1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 /* Iterate over governors */ 46 static LIST_HEAD(cpufreq_governor_list); 47 #define for_each_governor(__governor) \ 48 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 49 50 static char default_governor[CPUFREQ_NAME_LEN]; 51 52 /* 53 * The "cpufreq driver" - the arch- or hardware-dependent low 54 * level driver of CPUFreq support, and its spinlock. This lock 55 * also protects the cpufreq_cpu_data array. 56 */ 57 static struct cpufreq_driver *cpufreq_driver; 58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 59 static DEFINE_RWLOCK(cpufreq_driver_lock); 60 61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 62 bool cpufreq_supports_freq_invariance(void) 63 { 64 return static_branch_likely(&cpufreq_freq_invariance); 65 } 66 67 /* Flag to suspend/resume CPUFreq governors */ 68 static bool cpufreq_suspended; 69 70 static inline bool has_target(void) 71 { 72 return cpufreq_driver->target_index || cpufreq_driver->target; 73 } 74 75 /* internal prototypes */ 76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 77 static int cpufreq_init_governor(struct cpufreq_policy *policy); 78 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 79 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 80 static int cpufreq_set_policy(struct cpufreq_policy *policy, 81 struct cpufreq_governor *new_gov, 82 unsigned int new_pol); 83 84 /* 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 93 94 static int off __read_mostly; 95 static int cpufreq_disabled(void) 96 { 97 return off; 98 } 99 void disable_cpufreq(void) 100 { 101 off = 1; 102 } 103 static DEFINE_MUTEX(cpufreq_governor_mutex); 104 105 bool have_governor_per_policy(void) 106 { 107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 108 } 109 EXPORT_SYMBOL_GPL(have_governor_per_policy); 110 111 static struct kobject *cpufreq_global_kobject; 112 113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 114 { 115 if (have_governor_per_policy()) 116 return &policy->kobj; 117 else 118 return cpufreq_global_kobject; 119 } 120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 121 122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 123 { 124 struct kernel_cpustat kcpustat; 125 u64 cur_wall_time; 126 u64 idle_time; 127 u64 busy_time; 128 129 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 130 131 kcpustat_cpu_fetch(&kcpustat, cpu); 132 133 busy_time = kcpustat.cpustat[CPUTIME_USER]; 134 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 135 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 136 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 137 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 138 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 139 140 idle_time = cur_wall_time - busy_time; 141 if (wall) 142 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 143 144 return div_u64(idle_time, NSEC_PER_USEC); 145 } 146 147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 148 { 149 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 150 151 if (idle_time == -1ULL) 152 return get_cpu_idle_time_jiffy(cpu, wall); 153 else if (!io_busy) 154 idle_time += get_cpu_iowait_time_us(cpu, wall); 155 156 return idle_time; 157 } 158 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 159 160 /* 161 * This is a generic cpufreq init() routine which can be used by cpufreq 162 * drivers of SMP systems. It will do following: 163 * - validate & show freq table passed 164 * - set policies transition latency 165 * - policy->cpus with all possible CPUs 166 */ 167 void cpufreq_generic_init(struct cpufreq_policy *policy, 168 struct cpufreq_frequency_table *table, 169 unsigned int transition_latency) 170 { 171 policy->freq_table = table; 172 policy->cpuinfo.transition_latency = transition_latency; 173 174 /* 175 * The driver only supports the SMP configuration where all processors 176 * share the clock and voltage and clock. 177 */ 178 cpumask_setall(policy->cpus); 179 } 180 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 181 182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 183 { 184 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 185 186 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 187 } 188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 189 190 unsigned int cpufreq_generic_get(unsigned int cpu) 191 { 192 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 193 194 if (!policy || IS_ERR(policy->clk)) { 195 pr_err("%s: No %s associated to cpu: %d\n", 196 __func__, policy ? "clk" : "policy", cpu); 197 return 0; 198 } 199 200 return clk_get_rate(policy->clk) / 1000; 201 } 202 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 203 204 /** 205 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 206 * @cpu: CPU to find the policy for. 207 * 208 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 209 * the kobject reference counter of that policy. Return a valid policy on 210 * success or NULL on failure. 211 * 212 * The policy returned by this function has to be released with the help of 213 * cpufreq_cpu_put() to balance its kobject reference counter properly. 214 */ 215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 216 { 217 struct cpufreq_policy *policy = NULL; 218 unsigned long flags; 219 220 if (WARN_ON(cpu >= nr_cpu_ids)) 221 return NULL; 222 223 /* get the cpufreq driver */ 224 read_lock_irqsave(&cpufreq_driver_lock, flags); 225 226 if (cpufreq_driver) { 227 /* get the CPU */ 228 policy = cpufreq_cpu_get_raw(cpu); 229 if (policy) 230 kobject_get(&policy->kobj); 231 } 232 233 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 234 235 return policy; 236 } 237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 238 239 /** 240 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 241 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 242 */ 243 void cpufreq_cpu_put(struct cpufreq_policy *policy) 244 { 245 kobject_put(&policy->kobj); 246 } 247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 248 249 /** 250 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 251 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 252 */ 253 void cpufreq_cpu_release(struct cpufreq_policy *policy) 254 { 255 if (WARN_ON(!policy)) 256 return; 257 258 lockdep_assert_held(&policy->rwsem); 259 260 up_write(&policy->rwsem); 261 262 cpufreq_cpu_put(policy); 263 } 264 265 /** 266 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 267 * @cpu: CPU to find the policy for. 268 * 269 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 270 * if the policy returned by it is not NULL, acquire its rwsem for writing. 271 * Return the policy if it is active or release it and return NULL otherwise. 272 * 273 * The policy returned by this function has to be released with the help of 274 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 275 * counter properly. 276 */ 277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 278 { 279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 280 281 if (!policy) 282 return NULL; 283 284 down_write(&policy->rwsem); 285 286 if (policy_is_inactive(policy)) { 287 cpufreq_cpu_release(policy); 288 return NULL; 289 } 290 291 return policy; 292 } 293 294 /********************************************************************* 295 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 296 *********************************************************************/ 297 298 /** 299 * adjust_jiffies - Adjust the system "loops_per_jiffy". 300 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 301 * @ci: Frequency change information. 302 * 303 * This function alters the system "loops_per_jiffy" for the clock 304 * speed change. Note that loops_per_jiffy cannot be updated on SMP 305 * systems as each CPU might be scaled differently. So, use the arch 306 * per-CPU loops_per_jiffy value wherever possible. 307 */ 308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 309 { 310 #ifndef CONFIG_SMP 311 static unsigned long l_p_j_ref; 312 static unsigned int l_p_j_ref_freq; 313 314 if (ci->flags & CPUFREQ_CONST_LOOPS) 315 return; 316 317 if (!l_p_j_ref_freq) { 318 l_p_j_ref = loops_per_jiffy; 319 l_p_j_ref_freq = ci->old; 320 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 321 l_p_j_ref, l_p_j_ref_freq); 322 } 323 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 324 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 325 ci->new); 326 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 327 loops_per_jiffy, ci->new); 328 } 329 #endif 330 } 331 332 /** 333 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 334 * @policy: cpufreq policy to enable fast frequency switching for. 335 * @freqs: contain details of the frequency update. 336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 337 * 338 * This function calls the transition notifiers and adjust_jiffies(). 339 * 340 * It is called twice on all CPU frequency changes that have external effects. 341 */ 342 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 343 struct cpufreq_freqs *freqs, 344 unsigned int state) 345 { 346 int cpu; 347 348 BUG_ON(irqs_disabled()); 349 350 if (cpufreq_disabled()) 351 return; 352 353 freqs->policy = policy; 354 freqs->flags = cpufreq_driver->flags; 355 pr_debug("notification %u of frequency transition to %u kHz\n", 356 state, freqs->new); 357 358 switch (state) { 359 case CPUFREQ_PRECHANGE: 360 /* 361 * Detect if the driver reported a value as "old frequency" 362 * which is not equal to what the cpufreq core thinks is 363 * "old frequency". 364 */ 365 if (policy->cur && policy->cur != freqs->old) { 366 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 367 freqs->old, policy->cur); 368 freqs->old = policy->cur; 369 } 370 371 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 372 CPUFREQ_PRECHANGE, freqs); 373 374 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 375 break; 376 377 case CPUFREQ_POSTCHANGE: 378 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 379 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 380 cpumask_pr_args(policy->cpus)); 381 382 for_each_cpu(cpu, policy->cpus) 383 trace_cpu_frequency(freqs->new, cpu); 384 385 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 386 CPUFREQ_POSTCHANGE, freqs); 387 388 cpufreq_stats_record_transition(policy, freqs->new); 389 policy->cur = freqs->new; 390 } 391 } 392 393 /* Do post notifications when there are chances that transition has failed */ 394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 395 struct cpufreq_freqs *freqs, int transition_failed) 396 { 397 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 398 if (!transition_failed) 399 return; 400 401 swap(freqs->old, freqs->new); 402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 404 } 405 406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 407 struct cpufreq_freqs *freqs) 408 { 409 410 /* 411 * Catch double invocations of _begin() which lead to self-deadlock. 412 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 413 * doesn't invoke _begin() on their behalf, and hence the chances of 414 * double invocations are very low. Moreover, there are scenarios 415 * where these checks can emit false-positive warnings in these 416 * drivers; so we avoid that by skipping them altogether. 417 */ 418 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 419 && current == policy->transition_task); 420 421 wait: 422 wait_event(policy->transition_wait, !policy->transition_ongoing); 423 424 spin_lock(&policy->transition_lock); 425 426 if (unlikely(policy->transition_ongoing)) { 427 spin_unlock(&policy->transition_lock); 428 goto wait; 429 } 430 431 policy->transition_ongoing = true; 432 policy->transition_task = current; 433 434 spin_unlock(&policy->transition_lock); 435 436 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 437 } 438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 439 440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 441 struct cpufreq_freqs *freqs, int transition_failed) 442 { 443 if (WARN_ON(!policy->transition_ongoing)) 444 return; 445 446 cpufreq_notify_post_transition(policy, freqs, transition_failed); 447 448 arch_set_freq_scale(policy->related_cpus, 449 policy->cur, 450 policy->cpuinfo.max_freq); 451 452 policy->transition_ongoing = false; 453 policy->transition_task = NULL; 454 455 wake_up(&policy->transition_wait); 456 } 457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 458 459 /* 460 * Fast frequency switching status count. Positive means "enabled", negative 461 * means "disabled" and 0 means "not decided yet". 462 */ 463 static int cpufreq_fast_switch_count; 464 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 465 466 static void cpufreq_list_transition_notifiers(void) 467 { 468 struct notifier_block *nb; 469 470 pr_info("Registered transition notifiers:\n"); 471 472 mutex_lock(&cpufreq_transition_notifier_list.mutex); 473 474 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 475 pr_info("%pS\n", nb->notifier_call); 476 477 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 478 } 479 480 /** 481 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 482 * @policy: cpufreq policy to enable fast frequency switching for. 483 * 484 * Try to enable fast frequency switching for @policy. 485 * 486 * The attempt will fail if there is at least one transition notifier registered 487 * at this point, as fast frequency switching is quite fundamentally at odds 488 * with transition notifiers. Thus if successful, it will make registration of 489 * transition notifiers fail going forward. 490 */ 491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 492 { 493 lockdep_assert_held(&policy->rwsem); 494 495 if (!policy->fast_switch_possible) 496 return; 497 498 mutex_lock(&cpufreq_fast_switch_lock); 499 if (cpufreq_fast_switch_count >= 0) { 500 cpufreq_fast_switch_count++; 501 policy->fast_switch_enabled = true; 502 } else { 503 pr_warn("CPU%u: Fast frequency switching not enabled\n", 504 policy->cpu); 505 cpufreq_list_transition_notifiers(); 506 } 507 mutex_unlock(&cpufreq_fast_switch_lock); 508 } 509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 510 511 /** 512 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 513 * @policy: cpufreq policy to disable fast frequency switching for. 514 */ 515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 516 { 517 mutex_lock(&cpufreq_fast_switch_lock); 518 if (policy->fast_switch_enabled) { 519 policy->fast_switch_enabled = false; 520 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 521 cpufreq_fast_switch_count--; 522 } 523 mutex_unlock(&cpufreq_fast_switch_lock); 524 } 525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 526 527 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 528 unsigned int target_freq, unsigned int relation) 529 { 530 unsigned int idx; 531 532 target_freq = clamp_val(target_freq, policy->min, policy->max); 533 534 if (!cpufreq_driver->target_index) 535 return target_freq; 536 537 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 538 policy->cached_resolved_idx = idx; 539 policy->cached_target_freq = target_freq; 540 return policy->freq_table[idx].frequency; 541 } 542 543 /** 544 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 545 * one. 546 * @policy: associated policy to interrogate 547 * @target_freq: target frequency to resolve. 548 * 549 * The target to driver frequency mapping is cached in the policy. 550 * 551 * Return: Lowest driver-supported frequency greater than or equal to the 552 * given target_freq, subject to policy (min/max) and driver limitations. 553 */ 554 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 555 unsigned int target_freq) 556 { 557 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 558 } 559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 560 561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 562 { 563 unsigned int latency; 564 565 if (policy->transition_delay_us) 566 return policy->transition_delay_us; 567 568 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 569 if (latency) { 570 /* 571 * For platforms that can change the frequency very fast (< 10 572 * us), the above formula gives a decent transition delay. But 573 * for platforms where transition_latency is in milliseconds, it 574 * ends up giving unrealistic values. 575 * 576 * Cap the default transition delay to 10 ms, which seems to be 577 * a reasonable amount of time after which we should reevaluate 578 * the frequency. 579 */ 580 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 581 } 582 583 return LATENCY_MULTIPLIER; 584 } 585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 586 587 /********************************************************************* 588 * SYSFS INTERFACE * 589 *********************************************************************/ 590 static ssize_t show_boost(struct kobject *kobj, 591 struct kobj_attribute *attr, char *buf) 592 { 593 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 594 } 595 596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 597 const char *buf, size_t count) 598 { 599 int ret, enable; 600 601 ret = sscanf(buf, "%d", &enable); 602 if (ret != 1 || enable < 0 || enable > 1) 603 return -EINVAL; 604 605 if (cpufreq_boost_trigger_state(enable)) { 606 pr_err("%s: Cannot %s BOOST!\n", 607 __func__, enable ? "enable" : "disable"); 608 return -EINVAL; 609 } 610 611 pr_debug("%s: cpufreq BOOST %s\n", 612 __func__, enable ? "enabled" : "disabled"); 613 614 return count; 615 } 616 define_one_global_rw(boost); 617 618 static struct cpufreq_governor *find_governor(const char *str_governor) 619 { 620 struct cpufreq_governor *t; 621 622 for_each_governor(t) 623 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 624 return t; 625 626 return NULL; 627 } 628 629 static struct cpufreq_governor *get_governor(const char *str_governor) 630 { 631 struct cpufreq_governor *t; 632 633 mutex_lock(&cpufreq_governor_mutex); 634 t = find_governor(str_governor); 635 if (!t) 636 goto unlock; 637 638 if (!try_module_get(t->owner)) 639 t = NULL; 640 641 unlock: 642 mutex_unlock(&cpufreq_governor_mutex); 643 644 return t; 645 } 646 647 static unsigned int cpufreq_parse_policy(char *str_governor) 648 { 649 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 650 return CPUFREQ_POLICY_PERFORMANCE; 651 652 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 653 return CPUFREQ_POLICY_POWERSAVE; 654 655 return CPUFREQ_POLICY_UNKNOWN; 656 } 657 658 /** 659 * cpufreq_parse_governor - parse a governor string only for has_target() 660 * @str_governor: Governor name. 661 */ 662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 663 { 664 struct cpufreq_governor *t; 665 666 t = get_governor(str_governor); 667 if (t) 668 return t; 669 670 if (request_module("cpufreq_%s", str_governor)) 671 return NULL; 672 673 return get_governor(str_governor); 674 } 675 676 /* 677 * cpufreq_per_cpu_attr_read() / show_##file_name() - 678 * print out cpufreq information 679 * 680 * Write out information from cpufreq_driver->policy[cpu]; object must be 681 * "unsigned int". 682 */ 683 684 #define show_one(file_name, object) \ 685 static ssize_t show_##file_name \ 686 (struct cpufreq_policy *policy, char *buf) \ 687 { \ 688 return sprintf(buf, "%u\n", policy->object); \ 689 } 690 691 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 692 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 694 show_one(scaling_min_freq, min); 695 show_one(scaling_max_freq, max); 696 697 __weak unsigned int arch_freq_get_on_cpu(int cpu) 698 { 699 return 0; 700 } 701 702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 703 { 704 ssize_t ret; 705 unsigned int freq; 706 707 freq = arch_freq_get_on_cpu(policy->cpu); 708 if (freq) 709 ret = sprintf(buf, "%u\n", freq); 710 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 711 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 712 else 713 ret = sprintf(buf, "%u\n", policy->cur); 714 return ret; 715 } 716 717 /* 718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 719 */ 720 #define store_one(file_name, object) \ 721 static ssize_t store_##file_name \ 722 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 723 { \ 724 unsigned long val; \ 725 int ret; \ 726 \ 727 ret = sscanf(buf, "%lu", &val); \ 728 if (ret != 1) \ 729 return -EINVAL; \ 730 \ 731 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 732 return ret >= 0 ? count : ret; \ 733 } 734 735 store_one(scaling_min_freq, min); 736 store_one(scaling_max_freq, max); 737 738 /* 739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 740 */ 741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 742 char *buf) 743 { 744 unsigned int cur_freq = __cpufreq_get(policy); 745 746 if (cur_freq) 747 return sprintf(buf, "%u\n", cur_freq); 748 749 return sprintf(buf, "<unknown>\n"); 750 } 751 752 /* 753 * show_scaling_governor - show the current policy for the specified CPU 754 */ 755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 756 { 757 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 758 return sprintf(buf, "powersave\n"); 759 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 760 return sprintf(buf, "performance\n"); 761 else if (policy->governor) 762 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 763 policy->governor->name); 764 return -EINVAL; 765 } 766 767 /* 768 * store_scaling_governor - store policy for the specified CPU 769 */ 770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 771 const char *buf, size_t count) 772 { 773 char str_governor[16]; 774 int ret; 775 776 ret = sscanf(buf, "%15s", str_governor); 777 if (ret != 1) 778 return -EINVAL; 779 780 if (cpufreq_driver->setpolicy) { 781 unsigned int new_pol; 782 783 new_pol = cpufreq_parse_policy(str_governor); 784 if (!new_pol) 785 return -EINVAL; 786 787 ret = cpufreq_set_policy(policy, NULL, new_pol); 788 } else { 789 struct cpufreq_governor *new_gov; 790 791 new_gov = cpufreq_parse_governor(str_governor); 792 if (!new_gov) 793 return -EINVAL; 794 795 ret = cpufreq_set_policy(policy, new_gov, 796 CPUFREQ_POLICY_UNKNOWN); 797 798 module_put(new_gov->owner); 799 } 800 801 return ret ? ret : count; 802 } 803 804 /* 805 * show_scaling_driver - show the cpufreq driver currently loaded 806 */ 807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 808 { 809 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 810 } 811 812 /* 813 * show_scaling_available_governors - show the available CPUfreq governors 814 */ 815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 816 char *buf) 817 { 818 ssize_t i = 0; 819 struct cpufreq_governor *t; 820 821 if (!has_target()) { 822 i += sprintf(buf, "performance powersave"); 823 goto out; 824 } 825 826 mutex_lock(&cpufreq_governor_mutex); 827 for_each_governor(t) { 828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 829 - (CPUFREQ_NAME_LEN + 2))) 830 break; 831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 832 } 833 mutex_unlock(&cpufreq_governor_mutex); 834 out: 835 i += sprintf(&buf[i], "\n"); 836 return i; 837 } 838 839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 840 { 841 ssize_t i = 0; 842 unsigned int cpu; 843 844 for_each_cpu(cpu, mask) { 845 if (i) 846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 848 if (i >= (PAGE_SIZE - 5)) 849 break; 850 } 851 i += sprintf(&buf[i], "\n"); 852 return i; 853 } 854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 855 856 /* 857 * show_related_cpus - show the CPUs affected by each transition even if 858 * hw coordination is in use 859 */ 860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 861 { 862 return cpufreq_show_cpus(policy->related_cpus, buf); 863 } 864 865 /* 866 * show_affected_cpus - show the CPUs affected by each transition 867 */ 868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 869 { 870 return cpufreq_show_cpus(policy->cpus, buf); 871 } 872 873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 874 const char *buf, size_t count) 875 { 876 unsigned int freq = 0; 877 unsigned int ret; 878 879 if (!policy->governor || !policy->governor->store_setspeed) 880 return -EINVAL; 881 882 ret = sscanf(buf, "%u", &freq); 883 if (ret != 1) 884 return -EINVAL; 885 886 policy->governor->store_setspeed(policy, freq); 887 888 return count; 889 } 890 891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 892 { 893 if (!policy->governor || !policy->governor->show_setspeed) 894 return sprintf(buf, "<unsupported>\n"); 895 896 return policy->governor->show_setspeed(policy, buf); 897 } 898 899 /* 900 * show_bios_limit - show the current cpufreq HW/BIOS limitation 901 */ 902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 903 { 904 unsigned int limit; 905 int ret; 906 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 907 if (!ret) 908 return sprintf(buf, "%u\n", limit); 909 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 910 } 911 912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 913 cpufreq_freq_attr_ro(cpuinfo_min_freq); 914 cpufreq_freq_attr_ro(cpuinfo_max_freq); 915 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 916 cpufreq_freq_attr_ro(scaling_available_governors); 917 cpufreq_freq_attr_ro(scaling_driver); 918 cpufreq_freq_attr_ro(scaling_cur_freq); 919 cpufreq_freq_attr_ro(bios_limit); 920 cpufreq_freq_attr_ro(related_cpus); 921 cpufreq_freq_attr_ro(affected_cpus); 922 cpufreq_freq_attr_rw(scaling_min_freq); 923 cpufreq_freq_attr_rw(scaling_max_freq); 924 cpufreq_freq_attr_rw(scaling_governor); 925 cpufreq_freq_attr_rw(scaling_setspeed); 926 927 static struct attribute *cpufreq_attrs[] = { 928 &cpuinfo_min_freq.attr, 929 &cpuinfo_max_freq.attr, 930 &cpuinfo_transition_latency.attr, 931 &scaling_min_freq.attr, 932 &scaling_max_freq.attr, 933 &affected_cpus.attr, 934 &related_cpus.attr, 935 &scaling_governor.attr, 936 &scaling_driver.attr, 937 &scaling_available_governors.attr, 938 &scaling_setspeed.attr, 939 NULL 940 }; 941 ATTRIBUTE_GROUPS(cpufreq); 942 943 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 944 #define to_attr(a) container_of(a, struct freq_attr, attr) 945 946 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 947 { 948 struct cpufreq_policy *policy = to_policy(kobj); 949 struct freq_attr *fattr = to_attr(attr); 950 ssize_t ret; 951 952 if (!fattr->show) 953 return -EIO; 954 955 down_read(&policy->rwsem); 956 ret = fattr->show(policy, buf); 957 up_read(&policy->rwsem); 958 959 return ret; 960 } 961 962 static ssize_t store(struct kobject *kobj, struct attribute *attr, 963 const char *buf, size_t count) 964 { 965 struct cpufreq_policy *policy = to_policy(kobj); 966 struct freq_attr *fattr = to_attr(attr); 967 ssize_t ret = -EINVAL; 968 969 if (!fattr->store) 970 return -EIO; 971 972 /* 973 * cpus_read_trylock() is used here to work around a circular lock 974 * dependency problem with respect to the cpufreq_register_driver(). 975 */ 976 if (!cpus_read_trylock()) 977 return -EBUSY; 978 979 if (cpu_online(policy->cpu)) { 980 down_write(&policy->rwsem); 981 ret = fattr->store(policy, buf, count); 982 up_write(&policy->rwsem); 983 } 984 985 cpus_read_unlock(); 986 987 return ret; 988 } 989 990 static void cpufreq_sysfs_release(struct kobject *kobj) 991 { 992 struct cpufreq_policy *policy = to_policy(kobj); 993 pr_debug("last reference is dropped\n"); 994 complete(&policy->kobj_unregister); 995 } 996 997 static const struct sysfs_ops sysfs_ops = { 998 .show = show, 999 .store = store, 1000 }; 1001 1002 static struct kobj_type ktype_cpufreq = { 1003 .sysfs_ops = &sysfs_ops, 1004 .default_groups = cpufreq_groups, 1005 .release = cpufreq_sysfs_release, 1006 }; 1007 1008 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1009 struct device *dev) 1010 { 1011 if (unlikely(!dev)) 1012 return; 1013 1014 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1015 return; 1016 1017 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1018 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1019 dev_err(dev, "cpufreq symlink creation failed\n"); 1020 } 1021 1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1023 struct device *dev) 1024 { 1025 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1026 sysfs_remove_link(&dev->kobj, "cpufreq"); 1027 } 1028 1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1030 { 1031 struct freq_attr **drv_attr; 1032 int ret = 0; 1033 1034 /* set up files for this cpu device */ 1035 drv_attr = cpufreq_driver->attr; 1036 while (drv_attr && *drv_attr) { 1037 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1038 if (ret) 1039 return ret; 1040 drv_attr++; 1041 } 1042 if (cpufreq_driver->get) { 1043 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1049 if (ret) 1050 return ret; 1051 1052 if (cpufreq_driver->bios_limit) { 1053 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1054 if (ret) 1055 return ret; 1056 } 1057 1058 return 0; 1059 } 1060 1061 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1062 { 1063 struct cpufreq_governor *gov = NULL; 1064 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1065 int ret; 1066 1067 if (has_target()) { 1068 /* Update policy governor to the one used before hotplug. */ 1069 gov = get_governor(policy->last_governor); 1070 if (gov) { 1071 pr_debug("Restoring governor %s for cpu %d\n", 1072 gov->name, policy->cpu); 1073 } else { 1074 gov = get_governor(default_governor); 1075 } 1076 1077 if (!gov) { 1078 gov = cpufreq_default_governor(); 1079 __module_get(gov->owner); 1080 } 1081 1082 } else { 1083 1084 /* Use the default policy if there is no last_policy. */ 1085 if (policy->last_policy) { 1086 pol = policy->last_policy; 1087 } else { 1088 pol = cpufreq_parse_policy(default_governor); 1089 /* 1090 * In case the default governor is neither "performance" 1091 * nor "powersave", fall back to the initial policy 1092 * value set by the driver. 1093 */ 1094 if (pol == CPUFREQ_POLICY_UNKNOWN) 1095 pol = policy->policy; 1096 } 1097 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1098 pol != CPUFREQ_POLICY_POWERSAVE) 1099 return -ENODATA; 1100 } 1101 1102 ret = cpufreq_set_policy(policy, gov, pol); 1103 if (gov) 1104 module_put(gov->owner); 1105 1106 return ret; 1107 } 1108 1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1110 { 1111 int ret = 0; 1112 1113 /* Has this CPU been taken care of already? */ 1114 if (cpumask_test_cpu(cpu, policy->cpus)) 1115 return 0; 1116 1117 down_write(&policy->rwsem); 1118 if (has_target()) 1119 cpufreq_stop_governor(policy); 1120 1121 cpumask_set_cpu(cpu, policy->cpus); 1122 1123 if (has_target()) { 1124 ret = cpufreq_start_governor(policy); 1125 if (ret) 1126 pr_err("%s: Failed to start governor\n", __func__); 1127 } 1128 up_write(&policy->rwsem); 1129 return ret; 1130 } 1131 1132 void refresh_frequency_limits(struct cpufreq_policy *policy) 1133 { 1134 if (!policy_is_inactive(policy)) { 1135 pr_debug("updating policy for CPU %u\n", policy->cpu); 1136 1137 cpufreq_set_policy(policy, policy->governor, policy->policy); 1138 } 1139 } 1140 EXPORT_SYMBOL(refresh_frequency_limits); 1141 1142 static void handle_update(struct work_struct *work) 1143 { 1144 struct cpufreq_policy *policy = 1145 container_of(work, struct cpufreq_policy, update); 1146 1147 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1148 down_write(&policy->rwsem); 1149 refresh_frequency_limits(policy); 1150 up_write(&policy->rwsem); 1151 } 1152 1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1154 void *data) 1155 { 1156 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1157 1158 schedule_work(&policy->update); 1159 return 0; 1160 } 1161 1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1163 void *data) 1164 { 1165 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1166 1167 schedule_work(&policy->update); 1168 return 0; 1169 } 1170 1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1172 { 1173 struct kobject *kobj; 1174 struct completion *cmp; 1175 1176 down_write(&policy->rwsem); 1177 cpufreq_stats_free_table(policy); 1178 kobj = &policy->kobj; 1179 cmp = &policy->kobj_unregister; 1180 up_write(&policy->rwsem); 1181 kobject_put(kobj); 1182 1183 /* 1184 * We need to make sure that the underlying kobj is 1185 * actually not referenced anymore by anybody before we 1186 * proceed with unloading. 1187 */ 1188 pr_debug("waiting for dropping of refcount\n"); 1189 wait_for_completion(cmp); 1190 pr_debug("wait complete\n"); 1191 } 1192 1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1194 { 1195 struct cpufreq_policy *policy; 1196 struct device *dev = get_cpu_device(cpu); 1197 int ret; 1198 1199 if (!dev) 1200 return NULL; 1201 1202 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1203 if (!policy) 1204 return NULL; 1205 1206 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1207 goto err_free_policy; 1208 1209 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1210 goto err_free_cpumask; 1211 1212 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1213 goto err_free_rcpumask; 1214 1215 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1216 cpufreq_global_kobject, "policy%u", cpu); 1217 if (ret) { 1218 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1219 /* 1220 * The entire policy object will be freed below, but the extra 1221 * memory allocated for the kobject name needs to be freed by 1222 * releasing the kobject. 1223 */ 1224 kobject_put(&policy->kobj); 1225 goto err_free_real_cpus; 1226 } 1227 1228 freq_constraints_init(&policy->constraints); 1229 1230 policy->nb_min.notifier_call = cpufreq_notifier_min; 1231 policy->nb_max.notifier_call = cpufreq_notifier_max; 1232 1233 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1234 &policy->nb_min); 1235 if (ret) { 1236 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1237 ret, cpumask_pr_args(policy->cpus)); 1238 goto err_kobj_remove; 1239 } 1240 1241 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1242 &policy->nb_max); 1243 if (ret) { 1244 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1245 ret, cpumask_pr_args(policy->cpus)); 1246 goto err_min_qos_notifier; 1247 } 1248 1249 INIT_LIST_HEAD(&policy->policy_list); 1250 init_rwsem(&policy->rwsem); 1251 spin_lock_init(&policy->transition_lock); 1252 init_waitqueue_head(&policy->transition_wait); 1253 init_completion(&policy->kobj_unregister); 1254 INIT_WORK(&policy->update, handle_update); 1255 1256 policy->cpu = cpu; 1257 return policy; 1258 1259 err_min_qos_notifier: 1260 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1261 &policy->nb_min); 1262 err_kobj_remove: 1263 cpufreq_policy_put_kobj(policy); 1264 err_free_real_cpus: 1265 free_cpumask_var(policy->real_cpus); 1266 err_free_rcpumask: 1267 free_cpumask_var(policy->related_cpus); 1268 err_free_cpumask: 1269 free_cpumask_var(policy->cpus); 1270 err_free_policy: 1271 kfree(policy); 1272 1273 return NULL; 1274 } 1275 1276 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1277 { 1278 unsigned long flags; 1279 int cpu; 1280 1281 /* Remove policy from list */ 1282 write_lock_irqsave(&cpufreq_driver_lock, flags); 1283 list_del(&policy->policy_list); 1284 1285 for_each_cpu(cpu, policy->related_cpus) 1286 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1287 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1288 1289 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1290 &policy->nb_max); 1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1292 &policy->nb_min); 1293 1294 /* Cancel any pending policy->update work before freeing the policy. */ 1295 cancel_work_sync(&policy->update); 1296 1297 if (policy->max_freq_req) { 1298 /* 1299 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1300 * notification, since CPUFREQ_CREATE_POLICY notification was 1301 * sent after adding max_freq_req earlier. 1302 */ 1303 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1304 CPUFREQ_REMOVE_POLICY, policy); 1305 freq_qos_remove_request(policy->max_freq_req); 1306 } 1307 1308 freq_qos_remove_request(policy->min_freq_req); 1309 kfree(policy->min_freq_req); 1310 1311 cpufreq_policy_put_kobj(policy); 1312 free_cpumask_var(policy->real_cpus); 1313 free_cpumask_var(policy->related_cpus); 1314 free_cpumask_var(policy->cpus); 1315 kfree(policy); 1316 } 1317 1318 static int cpufreq_online(unsigned int cpu) 1319 { 1320 struct cpufreq_policy *policy; 1321 bool new_policy; 1322 unsigned long flags; 1323 unsigned int j; 1324 int ret; 1325 1326 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1327 1328 /* Check if this CPU already has a policy to manage it */ 1329 policy = per_cpu(cpufreq_cpu_data, cpu); 1330 if (policy) { 1331 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1332 if (!policy_is_inactive(policy)) 1333 return cpufreq_add_policy_cpu(policy, cpu); 1334 1335 /* This is the only online CPU for the policy. Start over. */ 1336 new_policy = false; 1337 down_write(&policy->rwsem); 1338 policy->cpu = cpu; 1339 policy->governor = NULL; 1340 up_write(&policy->rwsem); 1341 } else { 1342 new_policy = true; 1343 policy = cpufreq_policy_alloc(cpu); 1344 if (!policy) 1345 return -ENOMEM; 1346 } 1347 1348 if (!new_policy && cpufreq_driver->online) { 1349 ret = cpufreq_driver->online(policy); 1350 if (ret) { 1351 pr_debug("%s: %d: initialization failed\n", __func__, 1352 __LINE__); 1353 goto out_exit_policy; 1354 } 1355 1356 /* Recover policy->cpus using related_cpus */ 1357 cpumask_copy(policy->cpus, policy->related_cpus); 1358 } else { 1359 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1360 1361 /* 1362 * Call driver. From then on the cpufreq must be able 1363 * to accept all calls to ->verify and ->setpolicy for this CPU. 1364 */ 1365 ret = cpufreq_driver->init(policy); 1366 if (ret) { 1367 pr_debug("%s: %d: initialization failed\n", __func__, 1368 __LINE__); 1369 goto out_free_policy; 1370 } 1371 1372 /* 1373 * The initialization has succeeded and the policy is online. 1374 * If there is a problem with its frequency table, take it 1375 * offline and drop it. 1376 */ 1377 ret = cpufreq_table_validate_and_sort(policy); 1378 if (ret) 1379 goto out_offline_policy; 1380 1381 /* related_cpus should at least include policy->cpus. */ 1382 cpumask_copy(policy->related_cpus, policy->cpus); 1383 } 1384 1385 down_write(&policy->rwsem); 1386 /* 1387 * affected cpus must always be the one, which are online. We aren't 1388 * managing offline cpus here. 1389 */ 1390 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1391 1392 if (new_policy) { 1393 for_each_cpu(j, policy->related_cpus) { 1394 per_cpu(cpufreq_cpu_data, j) = policy; 1395 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1396 } 1397 1398 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1399 GFP_KERNEL); 1400 if (!policy->min_freq_req) { 1401 ret = -ENOMEM; 1402 goto out_destroy_policy; 1403 } 1404 1405 ret = freq_qos_add_request(&policy->constraints, 1406 policy->min_freq_req, FREQ_QOS_MIN, 1407 FREQ_QOS_MIN_DEFAULT_VALUE); 1408 if (ret < 0) { 1409 /* 1410 * So we don't call freq_qos_remove_request() for an 1411 * uninitialized request. 1412 */ 1413 kfree(policy->min_freq_req); 1414 policy->min_freq_req = NULL; 1415 goto out_destroy_policy; 1416 } 1417 1418 /* 1419 * This must be initialized right here to avoid calling 1420 * freq_qos_remove_request() on uninitialized request in case 1421 * of errors. 1422 */ 1423 policy->max_freq_req = policy->min_freq_req + 1; 1424 1425 ret = freq_qos_add_request(&policy->constraints, 1426 policy->max_freq_req, FREQ_QOS_MAX, 1427 FREQ_QOS_MAX_DEFAULT_VALUE); 1428 if (ret < 0) { 1429 policy->max_freq_req = NULL; 1430 goto out_destroy_policy; 1431 } 1432 1433 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1434 CPUFREQ_CREATE_POLICY, policy); 1435 } 1436 1437 if (cpufreq_driver->get && has_target()) { 1438 policy->cur = cpufreq_driver->get(policy->cpu); 1439 if (!policy->cur) { 1440 ret = -EIO; 1441 pr_err("%s: ->get() failed\n", __func__); 1442 goto out_destroy_policy; 1443 } 1444 } 1445 1446 /* 1447 * Sometimes boot loaders set CPU frequency to a value outside of 1448 * frequency table present with cpufreq core. In such cases CPU might be 1449 * unstable if it has to run on that frequency for long duration of time 1450 * and so its better to set it to a frequency which is specified in 1451 * freq-table. This also makes cpufreq stats inconsistent as 1452 * cpufreq-stats would fail to register because current frequency of CPU 1453 * isn't found in freq-table. 1454 * 1455 * Because we don't want this change to effect boot process badly, we go 1456 * for the next freq which is >= policy->cur ('cur' must be set by now, 1457 * otherwise we will end up setting freq to lowest of the table as 'cur' 1458 * is initialized to zero). 1459 * 1460 * We are passing target-freq as "policy->cur - 1" otherwise 1461 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1462 * equal to target-freq. 1463 */ 1464 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1465 && has_target()) { 1466 unsigned int old_freq = policy->cur; 1467 1468 /* Are we running at unknown frequency ? */ 1469 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1470 if (ret == -EINVAL) { 1471 ret = __cpufreq_driver_target(policy, old_freq - 1, 1472 CPUFREQ_RELATION_L); 1473 1474 /* 1475 * Reaching here after boot in a few seconds may not 1476 * mean that system will remain stable at "unknown" 1477 * frequency for longer duration. Hence, a BUG_ON(). 1478 */ 1479 BUG_ON(ret); 1480 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1481 __func__, policy->cpu, old_freq, policy->cur); 1482 } 1483 } 1484 1485 if (new_policy) { 1486 ret = cpufreq_add_dev_interface(policy); 1487 if (ret) 1488 goto out_destroy_policy; 1489 1490 cpufreq_stats_create_table(policy); 1491 1492 write_lock_irqsave(&cpufreq_driver_lock, flags); 1493 list_add(&policy->policy_list, &cpufreq_policy_list); 1494 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1495 1496 /* 1497 * Register with the energy model before 1498 * sched_cpufreq_governor_change() is called, which will result 1499 * in rebuilding of the sched domains, which should only be done 1500 * once the energy model is properly initialized for the policy 1501 * first. 1502 * 1503 * Also, this should be called before the policy is registered 1504 * with cooling framework. 1505 */ 1506 if (cpufreq_driver->register_em) 1507 cpufreq_driver->register_em(policy); 1508 } 1509 1510 ret = cpufreq_init_policy(policy); 1511 if (ret) { 1512 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1513 __func__, cpu, ret); 1514 goto out_destroy_policy; 1515 } 1516 1517 up_write(&policy->rwsem); 1518 1519 kobject_uevent(&policy->kobj, KOBJ_ADD); 1520 1521 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1522 policy->cdev = of_cpufreq_cooling_register(policy); 1523 1524 pr_debug("initialization complete\n"); 1525 1526 return 0; 1527 1528 out_destroy_policy: 1529 for_each_cpu(j, policy->real_cpus) 1530 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1531 1532 up_write(&policy->rwsem); 1533 1534 out_offline_policy: 1535 if (cpufreq_driver->offline) 1536 cpufreq_driver->offline(policy); 1537 1538 out_exit_policy: 1539 if (cpufreq_driver->exit) 1540 cpufreq_driver->exit(policy); 1541 1542 out_free_policy: 1543 cpufreq_policy_free(policy); 1544 return ret; 1545 } 1546 1547 /** 1548 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1549 * @dev: CPU device. 1550 * @sif: Subsystem interface structure pointer (not used) 1551 */ 1552 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1553 { 1554 struct cpufreq_policy *policy; 1555 unsigned cpu = dev->id; 1556 int ret; 1557 1558 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1559 1560 if (cpu_online(cpu)) { 1561 ret = cpufreq_online(cpu); 1562 if (ret) 1563 return ret; 1564 } 1565 1566 /* Create sysfs link on CPU registration */ 1567 policy = per_cpu(cpufreq_cpu_data, cpu); 1568 if (policy) 1569 add_cpu_dev_symlink(policy, cpu, dev); 1570 1571 return 0; 1572 } 1573 1574 static int cpufreq_offline(unsigned int cpu) 1575 { 1576 struct cpufreq_policy *policy; 1577 int ret; 1578 1579 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1580 1581 policy = cpufreq_cpu_get_raw(cpu); 1582 if (!policy) { 1583 pr_debug("%s: No cpu_data found\n", __func__); 1584 return 0; 1585 } 1586 1587 down_write(&policy->rwsem); 1588 if (has_target()) 1589 cpufreq_stop_governor(policy); 1590 1591 cpumask_clear_cpu(cpu, policy->cpus); 1592 1593 if (policy_is_inactive(policy)) { 1594 if (has_target()) 1595 strncpy(policy->last_governor, policy->governor->name, 1596 CPUFREQ_NAME_LEN); 1597 else 1598 policy->last_policy = policy->policy; 1599 } else if (cpu == policy->cpu) { 1600 /* Nominate new CPU */ 1601 policy->cpu = cpumask_any(policy->cpus); 1602 } 1603 1604 /* Start governor again for active policy */ 1605 if (!policy_is_inactive(policy)) { 1606 if (has_target()) { 1607 ret = cpufreq_start_governor(policy); 1608 if (ret) 1609 pr_err("%s: Failed to start governor\n", __func__); 1610 } 1611 1612 goto unlock; 1613 } 1614 1615 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1616 cpufreq_cooling_unregister(policy->cdev); 1617 policy->cdev = NULL; 1618 } 1619 1620 if (has_target()) 1621 cpufreq_exit_governor(policy); 1622 1623 /* 1624 * Perform the ->offline() during light-weight tear-down, as 1625 * that allows fast recovery when the CPU comes back. 1626 */ 1627 if (cpufreq_driver->offline) { 1628 cpufreq_driver->offline(policy); 1629 } else if (cpufreq_driver->exit) { 1630 cpufreq_driver->exit(policy); 1631 policy->freq_table = NULL; 1632 } 1633 1634 unlock: 1635 up_write(&policy->rwsem); 1636 return 0; 1637 } 1638 1639 /* 1640 * cpufreq_remove_dev - remove a CPU device 1641 * 1642 * Removes the cpufreq interface for a CPU device. 1643 */ 1644 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1645 { 1646 unsigned int cpu = dev->id; 1647 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1648 1649 if (!policy) 1650 return; 1651 1652 if (cpu_online(cpu)) 1653 cpufreq_offline(cpu); 1654 1655 cpumask_clear_cpu(cpu, policy->real_cpus); 1656 remove_cpu_dev_symlink(policy, dev); 1657 1658 if (cpumask_empty(policy->real_cpus)) { 1659 /* We did light-weight exit earlier, do full tear down now */ 1660 if (cpufreq_driver->offline) 1661 cpufreq_driver->exit(policy); 1662 1663 cpufreq_policy_free(policy); 1664 } 1665 } 1666 1667 /** 1668 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1669 * @policy: Policy managing CPUs. 1670 * @new_freq: New CPU frequency. 1671 * 1672 * Adjust to the current frequency first and clean up later by either calling 1673 * cpufreq_update_policy(), or scheduling handle_update(). 1674 */ 1675 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1676 unsigned int new_freq) 1677 { 1678 struct cpufreq_freqs freqs; 1679 1680 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1681 policy->cur, new_freq); 1682 1683 freqs.old = policy->cur; 1684 freqs.new = new_freq; 1685 1686 cpufreq_freq_transition_begin(policy, &freqs); 1687 cpufreq_freq_transition_end(policy, &freqs, 0); 1688 } 1689 1690 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1691 { 1692 unsigned int new_freq; 1693 1694 new_freq = cpufreq_driver->get(policy->cpu); 1695 if (!new_freq) 1696 return 0; 1697 1698 /* 1699 * If fast frequency switching is used with the given policy, the check 1700 * against policy->cur is pointless, so skip it in that case. 1701 */ 1702 if (policy->fast_switch_enabled || !has_target()) 1703 return new_freq; 1704 1705 if (policy->cur != new_freq) { 1706 cpufreq_out_of_sync(policy, new_freq); 1707 if (update) 1708 schedule_work(&policy->update); 1709 } 1710 1711 return new_freq; 1712 } 1713 1714 /** 1715 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1716 * @cpu: CPU number 1717 * 1718 * This is the last known freq, without actually getting it from the driver. 1719 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1720 */ 1721 unsigned int cpufreq_quick_get(unsigned int cpu) 1722 { 1723 struct cpufreq_policy *policy; 1724 unsigned int ret_freq = 0; 1725 unsigned long flags; 1726 1727 read_lock_irqsave(&cpufreq_driver_lock, flags); 1728 1729 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1730 ret_freq = cpufreq_driver->get(cpu); 1731 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1732 return ret_freq; 1733 } 1734 1735 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1736 1737 policy = cpufreq_cpu_get(cpu); 1738 if (policy) { 1739 ret_freq = policy->cur; 1740 cpufreq_cpu_put(policy); 1741 } 1742 1743 return ret_freq; 1744 } 1745 EXPORT_SYMBOL(cpufreq_quick_get); 1746 1747 /** 1748 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1749 * @cpu: CPU number 1750 * 1751 * Just return the max possible frequency for a given CPU. 1752 */ 1753 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1754 { 1755 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1756 unsigned int ret_freq = 0; 1757 1758 if (policy) { 1759 ret_freq = policy->max; 1760 cpufreq_cpu_put(policy); 1761 } 1762 1763 return ret_freq; 1764 } 1765 EXPORT_SYMBOL(cpufreq_quick_get_max); 1766 1767 /** 1768 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1769 * @cpu: CPU number 1770 * 1771 * The default return value is the max_freq field of cpuinfo. 1772 */ 1773 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1774 { 1775 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1776 unsigned int ret_freq = 0; 1777 1778 if (policy) { 1779 ret_freq = policy->cpuinfo.max_freq; 1780 cpufreq_cpu_put(policy); 1781 } 1782 1783 return ret_freq; 1784 } 1785 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1786 1787 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1788 { 1789 if (unlikely(policy_is_inactive(policy))) 1790 return 0; 1791 1792 return cpufreq_verify_current_freq(policy, true); 1793 } 1794 1795 /** 1796 * cpufreq_get - get the current CPU frequency (in kHz) 1797 * @cpu: CPU number 1798 * 1799 * Get the CPU current (static) CPU frequency 1800 */ 1801 unsigned int cpufreq_get(unsigned int cpu) 1802 { 1803 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1804 unsigned int ret_freq = 0; 1805 1806 if (policy) { 1807 down_read(&policy->rwsem); 1808 if (cpufreq_driver->get) 1809 ret_freq = __cpufreq_get(policy); 1810 up_read(&policy->rwsem); 1811 1812 cpufreq_cpu_put(policy); 1813 } 1814 1815 return ret_freq; 1816 } 1817 EXPORT_SYMBOL(cpufreq_get); 1818 1819 static struct subsys_interface cpufreq_interface = { 1820 .name = "cpufreq", 1821 .subsys = &cpu_subsys, 1822 .add_dev = cpufreq_add_dev, 1823 .remove_dev = cpufreq_remove_dev, 1824 }; 1825 1826 /* 1827 * In case platform wants some specific frequency to be configured 1828 * during suspend.. 1829 */ 1830 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1831 { 1832 int ret; 1833 1834 if (!policy->suspend_freq) { 1835 pr_debug("%s: suspend_freq not defined\n", __func__); 1836 return 0; 1837 } 1838 1839 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1840 policy->suspend_freq); 1841 1842 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1843 CPUFREQ_RELATION_H); 1844 if (ret) 1845 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1846 __func__, policy->suspend_freq, ret); 1847 1848 return ret; 1849 } 1850 EXPORT_SYMBOL(cpufreq_generic_suspend); 1851 1852 /** 1853 * cpufreq_suspend() - Suspend CPUFreq governors. 1854 * 1855 * Called during system wide Suspend/Hibernate cycles for suspending governors 1856 * as some platforms can't change frequency after this point in suspend cycle. 1857 * Because some of the devices (like: i2c, regulators, etc) they use for 1858 * changing frequency are suspended quickly after this point. 1859 */ 1860 void cpufreq_suspend(void) 1861 { 1862 struct cpufreq_policy *policy; 1863 1864 if (!cpufreq_driver) 1865 return; 1866 1867 if (!has_target() && !cpufreq_driver->suspend) 1868 goto suspend; 1869 1870 pr_debug("%s: Suspending Governors\n", __func__); 1871 1872 for_each_active_policy(policy) { 1873 if (has_target()) { 1874 down_write(&policy->rwsem); 1875 cpufreq_stop_governor(policy); 1876 up_write(&policy->rwsem); 1877 } 1878 1879 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1880 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1881 cpufreq_driver->name); 1882 } 1883 1884 suspend: 1885 cpufreq_suspended = true; 1886 } 1887 1888 /** 1889 * cpufreq_resume() - Resume CPUFreq governors. 1890 * 1891 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1892 * are suspended with cpufreq_suspend(). 1893 */ 1894 void cpufreq_resume(void) 1895 { 1896 struct cpufreq_policy *policy; 1897 int ret; 1898 1899 if (!cpufreq_driver) 1900 return; 1901 1902 if (unlikely(!cpufreq_suspended)) 1903 return; 1904 1905 cpufreq_suspended = false; 1906 1907 if (!has_target() && !cpufreq_driver->resume) 1908 return; 1909 1910 pr_debug("%s: Resuming Governors\n", __func__); 1911 1912 for_each_active_policy(policy) { 1913 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1914 pr_err("%s: Failed to resume driver: %p\n", __func__, 1915 policy); 1916 } else if (has_target()) { 1917 down_write(&policy->rwsem); 1918 ret = cpufreq_start_governor(policy); 1919 up_write(&policy->rwsem); 1920 1921 if (ret) 1922 pr_err("%s: Failed to start governor for policy: %p\n", 1923 __func__, policy); 1924 } 1925 } 1926 } 1927 1928 /** 1929 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1930 * @flags: Flags to test against the current cpufreq driver's flags. 1931 * 1932 * Assumes that the driver is there, so callers must ensure that this is the 1933 * case. 1934 */ 1935 bool cpufreq_driver_test_flags(u16 flags) 1936 { 1937 return !!(cpufreq_driver->flags & flags); 1938 } 1939 1940 /** 1941 * cpufreq_get_current_driver - Return the current driver's name. 1942 * 1943 * Return the name string of the currently registered cpufreq driver or NULL if 1944 * none. 1945 */ 1946 const char *cpufreq_get_current_driver(void) 1947 { 1948 if (cpufreq_driver) 1949 return cpufreq_driver->name; 1950 1951 return NULL; 1952 } 1953 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1954 1955 /** 1956 * cpufreq_get_driver_data - Return current driver data. 1957 * 1958 * Return the private data of the currently registered cpufreq driver, or NULL 1959 * if no cpufreq driver has been registered. 1960 */ 1961 void *cpufreq_get_driver_data(void) 1962 { 1963 if (cpufreq_driver) 1964 return cpufreq_driver->driver_data; 1965 1966 return NULL; 1967 } 1968 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1969 1970 /********************************************************************* 1971 * NOTIFIER LISTS INTERFACE * 1972 *********************************************************************/ 1973 1974 /** 1975 * cpufreq_register_notifier - Register a notifier with cpufreq. 1976 * @nb: notifier function to register. 1977 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 1978 * 1979 * Add a notifier to one of two lists: either a list of notifiers that run on 1980 * clock rate changes (once before and once after every transition), or a list 1981 * of notifiers that ron on cpufreq policy changes. 1982 * 1983 * This function may sleep and it has the same return values as 1984 * blocking_notifier_chain_register(). 1985 */ 1986 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1987 { 1988 int ret; 1989 1990 if (cpufreq_disabled()) 1991 return -EINVAL; 1992 1993 switch (list) { 1994 case CPUFREQ_TRANSITION_NOTIFIER: 1995 mutex_lock(&cpufreq_fast_switch_lock); 1996 1997 if (cpufreq_fast_switch_count > 0) { 1998 mutex_unlock(&cpufreq_fast_switch_lock); 1999 return -EBUSY; 2000 } 2001 ret = srcu_notifier_chain_register( 2002 &cpufreq_transition_notifier_list, nb); 2003 if (!ret) 2004 cpufreq_fast_switch_count--; 2005 2006 mutex_unlock(&cpufreq_fast_switch_lock); 2007 break; 2008 case CPUFREQ_POLICY_NOTIFIER: 2009 ret = blocking_notifier_chain_register( 2010 &cpufreq_policy_notifier_list, nb); 2011 break; 2012 default: 2013 ret = -EINVAL; 2014 } 2015 2016 return ret; 2017 } 2018 EXPORT_SYMBOL(cpufreq_register_notifier); 2019 2020 /** 2021 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2022 * @nb: notifier block to be unregistered. 2023 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2024 * 2025 * Remove a notifier from one of the cpufreq notifier lists. 2026 * 2027 * This function may sleep and it has the same return values as 2028 * blocking_notifier_chain_unregister(). 2029 */ 2030 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2031 { 2032 int ret; 2033 2034 if (cpufreq_disabled()) 2035 return -EINVAL; 2036 2037 switch (list) { 2038 case CPUFREQ_TRANSITION_NOTIFIER: 2039 mutex_lock(&cpufreq_fast_switch_lock); 2040 2041 ret = srcu_notifier_chain_unregister( 2042 &cpufreq_transition_notifier_list, nb); 2043 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2044 cpufreq_fast_switch_count++; 2045 2046 mutex_unlock(&cpufreq_fast_switch_lock); 2047 break; 2048 case CPUFREQ_POLICY_NOTIFIER: 2049 ret = blocking_notifier_chain_unregister( 2050 &cpufreq_policy_notifier_list, nb); 2051 break; 2052 default: 2053 ret = -EINVAL; 2054 } 2055 2056 return ret; 2057 } 2058 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2059 2060 2061 /********************************************************************* 2062 * GOVERNORS * 2063 *********************************************************************/ 2064 2065 /** 2066 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2067 * @policy: cpufreq policy to switch the frequency for. 2068 * @target_freq: New frequency to set (may be approximate). 2069 * 2070 * Carry out a fast frequency switch without sleeping. 2071 * 2072 * The driver's ->fast_switch() callback invoked by this function must be 2073 * suitable for being called from within RCU-sched read-side critical sections 2074 * and it is expected to select the minimum available frequency greater than or 2075 * equal to @target_freq (CPUFREQ_RELATION_L). 2076 * 2077 * This function must not be called if policy->fast_switch_enabled is unset. 2078 * 2079 * Governors calling this function must guarantee that it will never be invoked 2080 * twice in parallel for the same policy and that it will never be called in 2081 * parallel with either ->target() or ->target_index() for the same policy. 2082 * 2083 * Returns the actual frequency set for the CPU. 2084 * 2085 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2086 * error condition, the hardware configuration must be preserved. 2087 */ 2088 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2089 unsigned int target_freq) 2090 { 2091 unsigned int freq; 2092 int cpu; 2093 2094 target_freq = clamp_val(target_freq, policy->min, policy->max); 2095 freq = cpufreq_driver->fast_switch(policy, target_freq); 2096 2097 if (!freq) 2098 return 0; 2099 2100 policy->cur = freq; 2101 arch_set_freq_scale(policy->related_cpus, freq, 2102 policy->cpuinfo.max_freq); 2103 cpufreq_stats_record_transition(policy, freq); 2104 2105 if (trace_cpu_frequency_enabled()) { 2106 for_each_cpu(cpu, policy->cpus) 2107 trace_cpu_frequency(freq, cpu); 2108 } 2109 2110 return freq; 2111 } 2112 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2113 2114 /** 2115 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2116 * @cpu: Target CPU. 2117 * @min_perf: Minimum (required) performance level (units of @capacity). 2118 * @target_perf: Target (desired) performance level (units of @capacity). 2119 * @capacity: Capacity of the target CPU. 2120 * 2121 * Carry out a fast performance level switch of @cpu without sleeping. 2122 * 2123 * The driver's ->adjust_perf() callback invoked by this function must be 2124 * suitable for being called from within RCU-sched read-side critical sections 2125 * and it is expected to select a suitable performance level equal to or above 2126 * @min_perf and preferably equal to or below @target_perf. 2127 * 2128 * This function must not be called if policy->fast_switch_enabled is unset. 2129 * 2130 * Governors calling this function must guarantee that it will never be invoked 2131 * twice in parallel for the same CPU and that it will never be called in 2132 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2133 * the same CPU. 2134 */ 2135 void cpufreq_driver_adjust_perf(unsigned int cpu, 2136 unsigned long min_perf, 2137 unsigned long target_perf, 2138 unsigned long capacity) 2139 { 2140 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2141 } 2142 2143 /** 2144 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2145 * 2146 * Return 'true' if the ->adjust_perf callback is present for the 2147 * current driver or 'false' otherwise. 2148 */ 2149 bool cpufreq_driver_has_adjust_perf(void) 2150 { 2151 return !!cpufreq_driver->adjust_perf; 2152 } 2153 2154 /* Must set freqs->new to intermediate frequency */ 2155 static int __target_intermediate(struct cpufreq_policy *policy, 2156 struct cpufreq_freqs *freqs, int index) 2157 { 2158 int ret; 2159 2160 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2161 2162 /* We don't need to switch to intermediate freq */ 2163 if (!freqs->new) 2164 return 0; 2165 2166 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2167 __func__, policy->cpu, freqs->old, freqs->new); 2168 2169 cpufreq_freq_transition_begin(policy, freqs); 2170 ret = cpufreq_driver->target_intermediate(policy, index); 2171 cpufreq_freq_transition_end(policy, freqs, ret); 2172 2173 if (ret) 2174 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2175 __func__, ret); 2176 2177 return ret; 2178 } 2179 2180 static int __target_index(struct cpufreq_policy *policy, int index) 2181 { 2182 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2183 unsigned int restore_freq, intermediate_freq = 0; 2184 unsigned int newfreq = policy->freq_table[index].frequency; 2185 int retval = -EINVAL; 2186 bool notify; 2187 2188 if (newfreq == policy->cur) 2189 return 0; 2190 2191 /* Save last value to restore later on errors */ 2192 restore_freq = policy->cur; 2193 2194 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2195 if (notify) { 2196 /* Handle switching to intermediate frequency */ 2197 if (cpufreq_driver->get_intermediate) { 2198 retval = __target_intermediate(policy, &freqs, index); 2199 if (retval) 2200 return retval; 2201 2202 intermediate_freq = freqs.new; 2203 /* Set old freq to intermediate */ 2204 if (intermediate_freq) 2205 freqs.old = freqs.new; 2206 } 2207 2208 freqs.new = newfreq; 2209 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2210 __func__, policy->cpu, freqs.old, freqs.new); 2211 2212 cpufreq_freq_transition_begin(policy, &freqs); 2213 } 2214 2215 retval = cpufreq_driver->target_index(policy, index); 2216 if (retval) 2217 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2218 retval); 2219 2220 if (notify) { 2221 cpufreq_freq_transition_end(policy, &freqs, retval); 2222 2223 /* 2224 * Failed after setting to intermediate freq? Driver should have 2225 * reverted back to initial frequency and so should we. Check 2226 * here for intermediate_freq instead of get_intermediate, in 2227 * case we haven't switched to intermediate freq at all. 2228 */ 2229 if (unlikely(retval && intermediate_freq)) { 2230 freqs.old = intermediate_freq; 2231 freqs.new = restore_freq; 2232 cpufreq_freq_transition_begin(policy, &freqs); 2233 cpufreq_freq_transition_end(policy, &freqs, 0); 2234 } 2235 } 2236 2237 return retval; 2238 } 2239 2240 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2241 unsigned int target_freq, 2242 unsigned int relation) 2243 { 2244 unsigned int old_target_freq = target_freq; 2245 2246 if (cpufreq_disabled()) 2247 return -ENODEV; 2248 2249 target_freq = __resolve_freq(policy, target_freq, relation); 2250 2251 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2252 policy->cpu, target_freq, relation, old_target_freq); 2253 2254 /* 2255 * This might look like a redundant call as we are checking it again 2256 * after finding index. But it is left intentionally for cases where 2257 * exactly same freq is called again and so we can save on few function 2258 * calls. 2259 */ 2260 if (target_freq == policy->cur && 2261 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2262 return 0; 2263 2264 if (cpufreq_driver->target) { 2265 /* 2266 * If the driver hasn't setup a single inefficient frequency, 2267 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2268 */ 2269 if (!policy->efficiencies_available) 2270 relation &= ~CPUFREQ_RELATION_E; 2271 2272 return cpufreq_driver->target(policy, target_freq, relation); 2273 } 2274 2275 if (!cpufreq_driver->target_index) 2276 return -EINVAL; 2277 2278 return __target_index(policy, policy->cached_resolved_idx); 2279 } 2280 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2281 2282 int cpufreq_driver_target(struct cpufreq_policy *policy, 2283 unsigned int target_freq, 2284 unsigned int relation) 2285 { 2286 int ret; 2287 2288 down_write(&policy->rwsem); 2289 2290 ret = __cpufreq_driver_target(policy, target_freq, relation); 2291 2292 up_write(&policy->rwsem); 2293 2294 return ret; 2295 } 2296 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2297 2298 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2299 { 2300 return NULL; 2301 } 2302 2303 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2304 { 2305 int ret; 2306 2307 /* Don't start any governor operations if we are entering suspend */ 2308 if (cpufreq_suspended) 2309 return 0; 2310 /* 2311 * Governor might not be initiated here if ACPI _PPC changed 2312 * notification happened, so check it. 2313 */ 2314 if (!policy->governor) 2315 return -EINVAL; 2316 2317 /* Platform doesn't want dynamic frequency switching ? */ 2318 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2319 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2320 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2321 2322 if (gov) { 2323 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2324 policy->governor->name, gov->name); 2325 policy->governor = gov; 2326 } else { 2327 return -EINVAL; 2328 } 2329 } 2330 2331 if (!try_module_get(policy->governor->owner)) 2332 return -EINVAL; 2333 2334 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2335 2336 if (policy->governor->init) { 2337 ret = policy->governor->init(policy); 2338 if (ret) { 2339 module_put(policy->governor->owner); 2340 return ret; 2341 } 2342 } 2343 2344 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2345 2346 return 0; 2347 } 2348 2349 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2350 { 2351 if (cpufreq_suspended || !policy->governor) 2352 return; 2353 2354 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2355 2356 if (policy->governor->exit) 2357 policy->governor->exit(policy); 2358 2359 module_put(policy->governor->owner); 2360 } 2361 2362 int cpufreq_start_governor(struct cpufreq_policy *policy) 2363 { 2364 int ret; 2365 2366 if (cpufreq_suspended) 2367 return 0; 2368 2369 if (!policy->governor) 2370 return -EINVAL; 2371 2372 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2373 2374 if (cpufreq_driver->get) 2375 cpufreq_verify_current_freq(policy, false); 2376 2377 if (policy->governor->start) { 2378 ret = policy->governor->start(policy); 2379 if (ret) 2380 return ret; 2381 } 2382 2383 if (policy->governor->limits) 2384 policy->governor->limits(policy); 2385 2386 return 0; 2387 } 2388 2389 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2390 { 2391 if (cpufreq_suspended || !policy->governor) 2392 return; 2393 2394 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2395 2396 if (policy->governor->stop) 2397 policy->governor->stop(policy); 2398 } 2399 2400 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2401 { 2402 if (cpufreq_suspended || !policy->governor) 2403 return; 2404 2405 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2406 2407 if (policy->governor->limits) 2408 policy->governor->limits(policy); 2409 } 2410 2411 int cpufreq_register_governor(struct cpufreq_governor *governor) 2412 { 2413 int err; 2414 2415 if (!governor) 2416 return -EINVAL; 2417 2418 if (cpufreq_disabled()) 2419 return -ENODEV; 2420 2421 mutex_lock(&cpufreq_governor_mutex); 2422 2423 err = -EBUSY; 2424 if (!find_governor(governor->name)) { 2425 err = 0; 2426 list_add(&governor->governor_list, &cpufreq_governor_list); 2427 } 2428 2429 mutex_unlock(&cpufreq_governor_mutex); 2430 return err; 2431 } 2432 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2433 2434 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2435 { 2436 struct cpufreq_policy *policy; 2437 unsigned long flags; 2438 2439 if (!governor) 2440 return; 2441 2442 if (cpufreq_disabled()) 2443 return; 2444 2445 /* clear last_governor for all inactive policies */ 2446 read_lock_irqsave(&cpufreq_driver_lock, flags); 2447 for_each_inactive_policy(policy) { 2448 if (!strcmp(policy->last_governor, governor->name)) { 2449 policy->governor = NULL; 2450 strcpy(policy->last_governor, "\0"); 2451 } 2452 } 2453 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2454 2455 mutex_lock(&cpufreq_governor_mutex); 2456 list_del(&governor->governor_list); 2457 mutex_unlock(&cpufreq_governor_mutex); 2458 } 2459 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2460 2461 2462 /********************************************************************* 2463 * POLICY INTERFACE * 2464 *********************************************************************/ 2465 2466 /** 2467 * cpufreq_get_policy - get the current cpufreq_policy 2468 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2469 * is written 2470 * @cpu: CPU to find the policy for 2471 * 2472 * Reads the current cpufreq policy. 2473 */ 2474 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2475 { 2476 struct cpufreq_policy *cpu_policy; 2477 if (!policy) 2478 return -EINVAL; 2479 2480 cpu_policy = cpufreq_cpu_get(cpu); 2481 if (!cpu_policy) 2482 return -EINVAL; 2483 2484 memcpy(policy, cpu_policy, sizeof(*policy)); 2485 2486 cpufreq_cpu_put(cpu_policy); 2487 return 0; 2488 } 2489 EXPORT_SYMBOL(cpufreq_get_policy); 2490 2491 /** 2492 * cpufreq_set_policy - Modify cpufreq policy parameters. 2493 * @policy: Policy object to modify. 2494 * @new_gov: Policy governor pointer. 2495 * @new_pol: Policy value (for drivers with built-in governors). 2496 * 2497 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2498 * limits to be set for the policy, update @policy with the verified limits 2499 * values and either invoke the driver's ->setpolicy() callback (if present) or 2500 * carry out a governor update for @policy. That is, run the current governor's 2501 * ->limits() callback (if @new_gov points to the same object as the one in 2502 * @policy) or replace the governor for @policy with @new_gov. 2503 * 2504 * The cpuinfo part of @policy is not updated by this function. 2505 */ 2506 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2507 struct cpufreq_governor *new_gov, 2508 unsigned int new_pol) 2509 { 2510 struct cpufreq_policy_data new_data; 2511 struct cpufreq_governor *old_gov; 2512 int ret; 2513 2514 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2515 new_data.freq_table = policy->freq_table; 2516 new_data.cpu = policy->cpu; 2517 /* 2518 * PM QoS framework collects all the requests from users and provide us 2519 * the final aggregated value here. 2520 */ 2521 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2522 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2523 2524 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2525 new_data.cpu, new_data.min, new_data.max); 2526 2527 /* 2528 * Verify that the CPU speed can be set within these limits and make sure 2529 * that min <= max. 2530 */ 2531 ret = cpufreq_driver->verify(&new_data); 2532 if (ret) 2533 return ret; 2534 2535 /* 2536 * Resolve policy min/max to available frequencies. It ensures 2537 * no frequency resolution will neither overshoot the requested maximum 2538 * nor undershoot the requested minimum. 2539 */ 2540 policy->min = new_data.min; 2541 policy->max = new_data.max; 2542 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2543 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2544 trace_cpu_frequency_limits(policy); 2545 2546 policy->cached_target_freq = UINT_MAX; 2547 2548 pr_debug("new min and max freqs are %u - %u kHz\n", 2549 policy->min, policy->max); 2550 2551 if (cpufreq_driver->setpolicy) { 2552 policy->policy = new_pol; 2553 pr_debug("setting range\n"); 2554 return cpufreq_driver->setpolicy(policy); 2555 } 2556 2557 if (new_gov == policy->governor) { 2558 pr_debug("governor limits update\n"); 2559 cpufreq_governor_limits(policy); 2560 return 0; 2561 } 2562 2563 pr_debug("governor switch\n"); 2564 2565 /* save old, working values */ 2566 old_gov = policy->governor; 2567 /* end old governor */ 2568 if (old_gov) { 2569 cpufreq_stop_governor(policy); 2570 cpufreq_exit_governor(policy); 2571 } 2572 2573 /* start new governor */ 2574 policy->governor = new_gov; 2575 ret = cpufreq_init_governor(policy); 2576 if (!ret) { 2577 ret = cpufreq_start_governor(policy); 2578 if (!ret) { 2579 pr_debug("governor change\n"); 2580 sched_cpufreq_governor_change(policy, old_gov); 2581 return 0; 2582 } 2583 cpufreq_exit_governor(policy); 2584 } 2585 2586 /* new governor failed, so re-start old one */ 2587 pr_debug("starting governor %s failed\n", policy->governor->name); 2588 if (old_gov) { 2589 policy->governor = old_gov; 2590 if (cpufreq_init_governor(policy)) 2591 policy->governor = NULL; 2592 else 2593 cpufreq_start_governor(policy); 2594 } 2595 2596 return ret; 2597 } 2598 2599 /** 2600 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2601 * @cpu: CPU to re-evaluate the policy for. 2602 * 2603 * Update the current frequency for the cpufreq policy of @cpu and use 2604 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2605 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2606 * for the policy in question, among other things. 2607 */ 2608 void cpufreq_update_policy(unsigned int cpu) 2609 { 2610 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2611 2612 if (!policy) 2613 return; 2614 2615 /* 2616 * BIOS might change freq behind our back 2617 * -> ask driver for current freq and notify governors about a change 2618 */ 2619 if (cpufreq_driver->get && has_target() && 2620 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2621 goto unlock; 2622 2623 refresh_frequency_limits(policy); 2624 2625 unlock: 2626 cpufreq_cpu_release(policy); 2627 } 2628 EXPORT_SYMBOL(cpufreq_update_policy); 2629 2630 /** 2631 * cpufreq_update_limits - Update policy limits for a given CPU. 2632 * @cpu: CPU to update the policy limits for. 2633 * 2634 * Invoke the driver's ->update_limits callback if present or call 2635 * cpufreq_update_policy() for @cpu. 2636 */ 2637 void cpufreq_update_limits(unsigned int cpu) 2638 { 2639 if (cpufreq_driver->update_limits) 2640 cpufreq_driver->update_limits(cpu); 2641 else 2642 cpufreq_update_policy(cpu); 2643 } 2644 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2645 2646 /********************************************************************* 2647 * BOOST * 2648 *********************************************************************/ 2649 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2650 { 2651 int ret; 2652 2653 if (!policy->freq_table) 2654 return -ENXIO; 2655 2656 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2657 if (ret) { 2658 pr_err("%s: Policy frequency update failed\n", __func__); 2659 return ret; 2660 } 2661 2662 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2663 if (ret < 0) 2664 return ret; 2665 2666 return 0; 2667 } 2668 2669 int cpufreq_boost_trigger_state(int state) 2670 { 2671 struct cpufreq_policy *policy; 2672 unsigned long flags; 2673 int ret = 0; 2674 2675 if (cpufreq_driver->boost_enabled == state) 2676 return 0; 2677 2678 write_lock_irqsave(&cpufreq_driver_lock, flags); 2679 cpufreq_driver->boost_enabled = state; 2680 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2681 2682 cpus_read_lock(); 2683 for_each_active_policy(policy) { 2684 ret = cpufreq_driver->set_boost(policy, state); 2685 if (ret) 2686 goto err_reset_state; 2687 } 2688 cpus_read_unlock(); 2689 2690 return 0; 2691 2692 err_reset_state: 2693 cpus_read_unlock(); 2694 2695 write_lock_irqsave(&cpufreq_driver_lock, flags); 2696 cpufreq_driver->boost_enabled = !state; 2697 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2698 2699 pr_err("%s: Cannot %s BOOST\n", 2700 __func__, state ? "enable" : "disable"); 2701 2702 return ret; 2703 } 2704 2705 static bool cpufreq_boost_supported(void) 2706 { 2707 return cpufreq_driver->set_boost; 2708 } 2709 2710 static int create_boost_sysfs_file(void) 2711 { 2712 int ret; 2713 2714 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2715 if (ret) 2716 pr_err("%s: cannot register global BOOST sysfs file\n", 2717 __func__); 2718 2719 return ret; 2720 } 2721 2722 static void remove_boost_sysfs_file(void) 2723 { 2724 if (cpufreq_boost_supported()) 2725 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2726 } 2727 2728 int cpufreq_enable_boost_support(void) 2729 { 2730 if (!cpufreq_driver) 2731 return -EINVAL; 2732 2733 if (cpufreq_boost_supported()) 2734 return 0; 2735 2736 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2737 2738 /* This will get removed on driver unregister */ 2739 return create_boost_sysfs_file(); 2740 } 2741 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2742 2743 int cpufreq_boost_enabled(void) 2744 { 2745 return cpufreq_driver->boost_enabled; 2746 } 2747 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2748 2749 /********************************************************************* 2750 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2751 *********************************************************************/ 2752 static enum cpuhp_state hp_online; 2753 2754 static int cpuhp_cpufreq_online(unsigned int cpu) 2755 { 2756 cpufreq_online(cpu); 2757 2758 return 0; 2759 } 2760 2761 static int cpuhp_cpufreq_offline(unsigned int cpu) 2762 { 2763 cpufreq_offline(cpu); 2764 2765 return 0; 2766 } 2767 2768 /** 2769 * cpufreq_register_driver - register a CPU Frequency driver 2770 * @driver_data: A struct cpufreq_driver containing the values# 2771 * submitted by the CPU Frequency driver. 2772 * 2773 * Registers a CPU Frequency driver to this core code. This code 2774 * returns zero on success, -EEXIST when another driver got here first 2775 * (and isn't unregistered in the meantime). 2776 * 2777 */ 2778 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2779 { 2780 unsigned long flags; 2781 int ret; 2782 2783 if (cpufreq_disabled()) 2784 return -ENODEV; 2785 2786 /* 2787 * The cpufreq core depends heavily on the availability of device 2788 * structure, make sure they are available before proceeding further. 2789 */ 2790 if (!get_cpu_device(0)) 2791 return -EPROBE_DEFER; 2792 2793 if (!driver_data || !driver_data->verify || !driver_data->init || 2794 !(driver_data->setpolicy || driver_data->target_index || 2795 driver_data->target) || 2796 (driver_data->setpolicy && (driver_data->target_index || 2797 driver_data->target)) || 2798 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2799 (!driver_data->online != !driver_data->offline)) 2800 return -EINVAL; 2801 2802 pr_debug("trying to register driver %s\n", driver_data->name); 2803 2804 /* Protect against concurrent CPU online/offline. */ 2805 cpus_read_lock(); 2806 2807 write_lock_irqsave(&cpufreq_driver_lock, flags); 2808 if (cpufreq_driver) { 2809 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2810 ret = -EEXIST; 2811 goto out; 2812 } 2813 cpufreq_driver = driver_data; 2814 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2815 2816 /* 2817 * Mark support for the scheduler's frequency invariance engine for 2818 * drivers that implement target(), target_index() or fast_switch(). 2819 */ 2820 if (!cpufreq_driver->setpolicy) { 2821 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2822 pr_debug("supports frequency invariance"); 2823 } 2824 2825 if (driver_data->setpolicy) 2826 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2827 2828 if (cpufreq_boost_supported()) { 2829 ret = create_boost_sysfs_file(); 2830 if (ret) 2831 goto err_null_driver; 2832 } 2833 2834 ret = subsys_interface_register(&cpufreq_interface); 2835 if (ret) 2836 goto err_boost_unreg; 2837 2838 if (unlikely(list_empty(&cpufreq_policy_list))) { 2839 /* if all ->init() calls failed, unregister */ 2840 ret = -ENODEV; 2841 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2842 driver_data->name); 2843 goto err_if_unreg; 2844 } 2845 2846 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2847 "cpufreq:online", 2848 cpuhp_cpufreq_online, 2849 cpuhp_cpufreq_offline); 2850 if (ret < 0) 2851 goto err_if_unreg; 2852 hp_online = ret; 2853 ret = 0; 2854 2855 pr_debug("driver %s up and running\n", driver_data->name); 2856 goto out; 2857 2858 err_if_unreg: 2859 subsys_interface_unregister(&cpufreq_interface); 2860 err_boost_unreg: 2861 remove_boost_sysfs_file(); 2862 err_null_driver: 2863 write_lock_irqsave(&cpufreq_driver_lock, flags); 2864 cpufreq_driver = NULL; 2865 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2866 out: 2867 cpus_read_unlock(); 2868 return ret; 2869 } 2870 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2871 2872 /* 2873 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2874 * 2875 * Unregister the current CPUFreq driver. Only call this if you have 2876 * the right to do so, i.e. if you have succeeded in initialising before! 2877 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2878 * currently not initialised. 2879 */ 2880 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2881 { 2882 unsigned long flags; 2883 2884 if (!cpufreq_driver || (driver != cpufreq_driver)) 2885 return -EINVAL; 2886 2887 pr_debug("unregistering driver %s\n", driver->name); 2888 2889 /* Protect against concurrent cpu hotplug */ 2890 cpus_read_lock(); 2891 subsys_interface_unregister(&cpufreq_interface); 2892 remove_boost_sysfs_file(); 2893 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2894 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2895 2896 write_lock_irqsave(&cpufreq_driver_lock, flags); 2897 2898 cpufreq_driver = NULL; 2899 2900 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2901 cpus_read_unlock(); 2902 2903 return 0; 2904 } 2905 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2906 2907 static int __init cpufreq_core_init(void) 2908 { 2909 struct cpufreq_governor *gov = cpufreq_default_governor(); 2910 2911 if (cpufreq_disabled()) 2912 return -ENODEV; 2913 2914 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2915 BUG_ON(!cpufreq_global_kobject); 2916 2917 if (!strlen(default_governor)) 2918 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2919 2920 return 0; 2921 } 2922 module_param(off, int, 0444); 2923 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2924 core_initcall(cpufreq_core_init); 2925