xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision b34e08d5)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 /**
34  * The "cpufreq driver" - the arch- or hardware-dependent low
35  * level driver of CPUFreq support, and its spinlock. This lock
36  * also protects the cpufreq_cpu_data array.
37  */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44 
45 /* This one keeps track of the previously set governor of a removed CPU */
46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47 
48 /* Flag to suspend/resume CPUFreq governors */
49 static bool cpufreq_suspended;
50 
51 static inline bool has_target(void)
52 {
53 	return cpufreq_driver->target_index || cpufreq_driver->target;
54 }
55 
56 /*
57  * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58  * sections
59  */
60 static DECLARE_RWSEM(cpufreq_rwsem);
61 
62 /* internal prototypes */
63 static int __cpufreq_governor(struct cpufreq_policy *policy,
64 		unsigned int event);
65 static unsigned int __cpufreq_get(unsigned int cpu);
66 static void handle_update(struct work_struct *work);
67 
68 /**
69  * Two notifier lists: the "policy" list is involved in the
70  * validation process for a new CPU frequency policy; the
71  * "transition" list for kernel code that needs to handle
72  * changes to devices when the CPU clock speed changes.
73  * The mutex locks both lists.
74  */
75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76 static struct srcu_notifier_head cpufreq_transition_notifier_list;
77 
78 static bool init_cpufreq_transition_notifier_list_called;
79 static int __init init_cpufreq_transition_notifier_list(void)
80 {
81 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 	init_cpufreq_transition_notifier_list_called = true;
83 	return 0;
84 }
85 pure_initcall(init_cpufreq_transition_notifier_list);
86 
87 static int off __read_mostly;
88 static int cpufreq_disabled(void)
89 {
90 	return off;
91 }
92 void disable_cpufreq(void)
93 {
94 	off = 1;
95 }
96 static LIST_HEAD(cpufreq_governor_list);
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98 
99 bool have_governor_per_policy(void)
100 {
101 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104 
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 	if (have_governor_per_policy())
108 		return &policy->kobj;
109 	else
110 		return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113 
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 	u64 idle_time;
117 	u64 cur_wall_time;
118 	u64 busy_time;
119 
120 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121 
122 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128 
129 	idle_time = cur_wall_time - busy_time;
130 	if (wall)
131 		*wall = cputime_to_usecs(cur_wall_time);
132 
133 	return cputime_to_usecs(idle_time);
134 }
135 
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139 
140 	if (idle_time == -1ULL)
141 		return get_cpu_idle_time_jiffy(cpu, wall);
142 	else if (!io_busy)
143 		idle_time += get_cpu_iowait_time_us(cpu, wall);
144 
145 	return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148 
149 /*
150  * This is a generic cpufreq init() routine which can be used by cpufreq
151  * drivers of SMP systems. It will do following:
152  * - validate & show freq table passed
153  * - set policies transition latency
154  * - policy->cpus with all possible CPUs
155  */
156 int cpufreq_generic_init(struct cpufreq_policy *policy,
157 		struct cpufreq_frequency_table *table,
158 		unsigned int transition_latency)
159 {
160 	int ret;
161 
162 	ret = cpufreq_table_validate_and_show(policy, table);
163 	if (ret) {
164 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 		return ret;
166 	}
167 
168 	policy->cpuinfo.transition_latency = transition_latency;
169 
170 	/*
171 	 * The driver only supports the SMP configuartion where all processors
172 	 * share the clock and voltage and clock.
173 	 */
174 	cpumask_setall(policy->cpus);
175 
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179 
180 unsigned int cpufreq_generic_get(unsigned int cpu)
181 {
182 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183 
184 	if (!policy || IS_ERR(policy->clk)) {
185 		pr_err("%s: No %s associated to cpu: %d\n",
186 		       __func__, policy ? "clk" : "policy", cpu);
187 		return 0;
188 	}
189 
190 	return clk_get_rate(policy->clk) / 1000;
191 }
192 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193 
194 /* Only for cpufreq core internal use */
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 	return per_cpu(cpufreq_cpu_data, cpu);
198 }
199 
200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201 {
202 	struct cpufreq_policy *policy = NULL;
203 	unsigned long flags;
204 
205 	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 		return NULL;
207 
208 	if (!down_read_trylock(&cpufreq_rwsem))
209 		return NULL;
210 
211 	/* get the cpufreq driver */
212 	read_lock_irqsave(&cpufreq_driver_lock, flags);
213 
214 	if (cpufreq_driver) {
215 		/* get the CPU */
216 		policy = per_cpu(cpufreq_cpu_data, cpu);
217 		if (policy)
218 			kobject_get(&policy->kobj);
219 	}
220 
221 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222 
223 	if (!policy)
224 		up_read(&cpufreq_rwsem);
225 
226 	return policy;
227 }
228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229 
230 void cpufreq_cpu_put(struct cpufreq_policy *policy)
231 {
232 	if (cpufreq_disabled())
233 		return;
234 
235 	kobject_put(&policy->kobj);
236 	up_read(&cpufreq_rwsem);
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239 
240 /*********************************************************************
241  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
242  *********************************************************************/
243 
244 /**
245  * adjust_jiffies - adjust the system "loops_per_jiffy"
246  *
247  * This function alters the system "loops_per_jiffy" for the clock
248  * speed change. Note that loops_per_jiffy cannot be updated on SMP
249  * systems as each CPU might be scaled differently. So, use the arch
250  * per-CPU loops_per_jiffy value wherever possible.
251  */
252 #ifndef CONFIG_SMP
253 static unsigned long l_p_j_ref;
254 static unsigned int l_p_j_ref_freq;
255 
256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257 {
258 	if (ci->flags & CPUFREQ_CONST_LOOPS)
259 		return;
260 
261 	if (!l_p_j_ref_freq) {
262 		l_p_j_ref = loops_per_jiffy;
263 		l_p_j_ref_freq = ci->old;
264 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 			 l_p_j_ref, l_p_j_ref_freq);
266 	}
267 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 								ci->new);
270 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 			 loops_per_jiffy, ci->new);
272 	}
273 }
274 #else
275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276 {
277 	return;
278 }
279 #endif
280 
281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 		struct cpufreq_freqs *freqs, unsigned int state)
283 {
284 	BUG_ON(irqs_disabled());
285 
286 	if (cpufreq_disabled())
287 		return;
288 
289 	freqs->flags = cpufreq_driver->flags;
290 	pr_debug("notification %u of frequency transition to %u kHz\n",
291 		 state, freqs->new);
292 
293 	switch (state) {
294 
295 	case CPUFREQ_PRECHANGE:
296 		/* detect if the driver reported a value as "old frequency"
297 		 * which is not equal to what the cpufreq core thinks is
298 		 * "old frequency".
299 		 */
300 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 			if ((policy) && (policy->cpu == freqs->cpu) &&
302 			    (policy->cur) && (policy->cur != freqs->old)) {
303 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 					 freqs->old, policy->cur);
305 				freqs->old = policy->cur;
306 			}
307 		}
308 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 				CPUFREQ_PRECHANGE, freqs);
310 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 		break;
312 
313 	case CPUFREQ_POSTCHANGE:
314 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 		pr_debug("FREQ: %lu - CPU: %lu\n",
316 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 		trace_cpu_frequency(freqs->new, freqs->cpu);
318 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 				CPUFREQ_POSTCHANGE, freqs);
320 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 			policy->cur = freqs->new;
322 		break;
323 	}
324 }
325 
326 /**
327  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328  * on frequency transition.
329  *
330  * This function calls the transition notifiers and the "adjust_jiffies"
331  * function. It is called twice on all CPU frequency changes that have
332  * external effects.
333  */
334 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 		struct cpufreq_freqs *freqs, unsigned int state)
336 {
337 	for_each_cpu(freqs->cpu, policy->cpus)
338 		__cpufreq_notify_transition(policy, freqs, state);
339 }
340 
341 /* Do post notifications when there are chances that transition has failed */
342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 		struct cpufreq_freqs *freqs, int transition_failed)
344 {
345 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 	if (!transition_failed)
347 		return;
348 
349 	swap(freqs->old, freqs->new);
350 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352 }
353 
354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 		struct cpufreq_freqs *freqs)
356 {
357 wait:
358 	wait_event(policy->transition_wait, !policy->transition_ongoing);
359 
360 	spin_lock(&policy->transition_lock);
361 
362 	if (unlikely(policy->transition_ongoing)) {
363 		spin_unlock(&policy->transition_lock);
364 		goto wait;
365 	}
366 
367 	policy->transition_ongoing = true;
368 
369 	spin_unlock(&policy->transition_lock);
370 
371 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
372 }
373 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
374 
375 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
376 		struct cpufreq_freqs *freqs, int transition_failed)
377 {
378 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
379 		return;
380 
381 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
382 
383 	policy->transition_ongoing = false;
384 
385 	wake_up(&policy->transition_wait);
386 }
387 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
388 
389 
390 /*********************************************************************
391  *                          SYSFS INTERFACE                          *
392  *********************************************************************/
393 static ssize_t show_boost(struct kobject *kobj,
394 				 struct attribute *attr, char *buf)
395 {
396 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
397 }
398 
399 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
400 				  const char *buf, size_t count)
401 {
402 	int ret, enable;
403 
404 	ret = sscanf(buf, "%d", &enable);
405 	if (ret != 1 || enable < 0 || enable > 1)
406 		return -EINVAL;
407 
408 	if (cpufreq_boost_trigger_state(enable)) {
409 		pr_err("%s: Cannot %s BOOST!\n",
410 		       __func__, enable ? "enable" : "disable");
411 		return -EINVAL;
412 	}
413 
414 	pr_debug("%s: cpufreq BOOST %s\n",
415 		 __func__, enable ? "enabled" : "disabled");
416 
417 	return count;
418 }
419 define_one_global_rw(boost);
420 
421 static struct cpufreq_governor *__find_governor(const char *str_governor)
422 {
423 	struct cpufreq_governor *t;
424 
425 	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
426 		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
427 			return t;
428 
429 	return NULL;
430 }
431 
432 /**
433  * cpufreq_parse_governor - parse a governor string
434  */
435 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
436 				struct cpufreq_governor **governor)
437 {
438 	int err = -EINVAL;
439 
440 	if (!cpufreq_driver)
441 		goto out;
442 
443 	if (cpufreq_driver->setpolicy) {
444 		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
445 			*policy = CPUFREQ_POLICY_PERFORMANCE;
446 			err = 0;
447 		} else if (!strnicmp(str_governor, "powersave",
448 						CPUFREQ_NAME_LEN)) {
449 			*policy = CPUFREQ_POLICY_POWERSAVE;
450 			err = 0;
451 		}
452 	} else if (has_target()) {
453 		struct cpufreq_governor *t;
454 
455 		mutex_lock(&cpufreq_governor_mutex);
456 
457 		t = __find_governor(str_governor);
458 
459 		if (t == NULL) {
460 			int ret;
461 
462 			mutex_unlock(&cpufreq_governor_mutex);
463 			ret = request_module("cpufreq_%s", str_governor);
464 			mutex_lock(&cpufreq_governor_mutex);
465 
466 			if (ret == 0)
467 				t = __find_governor(str_governor);
468 		}
469 
470 		if (t != NULL) {
471 			*governor = t;
472 			err = 0;
473 		}
474 
475 		mutex_unlock(&cpufreq_governor_mutex);
476 	}
477 out:
478 	return err;
479 }
480 
481 /**
482  * cpufreq_per_cpu_attr_read() / show_##file_name() -
483  * print out cpufreq information
484  *
485  * Write out information from cpufreq_driver->policy[cpu]; object must be
486  * "unsigned int".
487  */
488 
489 #define show_one(file_name, object)			\
490 static ssize_t show_##file_name				\
491 (struct cpufreq_policy *policy, char *buf)		\
492 {							\
493 	return sprintf(buf, "%u\n", policy->object);	\
494 }
495 
496 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
497 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
498 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
499 show_one(scaling_min_freq, min);
500 show_one(scaling_max_freq, max);
501 show_one(scaling_cur_freq, cur);
502 
503 static int cpufreq_set_policy(struct cpufreq_policy *policy,
504 				struct cpufreq_policy *new_policy);
505 
506 /**
507  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
508  */
509 #define store_one(file_name, object)			\
510 static ssize_t store_##file_name					\
511 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
512 {									\
513 	int ret;							\
514 	struct cpufreq_policy new_policy;				\
515 									\
516 	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
517 	if (ret)							\
518 		return -EINVAL;						\
519 									\
520 	ret = sscanf(buf, "%u", &new_policy.object);			\
521 	if (ret != 1)							\
522 		return -EINVAL;						\
523 									\
524 	ret = cpufreq_set_policy(policy, &new_policy);		\
525 	policy->user_policy.object = policy->object;			\
526 									\
527 	return ret ? ret : count;					\
528 }
529 
530 store_one(scaling_min_freq, min);
531 store_one(scaling_max_freq, max);
532 
533 /**
534  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
535  */
536 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
537 					char *buf)
538 {
539 	unsigned int cur_freq = __cpufreq_get(policy->cpu);
540 	if (!cur_freq)
541 		return sprintf(buf, "<unknown>");
542 	return sprintf(buf, "%u\n", cur_freq);
543 }
544 
545 /**
546  * show_scaling_governor - show the current policy for the specified CPU
547  */
548 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
549 {
550 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
551 		return sprintf(buf, "powersave\n");
552 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
553 		return sprintf(buf, "performance\n");
554 	else if (policy->governor)
555 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
556 				policy->governor->name);
557 	return -EINVAL;
558 }
559 
560 /**
561  * store_scaling_governor - store policy for the specified CPU
562  */
563 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
564 					const char *buf, size_t count)
565 {
566 	int ret;
567 	char	str_governor[16];
568 	struct cpufreq_policy new_policy;
569 
570 	ret = cpufreq_get_policy(&new_policy, policy->cpu);
571 	if (ret)
572 		return ret;
573 
574 	ret = sscanf(buf, "%15s", str_governor);
575 	if (ret != 1)
576 		return -EINVAL;
577 
578 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
579 						&new_policy.governor))
580 		return -EINVAL;
581 
582 	ret = cpufreq_set_policy(policy, &new_policy);
583 
584 	policy->user_policy.policy = policy->policy;
585 	policy->user_policy.governor = policy->governor;
586 
587 	if (ret)
588 		return ret;
589 	else
590 		return count;
591 }
592 
593 /**
594  * show_scaling_driver - show the cpufreq driver currently loaded
595  */
596 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
597 {
598 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
599 }
600 
601 /**
602  * show_scaling_available_governors - show the available CPUfreq governors
603  */
604 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
605 						char *buf)
606 {
607 	ssize_t i = 0;
608 	struct cpufreq_governor *t;
609 
610 	if (!has_target()) {
611 		i += sprintf(buf, "performance powersave");
612 		goto out;
613 	}
614 
615 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
616 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
617 		    - (CPUFREQ_NAME_LEN + 2)))
618 			goto out;
619 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
620 	}
621 out:
622 	i += sprintf(&buf[i], "\n");
623 	return i;
624 }
625 
626 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
627 {
628 	ssize_t i = 0;
629 	unsigned int cpu;
630 
631 	for_each_cpu(cpu, mask) {
632 		if (i)
633 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
634 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
635 		if (i >= (PAGE_SIZE - 5))
636 			break;
637 	}
638 	i += sprintf(&buf[i], "\n");
639 	return i;
640 }
641 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
642 
643 /**
644  * show_related_cpus - show the CPUs affected by each transition even if
645  * hw coordination is in use
646  */
647 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
648 {
649 	return cpufreq_show_cpus(policy->related_cpus, buf);
650 }
651 
652 /**
653  * show_affected_cpus - show the CPUs affected by each transition
654  */
655 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
656 {
657 	return cpufreq_show_cpus(policy->cpus, buf);
658 }
659 
660 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
661 					const char *buf, size_t count)
662 {
663 	unsigned int freq = 0;
664 	unsigned int ret;
665 
666 	if (!policy->governor || !policy->governor->store_setspeed)
667 		return -EINVAL;
668 
669 	ret = sscanf(buf, "%u", &freq);
670 	if (ret != 1)
671 		return -EINVAL;
672 
673 	policy->governor->store_setspeed(policy, freq);
674 
675 	return count;
676 }
677 
678 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
679 {
680 	if (!policy->governor || !policy->governor->show_setspeed)
681 		return sprintf(buf, "<unsupported>\n");
682 
683 	return policy->governor->show_setspeed(policy, buf);
684 }
685 
686 /**
687  * show_bios_limit - show the current cpufreq HW/BIOS limitation
688  */
689 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
690 {
691 	unsigned int limit;
692 	int ret;
693 	if (cpufreq_driver->bios_limit) {
694 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
695 		if (!ret)
696 			return sprintf(buf, "%u\n", limit);
697 	}
698 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
699 }
700 
701 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
702 cpufreq_freq_attr_ro(cpuinfo_min_freq);
703 cpufreq_freq_attr_ro(cpuinfo_max_freq);
704 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
705 cpufreq_freq_attr_ro(scaling_available_governors);
706 cpufreq_freq_attr_ro(scaling_driver);
707 cpufreq_freq_attr_ro(scaling_cur_freq);
708 cpufreq_freq_attr_ro(bios_limit);
709 cpufreq_freq_attr_ro(related_cpus);
710 cpufreq_freq_attr_ro(affected_cpus);
711 cpufreq_freq_attr_rw(scaling_min_freq);
712 cpufreq_freq_attr_rw(scaling_max_freq);
713 cpufreq_freq_attr_rw(scaling_governor);
714 cpufreq_freq_attr_rw(scaling_setspeed);
715 
716 static struct attribute *default_attrs[] = {
717 	&cpuinfo_min_freq.attr,
718 	&cpuinfo_max_freq.attr,
719 	&cpuinfo_transition_latency.attr,
720 	&scaling_min_freq.attr,
721 	&scaling_max_freq.attr,
722 	&affected_cpus.attr,
723 	&related_cpus.attr,
724 	&scaling_governor.attr,
725 	&scaling_driver.attr,
726 	&scaling_available_governors.attr,
727 	&scaling_setspeed.attr,
728 	NULL
729 };
730 
731 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
732 #define to_attr(a) container_of(a, struct freq_attr, attr)
733 
734 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
735 {
736 	struct cpufreq_policy *policy = to_policy(kobj);
737 	struct freq_attr *fattr = to_attr(attr);
738 	ssize_t ret;
739 
740 	if (!down_read_trylock(&cpufreq_rwsem))
741 		return -EINVAL;
742 
743 	down_read(&policy->rwsem);
744 
745 	if (fattr->show)
746 		ret = fattr->show(policy, buf);
747 	else
748 		ret = -EIO;
749 
750 	up_read(&policy->rwsem);
751 	up_read(&cpufreq_rwsem);
752 
753 	return ret;
754 }
755 
756 static ssize_t store(struct kobject *kobj, struct attribute *attr,
757 		     const char *buf, size_t count)
758 {
759 	struct cpufreq_policy *policy = to_policy(kobj);
760 	struct freq_attr *fattr = to_attr(attr);
761 	ssize_t ret = -EINVAL;
762 
763 	get_online_cpus();
764 
765 	if (!cpu_online(policy->cpu))
766 		goto unlock;
767 
768 	if (!down_read_trylock(&cpufreq_rwsem))
769 		goto unlock;
770 
771 	down_write(&policy->rwsem);
772 
773 	if (fattr->store)
774 		ret = fattr->store(policy, buf, count);
775 	else
776 		ret = -EIO;
777 
778 	up_write(&policy->rwsem);
779 
780 	up_read(&cpufreq_rwsem);
781 unlock:
782 	put_online_cpus();
783 
784 	return ret;
785 }
786 
787 static void cpufreq_sysfs_release(struct kobject *kobj)
788 {
789 	struct cpufreq_policy *policy = to_policy(kobj);
790 	pr_debug("last reference is dropped\n");
791 	complete(&policy->kobj_unregister);
792 }
793 
794 static const struct sysfs_ops sysfs_ops = {
795 	.show	= show,
796 	.store	= store,
797 };
798 
799 static struct kobj_type ktype_cpufreq = {
800 	.sysfs_ops	= &sysfs_ops,
801 	.default_attrs	= default_attrs,
802 	.release	= cpufreq_sysfs_release,
803 };
804 
805 struct kobject *cpufreq_global_kobject;
806 EXPORT_SYMBOL(cpufreq_global_kobject);
807 
808 static int cpufreq_global_kobject_usage;
809 
810 int cpufreq_get_global_kobject(void)
811 {
812 	if (!cpufreq_global_kobject_usage++)
813 		return kobject_add(cpufreq_global_kobject,
814 				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
815 
816 	return 0;
817 }
818 EXPORT_SYMBOL(cpufreq_get_global_kobject);
819 
820 void cpufreq_put_global_kobject(void)
821 {
822 	if (!--cpufreq_global_kobject_usage)
823 		kobject_del(cpufreq_global_kobject);
824 }
825 EXPORT_SYMBOL(cpufreq_put_global_kobject);
826 
827 int cpufreq_sysfs_create_file(const struct attribute *attr)
828 {
829 	int ret = cpufreq_get_global_kobject();
830 
831 	if (!ret) {
832 		ret = sysfs_create_file(cpufreq_global_kobject, attr);
833 		if (ret)
834 			cpufreq_put_global_kobject();
835 	}
836 
837 	return ret;
838 }
839 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
840 
841 void cpufreq_sysfs_remove_file(const struct attribute *attr)
842 {
843 	sysfs_remove_file(cpufreq_global_kobject, attr);
844 	cpufreq_put_global_kobject();
845 }
846 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
847 
848 /* symlink affected CPUs */
849 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
850 {
851 	unsigned int j;
852 	int ret = 0;
853 
854 	for_each_cpu(j, policy->cpus) {
855 		struct device *cpu_dev;
856 
857 		if (j == policy->cpu)
858 			continue;
859 
860 		pr_debug("Adding link for CPU: %u\n", j);
861 		cpu_dev = get_cpu_device(j);
862 		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
863 					"cpufreq");
864 		if (ret)
865 			break;
866 	}
867 	return ret;
868 }
869 
870 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
871 				     struct device *dev)
872 {
873 	struct freq_attr **drv_attr;
874 	int ret = 0;
875 
876 	/* prepare interface data */
877 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
878 				   &dev->kobj, "cpufreq");
879 	if (ret)
880 		return ret;
881 
882 	/* set up files for this cpu device */
883 	drv_attr = cpufreq_driver->attr;
884 	while ((drv_attr) && (*drv_attr)) {
885 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
886 		if (ret)
887 			goto err_out_kobj_put;
888 		drv_attr++;
889 	}
890 	if (cpufreq_driver->get) {
891 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
892 		if (ret)
893 			goto err_out_kobj_put;
894 	}
895 	if (has_target()) {
896 		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
897 		if (ret)
898 			goto err_out_kobj_put;
899 	}
900 	if (cpufreq_driver->bios_limit) {
901 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
902 		if (ret)
903 			goto err_out_kobj_put;
904 	}
905 
906 	ret = cpufreq_add_dev_symlink(policy);
907 	if (ret)
908 		goto err_out_kobj_put;
909 
910 	return ret;
911 
912 err_out_kobj_put:
913 	kobject_put(&policy->kobj);
914 	wait_for_completion(&policy->kobj_unregister);
915 	return ret;
916 }
917 
918 static void cpufreq_init_policy(struct cpufreq_policy *policy)
919 {
920 	struct cpufreq_governor *gov = NULL;
921 	struct cpufreq_policy new_policy;
922 	int ret = 0;
923 
924 	memcpy(&new_policy, policy, sizeof(*policy));
925 
926 	/* Update governor of new_policy to the governor used before hotplug */
927 	gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
928 	if (gov)
929 		pr_debug("Restoring governor %s for cpu %d\n",
930 				policy->governor->name, policy->cpu);
931 	else
932 		gov = CPUFREQ_DEFAULT_GOVERNOR;
933 
934 	new_policy.governor = gov;
935 
936 	/* Use the default policy if its valid. */
937 	if (cpufreq_driver->setpolicy)
938 		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
939 
940 	/* set default policy */
941 	ret = cpufreq_set_policy(policy, &new_policy);
942 	if (ret) {
943 		pr_debug("setting policy failed\n");
944 		if (cpufreq_driver->exit)
945 			cpufreq_driver->exit(policy);
946 	}
947 }
948 
949 #ifdef CONFIG_HOTPLUG_CPU
950 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
951 				  unsigned int cpu, struct device *dev)
952 {
953 	int ret = 0;
954 	unsigned long flags;
955 
956 	if (has_target()) {
957 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
958 		if (ret) {
959 			pr_err("%s: Failed to stop governor\n", __func__);
960 			return ret;
961 		}
962 	}
963 
964 	down_write(&policy->rwsem);
965 
966 	write_lock_irqsave(&cpufreq_driver_lock, flags);
967 
968 	cpumask_set_cpu(cpu, policy->cpus);
969 	per_cpu(cpufreq_cpu_data, cpu) = policy;
970 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
971 
972 	up_write(&policy->rwsem);
973 
974 	if (has_target()) {
975 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
976 		if (!ret)
977 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
978 
979 		if (ret) {
980 			pr_err("%s: Failed to start governor\n", __func__);
981 			return ret;
982 		}
983 	}
984 
985 	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
986 }
987 #endif
988 
989 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
990 {
991 	struct cpufreq_policy *policy;
992 	unsigned long flags;
993 
994 	read_lock_irqsave(&cpufreq_driver_lock, flags);
995 
996 	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
997 
998 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
999 
1000 	policy->governor = NULL;
1001 
1002 	return policy;
1003 }
1004 
1005 static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006 {
1007 	struct cpufreq_policy *policy;
1008 
1009 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010 	if (!policy)
1011 		return NULL;
1012 
1013 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014 		goto err_free_policy;
1015 
1016 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017 		goto err_free_cpumask;
1018 
1019 	INIT_LIST_HEAD(&policy->policy_list);
1020 	init_rwsem(&policy->rwsem);
1021 	spin_lock_init(&policy->transition_lock);
1022 	init_waitqueue_head(&policy->transition_wait);
1023 
1024 	return policy;
1025 
1026 err_free_cpumask:
1027 	free_cpumask_var(policy->cpus);
1028 err_free_policy:
1029 	kfree(policy);
1030 
1031 	return NULL;
1032 }
1033 
1034 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035 {
1036 	struct kobject *kobj;
1037 	struct completion *cmp;
1038 
1039 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040 			CPUFREQ_REMOVE_POLICY, policy);
1041 
1042 	down_read(&policy->rwsem);
1043 	kobj = &policy->kobj;
1044 	cmp = &policy->kobj_unregister;
1045 	up_read(&policy->rwsem);
1046 	kobject_put(kobj);
1047 
1048 	/*
1049 	 * We need to make sure that the underlying kobj is
1050 	 * actually not referenced anymore by anybody before we
1051 	 * proceed with unloading.
1052 	 */
1053 	pr_debug("waiting for dropping of refcount\n");
1054 	wait_for_completion(cmp);
1055 	pr_debug("wait complete\n");
1056 }
1057 
1058 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059 {
1060 	free_cpumask_var(policy->related_cpus);
1061 	free_cpumask_var(policy->cpus);
1062 	kfree(policy);
1063 }
1064 
1065 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066 {
1067 	if (WARN_ON(cpu == policy->cpu))
1068 		return;
1069 
1070 	down_write(&policy->rwsem);
1071 
1072 	policy->last_cpu = policy->cpu;
1073 	policy->cpu = cpu;
1074 
1075 	up_write(&policy->rwsem);
1076 
1077 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078 			CPUFREQ_UPDATE_POLICY_CPU, policy);
1079 }
1080 
1081 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082 {
1083 	unsigned int j, cpu = dev->id;
1084 	int ret = -ENOMEM;
1085 	struct cpufreq_policy *policy;
1086 	unsigned long flags;
1087 	bool recover_policy = cpufreq_suspended;
1088 #ifdef CONFIG_HOTPLUG_CPU
1089 	struct cpufreq_policy *tpolicy;
1090 #endif
1091 
1092 	if (cpu_is_offline(cpu))
1093 		return 0;
1094 
1095 	pr_debug("adding CPU %u\n", cpu);
1096 
1097 #ifdef CONFIG_SMP
1098 	/* check whether a different CPU already registered this
1099 	 * CPU because it is in the same boat. */
1100 	policy = cpufreq_cpu_get(cpu);
1101 	if (unlikely(policy)) {
1102 		cpufreq_cpu_put(policy);
1103 		return 0;
1104 	}
1105 #endif
1106 
1107 	if (!down_read_trylock(&cpufreq_rwsem))
1108 		return 0;
1109 
1110 #ifdef CONFIG_HOTPLUG_CPU
1111 	/* Check if this cpu was hot-unplugged earlier and has siblings */
1112 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1113 	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114 		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115 			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116 			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117 			up_read(&cpufreq_rwsem);
1118 			return ret;
1119 		}
1120 	}
1121 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122 #endif
1123 
1124 	/*
1125 	 * Restore the saved policy when doing light-weight init and fall back
1126 	 * to the full init if that fails.
1127 	 */
1128 	policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129 	if (!policy) {
1130 		recover_policy = false;
1131 		policy = cpufreq_policy_alloc();
1132 		if (!policy)
1133 			goto nomem_out;
1134 	}
1135 
1136 	/*
1137 	 * In the resume path, since we restore a saved policy, the assignment
1138 	 * to policy->cpu is like an update of the existing policy, rather than
1139 	 * the creation of a brand new one. So we need to perform this update
1140 	 * by invoking update_policy_cpu().
1141 	 */
1142 	if (recover_policy && cpu != policy->cpu)
1143 		update_policy_cpu(policy, cpu);
1144 	else
1145 		policy->cpu = cpu;
1146 
1147 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1148 
1149 	init_completion(&policy->kobj_unregister);
1150 	INIT_WORK(&policy->update, handle_update);
1151 
1152 	/* call driver. From then on the cpufreq must be able
1153 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1154 	 */
1155 	ret = cpufreq_driver->init(policy);
1156 	if (ret) {
1157 		pr_debug("initialization failed\n");
1158 		goto err_set_policy_cpu;
1159 	}
1160 
1161 	/* related cpus should atleast have policy->cpus */
1162 	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163 
1164 	/*
1165 	 * affected cpus must always be the one, which are online. We aren't
1166 	 * managing offline cpus here.
1167 	 */
1168 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169 
1170 	if (!recover_policy) {
1171 		policy->user_policy.min = policy->min;
1172 		policy->user_policy.max = policy->max;
1173 	}
1174 
1175 	down_write(&policy->rwsem);
1176 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1177 	for_each_cpu(j, policy->cpus)
1178 		per_cpu(cpufreq_cpu_data, j) = policy;
1179 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1180 
1181 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1182 		policy->cur = cpufreq_driver->get(policy->cpu);
1183 		if (!policy->cur) {
1184 			pr_err("%s: ->get() failed\n", __func__);
1185 			goto err_get_freq;
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * Sometimes boot loaders set CPU frequency to a value outside of
1191 	 * frequency table present with cpufreq core. In such cases CPU might be
1192 	 * unstable if it has to run on that frequency for long duration of time
1193 	 * and so its better to set it to a frequency which is specified in
1194 	 * freq-table. This also makes cpufreq stats inconsistent as
1195 	 * cpufreq-stats would fail to register because current frequency of CPU
1196 	 * isn't found in freq-table.
1197 	 *
1198 	 * Because we don't want this change to effect boot process badly, we go
1199 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201 	 * is initialized to zero).
1202 	 *
1203 	 * We are passing target-freq as "policy->cur - 1" otherwise
1204 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205 	 * equal to target-freq.
1206 	 */
1207 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208 	    && has_target()) {
1209 		/* Are we running at unknown frequency ? */
1210 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211 		if (ret == -EINVAL) {
1212 			/* Warn user and fix it */
1213 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214 				__func__, policy->cpu, policy->cur);
1215 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216 				CPUFREQ_RELATION_L);
1217 
1218 			/*
1219 			 * Reaching here after boot in a few seconds may not
1220 			 * mean that system will remain stable at "unknown"
1221 			 * frequency for longer duration. Hence, a BUG_ON().
1222 			 */
1223 			BUG_ON(ret);
1224 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225 				__func__, policy->cpu, policy->cur);
1226 		}
1227 	}
1228 
1229 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230 				     CPUFREQ_START, policy);
1231 
1232 	if (!recover_policy) {
1233 		ret = cpufreq_add_dev_interface(policy, dev);
1234 		if (ret)
1235 			goto err_out_unregister;
1236 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237 				CPUFREQ_CREATE_POLICY, policy);
1238 	}
1239 
1240 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1241 	list_add(&policy->policy_list, &cpufreq_policy_list);
1242 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243 
1244 	cpufreq_init_policy(policy);
1245 
1246 	if (!recover_policy) {
1247 		policy->user_policy.policy = policy->policy;
1248 		policy->user_policy.governor = policy->governor;
1249 	}
1250 	up_write(&policy->rwsem);
1251 
1252 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1253 	up_read(&cpufreq_rwsem);
1254 
1255 	pr_debug("initialization complete\n");
1256 
1257 	return 0;
1258 
1259 err_out_unregister:
1260 err_get_freq:
1261 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1262 	for_each_cpu(j, policy->cpus)
1263 		per_cpu(cpufreq_cpu_data, j) = NULL;
1264 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265 
1266 	if (cpufreq_driver->exit)
1267 		cpufreq_driver->exit(policy);
1268 err_set_policy_cpu:
1269 	if (recover_policy) {
1270 		/* Do not leave stale fallback data behind. */
1271 		per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272 		cpufreq_policy_put_kobj(policy);
1273 	}
1274 	cpufreq_policy_free(policy);
1275 
1276 nomem_out:
1277 	up_read(&cpufreq_rwsem);
1278 
1279 	return ret;
1280 }
1281 
1282 /**
1283  * cpufreq_add_dev - add a CPU device
1284  *
1285  * Adds the cpufreq interface for a CPU device.
1286  *
1287  * The Oracle says: try running cpufreq registration/unregistration concurrently
1288  * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289  * mess up, but more thorough testing is needed. - Mathieu
1290  */
1291 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292 {
1293 	return __cpufreq_add_dev(dev, sif);
1294 }
1295 
1296 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297 					   unsigned int old_cpu)
1298 {
1299 	struct device *cpu_dev;
1300 	int ret;
1301 
1302 	/* first sibling now owns the new sysfs dir */
1303 	cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304 
1305 	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306 	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307 	if (ret) {
1308 		pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309 
1310 		down_write(&policy->rwsem);
1311 		cpumask_set_cpu(old_cpu, policy->cpus);
1312 		up_write(&policy->rwsem);
1313 
1314 		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315 					"cpufreq");
1316 
1317 		return -EINVAL;
1318 	}
1319 
1320 	return cpu_dev->id;
1321 }
1322 
1323 static int __cpufreq_remove_dev_prepare(struct device *dev,
1324 					struct subsys_interface *sif)
1325 {
1326 	unsigned int cpu = dev->id, cpus;
1327 	int new_cpu, ret;
1328 	unsigned long flags;
1329 	struct cpufreq_policy *policy;
1330 
1331 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332 
1333 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1334 
1335 	policy = per_cpu(cpufreq_cpu_data, cpu);
1336 
1337 	/* Save the policy somewhere when doing a light-weight tear-down */
1338 	if (cpufreq_suspended)
1339 		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340 
1341 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342 
1343 	if (!policy) {
1344 		pr_debug("%s: No cpu_data found\n", __func__);
1345 		return -EINVAL;
1346 	}
1347 
1348 	if (has_target()) {
1349 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350 		if (ret) {
1351 			pr_err("%s: Failed to stop governor\n", __func__);
1352 			return ret;
1353 		}
1354 	}
1355 
1356 	if (!cpufreq_driver->setpolicy)
1357 		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358 			policy->governor->name, CPUFREQ_NAME_LEN);
1359 
1360 	down_read(&policy->rwsem);
1361 	cpus = cpumask_weight(policy->cpus);
1362 	up_read(&policy->rwsem);
1363 
1364 	if (cpu != policy->cpu) {
1365 		sysfs_remove_link(&dev->kobj, "cpufreq");
1366 	} else if (cpus > 1) {
1367 		new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368 		if (new_cpu >= 0) {
1369 			update_policy_cpu(policy, new_cpu);
1370 
1371 			if (!cpufreq_suspended)
1372 				pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373 					 __func__, new_cpu, cpu);
1374 		}
1375 	} else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376 		cpufreq_driver->stop_cpu(policy);
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 static int __cpufreq_remove_dev_finish(struct device *dev,
1383 				       struct subsys_interface *sif)
1384 {
1385 	unsigned int cpu = dev->id, cpus;
1386 	int ret;
1387 	unsigned long flags;
1388 	struct cpufreq_policy *policy;
1389 
1390 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1391 	policy = per_cpu(cpufreq_cpu_data, cpu);
1392 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393 
1394 	if (!policy) {
1395 		pr_debug("%s: No cpu_data found\n", __func__);
1396 		return -EINVAL;
1397 	}
1398 
1399 	down_write(&policy->rwsem);
1400 	cpus = cpumask_weight(policy->cpus);
1401 
1402 	if (cpus > 1)
1403 		cpumask_clear_cpu(cpu, policy->cpus);
1404 	up_write(&policy->rwsem);
1405 
1406 	/* If cpu is last user of policy, free policy */
1407 	if (cpus == 1) {
1408 		if (has_target()) {
1409 			ret = __cpufreq_governor(policy,
1410 					CPUFREQ_GOV_POLICY_EXIT);
1411 			if (ret) {
1412 				pr_err("%s: Failed to exit governor\n",
1413 				       __func__);
1414 				return ret;
1415 			}
1416 		}
1417 
1418 		if (!cpufreq_suspended)
1419 			cpufreq_policy_put_kobj(policy);
1420 
1421 		/*
1422 		 * Perform the ->exit() even during light-weight tear-down,
1423 		 * since this is a core component, and is essential for the
1424 		 * subsequent light-weight ->init() to succeed.
1425 		 */
1426 		if (cpufreq_driver->exit)
1427 			cpufreq_driver->exit(policy);
1428 
1429 		/* Remove policy from list of active policies */
1430 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1431 		list_del(&policy->policy_list);
1432 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433 
1434 		if (!cpufreq_suspended)
1435 			cpufreq_policy_free(policy);
1436 	} else if (has_target()) {
1437 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438 		if (!ret)
1439 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440 
1441 		if (ret) {
1442 			pr_err("%s: Failed to start governor\n", __func__);
1443 			return ret;
1444 		}
1445 	}
1446 
1447 	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448 	return 0;
1449 }
1450 
1451 /**
1452  * cpufreq_remove_dev - remove a CPU device
1453  *
1454  * Removes the cpufreq interface for a CPU device.
1455  */
1456 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457 {
1458 	unsigned int cpu = dev->id;
1459 	int ret;
1460 
1461 	if (cpu_is_offline(cpu))
1462 		return 0;
1463 
1464 	ret = __cpufreq_remove_dev_prepare(dev, sif);
1465 
1466 	if (!ret)
1467 		ret = __cpufreq_remove_dev_finish(dev, sif);
1468 
1469 	return ret;
1470 }
1471 
1472 static void handle_update(struct work_struct *work)
1473 {
1474 	struct cpufreq_policy *policy =
1475 		container_of(work, struct cpufreq_policy, update);
1476 	unsigned int cpu = policy->cpu;
1477 	pr_debug("handle_update for cpu %u called\n", cpu);
1478 	cpufreq_update_policy(cpu);
1479 }
1480 
1481 /**
1482  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483  *	in deep trouble.
1484  *	@cpu: cpu number
1485  *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1486  *	@new_freq: CPU frequency the CPU actually runs at
1487  *
1488  *	We adjust to current frequency first, and need to clean up later.
1489  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1490  */
1491 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492 				unsigned int new_freq)
1493 {
1494 	struct cpufreq_policy *policy;
1495 	struct cpufreq_freqs freqs;
1496 	unsigned long flags;
1497 
1498 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499 		 old_freq, new_freq);
1500 
1501 	freqs.old = old_freq;
1502 	freqs.new = new_freq;
1503 
1504 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1505 	policy = per_cpu(cpufreq_cpu_data, cpu);
1506 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507 
1508 	cpufreq_freq_transition_begin(policy, &freqs);
1509 	cpufreq_freq_transition_end(policy, &freqs, 0);
1510 }
1511 
1512 /**
1513  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514  * @cpu: CPU number
1515  *
1516  * This is the last known freq, without actually getting it from the driver.
1517  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518  */
1519 unsigned int cpufreq_quick_get(unsigned int cpu)
1520 {
1521 	struct cpufreq_policy *policy;
1522 	unsigned int ret_freq = 0;
1523 
1524 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525 		return cpufreq_driver->get(cpu);
1526 
1527 	policy = cpufreq_cpu_get(cpu);
1528 	if (policy) {
1529 		ret_freq = policy->cur;
1530 		cpufreq_cpu_put(policy);
1531 	}
1532 
1533 	return ret_freq;
1534 }
1535 EXPORT_SYMBOL(cpufreq_quick_get);
1536 
1537 /**
1538  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539  * @cpu: CPU number
1540  *
1541  * Just return the max possible frequency for a given CPU.
1542  */
1543 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544 {
1545 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546 	unsigned int ret_freq = 0;
1547 
1548 	if (policy) {
1549 		ret_freq = policy->max;
1550 		cpufreq_cpu_put(policy);
1551 	}
1552 
1553 	return ret_freq;
1554 }
1555 EXPORT_SYMBOL(cpufreq_quick_get_max);
1556 
1557 static unsigned int __cpufreq_get(unsigned int cpu)
1558 {
1559 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560 	unsigned int ret_freq = 0;
1561 
1562 	if (!cpufreq_driver->get)
1563 		return ret_freq;
1564 
1565 	ret_freq = cpufreq_driver->get(cpu);
1566 
1567 	if (ret_freq && policy->cur &&
1568 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569 		/* verify no discrepancy between actual and
1570 					saved value exists */
1571 		if (unlikely(ret_freq != policy->cur)) {
1572 			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573 			schedule_work(&policy->update);
1574 		}
1575 	}
1576 
1577 	return ret_freq;
1578 }
1579 
1580 /**
1581  * cpufreq_get - get the current CPU frequency (in kHz)
1582  * @cpu: CPU number
1583  *
1584  * Get the CPU current (static) CPU frequency
1585  */
1586 unsigned int cpufreq_get(unsigned int cpu)
1587 {
1588 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589 	unsigned int ret_freq = 0;
1590 
1591 	if (policy) {
1592 		down_read(&policy->rwsem);
1593 		ret_freq = __cpufreq_get(cpu);
1594 		up_read(&policy->rwsem);
1595 
1596 		cpufreq_cpu_put(policy);
1597 	}
1598 
1599 	return ret_freq;
1600 }
1601 EXPORT_SYMBOL(cpufreq_get);
1602 
1603 static struct subsys_interface cpufreq_interface = {
1604 	.name		= "cpufreq",
1605 	.subsys		= &cpu_subsys,
1606 	.add_dev	= cpufreq_add_dev,
1607 	.remove_dev	= cpufreq_remove_dev,
1608 };
1609 
1610 /*
1611  * In case platform wants some specific frequency to be configured
1612  * during suspend..
1613  */
1614 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615 {
1616 	int ret;
1617 
1618 	if (!policy->suspend_freq) {
1619 		pr_err("%s: suspend_freq can't be zero\n", __func__);
1620 		return -EINVAL;
1621 	}
1622 
1623 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624 			policy->suspend_freq);
1625 
1626 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627 			CPUFREQ_RELATION_H);
1628 	if (ret)
1629 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630 				__func__, policy->suspend_freq, ret);
1631 
1632 	return ret;
1633 }
1634 EXPORT_SYMBOL(cpufreq_generic_suspend);
1635 
1636 /**
1637  * cpufreq_suspend() - Suspend CPUFreq governors
1638  *
1639  * Called during system wide Suspend/Hibernate cycles for suspending governors
1640  * as some platforms can't change frequency after this point in suspend cycle.
1641  * Because some of the devices (like: i2c, regulators, etc) they use for
1642  * changing frequency are suspended quickly after this point.
1643  */
1644 void cpufreq_suspend(void)
1645 {
1646 	struct cpufreq_policy *policy;
1647 
1648 	if (!cpufreq_driver)
1649 		return;
1650 
1651 	if (!has_target())
1652 		return;
1653 
1654 	pr_debug("%s: Suspending Governors\n", __func__);
1655 
1656 	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657 		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658 			pr_err("%s: Failed to stop governor for policy: %p\n",
1659 				__func__, policy);
1660 		else if (cpufreq_driver->suspend
1661 		    && cpufreq_driver->suspend(policy))
1662 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663 				policy);
1664 	}
1665 
1666 	cpufreq_suspended = true;
1667 }
1668 
1669 /**
1670  * cpufreq_resume() - Resume CPUFreq governors
1671  *
1672  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673  * are suspended with cpufreq_suspend().
1674  */
1675 void cpufreq_resume(void)
1676 {
1677 	struct cpufreq_policy *policy;
1678 
1679 	if (!cpufreq_driver)
1680 		return;
1681 
1682 	if (!has_target())
1683 		return;
1684 
1685 	pr_debug("%s: Resuming Governors\n", __func__);
1686 
1687 	cpufreq_suspended = false;
1688 
1689 	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1692 				policy);
1693 		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694 		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695 			pr_err("%s: Failed to start governor for policy: %p\n",
1696 				__func__, policy);
1697 
1698 		/*
1699 		 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700 		 * policy in list. It will verify that the current freq is in
1701 		 * sync with what we believe it to be.
1702 		 */
1703 		if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704 			schedule_work(&policy->update);
1705 	}
1706 }
1707 
1708 /**
1709  *	cpufreq_get_current_driver - return current driver's name
1710  *
1711  *	Return the name string of the currently loaded cpufreq driver
1712  *	or NULL, if none.
1713  */
1714 const char *cpufreq_get_current_driver(void)
1715 {
1716 	if (cpufreq_driver)
1717 		return cpufreq_driver->name;
1718 
1719 	return NULL;
1720 }
1721 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722 
1723 /*********************************************************************
1724  *                     NOTIFIER LISTS INTERFACE                      *
1725  *********************************************************************/
1726 
1727 /**
1728  *	cpufreq_register_notifier - register a driver with cpufreq
1729  *	@nb: notifier function to register
1730  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731  *
1732  *	Add a driver to one of two lists: either a list of drivers that
1733  *      are notified about clock rate changes (once before and once after
1734  *      the transition), or a list of drivers that are notified about
1735  *      changes in cpufreq policy.
1736  *
1737  *	This function may sleep, and has the same return conditions as
1738  *	blocking_notifier_chain_register.
1739  */
1740 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741 {
1742 	int ret;
1743 
1744 	if (cpufreq_disabled())
1745 		return -EINVAL;
1746 
1747 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748 
1749 	switch (list) {
1750 	case CPUFREQ_TRANSITION_NOTIFIER:
1751 		ret = srcu_notifier_chain_register(
1752 				&cpufreq_transition_notifier_list, nb);
1753 		break;
1754 	case CPUFREQ_POLICY_NOTIFIER:
1755 		ret = blocking_notifier_chain_register(
1756 				&cpufreq_policy_notifier_list, nb);
1757 		break;
1758 	default:
1759 		ret = -EINVAL;
1760 	}
1761 
1762 	return ret;
1763 }
1764 EXPORT_SYMBOL(cpufreq_register_notifier);
1765 
1766 /**
1767  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1768  *	@nb: notifier block to be unregistered
1769  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770  *
1771  *	Remove a driver from the CPU frequency notifier list.
1772  *
1773  *	This function may sleep, and has the same return conditions as
1774  *	blocking_notifier_chain_unregister.
1775  */
1776 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777 {
1778 	int ret;
1779 
1780 	if (cpufreq_disabled())
1781 		return -EINVAL;
1782 
1783 	switch (list) {
1784 	case CPUFREQ_TRANSITION_NOTIFIER:
1785 		ret = srcu_notifier_chain_unregister(
1786 				&cpufreq_transition_notifier_list, nb);
1787 		break;
1788 	case CPUFREQ_POLICY_NOTIFIER:
1789 		ret = blocking_notifier_chain_unregister(
1790 				&cpufreq_policy_notifier_list, nb);
1791 		break;
1792 	default:
1793 		ret = -EINVAL;
1794 	}
1795 
1796 	return ret;
1797 }
1798 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799 
1800 
1801 /*********************************************************************
1802  *                              GOVERNORS                            *
1803  *********************************************************************/
1804 
1805 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806 			    unsigned int target_freq,
1807 			    unsigned int relation)
1808 {
1809 	int retval = -EINVAL;
1810 	unsigned int old_target_freq = target_freq;
1811 
1812 	if (cpufreq_disabled())
1813 		return -ENODEV;
1814 
1815 	/* Make sure that target_freq is within supported range */
1816 	if (target_freq > policy->max)
1817 		target_freq = policy->max;
1818 	if (target_freq < policy->min)
1819 		target_freq = policy->min;
1820 
1821 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822 		 policy->cpu, target_freq, relation, old_target_freq);
1823 
1824 	/*
1825 	 * This might look like a redundant call as we are checking it again
1826 	 * after finding index. But it is left intentionally for cases where
1827 	 * exactly same freq is called again and so we can save on few function
1828 	 * calls.
1829 	 */
1830 	if (target_freq == policy->cur)
1831 		return 0;
1832 
1833 	if (cpufreq_driver->target)
1834 		retval = cpufreq_driver->target(policy, target_freq, relation);
1835 	else if (cpufreq_driver->target_index) {
1836 		struct cpufreq_frequency_table *freq_table;
1837 		struct cpufreq_freqs freqs;
1838 		bool notify;
1839 		int index;
1840 
1841 		freq_table = cpufreq_frequency_get_table(policy->cpu);
1842 		if (unlikely(!freq_table)) {
1843 			pr_err("%s: Unable to find freq_table\n", __func__);
1844 			goto out;
1845 		}
1846 
1847 		retval = cpufreq_frequency_table_target(policy, freq_table,
1848 				target_freq, relation, &index);
1849 		if (unlikely(retval)) {
1850 			pr_err("%s: Unable to find matching freq\n", __func__);
1851 			goto out;
1852 		}
1853 
1854 		if (freq_table[index].frequency == policy->cur) {
1855 			retval = 0;
1856 			goto out;
1857 		}
1858 
1859 		notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860 
1861 		if (notify) {
1862 			freqs.old = policy->cur;
1863 			freqs.new = freq_table[index].frequency;
1864 			freqs.flags = 0;
1865 
1866 			pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867 				 __func__, policy->cpu, freqs.old, freqs.new);
1868 
1869 			cpufreq_freq_transition_begin(policy, &freqs);
1870 		}
1871 
1872 		retval = cpufreq_driver->target_index(policy, index);
1873 		if (retval)
1874 			pr_err("%s: Failed to change cpu frequency: %d\n",
1875 			       __func__, retval);
1876 
1877 		if (notify)
1878 			cpufreq_freq_transition_end(policy, &freqs, retval);
1879 	}
1880 
1881 out:
1882 	return retval;
1883 }
1884 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885 
1886 int cpufreq_driver_target(struct cpufreq_policy *policy,
1887 			  unsigned int target_freq,
1888 			  unsigned int relation)
1889 {
1890 	int ret = -EINVAL;
1891 
1892 	down_write(&policy->rwsem);
1893 
1894 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1895 
1896 	up_write(&policy->rwsem);
1897 
1898 	return ret;
1899 }
1900 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901 
1902 /*
1903  * when "event" is CPUFREQ_GOV_LIMITS
1904  */
1905 
1906 static int __cpufreq_governor(struct cpufreq_policy *policy,
1907 					unsigned int event)
1908 {
1909 	int ret;
1910 
1911 	/* Only must be defined when default governor is known to have latency
1912 	   restrictions, like e.g. conservative or ondemand.
1913 	   That this is the case is already ensured in Kconfig
1914 	*/
1915 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917 #else
1918 	struct cpufreq_governor *gov = NULL;
1919 #endif
1920 
1921 	/* Don't start any governor operations if we are entering suspend */
1922 	if (cpufreq_suspended)
1923 		return 0;
1924 
1925 	if (policy->governor->max_transition_latency &&
1926 	    policy->cpuinfo.transition_latency >
1927 	    policy->governor->max_transition_latency) {
1928 		if (!gov)
1929 			return -EINVAL;
1930 		else {
1931 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932 				policy->governor->name, gov->name);
1933 			policy->governor = gov;
1934 		}
1935 	}
1936 
1937 	if (event == CPUFREQ_GOV_POLICY_INIT)
1938 		if (!try_module_get(policy->governor->owner))
1939 			return -EINVAL;
1940 
1941 	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942 		 policy->cpu, event);
1943 
1944 	mutex_lock(&cpufreq_governor_lock);
1945 	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946 	    || (!policy->governor_enabled
1947 	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948 		mutex_unlock(&cpufreq_governor_lock);
1949 		return -EBUSY;
1950 	}
1951 
1952 	if (event == CPUFREQ_GOV_STOP)
1953 		policy->governor_enabled = false;
1954 	else if (event == CPUFREQ_GOV_START)
1955 		policy->governor_enabled = true;
1956 
1957 	mutex_unlock(&cpufreq_governor_lock);
1958 
1959 	ret = policy->governor->governor(policy, event);
1960 
1961 	if (!ret) {
1962 		if (event == CPUFREQ_GOV_POLICY_INIT)
1963 			policy->governor->initialized++;
1964 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965 			policy->governor->initialized--;
1966 	} else {
1967 		/* Restore original values */
1968 		mutex_lock(&cpufreq_governor_lock);
1969 		if (event == CPUFREQ_GOV_STOP)
1970 			policy->governor_enabled = true;
1971 		else if (event == CPUFREQ_GOV_START)
1972 			policy->governor_enabled = false;
1973 		mutex_unlock(&cpufreq_governor_lock);
1974 	}
1975 
1976 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978 		module_put(policy->governor->owner);
1979 
1980 	return ret;
1981 }
1982 
1983 int cpufreq_register_governor(struct cpufreq_governor *governor)
1984 {
1985 	int err;
1986 
1987 	if (!governor)
1988 		return -EINVAL;
1989 
1990 	if (cpufreq_disabled())
1991 		return -ENODEV;
1992 
1993 	mutex_lock(&cpufreq_governor_mutex);
1994 
1995 	governor->initialized = 0;
1996 	err = -EBUSY;
1997 	if (__find_governor(governor->name) == NULL) {
1998 		err = 0;
1999 		list_add(&governor->governor_list, &cpufreq_governor_list);
2000 	}
2001 
2002 	mutex_unlock(&cpufreq_governor_mutex);
2003 	return err;
2004 }
2005 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006 
2007 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008 {
2009 	int cpu;
2010 
2011 	if (!governor)
2012 		return;
2013 
2014 	if (cpufreq_disabled())
2015 		return;
2016 
2017 	for_each_present_cpu(cpu) {
2018 		if (cpu_online(cpu))
2019 			continue;
2020 		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021 			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2022 	}
2023 
2024 	mutex_lock(&cpufreq_governor_mutex);
2025 	list_del(&governor->governor_list);
2026 	mutex_unlock(&cpufreq_governor_mutex);
2027 	return;
2028 }
2029 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030 
2031 
2032 /*********************************************************************
2033  *                          POLICY INTERFACE                         *
2034  *********************************************************************/
2035 
2036 /**
2037  * cpufreq_get_policy - get the current cpufreq_policy
2038  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039  *	is written
2040  *
2041  * Reads the current cpufreq policy.
2042  */
2043 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044 {
2045 	struct cpufreq_policy *cpu_policy;
2046 	if (!policy)
2047 		return -EINVAL;
2048 
2049 	cpu_policy = cpufreq_cpu_get(cpu);
2050 	if (!cpu_policy)
2051 		return -EINVAL;
2052 
2053 	memcpy(policy, cpu_policy, sizeof(*policy));
2054 
2055 	cpufreq_cpu_put(cpu_policy);
2056 	return 0;
2057 }
2058 EXPORT_SYMBOL(cpufreq_get_policy);
2059 
2060 /*
2061  * policy : current policy.
2062  * new_policy: policy to be set.
2063  */
2064 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065 				struct cpufreq_policy *new_policy)
2066 {
2067 	struct cpufreq_governor *old_gov;
2068 	int ret;
2069 
2070 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071 		 new_policy->cpu, new_policy->min, new_policy->max);
2072 
2073 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2074 
2075 	if (new_policy->min > policy->max || new_policy->max < policy->min)
2076 		return -EINVAL;
2077 
2078 	/* verify the cpu speed can be set within this limit */
2079 	ret = cpufreq_driver->verify(new_policy);
2080 	if (ret)
2081 		return ret;
2082 
2083 	/* adjust if necessary - all reasons */
2084 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085 			CPUFREQ_ADJUST, new_policy);
2086 
2087 	/* adjust if necessary - hardware incompatibility*/
2088 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089 			CPUFREQ_INCOMPATIBLE, new_policy);
2090 
2091 	/*
2092 	 * verify the cpu speed can be set within this limit, which might be
2093 	 * different to the first one
2094 	 */
2095 	ret = cpufreq_driver->verify(new_policy);
2096 	if (ret)
2097 		return ret;
2098 
2099 	/* notification of the new policy */
2100 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101 			CPUFREQ_NOTIFY, new_policy);
2102 
2103 	policy->min = new_policy->min;
2104 	policy->max = new_policy->max;
2105 
2106 	pr_debug("new min and max freqs are %u - %u kHz\n",
2107 		 policy->min, policy->max);
2108 
2109 	if (cpufreq_driver->setpolicy) {
2110 		policy->policy = new_policy->policy;
2111 		pr_debug("setting range\n");
2112 		return cpufreq_driver->setpolicy(new_policy);
2113 	}
2114 
2115 	if (new_policy->governor == policy->governor)
2116 		goto out;
2117 
2118 	pr_debug("governor switch\n");
2119 
2120 	/* save old, working values */
2121 	old_gov = policy->governor;
2122 	/* end old governor */
2123 	if (old_gov) {
2124 		__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125 		up_write(&policy->rwsem);
2126 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127 		down_write(&policy->rwsem);
2128 	}
2129 
2130 	/* start new governor */
2131 	policy->governor = new_policy->governor;
2132 	if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133 		if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134 			goto out;
2135 
2136 		up_write(&policy->rwsem);
2137 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138 		down_write(&policy->rwsem);
2139 	}
2140 
2141 	/* new governor failed, so re-start old one */
2142 	pr_debug("starting governor %s failed\n", policy->governor->name);
2143 	if (old_gov) {
2144 		policy->governor = old_gov;
2145 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146 		__cpufreq_governor(policy, CPUFREQ_GOV_START);
2147 	}
2148 
2149 	return -EINVAL;
2150 
2151  out:
2152 	pr_debug("governor: change or update limits\n");
2153 	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154 }
2155 
2156 /**
2157  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158  *	@cpu: CPU which shall be re-evaluated
2159  *
2160  *	Useful for policy notifiers which have different necessities
2161  *	at different times.
2162  */
2163 int cpufreq_update_policy(unsigned int cpu)
2164 {
2165 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166 	struct cpufreq_policy new_policy;
2167 	int ret;
2168 
2169 	if (!policy) {
2170 		ret = -ENODEV;
2171 		goto no_policy;
2172 	}
2173 
2174 	down_write(&policy->rwsem);
2175 
2176 	pr_debug("updating policy for CPU %u\n", cpu);
2177 	memcpy(&new_policy, policy, sizeof(*policy));
2178 	new_policy.min = policy->user_policy.min;
2179 	new_policy.max = policy->user_policy.max;
2180 	new_policy.policy = policy->user_policy.policy;
2181 	new_policy.governor = policy->user_policy.governor;
2182 
2183 	/*
2184 	 * BIOS might change freq behind our back
2185 	 * -> ask driver for current freq and notify governors about a change
2186 	 */
2187 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188 		new_policy.cur = cpufreq_driver->get(cpu);
2189 		if (WARN_ON(!new_policy.cur)) {
2190 			ret = -EIO;
2191 			goto no_policy;
2192 		}
2193 
2194 		if (!policy->cur) {
2195 			pr_debug("Driver did not initialize current freq\n");
2196 			policy->cur = new_policy.cur;
2197 		} else {
2198 			if (policy->cur != new_policy.cur && has_target())
2199 				cpufreq_out_of_sync(cpu, policy->cur,
2200 								new_policy.cur);
2201 		}
2202 	}
2203 
2204 	ret = cpufreq_set_policy(policy, &new_policy);
2205 
2206 	up_write(&policy->rwsem);
2207 
2208 	cpufreq_cpu_put(policy);
2209 no_policy:
2210 	return ret;
2211 }
2212 EXPORT_SYMBOL(cpufreq_update_policy);
2213 
2214 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215 					unsigned long action, void *hcpu)
2216 {
2217 	unsigned int cpu = (unsigned long)hcpu;
2218 	struct device *dev;
2219 
2220 	dev = get_cpu_device(cpu);
2221 	if (dev) {
2222 		switch (action & ~CPU_TASKS_FROZEN) {
2223 		case CPU_ONLINE:
2224 			__cpufreq_add_dev(dev, NULL);
2225 			break;
2226 
2227 		case CPU_DOWN_PREPARE:
2228 			__cpufreq_remove_dev_prepare(dev, NULL);
2229 			break;
2230 
2231 		case CPU_POST_DEAD:
2232 			__cpufreq_remove_dev_finish(dev, NULL);
2233 			break;
2234 
2235 		case CPU_DOWN_FAILED:
2236 			__cpufreq_add_dev(dev, NULL);
2237 			break;
2238 		}
2239 	}
2240 	return NOTIFY_OK;
2241 }
2242 
2243 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244 	.notifier_call = cpufreq_cpu_callback,
2245 };
2246 
2247 /*********************************************************************
2248  *               BOOST						     *
2249  *********************************************************************/
2250 static int cpufreq_boost_set_sw(int state)
2251 {
2252 	struct cpufreq_frequency_table *freq_table;
2253 	struct cpufreq_policy *policy;
2254 	int ret = -EINVAL;
2255 
2256 	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257 		freq_table = cpufreq_frequency_get_table(policy->cpu);
2258 		if (freq_table) {
2259 			ret = cpufreq_frequency_table_cpuinfo(policy,
2260 							freq_table);
2261 			if (ret) {
2262 				pr_err("%s: Policy frequency update failed\n",
2263 				       __func__);
2264 				break;
2265 			}
2266 			policy->user_policy.max = policy->max;
2267 			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268 		}
2269 	}
2270 
2271 	return ret;
2272 }
2273 
2274 int cpufreq_boost_trigger_state(int state)
2275 {
2276 	unsigned long flags;
2277 	int ret = 0;
2278 
2279 	if (cpufreq_driver->boost_enabled == state)
2280 		return 0;
2281 
2282 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2283 	cpufreq_driver->boost_enabled = state;
2284 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285 
2286 	ret = cpufreq_driver->set_boost(state);
2287 	if (ret) {
2288 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2289 		cpufreq_driver->boost_enabled = !state;
2290 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291 
2292 		pr_err("%s: Cannot %s BOOST\n",
2293 		       __func__, state ? "enable" : "disable");
2294 	}
2295 
2296 	return ret;
2297 }
2298 
2299 int cpufreq_boost_supported(void)
2300 {
2301 	if (likely(cpufreq_driver))
2302 		return cpufreq_driver->boost_supported;
2303 
2304 	return 0;
2305 }
2306 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307 
2308 int cpufreq_boost_enabled(void)
2309 {
2310 	return cpufreq_driver->boost_enabled;
2311 }
2312 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313 
2314 /*********************************************************************
2315  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2316  *********************************************************************/
2317 
2318 /**
2319  * cpufreq_register_driver - register a CPU Frequency driver
2320  * @driver_data: A struct cpufreq_driver containing the values#
2321  * submitted by the CPU Frequency driver.
2322  *
2323  * Registers a CPU Frequency driver to this core code. This code
2324  * returns zero on success, -EBUSY when another driver got here first
2325  * (and isn't unregistered in the meantime).
2326  *
2327  */
2328 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329 {
2330 	unsigned long flags;
2331 	int ret;
2332 
2333 	if (cpufreq_disabled())
2334 		return -ENODEV;
2335 
2336 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2337 	    !(driver_data->setpolicy || driver_data->target_index ||
2338 		    driver_data->target) ||
2339 	     (driver_data->setpolicy && (driver_data->target_index ||
2340 		    driver_data->target)))
2341 		return -EINVAL;
2342 
2343 	pr_debug("trying to register driver %s\n", driver_data->name);
2344 
2345 	if (driver_data->setpolicy)
2346 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347 
2348 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2349 	if (cpufreq_driver) {
2350 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351 		return -EEXIST;
2352 	}
2353 	cpufreq_driver = driver_data;
2354 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355 
2356 	if (cpufreq_boost_supported()) {
2357 		/*
2358 		 * Check if driver provides function to enable boost -
2359 		 * if not, use cpufreq_boost_set_sw as default
2360 		 */
2361 		if (!cpufreq_driver->set_boost)
2362 			cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2363 
2364 		ret = cpufreq_sysfs_create_file(&boost.attr);
2365 		if (ret) {
2366 			pr_err("%s: cannot register global BOOST sysfs file\n",
2367 			       __func__);
2368 			goto err_null_driver;
2369 		}
2370 	}
2371 
2372 	ret = subsys_interface_register(&cpufreq_interface);
2373 	if (ret)
2374 		goto err_boost_unreg;
2375 
2376 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377 		int i;
2378 		ret = -ENODEV;
2379 
2380 		/* check for at least one working CPU */
2381 		for (i = 0; i < nr_cpu_ids; i++)
2382 			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383 				ret = 0;
2384 				break;
2385 			}
2386 
2387 		/* if all ->init() calls failed, unregister */
2388 		if (ret) {
2389 			pr_debug("no CPU initialized for driver %s\n",
2390 				 driver_data->name);
2391 			goto err_if_unreg;
2392 		}
2393 	}
2394 
2395 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2396 	pr_debug("driver %s up and running\n", driver_data->name);
2397 
2398 	return 0;
2399 err_if_unreg:
2400 	subsys_interface_unregister(&cpufreq_interface);
2401 err_boost_unreg:
2402 	if (cpufreq_boost_supported())
2403 		cpufreq_sysfs_remove_file(&boost.attr);
2404 err_null_driver:
2405 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2406 	cpufreq_driver = NULL;
2407 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2408 	return ret;
2409 }
2410 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411 
2412 /**
2413  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414  *
2415  * Unregister the current CPUFreq driver. Only call this if you have
2416  * the right to do so, i.e. if you have succeeded in initialising before!
2417  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418  * currently not initialised.
2419  */
2420 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421 {
2422 	unsigned long flags;
2423 
2424 	if (!cpufreq_driver || (driver != cpufreq_driver))
2425 		return -EINVAL;
2426 
2427 	pr_debug("unregistering driver %s\n", driver->name);
2428 
2429 	subsys_interface_unregister(&cpufreq_interface);
2430 	if (cpufreq_boost_supported())
2431 		cpufreq_sysfs_remove_file(&boost.attr);
2432 
2433 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434 
2435 	down_write(&cpufreq_rwsem);
2436 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2437 
2438 	cpufreq_driver = NULL;
2439 
2440 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441 	up_write(&cpufreq_rwsem);
2442 
2443 	return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446 
2447 static int __init cpufreq_core_init(void)
2448 {
2449 	if (cpufreq_disabled())
2450 		return -ENODEV;
2451 
2452 	cpufreq_global_kobject = kobject_create();
2453 	BUG_ON(!cpufreq_global_kobject);
2454 
2455 	return 0;
2456 }
2457 core_initcall(cpufreq_core_init);
2458