq_attr_ro(cpuinfo_max_freq);
876 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
877 cpufreq_freq_attr_ro(scaling_available_governors);
878 cpufreq_freq_attr_ro(scaling_driver);
879 cpufreq_freq_attr_ro(scaling_cur_freq);
880 cpufreq_freq_attr_ro(bios_limit);
881 cpufreq_freq_attr_ro(related_cpus);
882 cpufreq_freq_attr_ro(affected_cpus);
883 cpufreq_freq_attr_rw(scaling_min_freq);
884 cpufreq_freq_attr_rw(scaling_max_freq);
885 cpufreq_freq_attr_rw(scaling_governor);
886 cpufreq_freq_attr_rw(scaling_setspeed);
887 
888 static struct attribute *default_attrs[] = {
889 	&cpuinfo_min_freq.attr,
890 	&cpuinfo_max_freq.attr,
891 	&cpuinfo_transition_latency.attr,
892 	&scaling_min_freq.attr,
893 	&scaling_max_freq.attr,
894 	&affected_cpus.attr,
895 	&related_cpus.attr,
896 	&scaling_governor.attr,
897 	&scaling_driver.attr,
898 	&scaling_available_governors.attr,
899 	&scaling_setspeed.attr,
900 	NULL
901 };
902 
903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
904 #define to_attr(a) container_of(a, struct freq_attr, attr)
905 
906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
907 {
908 	struct cpufreq_policy *policy = to_policy(kobj);
909 	struct freq_attr *fattr = to_attr(attr);
910 	ssize_t ret;
911 
912 	down_read(&policy->rwsem);
913 	ret = fattr->show(policy, buf);
914 	up_read(&policy->rwsem);
915 
916 	return ret;
917 }
918 
919 static ssize_t store(struct kobject *kobj, struct attribute *attr,
920 		     const char *buf, size_t count)
921 {
922 	struct cpufreq_policy *policy = to_policy(kobj);
923 	struct freq_attr *fattr = to_attr(attr);
924 	ssize_t ret = -EINVAL;
925 
926 	cpus_read_lock();
927 
928 	if (cpu_online(policy->cpu)) {
929 		down_write(&policy->rwsem);
930 		ret = fattr->store(policy, buf, count);
931 		up_write(&policy->rwsem);
932 	}
933 
934 	cpus_read_unlock();
935 
936 	return ret;
937 }
938 
939 static void cpufreq_sysfs_release(struct kobject *kobj)
940 {
941 	struct cpufreq_policy *policy = to_policy(kobj);
942 	pr_debug("last reference is dropped\n");
943 	complete(&policy->kobj_unregister);
944 }
945 
946 static const struct sysfs_ops sysfs_ops = {
947 	.show	= show,
948 	.store	= store,
949 };
950 
951 static struct kobj_type ktype_cpufreq = {
952 	.sysfs_ops	= &sysfs_ops,
953 	.default_attrs	= default_attrs,
954 	.release	= cpufreq_sysfs_release,
955 };
956 
957 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
958 {
959 	struct device *dev = get_cpu_device(cpu);
960 
961 	if (!dev)
962 		return;
963 
964 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
965 		return;
966 
967 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
968 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
969 		dev_err(dev, "cpufreq symlink creation failed\n");
970 }
971 
972 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
973 				   struct device *dev)
974 {
975 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
976 	sysfs_remove_link(&dev->kobj, "cpufreq");
977 }
978 
979 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
980 {
981 	struct freq_attr **drv_attr;
982 	int ret = 0;
983 
984 	/* set up files for this cpu device */
985 	drv_attr = cpufreq_driver->attr;
986 	while (drv_attr && *drv_attr) {
987 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
988 		if (ret)
989 			return ret;
990 		drv_attr++;
991 	}
992 	if (cpufreq_driver->get) {
993 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
994 		if (ret)
995 			return ret;
996 	}
997 
998 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
999 	if (ret)
1000 		return ret;
1001 
1002 	if (cpufreq_driver->bios_limit) {
1003 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1004 		if (ret)
1005 			return ret;
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1012 {
1013 	return NULL;
1014 }
1015 
1016 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1017 {
1018 	struct cpufreq_governor *gov = NULL;
1019 	struct cpufreq_policy new_policy;
1020 
1021 	memcpy(&new_policy, policy, sizeof(*policy));
1022 
1023 	/* Update governor of new_policy to the governor used before hotplug */
1024 	gov = find_governor(policy->last_governor);
1025 	if (gov) {
1026 		pr_debug("Restoring governor %s for cpu %d\n",
1027 				policy->governor->name, policy->cpu);
1028 	} else {
1029 		gov = cpufreq_default_governor();
1030 		if (!gov)
1031 			return -ENODATA;
1032 	}
1033 
1034 	new_policy.governor = gov;
1035 
1036 	/* Use the default policy if there is no last_policy. */
1037 	if (cpufreq_driver->setpolicy) {
1038 		if (policy->last_policy)
1039 			new_policy.policy = policy->last_policy;
1040 		else
1041 			cpufreq_parse_governor(gov->name, &new_policy);
1042 	}
1043 	/* set default policy */
1044 	return cpufreq_set_policy(policy, &new_policy);
1045 }
1046 
1047 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1048 {
1049 	int ret = 0;
1050 
1051 	/* Has this CPU been taken care of already? */
1052 	if (cpumask_test_cpu(cpu, policy->cpus))
1053 		return 0;
1054 
1055 	down_write(&policy->rwsem);
1056 	if (has_target())
1057 		cpufreq_stop_governor(policy);
1058 
1059 	cpumask_set_cpu(cpu, policy->cpus);
1060 
1061 	if (has_target()) {
1062 		ret = cpufreq_start_governor(policy);
1063 		if (ret)
1064 			pr_err("%s: Failed to start governor\n", __func__);
1065 	}
1066 	up_write(&policy->rwsem);
1067 	return ret;
1068 }
1069 
1070 static void handle_update(struct work_struct *work)
1071 {
1072 	struct cpufreq_policy *policy =
1073 		container_of(work, struct cpufreq_policy, update);
1074 	unsigned int cpu = policy->cpu;
1075 	pr_debug("handle_update for cpu %u called\n", cpu);
1076 	cpufreq_update_policy(cpu);
1077 }
1078 
1079 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1080 {
1081 	struct cpufreq_policy *policy;
1082 	int ret;
1083 
1084 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1085 	if (!policy)
1086 		return NULL;
1087 
1088 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1089 		goto err_free_policy;
1090 
1091 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1092 		goto err_free_cpumask;
1093 
1094 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1095 		goto err_free_rcpumask;
1096 
1097 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1098 				   cpufreq_global_kobject, "policy%u", cpu);
1099 	if (ret) {
1100 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1101 		goto err_free_real_cpus;
1102 	}
1103 
1104 	INIT_LIST_HEAD(&policy->policy_list);
1105 	init_rwsem(&policy->rwsem);
1106 	spin_lock_init(&policy->transition_lock);
1107 	init_waitqueue_head(&policy->transition_wait);
1108 	init_completion(&policy->kobj_unregister);
1109 	INIT_WORK(&policy->update, handle_update);
1110 
1111 	policy->cpu = cpu;
1112 	return policy;
1113 
1114 err_free_real_cpus:
1115 	free_cpumask_var(policy->real_cpus);
1116 err_free_rcpumask:
1117 	free_cpumask_var(policy->related_cpus);
1118 err_free_cpumask:
1119 	free_cpumask_var(policy->cpus);
1120 err_free_policy:
1121 	kfree(policy);
1122 
1123 	return NULL;
1124 }
1125 
1126 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1127 {
1128 	struct kobject *kobj;
1129 	struct completion *cmp;
1130 
1131 	down_write(&policy->rwsem);
1132 	cpufreq_stats_free_table(policy);
1133 	kobj = &policy->kobj;
1134 	cmp = &policy->kobj_unregister;
1135 	up_write(&policy->rwsem);
1136 	kobject_put(kobj);
1137 
1138 	/*
1139 	 * We need to make sure that the underlying kobj is
1140 	 * actually not referenced anymore by anybody before we
1141 	 * proceed with unloading.
1142 	 */
1143 	pr_debug("waiting for dropping of refcount\n");
1144 	wait_for_completion(cmp);
1145 	pr_debug("wait complete\n");
1146 }
1147 
1148 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1149 {
1150 	unsigned long flags;
1151 	int cpu;
1152 
1153 	/* Remove policy from list */
1154 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1155 	list_del(&policy->policy_list);
1156 
1157 	for_each_cpu(cpu, policy->related_cpus)
1158 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1159 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1160 
1161 	cpufreq_policy_put_kobj(policy);
1162 	free_cpumask_var(policy->real_cpus);
1163 	free_cpumask_var(policy->related_cpus);
1164 	free_cpumask_var(policy->cpus);
1165 	kfree(policy);
1166 }
1167 
1168 static int cpufreq_online(unsigned int cpu)
1169 {
1170 	struct cpufreq_policy *policy;
1171 	bool new_policy;
1172 	unsigned long flags;
1173 	unsigned int j;
1174 	int ret;
1175 
1176 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1177 
1178 	/* Check if this CPU already has a policy to manage it */
1179 	policy = per_cpu(cpufreq_cpu_data, cpu);
1180 	if (policy) {
1181 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1182 		if (!policy_is_inactive(policy))
1183 			return cpufreq_add_policy_cpu(policy, cpu);
1184 
1185 		/* This is the only online CPU for the policy.  Start over. */
1186 		new_policy = false;
1187 		down_write(&policy->rwsem);
1188 		policy->cpu = cpu;
1189 		policy->governor = NULL;
1190 		up_write(&policy->rwsem);
1191 	} else {
1192 		new_policy = true;
1193 		policy = cpufreq_policy_alloc(cpu);
1194 		if (!policy)
1195 			return -ENOMEM;
1196 	}
1197 
1198 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1199 
1200 	/* call driver. From then on the cpufreq must be able
1201 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1202 	 */
1203 	ret = cpufreq_driver->init(policy);
1204 	if (ret) {
1205 		pr_debug("initialization failed\n");
1206 		goto out_free_policy;
1207 	}
1208 
1209 	ret = cpufreq_table_validate_and_sort(policy);
1210 	if (ret)
1211 		goto out_exit_policy;
1212 
1213 	down_write(&policy->rwsem);
1214 
1215 	if (new_policy) {
1216 		/* related_cpus should at least include policy->cpus. */
1217 		cpumask_copy(policy->related_cpus, policy->cpus);
1218 	}
1219 
1220 	/*
1221 	 * affected cpus must always be the one, which are online. We aren't
1222 	 * managing offline cpus here.
1223 	 */
1224 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1225 
1226 	if (new_policy) {
1227 		policy->user_policy.min = policy->min;
1228 		policy->user_policy.max = policy->max;
1229 
1230 		for_each_cpu(j, policy->related_cpus) {
1231 			per_cpu(cpufreq_cpu_data, j) = policy;
1232 			add_cpu_dev_symlink(policy, j);
1233 		}
1234 	} else {
1235 		policy->min = policy->user_policy.min;
1236 		policy->max = policy->user_policy.max;
1237 	}
1238 
1239 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1240 		policy->cur = cpufreq_driver->get(policy->cpu);
1241 		if (!policy->cur) {
1242 			pr_err("%s: ->get() failed\n", __func__);
1243 			goto out_destroy_policy;
1244 		}
1245 	}
1246 
1247 	/*
1248 	 * Sometimes boot loaders set CPU frequency to a value outside of
1249 	 * frequency table present with cpufreq core. In such cases CPU might be
1250 	 * unstable if it has to run on that frequency for long duration of time
1251 	 * and so its better to set it to a frequency which is specified in
1252 	 * freq-table. This also makes cpufreq stats inconsistent as
1253 	 * cpufreq-stats would fail to register because current frequency of CPU
1254 	 * isn't found in freq-table.
1255 	 *
1256 	 * Because we don't want this change to effect boot process badly, we go
1257 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1258 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1259 	 * is initialized to zero).
1260 	 *
1261 	 * We are passing target-freq as "policy->cur - 1" otherwise
1262 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1263 	 * equal to target-freq.
1264 	 */
1265 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1266 	    && has_target()) {
1267 		/* Are we running at unknown frequency ? */
1268 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1269 		if (ret == -EINVAL) {
1270 			/* Warn user and fix it */
1271 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1272 				__func__, policy->cpu, policy->cur);
1273 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1274 				CPUFREQ_RELATION_L);
1275 
1276 			/*
1277 			 * Reaching here after boot in a few seconds may not
1278 			 * mean that system will remain stable at "unknown"
1279 			 * frequency for longer duration. Hence, a BUG_ON().
1280 			 */
1281 			BUG_ON(ret);
1282 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1283 				__func__, policy->cpu, policy->cur);
1284 		}
1285 	}
1286 
1287 	if (new_policy) {
1288 		ret = cpufreq_add_dev_interface(policy);
1289 		if (ret)
1290 			goto out_destroy_policy;
1291 
1292 		cpufreq_stats_create_table(policy);
1293 
1294 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1295 		list_add(&policy->policy_list, &cpufreq_policy_list);
1296 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1297 	}
1298 
1299 	ret = cpufreq_init_policy(policy);
1300 	if (ret) {
1301 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1302 		       __func__, cpu, ret);
1303 		/* cpufreq_policy_free() will notify based on this */
1304 		new_policy = false;
1305 		goto out_destroy_policy;
1306 	}
1307 
1308 	up_write(&policy->rwsem);
1309 
1310 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1311 
1312 	/* Callback for handling stuff after policy is ready */
1313 	if (cpufreq_driver->ready)
1314 		cpufreq_driver->ready(policy);
1315 
1316 	pr_debug("initialization complete\n");
1317 
1318 	return 0;
1319 
1320 out_destroy_policy:
1321 	for_each_cpu(j, policy->real_cpus)
1322 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1323 
1324 	up_write(&policy->rwsem);
1325 
1326 out_exit_policy:
1327 	if (cpufreq_driver->exit)
1328 		cpufreq_driver->exit(policy);
1329 
1330 out_free_policy:
1331 	cpufreq_policy_free(policy);
1332 	return ret;
1333 }
1334 
1335 /**
1336  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1337  * @dev: CPU device.
1338  * @sif: Subsystem interface structure pointer (not used)
1339  */
1340 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1341 {
1342 	struct cpufreq_policy *policy;
1343 	unsigned cpu = dev->id;
1344 	int ret;
1345 
1346 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1347 
1348 	if (cpu_online(cpu)) {
1349 		ret = cpufreq_online(cpu);
1350 		if (ret)
1351 			return ret;
1352 	}
1353 
1354 	/* Create sysfs link on CPU registration */
1355 	policy = per_cpu(cpufreq_cpu_data, cpu);
1356 	if (policy)
1357 		add_cpu_dev_symlink(policy, cpu);
1358 
1359 	return 0;
1360 }
1361 
1362 static int cpufreq_offline(unsigned int cpu)
1363 {
1364 	struct cpufreq_policy *policy;
1365 	int ret;
1366 
1367 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1368 
1369 	policy = cpufreq_cpu_get_raw(cpu);
1370 	if (!policy) {
1371 		pr_debug("%s: No cpu_data found\n", __func__);
1372 		return 0;
1373 	}
1374 
1375 	down_write(&policy->rwsem);
1376 	if (has_target())
1377 		cpufreq_stop_governor(policy);
1378 
1379 	cpumask_clear_cpu(cpu, policy->cpus);
1380 
1381 	if (policy_is_inactive(policy)) {
1382 		if (has_target())
1383 			strncpy(policy->last_governor, policy->governor->name,
1384 				CPUFREQ_NAME_LEN);
1385 		else
1386 			policy->last_policy = policy->policy;
1387 	} else if (cpu == policy->cpu) {
1388 		/* Nominate new CPU */
1389 		policy->cpu = cpumask_any(policy->cpus);
1390 	}
1391 
1392 	/* Start governor again for active policy */
1393 	if (!policy_is_inactive(policy)) {
1394 		if (has_target()) {
1395 			ret = cpufreq_start_governor(policy);
1396 			if (ret)
1397 				pr_err("%s: Failed to start governor\n", __func__);
1398 		}
1399 
1400 		goto unlock;
1401 	}
1402 
1403 	if (cpufreq_driver->stop_cpu)
1404 		cpufreq_driver->stop_cpu(policy);
1405 
1406 	if (has_target())
1407 		cpufreq_exit_governor(policy);
1408 
1409 	/*
1410 	 * Perform the ->exit() even during light-weight tear-down,
1411 	 * since this is a core component, and is essential for the
1412 	 * subsequent light-weight ->init() to succeed.
1413 	 */
1414 	if (cpufreq_driver->exit) {
1415 		cpufreq_driver->exit(policy);
1416 		policy->freq_table = NULL;
1417 	}
1418 
1419 unlock:
1420 	up_write(&policy->rwsem);
1421 	return 0;
1422 }
1423 
1424 /**
1425  * cpufreq_remove_dev - remove a CPU device
1426  *
1427  * Removes the cpufreq interface for a CPU device.
1428  */
1429 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1430 {
1431 	unsigned int cpu = dev->id;
1432 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1433 
1434 	if (!policy)
1435 		return;
1436 
1437 	if (cpu_online(cpu))
1438 		cpufreq_offline(cpu);
1439 
1440 	cpumask_clear_cpu(cpu, policy->real_cpus);
1441 	remove_cpu_dev_symlink(policy, dev);
1442 
1443 	if (cpumask_empty(policy->real_cpus))
1444 		cpufreq_policy_free(policy);
1445 }
1446 
1447 /**
1448  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1449  *	in deep trouble.
1450  *	@policy: policy managing CPUs
1451  *	@new_freq: CPU frequency the CPU actually runs at
1452  *
1453  *	We adjust to current frequency first, and need to clean up later.
1454  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1455  */
1456 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1457 				unsigned int new_freq)
1458 {
1459 	struct cpufreq_freqs freqs;
1460 
1461 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1462 		 policy->cur, new_freq);
1463 
1464 	freqs.old = policy->cur;
1465 	freqs.new = new_freq;
1466 
1467 	cpufreq_freq_transition_begin(policy, &freqs);
1468 	cpufreq_freq_transition_end(policy, &freqs, 0);
1469 }
1470 
1471 /**
1472  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1473  * @cpu: CPU number
1474  *
1475  * This is the last known freq, without actually getting it from the driver.
1476  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1477  */
1478 unsigned int cpufreq_quick_get(unsigned int cpu)
1479 {
1480 	struct cpufreq_policy *policy;
1481 	unsigned int ret_freq = 0;
1482 	unsigned long flags;
1483 
1484 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1485 
1486 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1487 		ret_freq = cpufreq_driver->get(cpu);
1488 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1489 		return ret_freq;
1490 	}
1491 
1492 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1493 
1494 	policy = cpufreq_cpu_get(cpu);
1495 	if (policy) {
1496 		ret_freq = policy->cur;
1497 		cpufreq_cpu_put(policy);
1498 	}
1499 
1500 	return ret_freq;
1501 }
1502 EXPORT_SYMBOL(cpufreq_quick_get);
1503 
1504 /**
1505  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1506  * @cpu: CPU number
1507  *
1508  * Just return the max possible frequency for a given CPU.
1509  */
1510 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1511 {
1512 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1513 	unsigned int ret_freq = 0;
1514 
1515 	if (policy) {
1516 		ret_freq = policy->max;
1517 		cpufreq_cpu_put(policy);
1518 	}
1519 
1520 	return ret_freq;
1521 }
1522 EXPORT_SYMBOL(cpufreq_quick_get_max);
1523 
1524 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1525 {
1526 	unsigned int ret_freq = 0;
1527 
1528 	if (!cpufreq_driver->get)
1529 		return ret_freq;
1530 
1531 	ret_freq = cpufreq_driver->get(policy->cpu);
1532 
1533 	/*
1534 	 * Updating inactive policies is invalid, so avoid doing that.  Also
1535 	 * if fast frequency switching is used with the given policy, the check
1536 	 * against policy->cur is pointless, so skip it in that case too.
1537 	 */
1538 	if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1539 		return ret_freq;
1540 
1541 	if (ret_freq && policy->cur &&
1542 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1543 		/* verify no discrepancy between actual and
1544 					saved value exists */
1545 		if (unlikely(ret_freq != policy->cur)) {
1546 			cpufreq_out_of_sync(policy, ret_freq);
1547 			schedule_work(&policy->update);
1548 		}
1549 	}
1550 
1551 	return ret_freq;
1552 }
1553 
1554 /**
1555  * cpufreq_get - get the current CPU frequency (in kHz)
1556  * @cpu: CPU number
1557  *
1558  * Get the CPU current (static) CPU frequency
1559  */
1560 unsigned int cpufreq_get(unsigned int cpu)
1561 {
1562 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1563 	unsigned int ret_freq = 0;
1564 
1565 	if (policy) {
1566 		down_read(&policy->rwsem);
1567 
1568 		if (!policy_is_inactive(policy))
1569 			ret_freq = __cpufreq_get(policy);
1570 
1571 		up_read(&policy->rwsem);
1572 
1573 		cpufreq_cpu_put(policy);
1574 	}
1575 
1576 	return ret_freq;
1577 }
1578 EXPORT_SYMBOL(cpufreq_get);
1579 
1580 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1581 {
1582 	unsigned int new_freq;
1583 
1584 	new_freq = cpufreq_driver->get(policy->cpu);
1585 	if (!new_freq)
1586 		return 0;
1587 
1588 	if (!policy->cur) {
1589 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1590 		policy->cur = new_freq;
1591 	} else if (policy->cur != new_freq && has_target()) {
1592 		cpufreq_out_of_sync(policy, new_freq);
1593 	}
1594 
1595 	return new_freq;
1596 }
1597 
1598 static struct subsys_interface cpufreq_interface = {
1599 	.name		= "cpufreq",
1600 	.subsys		= &cpu_subsys,
1601 	.add_dev	= cpufreq_add_dev,
1602 	.remove_dev	= cpufreq_remove_dev,
1603 };
1604 
1605 /*
1606  * In case platform wants some specific frequency to be configured
1607  * during suspend..
1608  */
1609 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1610 {
1611 	int ret;
1612 
1613 	if (!policy->suspend_freq) {
1614 		pr_debug("%s: suspend_freq not defined\n", __func__);
1615 		return 0;
1616 	}
1617 
1618 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1619 			policy->suspend_freq);
1620 
1621 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1622 			CPUFREQ_RELATION_H);
1623 	if (ret)
1624 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1625 				__func__, policy->suspend_freq, ret);
1626 
1627 	return ret;
1628 }
1629 EXPORT_SYMBOL(cpufreq_generic_suspend);
1630 
1631 /**
1632  * cpufreq_suspend() - Suspend CPUFreq governors
1633  *
1634  * Called during system wide Suspend/Hibernate cycles for suspending governors
1635  * as some platforms can't change frequency after this point in suspend cycle.
1636  * Because some of the devices (like: i2c, regulators, etc) they use for
1637  * changing frequency are suspended quickly after this point.
1638  */
1639 void cpufreq_suspend(void)
1640 {
1641 	struct cpufreq_policy *policy;
1642 
1643 	if (!cpufreq_driver)
1644 		return;
1645 
1646 	if (!has_target() && !cpufreq_driver->suspend)
1647 		goto suspend;
1648 
1649 	pr_debug("%s: Suspending Governors\n", __func__);
1650 
1651 	for_each_active_policy(policy) {
1652 		if (has_target()) {
1653 			down_write(&policy->rwsem);
1654 			cpufreq_stop_governor(policy);
1655 			up_write(&policy->rwsem);
1656 		}
1657 
1658 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1659 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1660 				policy);
1661 	}
1662 
1663 suspend:
1664 	cpufreq_suspended = true;
1665 }
1666 
1667 /**
1668  * cpufreq_resume() - Resume CPUFreq governors
1669  *
1670  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1671  * are suspended with cpufreq_suspend().
1672  */
1673 void cpufreq_resume(void)
1674 {
1675 	struct cpufreq_policy *policy;
1676 	int ret;
1677 
1678 	if (!cpufreq_driver)
1679 		return;
1680 
1681 	if (unlikely(!cpufreq_suspended))
1682 		return;
1683 
1684 	cpufreq_suspended = false;
1685 
1686 	if (!has_target() && !cpufreq_driver->resume)
1687 		return;
1688 
1689 	pr_debug("%s: Resuming Governors\n", __func__);
1690 
1691 	for_each_active_policy(policy) {
1692 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1693 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1694 				policy);
1695 		} else if (has_target()) {
1696 			down_write(&policy->rwsem);
1697 			ret = cpufreq_start_governor(policy);
1698 			up_write(&policy->rwsem);
1699 
1700 			if (ret)
1701 				pr_err("%s: Failed to start governor for policy: %p\n",
1702 				       __func__, policy);
1703 		}
1704 	}
1705 }
1706 
1707 /**
1708  *	cpufreq_get_current_driver - return current driver's name
1709  *
1710  *	Return the name string of the currently loaded cpufreq driver
1711  *	or NULL, if none.
1712  */
1713 const char *cpufreq_get_current_driver(void)
1714 {
1715 	if (cpufreq_driver)
1716 		return cpufreq_driver->name;
1717 
1718 	return NULL;
1719 }
1720 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1721 
1722 /**
1723  *	cpufreq_get_driver_data - return current driver data
1724  *
1725  *	Return the private data of the currently loaded cpufreq
1726  *	driver, or NULL if no cpufreq driver is loaded.
1727  */
1728 void *cpufreq_get_driver_data(void)
1729 {
1730 	if (cpufreq_driver)
1731 		return cpufreq_driver->driver_data;
1732 
1733 	return NULL;
1734 }
1735 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1736 
1737 /*********************************************************************
1738  *                     NOTIFIER LISTS INTERFACE                      *
1739  *********************************************************************/
1740 
1741 /**
1742  *	cpufreq_register_notifier - register a driver with cpufreq
1743  *	@nb: notifier function to register
1744  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1745  *
1746  *	Add a driver to one of two lists: either a list of drivers that
1747  *      are notified about clock rate changes (once before and once after
1748  *      the transition), or a list of drivers that are notified about
1749  *      changes in cpufreq policy.
1750  *
1751  *	This function may sleep, and has the same return conditions as
1752  *	blocking_notifier_chain_register.
1753  */
1754 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1755 {
1756 	int ret;
1757 
1758 	if (cpufreq_disabled())
1759 		return -EINVAL;
1760 
1761 	switch (list) {
1762 	case CPUFREQ_TRANSITION_NOTIFIER:
1763 		mutex_lock(&cpufreq_fast_switch_lock);
1764 
1765 		if (cpufreq_fast_switch_count > 0) {
1766 			mutex_unlock(&cpufreq_fast_switch_lock);
1767 			return -EBUSY;
1768 		}
1769 		ret = srcu_notifier_chain_register(
1770 				&cpufreq_transition_notifier_list, nb);
1771 		if (!ret)
1772 			cpufreq_fast_switch_count--;
1773 
1774 		mutex_unlock(&cpufreq_fast_switch_lock);
1775 		break;
1776 	case CPUFREQ_POLICY_NOTIFIER:
1777 		ret = blocking_notifier_chain_register(
1778 				&cpufreq_policy_notifier_list, nb);
1779 		break;
1780 	default:
1781 		ret = -EINVAL;
1782 	}
1783 
1784 	return ret;
1785 }
1786 EXPORT_SYMBOL(cpufreq_register_notifier);
1787 
1788 /**
1789  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1790  *	@nb: notifier block to be unregistered
1791  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1792  *
1793  *	Remove a driver from the CPU frequency notifier list.
1794  *
1795  *	This function may sleep, and has the same return conditions as
1796  *	blocking_notifier_chain_unregister.
1797  */
1798 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1799 {
1800 	int ret;
1801 
1802 	if (cpufreq_disabled())
1803 		return -EINVAL;
1804 
1805 	switch (list) {
1806 	case CPUFREQ_TRANSITION_NOTIFIER:
1807 		mutex_lock(&cpufreq_fast_switch_lock);
1808 
1809 		ret = srcu_notifier_chain_unregister(
1810 				&cpufreq_transition_notifier_list, nb);
1811 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1812 			cpufreq_fast_switch_count++;
1813 
1814 		mutex_unlock(&cpufreq_fast_switch_lock);
1815 		break;
1816 	case CPUFREQ_POLICY_NOTIFIER:
1817 		ret = blocking_notifier_chain_unregister(
1818 				&cpufreq_policy_notifier_list, nb);
1819 		break;
1820 	default:
1821 		ret = -EINVAL;
1822 	}
1823 
1824 	return ret;
1825 }
1826 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1827 
1828 
1829 /*********************************************************************
1830  *                              GOVERNORS                            *
1831  *********************************************************************/
1832 
1833 /**
1834  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1835  * @policy: cpufreq policy to switch the frequency for.
1836  * @target_freq: New frequency to set (may be approximate).
1837  *
1838  * Carry out a fast frequency switch without sleeping.
1839  *
1840  * The driver's ->fast_switch() callback invoked by this function must be
1841  * suitable for being called from within RCU-sched read-side critical sections
1842  * and it is expected to select the minimum available frequency greater than or
1843  * equal to @target_freq (CPUFREQ_RELATION_L).
1844  *
1845  * This function must not be called if policy->fast_switch_enabled is unset.
1846  *
1847  * Governors calling this function must guarantee that it will never be invoked
1848  * twice in parallel for the same policy and that it will never be called in
1849  * parallel with either ->target() or ->target_index() for the same policy.
1850  *
1851  * Returns the actual frequency set for the CPU.
1852  *
1853  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1854  * error condition, the hardware configuration must be preserved.
1855  */
1856 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1857 					unsigned int target_freq)
1858 {
1859 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1860 
1861 	return cpufreq_driver->fast_switch(policy, target_freq);
1862 }
1863 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1864 
1865 /* Must set freqs->new to intermediate frequency */
1866 static int __target_intermediate(struct cpufreq_policy *policy,
1867 				 struct cpufreq_freqs *freqs, int index)
1868 {
1869 	int ret;
1870 
1871 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1872 
1873 	/* We don't need to switch to intermediate freq */
1874 	if (!freqs->new)
1875 		return 0;
1876 
1877 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1878 		 __func__, policy->cpu, freqs->old, freqs->new);
1879 
1880 	cpufreq_freq_transition_begin(policy, freqs);
1881 	ret = cpufreq_driver->target_intermediate(policy, index);
1882 	cpufreq_freq_transition_end(policy, freqs, ret);
1883 
1884 	if (ret)
1885 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1886 		       __func__, ret);
1887 
1888 	return ret;
1889 }
1890 
1891 static int __target_index(struct cpufreq_policy *policy, int index)
1892 {
1893 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1894 	unsigned int intermediate_freq = 0;
1895 	unsigned int newfreq = policy->freq_table[index].frequency;
1896 	int retval = -EINVAL;
1897 	bool notify;
1898 
1899 	if (newfreq == policy->cur)
1900 		return 0;
1901 
1902 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1903 	if (notify) {
1904 		/* Handle switching to intermediate frequency */
1905 		if (cpufreq_driver->get_intermediate) {
1906 			retval = __target_intermediate(policy, &freqs, index);
1907 			if (retval)
1908 				return retval;
1909 
1910 			intermediate_freq = freqs.new;
1911 			/* Set old freq to intermediate */
1912 			if (intermediate_freq)
1913 				freqs.old = freqs.new;
1914 		}
1915 
1916 		freqs.new = newfreq;
1917 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1918 			 __func__, policy->cpu, freqs.old, freqs.new);
1919 
1920 		cpufreq_freq_transition_begin(policy, &freqs);
1921 	}
1922 
1923 	retval = cpufreq_driver->target_index(policy, index);
1924 	if (retval)
1925 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1926 		       retval);
1927 
1928 	if (notify) {
1929 		cpufreq_freq_transition_end(policy, &freqs, retval);
1930 
1931 		/*
1932 		 * Failed after setting to intermediate freq? Driver should have
1933 		 * reverted back to initial frequency and so should we. Check
1934 		 * here for intermediate_freq instead of get_intermediate, in
1935 		 * case we haven't switched to intermediate freq at all.
1936 		 */
1937 		if (unlikely(retval && intermediate_freq)) {
1938 			freqs.old = intermediate_freq;
1939 			freqs.new = policy->restore_freq;
1940 			cpufreq_freq_transition_begin(policy, &freqs);
1941 			cpufreq_freq_transition_end(policy, &freqs, 0);
1942 		}
1943 	}
1944 
1945 	return retval;
1946 }
1947 
1948 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1949 			    unsigned int target_freq,
1950 			    unsigned int relation)
1951 {
1952 	unsigned int old_target_freq = target_freq;
1953 	int index;
1954 
1955 	if (cpufreq_disabled())
1956 		return -ENODEV;
1957 
1958 	/* Make sure that target_freq is within supported range */
1959 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1960 
1961 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1962 		 policy->cpu, target_freq, relation, old_target_freq);
1963 
1964 	/*
1965 	 * This might look like a redundant call as we are checking it again
1966 	 * after finding index. But it is left intentionally for cases where
1967 	 * exactly same freq is called again and so we can save on few function
1968 	 * calls.
1969 	 */
1970 	if (target_freq == policy->cur)
1971 		return 0;
1972 
1973 	/* Save last value to restore later on errors */
1974 	policy->restore_freq = policy->cur;
1975 
1976 	if (cpufreq_driver->target)
1977 		return cpufreq_driver->target(policy, target_freq, relation);
1978 
1979 	if (!cpufreq_driver->target_index)
1980 		return -EINVAL;
1981 
1982 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1983 
1984 	return __target_index(policy, index);
1985 }
1986 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1987 
1988 int cpufreq_driver_target(struct cpufreq_policy *policy,
1989 			  unsigned int target_freq,
1990 			  unsigned int relation)
1991 {
1992 	int ret = -EINVAL;
1993 
1994 	down_write(&policy->rwsem);
1995 
1996 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1997 
1998 	up_write(&policy->rwsem);
1999 
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2003 
2004 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2005 {
2006 	return NULL;
2007 }
2008 
2009 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2010 {
2011 	int ret;
2012 
2013 	/* Don't start any governor operations if we are entering suspend */
2014 	if (cpufreq_suspended)
2015 		return 0;
2016 	/*
2017 	 * Governor might not be initiated here if ACPI _PPC changed
2018 	 * notification happened, so check it.
2019 	 */
2020 	if (!policy->governor)
2021 		return -EINVAL;
2022 
2023 	/* Platform doesn't want dynamic frequency switching ? */
2024 	if (policy->governor->dynamic_switching &&
2025 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2026 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2027 
2028 		if (gov) {
2029 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2030 				policy->governor->name, gov->name);
2031 			policy->governor = gov;
2032 		} else {
2033 			return -EINVAL;
2034 		}
2035 	}
2036 
2037 	if (!try_module_get(policy->governor->owner))
2038 		return -EINVAL;
2039 
2040 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2041 
2042 	if (policy->governor->init) {
2043 		ret = policy->governor->init(policy);
2044 		if (ret) {
2045 			module_put(policy->governor->owner);
2046 			return ret;
2047 		}
2048 	}
2049 
2050 	return 0;
2051 }
2052 
2053 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2054 {
2055 	if (cpufreq_suspended || !policy->governor)
2056 		return;
2057 
2058 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2059 
2060 	if (policy->governor->exit)
2061 		policy->governor->exit(policy);
2062 
2063 	module_put(policy->governor->owner);
2064 }
2065 
2066 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2067 {
2068 	int ret;
2069 
2070 	if (cpufreq_suspended)
2071 		return 0;
2072 
2073 	if (!policy->governor)
2074 		return -EINVAL;
2075 
2076 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2077 
2078 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2079 		cpufreq_update_current_freq(policy);
2080 
2081 	if (policy->governor->start) {
2082 		ret = policy->governor->start(policy);
2083 		if (ret)
2084 			return ret;
2085 	}
2086 
2087 	if (policy->governor->limits)
2088 		policy->governor->limits(policy);
2089 
2090 	return 0;
2091 }
2092 
2093 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2094 {
2095 	if (cpufreq_suspended || !policy->governor)
2096 		return;
2097 
2098 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2099 
2100 	if (policy->governor->stop)
2101 		policy->governor->stop(policy);
2102 }
2103 
2104 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2105 {
2106 	if (cpufreq_suspended || !policy->governor)
2107 		return;
2108 
2109 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2110 
2111 	if (policy->governor->limits)
2112 		policy->governor->limits(policy);
2113 }
2114 
2115 int cpufreq_register_governor(struct cpufreq_governor *governor)
2116 {
2117 	int err;
2118 
2119 	if (!governor)
2120 		return -EINVAL;
2121 
2122 	if (cpufreq_disabled())
2123 		return -ENODEV;
2124 
2125 	mutex_lock(&cpufreq_governor_mutex);
2126 
2127 	err = -EBUSY;
2128 	if (!find_governor(governor->name)) {
2129 		err = 0;
2130 		list_add(&governor->governor_list, &cpufreq_governor_list);
2131 	}
2132 
2133 	mutex_unlock(&cpufreq_governor_mutex);
2134 	return err;
2135 }
2136 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2137 
2138 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2139 {
2140 	struct cpufreq_policy *policy;
2141 	unsigned long flags;
2142 
2143 	if (!governor)
2144 		return;
2145 
2146 	if (cpufreq_disabled())
2147 		return;
2148 
2149 	/* clear last_governor for all inactive policies */
2150 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2151 	for_each_inactive_policy(policy) {
2152 		if (!strcmp(policy->last_governor, governor->name)) {
2153 			policy->governor = NULL;
2154 			strcpy(policy->last_governor, "\0");
2155 		}
2156 	}
2157 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2158 
2159 	mutex_lock(&cpufreq_governor_mutex);
2160 	list_del(&governor->governor_list);
2161 	mutex_unlock(&cpufreq_governor_mutex);
2162 }
2163 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2164 
2165 
2166 /*********************************************************************
2167  *                          POLICY INTERFACE                         *
2168  *********************************************************************/
2169 
2170 /**
2171  * cpufreq_get_policy - get the current cpufreq_policy
2172  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2173  *	is written
2174  *
2175  * Reads the current cpufreq policy.
2176  */
2177 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2178 {
2179 	struct cpufreq_policy *cpu_policy;
2180 	if (!policy)
2181 		return -EINVAL;
2182 
2183 	cpu_policy = cpufreq_cpu_get(cpu);
2184 	if (!cpu_policy)
2185 		return -EINVAL;
2186 
2187 	memcpy(policy, cpu_policy, sizeof(*policy));
2188 
2189 	cpufreq_cpu_put(cpu_policy);
2190 	return 0;
2191 }
2192 EXPORT_SYMBOL(cpufreq_get_policy);
2193 
2194 /*
2195  * policy : current policy.
2196  * new_policy: policy to be set.
2197  */
2198 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2199 				struct cpufreq_policy *new_policy)
2200 {
2201 	struct cpufreq_governor *old_gov;
2202 	int ret;
2203 
2204 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2205 		 new_policy->cpu, new_policy->min, new_policy->max);
2206 
2207 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2208 
2209 	/*
2210 	* This check works well when we store new min/max freq attributes,
2211 	* because new_policy is a copy of policy with one field updated.
2212 	*/
2213 	if (new_policy->min > new_policy->max)
2214 		return -EINVAL;
2215 
2216 	/* verify the cpu speed can be set within this limit */
2217 	ret = cpufreq_driver->verify(new_policy);
2218 	if (ret)
2219 		return ret;
2220 
2221 	/* adjust if necessary - all reasons */
2222 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2223 			CPUFREQ_ADJUST, new_policy);
2224 
2225 	/*
2226 	 * verify the cpu speed can be set within this limit, which might be
2227 	 * different to the first one
2228 	 */
2229 	ret = cpufreq_driver->verify(new_policy);
2230 	if (ret)
2231 		return ret;
2232 
2233 	/* notification of the new policy */
2234 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2235 			CPUFREQ_NOTIFY, new_policy);
2236 
2237 	policy->min = new_policy->min;
2238 	policy->max = new_policy->max;
2239 
2240 	policy->cached_target_freq = UINT_MAX;
2241 
2242 	pr_debug("new min and max freqs are %u - %u kHz\n",
2243 		 policy->min, policy->max);
2244 
2245 	if (cpufreq_driver->setpolicy) {
2246 		policy->policy = new_policy->policy;
2247 		pr_debug("setting range\n");
2248 		return cpufreq_driver->setpolicy(new_policy);
2249 	}
2250 
2251 	if (new_policy->governor == policy->governor) {
2252 		pr_debug("cpufreq: governor limits update\n");
2253 		cpufreq_governor_limits(policy);
2254 		return 0;
2255 	}
2256 
2257 	pr_debug("governor switch\n");
2258 
2259 	/* save old, working values */
2260 	old_gov = policy->governor;
2261 	/* end old governor */
2262 	if (old_gov) {
2263 		cpufreq_stop_governor(policy);
2264 		cpufreq_exit_governor(policy);
2265 	}
2266 
2267 	/* start new governor */
2268 	policy->governor = new_policy->governor;
2269 	ret = cpufreq_init_governor(policy);
2270 	if (!ret) {
2271 		ret = cpufreq_start_governor(policy);
2272 		if (!ret) {
2273 			pr_debug("cpufreq: governor change\n");
2274 			return 0;
2275 		}
2276 		cpufreq_exit_governor(policy);
2277 	}
2278 
2279 	/* new governor failed, so re-start old one */
2280 	pr_debug("starting governor %s failed\n", policy->governor->name);
2281 	if (old_gov) {
2282 		policy->governor = old_gov;
2283 		if (cpufreq_init_governor(policy))
2284 			policy->governor = NULL;
2285 		else
2286 			cpufreq_start_governor(policy);
2287 	}
2288 
2289 	return ret;
2290 }
2291 
2292 /**
2293  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2294  *	@cpu: CPU which shall be re-evaluated
2295  *
2296  *	Useful for policy notifiers which have different necessities
2297  *	at different times.
2298  */
2299 void cpufreq_update_policy(unsigned int cpu)
2300 {
2301 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2302 	struct cpufreq_policy new_policy;
2303 
2304 	if (!policy)
2305 		return;
2306 
2307 	down_write(&policy->rwsem);
2308 
2309 	if (policy_is_inactive(policy))
2310 		goto unlock;
2311 
2312 	pr_debug("updating policy for CPU %u\n", cpu);
2313 	memcpy(&new_policy, policy, sizeof(*policy));
2314 	new_policy.min = policy->user_policy.min;
2315 	new_policy.max = policy->user_policy.max;
2316 
2317 	/*
2318 	 * BIOS might change freq behind our back
2319 	 * -> ask driver for current freq and notify governors about a change
2320 	 */
2321 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2322 		if (cpufreq_suspended)
2323 			goto unlock;
2324 
2325 		new_policy.cur = cpufreq_update_current_freq(policy);
2326 		if (WARN_ON(!new_policy.cur))
2327 			goto unlock;
2328 	}
2329 
2330 	cpufreq_set_policy(policy, &new_policy);
2331 
2332 unlock:
2333 	up_write(&policy->rwsem);
2334 
2335 	cpufreq_cpu_put(policy);
2336 }
2337 EXPORT_SYMBOL(cpufreq_update_policy);
2338 
2339 /*********************************************************************
2340  *               BOOST						     *
2341  *********************************************************************/
2342 static int cpufreq_boost_set_sw(int state)
2343 {
2344 	struct cpufreq_policy *policy;
2345 	int ret = -EINVAL;
2346 
2347 	for_each_active_policy(policy) {
2348 		if (!policy->freq_table)
2349 			continue;
2350 
2351 		ret = cpufreq_frequency_table_cpuinfo(policy,
2352 						      policy->freq_table);
2353 		if (ret) {
2354 			pr_err("%s: Policy frequency update failed\n",
2355 			       __func__);
2356 			break;
2357 		}
2358 
2359 		down_write(&policy->rwsem);
2360 		policy->user_policy.max = policy->max;
2361 		cpufreq_governor_limits(policy);
2362 		up_write(&policy->rwsem);
2363 	}
2364 
2365 	return ret;
2366 }
2367 
2368 int cpufreq_boost_trigger_state(int state)
2369 {
2370 	unsigned long flags;
2371 	int ret = 0;
2372 
2373 	if (cpufreq_driver->boost_enabled == state)
2374 		return 0;
2375 
2376 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2377 	cpufreq_driver->boost_enabled = state;
2378 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2379 
2380 	ret = cpufreq_driver->set_boost(state);
2381 	if (ret) {
2382 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2383 		cpufreq_driver->boost_enabled = !state;
2384 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2385 
2386 		pr_err("%s: Cannot %s BOOST\n",
2387 		       __func__, state ? "enable" : "disable");
2388 	}
2389 
2390 	return ret;
2391 }
2392 
2393 static bool cpufreq_boost_supported(void)
2394 {
2395 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2396 }
2397 
2398 static int create_boost_sysfs_file(void)
2399 {
2400 	int ret;
2401 
2402 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2403 	if (ret)
2404 		pr_err("%s: cannot register global BOOST sysfs file\n",
2405 		       __func__);
2406 
2407 	return ret;
2408 }
2409 
2410 static void remove_boost_sysfs_file(void)
2411 {
2412 	if (cpufreq_boost_supported())
2413 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2414 }
2415 
2416 int cpufreq_enable_boost_support(void)
2417 {
2418 	if (!cpufreq_driver)
2419 		return -EINVAL;
2420 
2421 	if (cpufreq_boost_supported())
2422 		return 0;
2423 
2424 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2425 
2426 	/* This will get removed on driver unregister */
2427 	return create_boost_sysfs_file();
2428 }
2429 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2430 
2431 int cpufreq_boost_enabled(void)
2432 {
2433 	return cpufreq_driver->boost_enabled;
2434 }
2435 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2436 
2437 /*********************************************************************
2438  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2439  *********************************************************************/
2440 static enum cpuhp_state hp_online;
2441 
2442 static int cpuhp_cpufreq_online(unsigned int cpu)
2443 {
2444 	cpufreq_online(cpu);
2445 
2446 	return 0;
2447 }
2448 
2449 static int cpuhp_cpufreq_offline(unsigned int cpu)
2450 {
2451 	cpufreq_offline(cpu);
2452 
2453 	return 0;
2454 }
2455 
2456 /**
2457  * cpufreq_register_driver - register a CPU Frequency driver
2458  * @driver_data: A struct cpufreq_driver containing the values#
2459  * submitted by the CPU Frequency driver.
2460  *
2461  * Registers a CPU Frequency driver to this core code. This code
2462  * returns zero on success, -EEXIST when another driver got here first
2463  * (and isn't unregistered in the meantime).
2464  *
2465  */
2466 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2467 {
2468 	unsigned long flags;
2469 	int ret;
2470 
2471 	if (cpufreq_disabled())
2472 		return -ENODEV;
2473 
2474 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2475 	    !(driver_data->setpolicy || driver_data->target_index ||
2476 		    driver_data->target) ||
2477 	     (driver_data->setpolicy && (driver_data->target_index ||
2478 		    driver_data->target)) ||
2479 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2480 		return -EINVAL;
2481 
2482 	pr_debug("trying to register driver %s\n", driver_data->name);
2483 
2484 	/* Protect against concurrent CPU online/offline. */
2485 	cpus_read_lock();
2486 
2487 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2488 	if (cpufreq_driver) {
2489 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2490 		ret = -EEXIST;
2491 		goto out;
2492 	}
2493 	cpufreq_driver = driver_data;
2494 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2495 
2496 	if (driver_data->setpolicy)
2497 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2498 
2499 	if (cpufreq_boost_supported()) {
2500 		ret = create_boost_sysfs_file();
2501 		if (ret)
2502 			goto err_null_driver;
2503 	}
2504 
2505 	ret = subsys_interface_register(&cpufreq_interface);
2506 	if (ret)
2507 		goto err_boost_unreg;
2508 
2509 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2510 	    list_empty(&cpufreq_policy_list)) {
2511 		/* if all ->init() calls failed, unregister */
2512 		ret = -ENODEV;
2513 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2514 			 driver_data->name);
2515 		goto err_if_unreg;
2516 	}
2517 
2518 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2519 						   "cpufreq:online",
2520 						   cpuhp_cpufreq_online,
2521 						   cpuhp_cpufreq_offline);
2522 	if (ret < 0)
2523 		goto err_if_unreg;
2524 	hp_online = ret;
2525 	ret = 0;
2526 
2527 	pr_debug("driver %s up and running\n", driver_data->name);
2528 	goto out;
2529 
2530 err_if_unreg:
2531 	subsys_interface_unregister(&cpufreq_interface);
2532 err_boost_unreg:
2533 	remove_boost_sysfs_file();
2534 err_null_driver:
2535 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2536 	cpufreq_driver = NULL;
2537 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2538 out:
2539 	cpus_read_unlock();
2540 	return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2543 
2544 /**
2545  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2546  *
2547  * Unregister the current CPUFreq driver. Only call this if you have
2548  * the right to do so, i.e. if you have succeeded in initialising before!
2549  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2550  * currently not initialised.
2551  */
2552 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2553 {
2554 	unsigned long flags;
2555 
2556 	if (!cpufreq_driver || (driver != cpufreq_driver))
2557 		return -EINVAL;
2558 
2559 	pr_debug("unregistering driver %s\n", driver->name);
2560 
2561 	/* Protect against concurrent cpu hotplug */
2562 	cpus_read_lock();
2563 	subsys_interface_unregister(&cpufreq_interface);
2564 	remove_boost_sysfs_file();
2565 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2566 
2567 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2568 
2569 	cpufreq_driver = NULL;
2570 
2571 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2572 	cpus_read_unlock();
2573 
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2577 
2578 /*
2579  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2580  * or mutexes when secondary CPUs are halted.
2581  */
2582 static struct syscore_ops cpufreq_syscore_ops = {
2583 	.shutdown = cpufreq_suspend,
2584 };
2585 
2586 struct kobject *cpufreq_global_kobject;
2587 EXPORT_SYMBOL(cpufreq_global_kobject);
2588 
2589 static int __init cpufreq_core_init(void)
2590 {
2591 	if (cpufreq_disabled())
2592 		return -ENODEV;
2593 
2594 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2595 	BUG_ON(!cpufreq_global_kobject);
2596 
2597 	register_syscore_ops(&cpufreq_syscore_ops);
2598 
2599 	return 0;
2600 }
2601 module_param(off, int, 0444);
2602 core_initcall(cpufreq_core_init);
2603