1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 #define for_each_policy(__policy) \ 46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 47 48 /* Iterate over governors */ 49 static LIST_HEAD(cpufreq_governor_list); 50 #define for_each_governor(__governor) \ 51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 52 53 /** 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 /* Flag to suspend/resume CPUFreq governors */ 63 static bool cpufreq_suspended; 64 65 static inline bool has_target(void) 66 { 67 return cpufreq_driver->target_index || cpufreq_driver->target; 68 } 69 70 /* internal prototypes */ 71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 72 static int cpufreq_init_governor(struct cpufreq_policy *policy); 73 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 74 static int cpufreq_start_governor(struct cpufreq_policy *policy); 75 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 76 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 77 78 /** 79 * Two notifier lists: the "policy" list is involved in the 80 * validation process for a new CPU frequency policy; the 81 * "transition" list for kernel code that needs to handle 82 * changes to devices when the CPU clock speed changes. 83 * The mutex locks both lists. 84 */ 85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 87 88 static int off __read_mostly; 89 static int cpufreq_disabled(void) 90 { 91 return off; 92 } 93 void disable_cpufreq(void) 94 { 95 off = 1; 96 } 97 static DEFINE_MUTEX(cpufreq_governor_mutex); 98 99 bool have_governor_per_policy(void) 100 { 101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 102 } 103 EXPORT_SYMBOL_GPL(have_governor_per_policy); 104 105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 106 { 107 if (have_governor_per_policy()) 108 return &policy->kobj; 109 else 110 return cpufreq_global_kobject; 111 } 112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 113 114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 115 { 116 u64 idle_time; 117 u64 cur_wall_time; 118 u64 busy_time; 119 120 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 121 122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 128 129 idle_time = cur_wall_time - busy_time; 130 if (wall) 131 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 132 133 return div_u64(idle_time, NSEC_PER_USEC); 134 } 135 136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 137 { 138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 139 140 if (idle_time == -1ULL) 141 return get_cpu_idle_time_jiffy(cpu, wall); 142 else if (!io_busy) 143 idle_time += get_cpu_iowait_time_us(cpu, wall); 144 145 return idle_time; 146 } 147 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 148 149 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 150 unsigned long max_freq) 151 { 152 } 153 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 154 155 /* 156 * This is a generic cpufreq init() routine which can be used by cpufreq 157 * drivers of SMP systems. It will do following: 158 * - validate & show freq table passed 159 * - set policies transition latency 160 * - policy->cpus with all possible CPUs 161 */ 162 void cpufreq_generic_init(struct cpufreq_policy *policy, 163 struct cpufreq_frequency_table *table, 164 unsigned int transition_latency) 165 { 166 policy->freq_table = table; 167 policy->cpuinfo.transition_latency = transition_latency; 168 169 /* 170 * The driver only supports the SMP configuration where all processors 171 * share the clock and voltage and clock. 172 */ 173 cpumask_setall(policy->cpus); 174 } 175 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 176 177 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 178 { 179 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 180 181 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 184 185 unsigned int cpufreq_generic_get(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 188 189 if (!policy || IS_ERR(policy->clk)) { 190 pr_err("%s: No %s associated to cpu: %d\n", 191 __func__, policy ? "clk" : "policy", cpu); 192 return 0; 193 } 194 195 return clk_get_rate(policy->clk) / 1000; 196 } 197 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 198 199 /** 200 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 201 * @cpu: CPU to find the policy for. 202 * 203 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 204 * the kobject reference counter of that policy. Return a valid policy on 205 * success or NULL on failure. 206 * 207 * The policy returned by this function has to be released with the help of 208 * cpufreq_cpu_put() to balance its kobject reference counter properly. 209 */ 210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 211 { 212 struct cpufreq_policy *policy = NULL; 213 unsigned long flags; 214 215 if (WARN_ON(cpu >= nr_cpu_ids)) 216 return NULL; 217 218 /* get the cpufreq driver */ 219 read_lock_irqsave(&cpufreq_driver_lock, flags); 220 221 if (cpufreq_driver) { 222 /* get the CPU */ 223 policy = cpufreq_cpu_get_raw(cpu); 224 if (policy) 225 kobject_get(&policy->kobj); 226 } 227 228 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 229 230 return policy; 231 } 232 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 233 234 /** 235 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 236 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 237 */ 238 void cpufreq_cpu_put(struct cpufreq_policy *policy) 239 { 240 kobject_put(&policy->kobj); 241 } 242 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 243 244 /** 245 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 246 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 247 */ 248 void cpufreq_cpu_release(struct cpufreq_policy *policy) 249 { 250 if (WARN_ON(!policy)) 251 return; 252 253 lockdep_assert_held(&policy->rwsem); 254 255 up_write(&policy->rwsem); 256 257 cpufreq_cpu_put(policy); 258 } 259 260 /** 261 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 262 * @cpu: CPU to find the policy for. 263 * 264 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 265 * if the policy returned by it is not NULL, acquire its rwsem for writing. 266 * Return the policy if it is active or release it and return NULL otherwise. 267 * 268 * The policy returned by this function has to be released with the help of 269 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 270 * counter properly. 271 */ 272 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 273 { 274 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 275 276 if (!policy) 277 return NULL; 278 279 down_write(&policy->rwsem); 280 281 if (policy_is_inactive(policy)) { 282 cpufreq_cpu_release(policy); 283 return NULL; 284 } 285 286 return policy; 287 } 288 289 /********************************************************************* 290 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 291 *********************************************************************/ 292 293 /** 294 * adjust_jiffies - adjust the system "loops_per_jiffy" 295 * 296 * This function alters the system "loops_per_jiffy" for the clock 297 * speed change. Note that loops_per_jiffy cannot be updated on SMP 298 * systems as each CPU might be scaled differently. So, use the arch 299 * per-CPU loops_per_jiffy value wherever possible. 300 */ 301 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 302 { 303 #ifndef CONFIG_SMP 304 static unsigned long l_p_j_ref; 305 static unsigned int l_p_j_ref_freq; 306 307 if (ci->flags & CPUFREQ_CONST_LOOPS) 308 return; 309 310 if (!l_p_j_ref_freq) { 311 l_p_j_ref = loops_per_jiffy; 312 l_p_j_ref_freq = ci->old; 313 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 314 l_p_j_ref, l_p_j_ref_freq); 315 } 316 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 317 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 318 ci->new); 319 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 320 loops_per_jiffy, ci->new); 321 } 322 #endif 323 } 324 325 /** 326 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 327 * @policy: cpufreq policy to enable fast frequency switching for. 328 * @freqs: contain details of the frequency update. 329 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 330 * 331 * This function calls the transition notifiers and the "adjust_jiffies" 332 * function. It is called twice on all CPU frequency changes that have 333 * external effects. 334 */ 335 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 336 struct cpufreq_freqs *freqs, 337 unsigned int state) 338 { 339 int cpu; 340 341 BUG_ON(irqs_disabled()); 342 343 if (cpufreq_disabled()) 344 return; 345 346 freqs->policy = policy; 347 freqs->flags = cpufreq_driver->flags; 348 pr_debug("notification %u of frequency transition to %u kHz\n", 349 state, freqs->new); 350 351 switch (state) { 352 case CPUFREQ_PRECHANGE: 353 /* 354 * Detect if the driver reported a value as "old frequency" 355 * which is not equal to what the cpufreq core thinks is 356 * "old frequency". 357 */ 358 if (policy->cur && policy->cur != freqs->old) { 359 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 360 freqs->old, policy->cur); 361 freqs->old = policy->cur; 362 } 363 364 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 365 CPUFREQ_PRECHANGE, freqs); 366 367 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 368 break; 369 370 case CPUFREQ_POSTCHANGE: 371 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 372 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 373 cpumask_pr_args(policy->cpus)); 374 375 for_each_cpu(cpu, policy->cpus) 376 trace_cpu_frequency(freqs->new, cpu); 377 378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 379 CPUFREQ_POSTCHANGE, freqs); 380 381 cpufreq_stats_record_transition(policy, freqs->new); 382 policy->cur = freqs->new; 383 } 384 } 385 386 /* Do post notifications when there are chances that transition has failed */ 387 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 388 struct cpufreq_freqs *freqs, int transition_failed) 389 { 390 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 391 if (!transition_failed) 392 return; 393 394 swap(freqs->old, freqs->new); 395 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 396 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 397 } 398 399 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 400 struct cpufreq_freqs *freqs) 401 { 402 403 /* 404 * Catch double invocations of _begin() which lead to self-deadlock. 405 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 406 * doesn't invoke _begin() on their behalf, and hence the chances of 407 * double invocations are very low. Moreover, there are scenarios 408 * where these checks can emit false-positive warnings in these 409 * drivers; so we avoid that by skipping them altogether. 410 */ 411 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 412 && current == policy->transition_task); 413 414 wait: 415 wait_event(policy->transition_wait, !policy->transition_ongoing); 416 417 spin_lock(&policy->transition_lock); 418 419 if (unlikely(policy->transition_ongoing)) { 420 spin_unlock(&policy->transition_lock); 421 goto wait; 422 } 423 424 policy->transition_ongoing = true; 425 policy->transition_task = current; 426 427 spin_unlock(&policy->transition_lock); 428 429 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 430 } 431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 432 433 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 434 struct cpufreq_freqs *freqs, int transition_failed) 435 { 436 if (WARN_ON(!policy->transition_ongoing)) 437 return; 438 439 cpufreq_notify_post_transition(policy, freqs, transition_failed); 440 441 policy->transition_ongoing = false; 442 policy->transition_task = NULL; 443 444 wake_up(&policy->transition_wait); 445 } 446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 447 448 /* 449 * Fast frequency switching status count. Positive means "enabled", negative 450 * means "disabled" and 0 means "not decided yet". 451 */ 452 static int cpufreq_fast_switch_count; 453 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 454 455 static void cpufreq_list_transition_notifiers(void) 456 { 457 struct notifier_block *nb; 458 459 pr_info("Registered transition notifiers:\n"); 460 461 mutex_lock(&cpufreq_transition_notifier_list.mutex); 462 463 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 464 pr_info("%pS\n", nb->notifier_call); 465 466 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 467 } 468 469 /** 470 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 471 * @policy: cpufreq policy to enable fast frequency switching for. 472 * 473 * Try to enable fast frequency switching for @policy. 474 * 475 * The attempt will fail if there is at least one transition notifier registered 476 * at this point, as fast frequency switching is quite fundamentally at odds 477 * with transition notifiers. Thus if successful, it will make registration of 478 * transition notifiers fail going forward. 479 */ 480 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 481 { 482 lockdep_assert_held(&policy->rwsem); 483 484 if (!policy->fast_switch_possible) 485 return; 486 487 mutex_lock(&cpufreq_fast_switch_lock); 488 if (cpufreq_fast_switch_count >= 0) { 489 cpufreq_fast_switch_count++; 490 policy->fast_switch_enabled = true; 491 } else { 492 pr_warn("CPU%u: Fast frequency switching not enabled\n", 493 policy->cpu); 494 cpufreq_list_transition_notifiers(); 495 } 496 mutex_unlock(&cpufreq_fast_switch_lock); 497 } 498 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 499 500 /** 501 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 502 * @policy: cpufreq policy to disable fast frequency switching for. 503 */ 504 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 505 { 506 mutex_lock(&cpufreq_fast_switch_lock); 507 if (policy->fast_switch_enabled) { 508 policy->fast_switch_enabled = false; 509 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 510 cpufreq_fast_switch_count--; 511 } 512 mutex_unlock(&cpufreq_fast_switch_lock); 513 } 514 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 515 516 /** 517 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 518 * one. 519 * @target_freq: target frequency to resolve. 520 * 521 * The target to driver frequency mapping is cached in the policy. 522 * 523 * Return: Lowest driver-supported frequency greater than or equal to the 524 * given target_freq, subject to policy (min/max) and driver limitations. 525 */ 526 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 527 unsigned int target_freq) 528 { 529 target_freq = clamp_val(target_freq, policy->min, policy->max); 530 policy->cached_target_freq = target_freq; 531 532 if (cpufreq_driver->target_index) { 533 int idx; 534 535 idx = cpufreq_frequency_table_target(policy, target_freq, 536 CPUFREQ_RELATION_L); 537 policy->cached_resolved_idx = idx; 538 return policy->freq_table[idx].frequency; 539 } 540 541 if (cpufreq_driver->resolve_freq) 542 return cpufreq_driver->resolve_freq(policy, target_freq); 543 544 return target_freq; 545 } 546 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 547 548 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 549 { 550 unsigned int latency; 551 552 if (policy->transition_delay_us) 553 return policy->transition_delay_us; 554 555 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 556 if (latency) { 557 /* 558 * For platforms that can change the frequency very fast (< 10 559 * us), the above formula gives a decent transition delay. But 560 * for platforms where transition_latency is in milliseconds, it 561 * ends up giving unrealistic values. 562 * 563 * Cap the default transition delay to 10 ms, which seems to be 564 * a reasonable amount of time after which we should reevaluate 565 * the frequency. 566 */ 567 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 568 } 569 570 return LATENCY_MULTIPLIER; 571 } 572 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 573 574 /********************************************************************* 575 * SYSFS INTERFACE * 576 *********************************************************************/ 577 static ssize_t show_boost(struct kobject *kobj, 578 struct kobj_attribute *attr, char *buf) 579 { 580 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 581 } 582 583 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 584 const char *buf, size_t count) 585 { 586 int ret, enable; 587 588 ret = sscanf(buf, "%d", &enable); 589 if (ret != 1 || enable < 0 || enable > 1) 590 return -EINVAL; 591 592 if (cpufreq_boost_trigger_state(enable)) { 593 pr_err("%s: Cannot %s BOOST!\n", 594 __func__, enable ? "enable" : "disable"); 595 return -EINVAL; 596 } 597 598 pr_debug("%s: cpufreq BOOST %s\n", 599 __func__, enable ? "enabled" : "disabled"); 600 601 return count; 602 } 603 define_one_global_rw(boost); 604 605 static struct cpufreq_governor *find_governor(const char *str_governor) 606 { 607 struct cpufreq_governor *t; 608 609 for_each_governor(t) 610 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 611 return t; 612 613 return NULL; 614 } 615 616 static int cpufreq_parse_policy(char *str_governor, 617 struct cpufreq_policy *policy) 618 { 619 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 620 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 621 return 0; 622 } 623 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 624 policy->policy = CPUFREQ_POLICY_POWERSAVE; 625 return 0; 626 } 627 return -EINVAL; 628 } 629 630 /** 631 * cpufreq_parse_governor - parse a governor string only for has_target() 632 */ 633 static int cpufreq_parse_governor(char *str_governor, 634 struct cpufreq_policy *policy) 635 { 636 struct cpufreq_governor *t; 637 638 mutex_lock(&cpufreq_governor_mutex); 639 640 t = find_governor(str_governor); 641 if (!t) { 642 int ret; 643 644 mutex_unlock(&cpufreq_governor_mutex); 645 646 ret = request_module("cpufreq_%s", str_governor); 647 if (ret) 648 return -EINVAL; 649 650 mutex_lock(&cpufreq_governor_mutex); 651 652 t = find_governor(str_governor); 653 } 654 if (t && !try_module_get(t->owner)) 655 t = NULL; 656 657 mutex_unlock(&cpufreq_governor_mutex); 658 659 if (t) { 660 policy->governor = t; 661 return 0; 662 } 663 664 return -EINVAL; 665 } 666 667 /** 668 * cpufreq_per_cpu_attr_read() / show_##file_name() - 669 * print out cpufreq information 670 * 671 * Write out information from cpufreq_driver->policy[cpu]; object must be 672 * "unsigned int". 673 */ 674 675 #define show_one(file_name, object) \ 676 static ssize_t show_##file_name \ 677 (struct cpufreq_policy *policy, char *buf) \ 678 { \ 679 return sprintf(buf, "%u\n", policy->object); \ 680 } 681 682 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 683 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 685 show_one(scaling_min_freq, min); 686 show_one(scaling_max_freq, max); 687 688 __weak unsigned int arch_freq_get_on_cpu(int cpu) 689 { 690 return 0; 691 } 692 693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 694 { 695 ssize_t ret; 696 unsigned int freq; 697 698 freq = arch_freq_get_on_cpu(policy->cpu); 699 if (freq) 700 ret = sprintf(buf, "%u\n", freq); 701 else if (cpufreq_driver && cpufreq_driver->setpolicy && 702 cpufreq_driver->get) 703 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 704 else 705 ret = sprintf(buf, "%u\n", policy->cur); 706 return ret; 707 } 708 709 /** 710 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 711 */ 712 #define store_one(file_name, object) \ 713 static ssize_t store_##file_name \ 714 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 715 { \ 716 unsigned long val; \ 717 int ret; \ 718 \ 719 ret = sscanf(buf, "%lu", &val); \ 720 if (ret != 1) \ 721 return -EINVAL; \ 722 \ 723 ret = dev_pm_qos_update_request(policy->object##_freq_req, val);\ 724 return ret >= 0 ? count : ret; \ 725 } 726 727 store_one(scaling_min_freq, min); 728 store_one(scaling_max_freq, max); 729 730 /** 731 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 732 */ 733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 734 char *buf) 735 { 736 unsigned int cur_freq = __cpufreq_get(policy); 737 738 if (cur_freq) 739 return sprintf(buf, "%u\n", cur_freq); 740 741 return sprintf(buf, "<unknown>\n"); 742 } 743 744 /** 745 * show_scaling_governor - show the current policy for the specified CPU 746 */ 747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 748 { 749 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 750 return sprintf(buf, "powersave\n"); 751 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 752 return sprintf(buf, "performance\n"); 753 else if (policy->governor) 754 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 755 policy->governor->name); 756 return -EINVAL; 757 } 758 759 /** 760 * store_scaling_governor - store policy for the specified CPU 761 */ 762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 763 const char *buf, size_t count) 764 { 765 int ret; 766 char str_governor[16]; 767 struct cpufreq_policy new_policy; 768 769 memcpy(&new_policy, policy, sizeof(*policy)); 770 771 ret = sscanf(buf, "%15s", str_governor); 772 if (ret != 1) 773 return -EINVAL; 774 775 if (cpufreq_driver->setpolicy) { 776 if (cpufreq_parse_policy(str_governor, &new_policy)) 777 return -EINVAL; 778 } else { 779 if (cpufreq_parse_governor(str_governor, &new_policy)) 780 return -EINVAL; 781 } 782 783 ret = cpufreq_set_policy(policy, &new_policy); 784 785 if (new_policy.governor) 786 module_put(new_policy.governor->owner); 787 788 return ret ? ret : count; 789 } 790 791 /** 792 * show_scaling_driver - show the cpufreq driver currently loaded 793 */ 794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 795 { 796 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 797 } 798 799 /** 800 * show_scaling_available_governors - show the available CPUfreq governors 801 */ 802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 803 char *buf) 804 { 805 ssize_t i = 0; 806 struct cpufreq_governor *t; 807 808 if (!has_target()) { 809 i += sprintf(buf, "performance powersave"); 810 goto out; 811 } 812 813 for_each_governor(t) { 814 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 815 - (CPUFREQ_NAME_LEN + 2))) 816 goto out; 817 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 818 } 819 out: 820 i += sprintf(&buf[i], "\n"); 821 return i; 822 } 823 824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 825 { 826 ssize_t i = 0; 827 unsigned int cpu; 828 829 for_each_cpu(cpu, mask) { 830 if (i) 831 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 832 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 833 if (i >= (PAGE_SIZE - 5)) 834 break; 835 } 836 i += sprintf(&buf[i], "\n"); 837 return i; 838 } 839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 840 841 /** 842 * show_related_cpus - show the CPUs affected by each transition even if 843 * hw coordination is in use 844 */ 845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 846 { 847 return cpufreq_show_cpus(policy->related_cpus, buf); 848 } 849 850 /** 851 * show_affected_cpus - show the CPUs affected by each transition 852 */ 853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 854 { 855 return cpufreq_show_cpus(policy->cpus, buf); 856 } 857 858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 859 const char *buf, size_t count) 860 { 861 unsigned int freq = 0; 862 unsigned int ret; 863 864 if (!policy->governor || !policy->governor->store_setspeed) 865 return -EINVAL; 866 867 ret = sscanf(buf, "%u", &freq); 868 if (ret != 1) 869 return -EINVAL; 870 871 policy->governor->store_setspeed(policy, freq); 872 873 return count; 874 } 875 876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 877 { 878 if (!policy->governor || !policy->governor->show_setspeed) 879 return sprintf(buf, "<unsupported>\n"); 880 881 return policy->governor->show_setspeed(policy, buf); 882 } 883 884 /** 885 * show_bios_limit - show the current cpufreq HW/BIOS limitation 886 */ 887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 888 { 889 unsigned int limit; 890 int ret; 891 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 892 if (!ret) 893 return sprintf(buf, "%u\n", limit); 894 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 895 } 896 897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 898 cpufreq_freq_attr_ro(cpuinfo_min_freq); 899 cpufreq_freq_attr_ro(cpuinfo_max_freq); 900 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 901 cpufreq_freq_attr_ro(scaling_available_governors); 902 cpufreq_freq_attr_ro(scaling_driver); 903 cpufreq_freq_attr_ro(scaling_cur_freq); 904 cpufreq_freq_attr_ro(bios_limit); 905 cpufreq_freq_attr_ro(related_cpus); 906 cpufreq_freq_attr_ro(affected_cpus); 907 cpufreq_freq_attr_rw(scaling_min_freq); 908 cpufreq_freq_attr_rw(scaling_max_freq); 909 cpufreq_freq_attr_rw(scaling_governor); 910 cpufreq_freq_attr_rw(scaling_setspeed); 911 912 static struct attribute *default_attrs[] = { 913 &cpuinfo_min_freq.attr, 914 &cpuinfo_max_freq.attr, 915 &cpuinfo_transition_latency.attr, 916 &scaling_min_freq.attr, 917 &scaling_max_freq.attr, 918 &affected_cpus.attr, 919 &related_cpus.attr, 920 &scaling_governor.attr, 921 &scaling_driver.attr, 922 &scaling_available_governors.attr, 923 &scaling_setspeed.attr, 924 NULL 925 }; 926 927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 928 #define to_attr(a) container_of(a, struct freq_attr, attr) 929 930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 931 { 932 struct cpufreq_policy *policy = to_policy(kobj); 933 struct freq_attr *fattr = to_attr(attr); 934 ssize_t ret; 935 936 down_read(&policy->rwsem); 937 ret = fattr->show(policy, buf); 938 up_read(&policy->rwsem); 939 940 return ret; 941 } 942 943 static ssize_t store(struct kobject *kobj, struct attribute *attr, 944 const char *buf, size_t count) 945 { 946 struct cpufreq_policy *policy = to_policy(kobj); 947 struct freq_attr *fattr = to_attr(attr); 948 ssize_t ret = -EINVAL; 949 950 /* 951 * cpus_read_trylock() is used here to work around a circular lock 952 * dependency problem with respect to the cpufreq_register_driver(). 953 */ 954 if (!cpus_read_trylock()) 955 return -EBUSY; 956 957 if (cpu_online(policy->cpu)) { 958 down_write(&policy->rwsem); 959 ret = fattr->store(policy, buf, count); 960 up_write(&policy->rwsem); 961 } 962 963 cpus_read_unlock(); 964 965 return ret; 966 } 967 968 static void cpufreq_sysfs_release(struct kobject *kobj) 969 { 970 struct cpufreq_policy *policy = to_policy(kobj); 971 pr_debug("last reference is dropped\n"); 972 complete(&policy->kobj_unregister); 973 } 974 975 static const struct sysfs_ops sysfs_ops = { 976 .show = show, 977 .store = store, 978 }; 979 980 static struct kobj_type ktype_cpufreq = { 981 .sysfs_ops = &sysfs_ops, 982 .default_attrs = default_attrs, 983 .release = cpufreq_sysfs_release, 984 }; 985 986 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 987 { 988 struct device *dev = get_cpu_device(cpu); 989 990 if (unlikely(!dev)) 991 return; 992 993 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 994 return; 995 996 dev_dbg(dev, "%s: Adding symlink\n", __func__); 997 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 998 dev_err(dev, "cpufreq symlink creation failed\n"); 999 } 1000 1001 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1002 struct device *dev) 1003 { 1004 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1005 sysfs_remove_link(&dev->kobj, "cpufreq"); 1006 } 1007 1008 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1009 { 1010 struct freq_attr **drv_attr; 1011 int ret = 0; 1012 1013 /* set up files for this cpu device */ 1014 drv_attr = cpufreq_driver->attr; 1015 while (drv_attr && *drv_attr) { 1016 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1017 if (ret) 1018 return ret; 1019 drv_attr++; 1020 } 1021 if (cpufreq_driver->get) { 1022 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1023 if (ret) 1024 return ret; 1025 } 1026 1027 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1028 if (ret) 1029 return ret; 1030 1031 if (cpufreq_driver->bios_limit) { 1032 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1033 if (ret) 1034 return ret; 1035 } 1036 1037 return 0; 1038 } 1039 1040 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1041 { 1042 return NULL; 1043 } 1044 1045 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1046 { 1047 struct cpufreq_governor *gov = NULL, *def_gov = NULL; 1048 struct cpufreq_policy new_policy; 1049 1050 memcpy(&new_policy, policy, sizeof(*policy)); 1051 1052 def_gov = cpufreq_default_governor(); 1053 1054 if (has_target()) { 1055 /* 1056 * Update governor of new_policy to the governor used before 1057 * hotplug 1058 */ 1059 gov = find_governor(policy->last_governor); 1060 if (gov) { 1061 pr_debug("Restoring governor %s for cpu %d\n", 1062 policy->governor->name, policy->cpu); 1063 } else { 1064 if (!def_gov) 1065 return -ENODATA; 1066 gov = def_gov; 1067 } 1068 new_policy.governor = gov; 1069 } else { 1070 /* Use the default policy if there is no last_policy. */ 1071 if (policy->last_policy) { 1072 new_policy.policy = policy->last_policy; 1073 } else { 1074 if (!def_gov) 1075 return -ENODATA; 1076 cpufreq_parse_policy(def_gov->name, &new_policy); 1077 } 1078 } 1079 1080 return cpufreq_set_policy(policy, &new_policy); 1081 } 1082 1083 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1084 { 1085 int ret = 0; 1086 1087 /* Has this CPU been taken care of already? */ 1088 if (cpumask_test_cpu(cpu, policy->cpus)) 1089 return 0; 1090 1091 down_write(&policy->rwsem); 1092 if (has_target()) 1093 cpufreq_stop_governor(policy); 1094 1095 cpumask_set_cpu(cpu, policy->cpus); 1096 1097 if (has_target()) { 1098 ret = cpufreq_start_governor(policy); 1099 if (ret) 1100 pr_err("%s: Failed to start governor\n", __func__); 1101 } 1102 up_write(&policy->rwsem); 1103 return ret; 1104 } 1105 1106 void refresh_frequency_limits(struct cpufreq_policy *policy) 1107 { 1108 struct cpufreq_policy new_policy; 1109 1110 if (!policy_is_inactive(policy)) { 1111 new_policy = *policy; 1112 pr_debug("updating policy for CPU %u\n", policy->cpu); 1113 1114 cpufreq_set_policy(policy, &new_policy); 1115 } 1116 } 1117 EXPORT_SYMBOL(refresh_frequency_limits); 1118 1119 static void handle_update(struct work_struct *work) 1120 { 1121 struct cpufreq_policy *policy = 1122 container_of(work, struct cpufreq_policy, update); 1123 1124 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1125 down_write(&policy->rwsem); 1126 refresh_frequency_limits(policy); 1127 up_write(&policy->rwsem); 1128 } 1129 1130 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1131 void *data) 1132 { 1133 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1134 1135 schedule_work(&policy->update); 1136 return 0; 1137 } 1138 1139 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1140 void *data) 1141 { 1142 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1143 1144 schedule_work(&policy->update); 1145 return 0; 1146 } 1147 1148 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1149 { 1150 struct kobject *kobj; 1151 struct completion *cmp; 1152 1153 down_write(&policy->rwsem); 1154 cpufreq_stats_free_table(policy); 1155 kobj = &policy->kobj; 1156 cmp = &policy->kobj_unregister; 1157 up_write(&policy->rwsem); 1158 kobject_put(kobj); 1159 1160 /* 1161 * We need to make sure that the underlying kobj is 1162 * actually not referenced anymore by anybody before we 1163 * proceed with unloading. 1164 */ 1165 pr_debug("waiting for dropping of refcount\n"); 1166 wait_for_completion(cmp); 1167 pr_debug("wait complete\n"); 1168 } 1169 1170 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1171 { 1172 struct cpufreq_policy *policy; 1173 struct device *dev = get_cpu_device(cpu); 1174 int ret; 1175 1176 if (!dev) 1177 return NULL; 1178 1179 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1180 if (!policy) 1181 return NULL; 1182 1183 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1184 goto err_free_policy; 1185 1186 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1187 goto err_free_cpumask; 1188 1189 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1190 goto err_free_rcpumask; 1191 1192 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1193 cpufreq_global_kobject, "policy%u", cpu); 1194 if (ret) { 1195 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1196 /* 1197 * The entire policy object will be freed below, but the extra 1198 * memory allocated for the kobject name needs to be freed by 1199 * releasing the kobject. 1200 */ 1201 kobject_put(&policy->kobj); 1202 goto err_free_real_cpus; 1203 } 1204 1205 policy->nb_min.notifier_call = cpufreq_notifier_min; 1206 policy->nb_max.notifier_call = cpufreq_notifier_max; 1207 1208 ret = dev_pm_qos_add_notifier(dev, &policy->nb_min, 1209 DEV_PM_QOS_MIN_FREQUENCY); 1210 if (ret) { 1211 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1212 ret, cpumask_pr_args(policy->cpus)); 1213 goto err_kobj_remove; 1214 } 1215 1216 ret = dev_pm_qos_add_notifier(dev, &policy->nb_max, 1217 DEV_PM_QOS_MAX_FREQUENCY); 1218 if (ret) { 1219 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1220 ret, cpumask_pr_args(policy->cpus)); 1221 goto err_min_qos_notifier; 1222 } 1223 1224 INIT_LIST_HEAD(&policy->policy_list); 1225 init_rwsem(&policy->rwsem); 1226 spin_lock_init(&policy->transition_lock); 1227 init_waitqueue_head(&policy->transition_wait); 1228 init_completion(&policy->kobj_unregister); 1229 INIT_WORK(&policy->update, handle_update); 1230 1231 policy->cpu = cpu; 1232 return policy; 1233 1234 err_min_qos_notifier: 1235 dev_pm_qos_remove_notifier(dev, &policy->nb_min, 1236 DEV_PM_QOS_MIN_FREQUENCY); 1237 err_kobj_remove: 1238 cpufreq_policy_put_kobj(policy); 1239 err_free_real_cpus: 1240 free_cpumask_var(policy->real_cpus); 1241 err_free_rcpumask: 1242 free_cpumask_var(policy->related_cpus); 1243 err_free_cpumask: 1244 free_cpumask_var(policy->cpus); 1245 err_free_policy: 1246 kfree(policy); 1247 1248 return NULL; 1249 } 1250 1251 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1252 { 1253 struct device *dev = get_cpu_device(policy->cpu); 1254 unsigned long flags; 1255 int cpu; 1256 1257 /* Remove policy from list */ 1258 write_lock_irqsave(&cpufreq_driver_lock, flags); 1259 list_del(&policy->policy_list); 1260 1261 for_each_cpu(cpu, policy->related_cpus) 1262 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1263 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1264 1265 dev_pm_qos_remove_notifier(dev, &policy->nb_max, 1266 DEV_PM_QOS_MAX_FREQUENCY); 1267 dev_pm_qos_remove_notifier(dev, &policy->nb_min, 1268 DEV_PM_QOS_MIN_FREQUENCY); 1269 dev_pm_qos_remove_request(policy->max_freq_req); 1270 dev_pm_qos_remove_request(policy->min_freq_req); 1271 kfree(policy->min_freq_req); 1272 1273 cpufreq_policy_put_kobj(policy); 1274 free_cpumask_var(policy->real_cpus); 1275 free_cpumask_var(policy->related_cpus); 1276 free_cpumask_var(policy->cpus); 1277 kfree(policy); 1278 } 1279 1280 static int cpufreq_online(unsigned int cpu) 1281 { 1282 struct cpufreq_policy *policy; 1283 bool new_policy; 1284 unsigned long flags; 1285 unsigned int j; 1286 int ret; 1287 1288 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1289 1290 /* Check if this CPU already has a policy to manage it */ 1291 policy = per_cpu(cpufreq_cpu_data, cpu); 1292 if (policy) { 1293 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1294 if (!policy_is_inactive(policy)) 1295 return cpufreq_add_policy_cpu(policy, cpu); 1296 1297 /* This is the only online CPU for the policy. Start over. */ 1298 new_policy = false; 1299 down_write(&policy->rwsem); 1300 policy->cpu = cpu; 1301 policy->governor = NULL; 1302 up_write(&policy->rwsem); 1303 } else { 1304 new_policy = true; 1305 policy = cpufreq_policy_alloc(cpu); 1306 if (!policy) 1307 return -ENOMEM; 1308 } 1309 1310 if (!new_policy && cpufreq_driver->online) { 1311 ret = cpufreq_driver->online(policy); 1312 if (ret) { 1313 pr_debug("%s: %d: initialization failed\n", __func__, 1314 __LINE__); 1315 goto out_exit_policy; 1316 } 1317 1318 /* Recover policy->cpus using related_cpus */ 1319 cpumask_copy(policy->cpus, policy->related_cpus); 1320 } else { 1321 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1322 1323 /* 1324 * Call driver. From then on the cpufreq must be able 1325 * to accept all calls to ->verify and ->setpolicy for this CPU. 1326 */ 1327 ret = cpufreq_driver->init(policy); 1328 if (ret) { 1329 pr_debug("%s: %d: initialization failed\n", __func__, 1330 __LINE__); 1331 goto out_free_policy; 1332 } 1333 1334 ret = cpufreq_table_validate_and_sort(policy); 1335 if (ret) 1336 goto out_exit_policy; 1337 1338 /* related_cpus should at least include policy->cpus. */ 1339 cpumask_copy(policy->related_cpus, policy->cpus); 1340 } 1341 1342 down_write(&policy->rwsem); 1343 /* 1344 * affected cpus must always be the one, which are online. We aren't 1345 * managing offline cpus here. 1346 */ 1347 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1348 1349 if (new_policy) { 1350 struct device *dev = get_cpu_device(cpu); 1351 1352 for_each_cpu(j, policy->related_cpus) { 1353 per_cpu(cpufreq_cpu_data, j) = policy; 1354 add_cpu_dev_symlink(policy, j); 1355 } 1356 1357 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1358 GFP_KERNEL); 1359 if (!policy->min_freq_req) 1360 goto out_destroy_policy; 1361 1362 ret = dev_pm_qos_add_request(dev, policy->min_freq_req, 1363 DEV_PM_QOS_MIN_FREQUENCY, 1364 policy->min); 1365 if (ret < 0) { 1366 /* 1367 * So we don't call dev_pm_qos_remove_request() for an 1368 * uninitialized request. 1369 */ 1370 kfree(policy->min_freq_req); 1371 policy->min_freq_req = NULL; 1372 1373 dev_err(dev, "Failed to add min-freq constraint (%d)\n", 1374 ret); 1375 goto out_destroy_policy; 1376 } 1377 1378 /* 1379 * This must be initialized right here to avoid calling 1380 * dev_pm_qos_remove_request() on uninitialized request in case 1381 * of errors. 1382 */ 1383 policy->max_freq_req = policy->min_freq_req + 1; 1384 1385 ret = dev_pm_qos_add_request(dev, policy->max_freq_req, 1386 DEV_PM_QOS_MAX_FREQUENCY, 1387 policy->max); 1388 if (ret < 0) { 1389 policy->max_freq_req = NULL; 1390 dev_err(dev, "Failed to add max-freq constraint (%d)\n", 1391 ret); 1392 goto out_destroy_policy; 1393 } 1394 } 1395 1396 if (cpufreq_driver->get && has_target()) { 1397 policy->cur = cpufreq_driver->get(policy->cpu); 1398 if (!policy->cur) { 1399 pr_err("%s: ->get() failed\n", __func__); 1400 goto out_destroy_policy; 1401 } 1402 } 1403 1404 /* 1405 * Sometimes boot loaders set CPU frequency to a value outside of 1406 * frequency table present with cpufreq core. In such cases CPU might be 1407 * unstable if it has to run on that frequency for long duration of time 1408 * and so its better to set it to a frequency which is specified in 1409 * freq-table. This also makes cpufreq stats inconsistent as 1410 * cpufreq-stats would fail to register because current frequency of CPU 1411 * isn't found in freq-table. 1412 * 1413 * Because we don't want this change to effect boot process badly, we go 1414 * for the next freq which is >= policy->cur ('cur' must be set by now, 1415 * otherwise we will end up setting freq to lowest of the table as 'cur' 1416 * is initialized to zero). 1417 * 1418 * We are passing target-freq as "policy->cur - 1" otherwise 1419 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1420 * equal to target-freq. 1421 */ 1422 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1423 && has_target()) { 1424 /* Are we running at unknown frequency ? */ 1425 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1426 if (ret == -EINVAL) { 1427 /* Warn user and fix it */ 1428 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1429 __func__, policy->cpu, policy->cur); 1430 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1431 CPUFREQ_RELATION_L); 1432 1433 /* 1434 * Reaching here after boot in a few seconds may not 1435 * mean that system will remain stable at "unknown" 1436 * frequency for longer duration. Hence, a BUG_ON(). 1437 */ 1438 BUG_ON(ret); 1439 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1440 __func__, policy->cpu, policy->cur); 1441 } 1442 } 1443 1444 if (new_policy) { 1445 ret = cpufreq_add_dev_interface(policy); 1446 if (ret) 1447 goto out_destroy_policy; 1448 1449 cpufreq_stats_create_table(policy); 1450 1451 write_lock_irqsave(&cpufreq_driver_lock, flags); 1452 list_add(&policy->policy_list, &cpufreq_policy_list); 1453 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1454 } 1455 1456 ret = cpufreq_init_policy(policy); 1457 if (ret) { 1458 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1459 __func__, cpu, ret); 1460 goto out_destroy_policy; 1461 } 1462 1463 up_write(&policy->rwsem); 1464 1465 kobject_uevent(&policy->kobj, KOBJ_ADD); 1466 1467 /* Callback for handling stuff after policy is ready */ 1468 if (cpufreq_driver->ready) 1469 cpufreq_driver->ready(policy); 1470 1471 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1472 policy->cdev = of_cpufreq_cooling_register(policy); 1473 1474 pr_debug("initialization complete\n"); 1475 1476 return 0; 1477 1478 out_destroy_policy: 1479 for_each_cpu(j, policy->real_cpus) 1480 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1481 1482 up_write(&policy->rwsem); 1483 1484 out_exit_policy: 1485 if (cpufreq_driver->exit) 1486 cpufreq_driver->exit(policy); 1487 1488 out_free_policy: 1489 cpufreq_policy_free(policy); 1490 return ret; 1491 } 1492 1493 /** 1494 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1495 * @dev: CPU device. 1496 * @sif: Subsystem interface structure pointer (not used) 1497 */ 1498 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1499 { 1500 struct cpufreq_policy *policy; 1501 unsigned cpu = dev->id; 1502 int ret; 1503 1504 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1505 1506 if (cpu_online(cpu)) { 1507 ret = cpufreq_online(cpu); 1508 if (ret) 1509 return ret; 1510 } 1511 1512 /* Create sysfs link on CPU registration */ 1513 policy = per_cpu(cpufreq_cpu_data, cpu); 1514 if (policy) 1515 add_cpu_dev_symlink(policy, cpu); 1516 1517 return 0; 1518 } 1519 1520 static int cpufreq_offline(unsigned int cpu) 1521 { 1522 struct cpufreq_policy *policy; 1523 int ret; 1524 1525 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1526 1527 policy = cpufreq_cpu_get_raw(cpu); 1528 if (!policy) { 1529 pr_debug("%s: No cpu_data found\n", __func__); 1530 return 0; 1531 } 1532 1533 down_write(&policy->rwsem); 1534 if (has_target()) 1535 cpufreq_stop_governor(policy); 1536 1537 cpumask_clear_cpu(cpu, policy->cpus); 1538 1539 if (policy_is_inactive(policy)) { 1540 if (has_target()) 1541 strncpy(policy->last_governor, policy->governor->name, 1542 CPUFREQ_NAME_LEN); 1543 else 1544 policy->last_policy = policy->policy; 1545 } else if (cpu == policy->cpu) { 1546 /* Nominate new CPU */ 1547 policy->cpu = cpumask_any(policy->cpus); 1548 } 1549 1550 /* Start governor again for active policy */ 1551 if (!policy_is_inactive(policy)) { 1552 if (has_target()) { 1553 ret = cpufreq_start_governor(policy); 1554 if (ret) 1555 pr_err("%s: Failed to start governor\n", __func__); 1556 } 1557 1558 goto unlock; 1559 } 1560 1561 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1562 cpufreq_cooling_unregister(policy->cdev); 1563 policy->cdev = NULL; 1564 } 1565 1566 if (cpufreq_driver->stop_cpu) 1567 cpufreq_driver->stop_cpu(policy); 1568 1569 if (has_target()) 1570 cpufreq_exit_governor(policy); 1571 1572 /* 1573 * Perform the ->offline() during light-weight tear-down, as 1574 * that allows fast recovery when the CPU comes back. 1575 */ 1576 if (cpufreq_driver->offline) { 1577 cpufreq_driver->offline(policy); 1578 } else if (cpufreq_driver->exit) { 1579 cpufreq_driver->exit(policy); 1580 policy->freq_table = NULL; 1581 } 1582 1583 unlock: 1584 up_write(&policy->rwsem); 1585 return 0; 1586 } 1587 1588 /** 1589 * cpufreq_remove_dev - remove a CPU device 1590 * 1591 * Removes the cpufreq interface for a CPU device. 1592 */ 1593 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1594 { 1595 unsigned int cpu = dev->id; 1596 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1597 1598 if (!policy) 1599 return; 1600 1601 if (cpu_online(cpu)) 1602 cpufreq_offline(cpu); 1603 1604 cpumask_clear_cpu(cpu, policy->real_cpus); 1605 remove_cpu_dev_symlink(policy, dev); 1606 1607 if (cpumask_empty(policy->real_cpus)) { 1608 /* We did light-weight exit earlier, do full tear down now */ 1609 if (cpufreq_driver->offline) 1610 cpufreq_driver->exit(policy); 1611 1612 cpufreq_policy_free(policy); 1613 } 1614 } 1615 1616 /** 1617 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1618 * in deep trouble. 1619 * @policy: policy managing CPUs 1620 * @new_freq: CPU frequency the CPU actually runs at 1621 * 1622 * We adjust to current frequency first, and need to clean up later. 1623 * So either call to cpufreq_update_policy() or schedule handle_update()). 1624 */ 1625 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1626 unsigned int new_freq) 1627 { 1628 struct cpufreq_freqs freqs; 1629 1630 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1631 policy->cur, new_freq); 1632 1633 freqs.old = policy->cur; 1634 freqs.new = new_freq; 1635 1636 cpufreq_freq_transition_begin(policy, &freqs); 1637 cpufreq_freq_transition_end(policy, &freqs, 0); 1638 } 1639 1640 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1641 { 1642 unsigned int new_freq; 1643 1644 new_freq = cpufreq_driver->get(policy->cpu); 1645 if (!new_freq) 1646 return 0; 1647 1648 /* 1649 * If fast frequency switching is used with the given policy, the check 1650 * against policy->cur is pointless, so skip it in that case. 1651 */ 1652 if (policy->fast_switch_enabled || !has_target()) 1653 return new_freq; 1654 1655 if (policy->cur != new_freq) { 1656 cpufreq_out_of_sync(policy, new_freq); 1657 if (update) 1658 schedule_work(&policy->update); 1659 } 1660 1661 return new_freq; 1662 } 1663 1664 /** 1665 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1666 * @cpu: CPU number 1667 * 1668 * This is the last known freq, without actually getting it from the driver. 1669 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1670 */ 1671 unsigned int cpufreq_quick_get(unsigned int cpu) 1672 { 1673 struct cpufreq_policy *policy; 1674 unsigned int ret_freq = 0; 1675 unsigned long flags; 1676 1677 read_lock_irqsave(&cpufreq_driver_lock, flags); 1678 1679 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1680 ret_freq = cpufreq_driver->get(cpu); 1681 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1682 return ret_freq; 1683 } 1684 1685 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1686 1687 policy = cpufreq_cpu_get(cpu); 1688 if (policy) { 1689 ret_freq = policy->cur; 1690 cpufreq_cpu_put(policy); 1691 } 1692 1693 return ret_freq; 1694 } 1695 EXPORT_SYMBOL(cpufreq_quick_get); 1696 1697 /** 1698 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1699 * @cpu: CPU number 1700 * 1701 * Just return the max possible frequency for a given CPU. 1702 */ 1703 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1704 { 1705 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1706 unsigned int ret_freq = 0; 1707 1708 if (policy) { 1709 ret_freq = policy->max; 1710 cpufreq_cpu_put(policy); 1711 } 1712 1713 return ret_freq; 1714 } 1715 EXPORT_SYMBOL(cpufreq_quick_get_max); 1716 1717 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1718 { 1719 if (unlikely(policy_is_inactive(policy))) 1720 return 0; 1721 1722 return cpufreq_verify_current_freq(policy, true); 1723 } 1724 1725 /** 1726 * cpufreq_get - get the current CPU frequency (in kHz) 1727 * @cpu: CPU number 1728 * 1729 * Get the CPU current (static) CPU frequency 1730 */ 1731 unsigned int cpufreq_get(unsigned int cpu) 1732 { 1733 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1734 unsigned int ret_freq = 0; 1735 1736 if (policy) { 1737 down_read(&policy->rwsem); 1738 if (cpufreq_driver->get) 1739 ret_freq = __cpufreq_get(policy); 1740 up_read(&policy->rwsem); 1741 1742 cpufreq_cpu_put(policy); 1743 } 1744 1745 return ret_freq; 1746 } 1747 EXPORT_SYMBOL(cpufreq_get); 1748 1749 static struct subsys_interface cpufreq_interface = { 1750 .name = "cpufreq", 1751 .subsys = &cpu_subsys, 1752 .add_dev = cpufreq_add_dev, 1753 .remove_dev = cpufreq_remove_dev, 1754 }; 1755 1756 /* 1757 * In case platform wants some specific frequency to be configured 1758 * during suspend.. 1759 */ 1760 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1761 { 1762 int ret; 1763 1764 if (!policy->suspend_freq) { 1765 pr_debug("%s: suspend_freq not defined\n", __func__); 1766 return 0; 1767 } 1768 1769 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1770 policy->suspend_freq); 1771 1772 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1773 CPUFREQ_RELATION_H); 1774 if (ret) 1775 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1776 __func__, policy->suspend_freq, ret); 1777 1778 return ret; 1779 } 1780 EXPORT_SYMBOL(cpufreq_generic_suspend); 1781 1782 /** 1783 * cpufreq_suspend() - Suspend CPUFreq governors 1784 * 1785 * Called during system wide Suspend/Hibernate cycles for suspending governors 1786 * as some platforms can't change frequency after this point in suspend cycle. 1787 * Because some of the devices (like: i2c, regulators, etc) they use for 1788 * changing frequency are suspended quickly after this point. 1789 */ 1790 void cpufreq_suspend(void) 1791 { 1792 struct cpufreq_policy *policy; 1793 1794 if (!cpufreq_driver) 1795 return; 1796 1797 if (!has_target() && !cpufreq_driver->suspend) 1798 goto suspend; 1799 1800 pr_debug("%s: Suspending Governors\n", __func__); 1801 1802 for_each_active_policy(policy) { 1803 if (has_target()) { 1804 down_write(&policy->rwsem); 1805 cpufreq_stop_governor(policy); 1806 up_write(&policy->rwsem); 1807 } 1808 1809 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1810 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1811 policy); 1812 } 1813 1814 suspend: 1815 cpufreq_suspended = true; 1816 } 1817 1818 /** 1819 * cpufreq_resume() - Resume CPUFreq governors 1820 * 1821 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1822 * are suspended with cpufreq_suspend(). 1823 */ 1824 void cpufreq_resume(void) 1825 { 1826 struct cpufreq_policy *policy; 1827 int ret; 1828 1829 if (!cpufreq_driver) 1830 return; 1831 1832 if (unlikely(!cpufreq_suspended)) 1833 return; 1834 1835 cpufreq_suspended = false; 1836 1837 if (!has_target() && !cpufreq_driver->resume) 1838 return; 1839 1840 pr_debug("%s: Resuming Governors\n", __func__); 1841 1842 for_each_active_policy(policy) { 1843 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1844 pr_err("%s: Failed to resume driver: %p\n", __func__, 1845 policy); 1846 } else if (has_target()) { 1847 down_write(&policy->rwsem); 1848 ret = cpufreq_start_governor(policy); 1849 up_write(&policy->rwsem); 1850 1851 if (ret) 1852 pr_err("%s: Failed to start governor for policy: %p\n", 1853 __func__, policy); 1854 } 1855 } 1856 } 1857 1858 /** 1859 * cpufreq_get_current_driver - return current driver's name 1860 * 1861 * Return the name string of the currently loaded cpufreq driver 1862 * or NULL, if none. 1863 */ 1864 const char *cpufreq_get_current_driver(void) 1865 { 1866 if (cpufreq_driver) 1867 return cpufreq_driver->name; 1868 1869 return NULL; 1870 } 1871 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1872 1873 /** 1874 * cpufreq_get_driver_data - return current driver data 1875 * 1876 * Return the private data of the currently loaded cpufreq 1877 * driver, or NULL if no cpufreq driver is loaded. 1878 */ 1879 void *cpufreq_get_driver_data(void) 1880 { 1881 if (cpufreq_driver) 1882 return cpufreq_driver->driver_data; 1883 1884 return NULL; 1885 } 1886 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1887 1888 /********************************************************************* 1889 * NOTIFIER LISTS INTERFACE * 1890 *********************************************************************/ 1891 1892 /** 1893 * cpufreq_register_notifier - register a driver with cpufreq 1894 * @nb: notifier function to register 1895 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1896 * 1897 * Add a driver to one of two lists: either a list of drivers that 1898 * are notified about clock rate changes (once before and once after 1899 * the transition), or a list of drivers that are notified about 1900 * changes in cpufreq policy. 1901 * 1902 * This function may sleep, and has the same return conditions as 1903 * blocking_notifier_chain_register. 1904 */ 1905 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1906 { 1907 int ret; 1908 1909 if (cpufreq_disabled()) 1910 return -EINVAL; 1911 1912 switch (list) { 1913 case CPUFREQ_TRANSITION_NOTIFIER: 1914 mutex_lock(&cpufreq_fast_switch_lock); 1915 1916 if (cpufreq_fast_switch_count > 0) { 1917 mutex_unlock(&cpufreq_fast_switch_lock); 1918 return -EBUSY; 1919 } 1920 ret = srcu_notifier_chain_register( 1921 &cpufreq_transition_notifier_list, nb); 1922 if (!ret) 1923 cpufreq_fast_switch_count--; 1924 1925 mutex_unlock(&cpufreq_fast_switch_lock); 1926 break; 1927 case CPUFREQ_POLICY_NOTIFIER: 1928 ret = blocking_notifier_chain_register( 1929 &cpufreq_policy_notifier_list, nb); 1930 break; 1931 default: 1932 ret = -EINVAL; 1933 } 1934 1935 return ret; 1936 } 1937 EXPORT_SYMBOL(cpufreq_register_notifier); 1938 1939 /** 1940 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1941 * @nb: notifier block to be unregistered 1942 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1943 * 1944 * Remove a driver from the CPU frequency notifier list. 1945 * 1946 * This function may sleep, and has the same return conditions as 1947 * blocking_notifier_chain_unregister. 1948 */ 1949 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1950 { 1951 int ret; 1952 1953 if (cpufreq_disabled()) 1954 return -EINVAL; 1955 1956 switch (list) { 1957 case CPUFREQ_TRANSITION_NOTIFIER: 1958 mutex_lock(&cpufreq_fast_switch_lock); 1959 1960 ret = srcu_notifier_chain_unregister( 1961 &cpufreq_transition_notifier_list, nb); 1962 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1963 cpufreq_fast_switch_count++; 1964 1965 mutex_unlock(&cpufreq_fast_switch_lock); 1966 break; 1967 case CPUFREQ_POLICY_NOTIFIER: 1968 ret = blocking_notifier_chain_unregister( 1969 &cpufreq_policy_notifier_list, nb); 1970 break; 1971 default: 1972 ret = -EINVAL; 1973 } 1974 1975 return ret; 1976 } 1977 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1978 1979 1980 /********************************************************************* 1981 * GOVERNORS * 1982 *********************************************************************/ 1983 1984 /** 1985 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1986 * @policy: cpufreq policy to switch the frequency for. 1987 * @target_freq: New frequency to set (may be approximate). 1988 * 1989 * Carry out a fast frequency switch without sleeping. 1990 * 1991 * The driver's ->fast_switch() callback invoked by this function must be 1992 * suitable for being called from within RCU-sched read-side critical sections 1993 * and it is expected to select the minimum available frequency greater than or 1994 * equal to @target_freq (CPUFREQ_RELATION_L). 1995 * 1996 * This function must not be called if policy->fast_switch_enabled is unset. 1997 * 1998 * Governors calling this function must guarantee that it will never be invoked 1999 * twice in parallel for the same policy and that it will never be called in 2000 * parallel with either ->target() or ->target_index() for the same policy. 2001 * 2002 * Returns the actual frequency set for the CPU. 2003 * 2004 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2005 * error condition, the hardware configuration must be preserved. 2006 */ 2007 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2008 unsigned int target_freq) 2009 { 2010 target_freq = clamp_val(target_freq, policy->min, policy->max); 2011 2012 return cpufreq_driver->fast_switch(policy, target_freq); 2013 } 2014 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2015 2016 /* Must set freqs->new to intermediate frequency */ 2017 static int __target_intermediate(struct cpufreq_policy *policy, 2018 struct cpufreq_freqs *freqs, int index) 2019 { 2020 int ret; 2021 2022 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2023 2024 /* We don't need to switch to intermediate freq */ 2025 if (!freqs->new) 2026 return 0; 2027 2028 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2029 __func__, policy->cpu, freqs->old, freqs->new); 2030 2031 cpufreq_freq_transition_begin(policy, freqs); 2032 ret = cpufreq_driver->target_intermediate(policy, index); 2033 cpufreq_freq_transition_end(policy, freqs, ret); 2034 2035 if (ret) 2036 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2037 __func__, ret); 2038 2039 return ret; 2040 } 2041 2042 static int __target_index(struct cpufreq_policy *policy, int index) 2043 { 2044 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2045 unsigned int intermediate_freq = 0; 2046 unsigned int newfreq = policy->freq_table[index].frequency; 2047 int retval = -EINVAL; 2048 bool notify; 2049 2050 if (newfreq == policy->cur) 2051 return 0; 2052 2053 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2054 if (notify) { 2055 /* Handle switching to intermediate frequency */ 2056 if (cpufreq_driver->get_intermediate) { 2057 retval = __target_intermediate(policy, &freqs, index); 2058 if (retval) 2059 return retval; 2060 2061 intermediate_freq = freqs.new; 2062 /* Set old freq to intermediate */ 2063 if (intermediate_freq) 2064 freqs.old = freqs.new; 2065 } 2066 2067 freqs.new = newfreq; 2068 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2069 __func__, policy->cpu, freqs.old, freqs.new); 2070 2071 cpufreq_freq_transition_begin(policy, &freqs); 2072 } 2073 2074 retval = cpufreq_driver->target_index(policy, index); 2075 if (retval) 2076 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2077 retval); 2078 2079 if (notify) { 2080 cpufreq_freq_transition_end(policy, &freqs, retval); 2081 2082 /* 2083 * Failed after setting to intermediate freq? Driver should have 2084 * reverted back to initial frequency and so should we. Check 2085 * here for intermediate_freq instead of get_intermediate, in 2086 * case we haven't switched to intermediate freq at all. 2087 */ 2088 if (unlikely(retval && intermediate_freq)) { 2089 freqs.old = intermediate_freq; 2090 freqs.new = policy->restore_freq; 2091 cpufreq_freq_transition_begin(policy, &freqs); 2092 cpufreq_freq_transition_end(policy, &freqs, 0); 2093 } 2094 } 2095 2096 return retval; 2097 } 2098 2099 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2100 unsigned int target_freq, 2101 unsigned int relation) 2102 { 2103 unsigned int old_target_freq = target_freq; 2104 int index; 2105 2106 if (cpufreq_disabled()) 2107 return -ENODEV; 2108 2109 /* Make sure that target_freq is within supported range */ 2110 target_freq = clamp_val(target_freq, policy->min, policy->max); 2111 2112 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2113 policy->cpu, target_freq, relation, old_target_freq); 2114 2115 /* 2116 * This might look like a redundant call as we are checking it again 2117 * after finding index. But it is left intentionally for cases where 2118 * exactly same freq is called again and so we can save on few function 2119 * calls. 2120 */ 2121 if (target_freq == policy->cur) 2122 return 0; 2123 2124 /* Save last value to restore later on errors */ 2125 policy->restore_freq = policy->cur; 2126 2127 if (cpufreq_driver->target) 2128 return cpufreq_driver->target(policy, target_freq, relation); 2129 2130 if (!cpufreq_driver->target_index) 2131 return -EINVAL; 2132 2133 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2134 2135 return __target_index(policy, index); 2136 } 2137 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2138 2139 int cpufreq_driver_target(struct cpufreq_policy *policy, 2140 unsigned int target_freq, 2141 unsigned int relation) 2142 { 2143 int ret = -EINVAL; 2144 2145 down_write(&policy->rwsem); 2146 2147 ret = __cpufreq_driver_target(policy, target_freq, relation); 2148 2149 up_write(&policy->rwsem); 2150 2151 return ret; 2152 } 2153 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2154 2155 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2156 { 2157 return NULL; 2158 } 2159 2160 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2161 { 2162 int ret; 2163 2164 /* Don't start any governor operations if we are entering suspend */ 2165 if (cpufreq_suspended) 2166 return 0; 2167 /* 2168 * Governor might not be initiated here if ACPI _PPC changed 2169 * notification happened, so check it. 2170 */ 2171 if (!policy->governor) 2172 return -EINVAL; 2173 2174 /* Platform doesn't want dynamic frequency switching ? */ 2175 if (policy->governor->dynamic_switching && 2176 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2177 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2178 2179 if (gov) { 2180 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2181 policy->governor->name, gov->name); 2182 policy->governor = gov; 2183 } else { 2184 return -EINVAL; 2185 } 2186 } 2187 2188 if (!try_module_get(policy->governor->owner)) 2189 return -EINVAL; 2190 2191 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2192 2193 if (policy->governor->init) { 2194 ret = policy->governor->init(policy); 2195 if (ret) { 2196 module_put(policy->governor->owner); 2197 return ret; 2198 } 2199 } 2200 2201 return 0; 2202 } 2203 2204 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2205 { 2206 if (cpufreq_suspended || !policy->governor) 2207 return; 2208 2209 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2210 2211 if (policy->governor->exit) 2212 policy->governor->exit(policy); 2213 2214 module_put(policy->governor->owner); 2215 } 2216 2217 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2218 { 2219 int ret; 2220 2221 if (cpufreq_suspended) 2222 return 0; 2223 2224 if (!policy->governor) 2225 return -EINVAL; 2226 2227 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2228 2229 if (cpufreq_driver->get) 2230 cpufreq_verify_current_freq(policy, false); 2231 2232 if (policy->governor->start) { 2233 ret = policy->governor->start(policy); 2234 if (ret) 2235 return ret; 2236 } 2237 2238 if (policy->governor->limits) 2239 policy->governor->limits(policy); 2240 2241 return 0; 2242 } 2243 2244 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2245 { 2246 if (cpufreq_suspended || !policy->governor) 2247 return; 2248 2249 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2250 2251 if (policy->governor->stop) 2252 policy->governor->stop(policy); 2253 } 2254 2255 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2256 { 2257 if (cpufreq_suspended || !policy->governor) 2258 return; 2259 2260 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2261 2262 if (policy->governor->limits) 2263 policy->governor->limits(policy); 2264 } 2265 2266 int cpufreq_register_governor(struct cpufreq_governor *governor) 2267 { 2268 int err; 2269 2270 if (!governor) 2271 return -EINVAL; 2272 2273 if (cpufreq_disabled()) 2274 return -ENODEV; 2275 2276 mutex_lock(&cpufreq_governor_mutex); 2277 2278 err = -EBUSY; 2279 if (!find_governor(governor->name)) { 2280 err = 0; 2281 list_add(&governor->governor_list, &cpufreq_governor_list); 2282 } 2283 2284 mutex_unlock(&cpufreq_governor_mutex); 2285 return err; 2286 } 2287 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2288 2289 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2290 { 2291 struct cpufreq_policy *policy; 2292 unsigned long flags; 2293 2294 if (!governor) 2295 return; 2296 2297 if (cpufreq_disabled()) 2298 return; 2299 2300 /* clear last_governor for all inactive policies */ 2301 read_lock_irqsave(&cpufreq_driver_lock, flags); 2302 for_each_inactive_policy(policy) { 2303 if (!strcmp(policy->last_governor, governor->name)) { 2304 policy->governor = NULL; 2305 strcpy(policy->last_governor, "\0"); 2306 } 2307 } 2308 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2309 2310 mutex_lock(&cpufreq_governor_mutex); 2311 list_del(&governor->governor_list); 2312 mutex_unlock(&cpufreq_governor_mutex); 2313 } 2314 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2315 2316 2317 /********************************************************************* 2318 * POLICY INTERFACE * 2319 *********************************************************************/ 2320 2321 /** 2322 * cpufreq_get_policy - get the current cpufreq_policy 2323 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2324 * is written 2325 * 2326 * Reads the current cpufreq policy. 2327 */ 2328 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2329 { 2330 struct cpufreq_policy *cpu_policy; 2331 if (!policy) 2332 return -EINVAL; 2333 2334 cpu_policy = cpufreq_cpu_get(cpu); 2335 if (!cpu_policy) 2336 return -EINVAL; 2337 2338 memcpy(policy, cpu_policy, sizeof(*policy)); 2339 2340 cpufreq_cpu_put(cpu_policy); 2341 return 0; 2342 } 2343 EXPORT_SYMBOL(cpufreq_get_policy); 2344 2345 /** 2346 * cpufreq_set_policy - Modify cpufreq policy parameters. 2347 * @policy: Policy object to modify. 2348 * @new_policy: New policy data. 2349 * 2350 * Pass @new_policy to the cpufreq driver's ->verify() callback, run the 2351 * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to 2352 * the driver's ->verify() callback again and run the notifiers for it again 2353 * with the CPUFREQ_NOTIFY value. Next, copy the min and max parameters 2354 * of @new_policy to @policy and either invoke the driver's ->setpolicy() 2355 * callback (if present) or carry out a governor update for @policy. That is, 2356 * run the current governor's ->limits() callback (if the governor field in 2357 * @new_policy points to the same object as the one in @policy) or replace the 2358 * governor for @policy with the new one stored in @new_policy. 2359 * 2360 * The cpuinfo part of @policy is not updated by this function. 2361 */ 2362 int cpufreq_set_policy(struct cpufreq_policy *policy, 2363 struct cpufreq_policy *new_policy) 2364 { 2365 struct cpufreq_governor *old_gov; 2366 struct device *cpu_dev = get_cpu_device(policy->cpu); 2367 int ret; 2368 2369 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2370 new_policy->cpu, new_policy->min, new_policy->max); 2371 2372 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2373 2374 /* 2375 * PM QoS framework collects all the requests from users and provide us 2376 * the final aggregated value here. 2377 */ 2378 new_policy->min = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MIN_FREQUENCY); 2379 new_policy->max = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MAX_FREQUENCY); 2380 2381 /* verify the cpu speed can be set within this limit */ 2382 ret = cpufreq_driver->verify(new_policy); 2383 if (ret) 2384 return ret; 2385 2386 /* 2387 * The notifier-chain shall be removed once all the users of 2388 * CPUFREQ_ADJUST are moved to use the QoS framework. 2389 */ 2390 /* adjust if necessary - all reasons */ 2391 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2392 CPUFREQ_ADJUST, new_policy); 2393 2394 /* 2395 * verify the cpu speed can be set within this limit, which might be 2396 * different to the first one 2397 */ 2398 ret = cpufreq_driver->verify(new_policy); 2399 if (ret) 2400 return ret; 2401 2402 /* notification of the new policy */ 2403 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2404 CPUFREQ_NOTIFY, new_policy); 2405 2406 policy->min = new_policy->min; 2407 policy->max = new_policy->max; 2408 trace_cpu_frequency_limits(policy); 2409 2410 policy->cached_target_freq = UINT_MAX; 2411 2412 pr_debug("new min and max freqs are %u - %u kHz\n", 2413 policy->min, policy->max); 2414 2415 if (cpufreq_driver->setpolicy) { 2416 policy->policy = new_policy->policy; 2417 pr_debug("setting range\n"); 2418 return cpufreq_driver->setpolicy(policy); 2419 } 2420 2421 if (new_policy->governor == policy->governor) { 2422 pr_debug("governor limits update\n"); 2423 cpufreq_governor_limits(policy); 2424 return 0; 2425 } 2426 2427 pr_debug("governor switch\n"); 2428 2429 /* save old, working values */ 2430 old_gov = policy->governor; 2431 /* end old governor */ 2432 if (old_gov) { 2433 cpufreq_stop_governor(policy); 2434 cpufreq_exit_governor(policy); 2435 } 2436 2437 /* start new governor */ 2438 policy->governor = new_policy->governor; 2439 ret = cpufreq_init_governor(policy); 2440 if (!ret) { 2441 ret = cpufreq_start_governor(policy); 2442 if (!ret) { 2443 pr_debug("governor change\n"); 2444 sched_cpufreq_governor_change(policy, old_gov); 2445 return 0; 2446 } 2447 cpufreq_exit_governor(policy); 2448 } 2449 2450 /* new governor failed, so re-start old one */ 2451 pr_debug("starting governor %s failed\n", policy->governor->name); 2452 if (old_gov) { 2453 policy->governor = old_gov; 2454 if (cpufreq_init_governor(policy)) 2455 policy->governor = NULL; 2456 else 2457 cpufreq_start_governor(policy); 2458 } 2459 2460 return ret; 2461 } 2462 2463 /** 2464 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2465 * @cpu: CPU to re-evaluate the policy for. 2466 * 2467 * Update the current frequency for the cpufreq policy of @cpu and use 2468 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2469 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2470 * for the policy in question, among other things. 2471 */ 2472 void cpufreq_update_policy(unsigned int cpu) 2473 { 2474 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2475 2476 if (!policy) 2477 return; 2478 2479 /* 2480 * BIOS might change freq behind our back 2481 * -> ask driver for current freq and notify governors about a change 2482 */ 2483 if (cpufreq_driver->get && has_target() && 2484 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2485 goto unlock; 2486 2487 refresh_frequency_limits(policy); 2488 2489 unlock: 2490 cpufreq_cpu_release(policy); 2491 } 2492 EXPORT_SYMBOL(cpufreq_update_policy); 2493 2494 /** 2495 * cpufreq_update_limits - Update policy limits for a given CPU. 2496 * @cpu: CPU to update the policy limits for. 2497 * 2498 * Invoke the driver's ->update_limits callback if present or call 2499 * cpufreq_update_policy() for @cpu. 2500 */ 2501 void cpufreq_update_limits(unsigned int cpu) 2502 { 2503 if (cpufreq_driver->update_limits) 2504 cpufreq_driver->update_limits(cpu); 2505 else 2506 cpufreq_update_policy(cpu); 2507 } 2508 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2509 2510 /********************************************************************* 2511 * BOOST * 2512 *********************************************************************/ 2513 static int cpufreq_boost_set_sw(int state) 2514 { 2515 struct cpufreq_policy *policy; 2516 int ret = -EINVAL; 2517 2518 for_each_active_policy(policy) { 2519 if (!policy->freq_table) 2520 continue; 2521 2522 ret = cpufreq_frequency_table_cpuinfo(policy, 2523 policy->freq_table); 2524 if (ret) { 2525 pr_err("%s: Policy frequency update failed\n", 2526 __func__); 2527 break; 2528 } 2529 2530 ret = dev_pm_qos_update_request(policy->max_freq_req, policy->max); 2531 if (ret) 2532 break; 2533 } 2534 2535 return ret; 2536 } 2537 2538 int cpufreq_boost_trigger_state(int state) 2539 { 2540 unsigned long flags; 2541 int ret = 0; 2542 2543 if (cpufreq_driver->boost_enabled == state) 2544 return 0; 2545 2546 write_lock_irqsave(&cpufreq_driver_lock, flags); 2547 cpufreq_driver->boost_enabled = state; 2548 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2549 2550 ret = cpufreq_driver->set_boost(state); 2551 if (ret) { 2552 write_lock_irqsave(&cpufreq_driver_lock, flags); 2553 cpufreq_driver->boost_enabled = !state; 2554 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2555 2556 pr_err("%s: Cannot %s BOOST\n", 2557 __func__, state ? "enable" : "disable"); 2558 } 2559 2560 return ret; 2561 } 2562 2563 static bool cpufreq_boost_supported(void) 2564 { 2565 return cpufreq_driver->set_boost; 2566 } 2567 2568 static int create_boost_sysfs_file(void) 2569 { 2570 int ret; 2571 2572 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2573 if (ret) 2574 pr_err("%s: cannot register global BOOST sysfs file\n", 2575 __func__); 2576 2577 return ret; 2578 } 2579 2580 static void remove_boost_sysfs_file(void) 2581 { 2582 if (cpufreq_boost_supported()) 2583 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2584 } 2585 2586 int cpufreq_enable_boost_support(void) 2587 { 2588 if (!cpufreq_driver) 2589 return -EINVAL; 2590 2591 if (cpufreq_boost_supported()) 2592 return 0; 2593 2594 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2595 2596 /* This will get removed on driver unregister */ 2597 return create_boost_sysfs_file(); 2598 } 2599 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2600 2601 int cpufreq_boost_enabled(void) 2602 { 2603 return cpufreq_driver->boost_enabled; 2604 } 2605 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2606 2607 /********************************************************************* 2608 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2609 *********************************************************************/ 2610 static enum cpuhp_state hp_online; 2611 2612 static int cpuhp_cpufreq_online(unsigned int cpu) 2613 { 2614 cpufreq_online(cpu); 2615 2616 return 0; 2617 } 2618 2619 static int cpuhp_cpufreq_offline(unsigned int cpu) 2620 { 2621 cpufreq_offline(cpu); 2622 2623 return 0; 2624 } 2625 2626 /** 2627 * cpufreq_register_driver - register a CPU Frequency driver 2628 * @driver_data: A struct cpufreq_driver containing the values# 2629 * submitted by the CPU Frequency driver. 2630 * 2631 * Registers a CPU Frequency driver to this core code. This code 2632 * returns zero on success, -EEXIST when another driver got here first 2633 * (and isn't unregistered in the meantime). 2634 * 2635 */ 2636 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2637 { 2638 unsigned long flags; 2639 int ret; 2640 2641 if (cpufreq_disabled()) 2642 return -ENODEV; 2643 2644 if (!driver_data || !driver_data->verify || !driver_data->init || 2645 !(driver_data->setpolicy || driver_data->target_index || 2646 driver_data->target) || 2647 (driver_data->setpolicy && (driver_data->target_index || 2648 driver_data->target)) || 2649 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2650 (!driver_data->online != !driver_data->offline)) 2651 return -EINVAL; 2652 2653 pr_debug("trying to register driver %s\n", driver_data->name); 2654 2655 /* Protect against concurrent CPU online/offline. */ 2656 cpus_read_lock(); 2657 2658 write_lock_irqsave(&cpufreq_driver_lock, flags); 2659 if (cpufreq_driver) { 2660 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2661 ret = -EEXIST; 2662 goto out; 2663 } 2664 cpufreq_driver = driver_data; 2665 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2666 2667 if (driver_data->setpolicy) 2668 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2669 2670 if (cpufreq_boost_supported()) { 2671 ret = create_boost_sysfs_file(); 2672 if (ret) 2673 goto err_null_driver; 2674 } 2675 2676 ret = subsys_interface_register(&cpufreq_interface); 2677 if (ret) 2678 goto err_boost_unreg; 2679 2680 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2681 list_empty(&cpufreq_policy_list)) { 2682 /* if all ->init() calls failed, unregister */ 2683 ret = -ENODEV; 2684 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2685 driver_data->name); 2686 goto err_if_unreg; 2687 } 2688 2689 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2690 "cpufreq:online", 2691 cpuhp_cpufreq_online, 2692 cpuhp_cpufreq_offline); 2693 if (ret < 0) 2694 goto err_if_unreg; 2695 hp_online = ret; 2696 ret = 0; 2697 2698 pr_debug("driver %s up and running\n", driver_data->name); 2699 goto out; 2700 2701 err_if_unreg: 2702 subsys_interface_unregister(&cpufreq_interface); 2703 err_boost_unreg: 2704 remove_boost_sysfs_file(); 2705 err_null_driver: 2706 write_lock_irqsave(&cpufreq_driver_lock, flags); 2707 cpufreq_driver = NULL; 2708 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2709 out: 2710 cpus_read_unlock(); 2711 return ret; 2712 } 2713 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2714 2715 /** 2716 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2717 * 2718 * Unregister the current CPUFreq driver. Only call this if you have 2719 * the right to do so, i.e. if you have succeeded in initialising before! 2720 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2721 * currently not initialised. 2722 */ 2723 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2724 { 2725 unsigned long flags; 2726 2727 if (!cpufreq_driver || (driver != cpufreq_driver)) 2728 return -EINVAL; 2729 2730 pr_debug("unregistering driver %s\n", driver->name); 2731 2732 /* Protect against concurrent cpu hotplug */ 2733 cpus_read_lock(); 2734 subsys_interface_unregister(&cpufreq_interface); 2735 remove_boost_sysfs_file(); 2736 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2737 2738 write_lock_irqsave(&cpufreq_driver_lock, flags); 2739 2740 cpufreq_driver = NULL; 2741 2742 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2743 cpus_read_unlock(); 2744 2745 return 0; 2746 } 2747 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2748 2749 /* 2750 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2751 * or mutexes when secondary CPUs are halted. 2752 */ 2753 static struct syscore_ops cpufreq_syscore_ops = { 2754 .shutdown = cpufreq_suspend, 2755 }; 2756 2757 struct kobject *cpufreq_global_kobject; 2758 EXPORT_SYMBOL(cpufreq_global_kobject); 2759 2760 static int __init cpufreq_core_init(void) 2761 { 2762 if (cpufreq_disabled()) 2763 return -ENODEV; 2764 2765 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2766 BUG_ON(!cpufreq_global_kobject); 2767 2768 register_syscore_ops(&cpufreq_syscore_ops); 2769 2770 return 0; 2771 } 2772 module_param(off, int, 0444); 2773 core_initcall(cpufreq_core_init); 2774