1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 #define for_each_policy(__policy) \ 46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 47 48 /* Iterate over governors */ 49 static LIST_HEAD(cpufreq_governor_list); 50 #define for_each_governor(__governor) \ 51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 52 53 static char default_governor[CPUFREQ_NAME_LEN]; 54 55 /* 56 * The "cpufreq driver" - the arch- or hardware-dependent low 57 * level driver of CPUFreq support, and its spinlock. This lock 58 * also protects the cpufreq_cpu_data array. 59 */ 60 static struct cpufreq_driver *cpufreq_driver; 61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 62 static DEFINE_RWLOCK(cpufreq_driver_lock); 63 64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 65 bool cpufreq_supports_freq_invariance(void) 66 { 67 return static_branch_likely(&cpufreq_freq_invariance); 68 } 69 70 /* Flag to suspend/resume CPUFreq governors */ 71 static bool cpufreq_suspended; 72 73 static inline bool has_target(void) 74 { 75 return cpufreq_driver->target_index || cpufreq_driver->target; 76 } 77 78 /* internal prototypes */ 79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 80 static int cpufreq_init_governor(struct cpufreq_policy *policy); 81 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 82 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 83 static int cpufreq_set_policy(struct cpufreq_policy *policy, 84 struct cpufreq_governor *new_gov, 85 unsigned int new_pol); 86 87 /* 88 * Two notifier lists: the "policy" list is involved in the 89 * validation process for a new CPU frequency policy; the 90 * "transition" list for kernel code that needs to handle 91 * changes to devices when the CPU clock speed changes. 92 * The mutex locks both lists. 93 */ 94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 96 97 static int off __read_mostly; 98 static int cpufreq_disabled(void) 99 { 100 return off; 101 } 102 void disable_cpufreq(void) 103 { 104 off = 1; 105 } 106 static DEFINE_MUTEX(cpufreq_governor_mutex); 107 108 bool have_governor_per_policy(void) 109 { 110 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 111 } 112 EXPORT_SYMBOL_GPL(have_governor_per_policy); 113 114 static struct kobject *cpufreq_global_kobject; 115 116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 117 { 118 if (have_governor_per_policy()) 119 return &policy->kobj; 120 else 121 return cpufreq_global_kobject; 122 } 123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 124 125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 126 { 127 struct kernel_cpustat kcpustat; 128 u64 cur_wall_time; 129 u64 idle_time; 130 u64 busy_time; 131 132 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 133 134 kcpustat_cpu_fetch(&kcpustat, cpu); 135 136 busy_time = kcpustat.cpustat[CPUTIME_USER]; 137 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 138 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 139 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 140 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 141 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 142 143 idle_time = cur_wall_time - busy_time; 144 if (wall) 145 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 146 147 return div_u64(idle_time, NSEC_PER_USEC); 148 } 149 150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 151 { 152 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 153 154 if (idle_time == -1ULL) 155 return get_cpu_idle_time_jiffy(cpu, wall); 156 else if (!io_busy) 157 idle_time += get_cpu_iowait_time_us(cpu, wall); 158 159 return idle_time; 160 } 161 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 162 163 /* 164 * This is a generic cpufreq init() routine which can be used by cpufreq 165 * drivers of SMP systems. It will do following: 166 * - validate & show freq table passed 167 * - set policies transition latency 168 * - policy->cpus with all possible CPUs 169 */ 170 void cpufreq_generic_init(struct cpufreq_policy *policy, 171 struct cpufreq_frequency_table *table, 172 unsigned int transition_latency) 173 { 174 policy->freq_table = table; 175 policy->cpuinfo.transition_latency = transition_latency; 176 177 /* 178 * The driver only supports the SMP configuration where all processors 179 * share the clock and voltage and clock. 180 */ 181 cpumask_setall(policy->cpus); 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 184 185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 188 189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 190 } 191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 192 193 unsigned int cpufreq_generic_get(unsigned int cpu) 194 { 195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 196 197 if (!policy || IS_ERR(policy->clk)) { 198 pr_err("%s: No %s associated to cpu: %d\n", 199 __func__, policy ? "clk" : "policy", cpu); 200 return 0; 201 } 202 203 return clk_get_rate(policy->clk) / 1000; 204 } 205 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 206 207 /** 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 209 * @cpu: CPU to find the policy for. 210 * 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 212 * the kobject reference counter of that policy. Return a valid policy on 213 * success or NULL on failure. 214 * 215 * The policy returned by this function has to be released with the help of 216 * cpufreq_cpu_put() to balance its kobject reference counter properly. 217 */ 218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 219 { 220 struct cpufreq_policy *policy = NULL; 221 unsigned long flags; 222 223 if (WARN_ON(cpu >= nr_cpu_ids)) 224 return NULL; 225 226 /* get the cpufreq driver */ 227 read_lock_irqsave(&cpufreq_driver_lock, flags); 228 229 if (cpufreq_driver) { 230 /* get the CPU */ 231 policy = cpufreq_cpu_get_raw(cpu); 232 if (policy) 233 kobject_get(&policy->kobj); 234 } 235 236 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 237 238 return policy; 239 } 240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 241 242 /** 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 244 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 245 */ 246 void cpufreq_cpu_put(struct cpufreq_policy *policy) 247 { 248 kobject_put(&policy->kobj); 249 } 250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 251 252 /** 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 255 */ 256 void cpufreq_cpu_release(struct cpufreq_policy *policy) 257 { 258 if (WARN_ON(!policy)) 259 return; 260 261 lockdep_assert_held(&policy->rwsem); 262 263 up_write(&policy->rwsem); 264 265 cpufreq_cpu_put(policy); 266 } 267 268 /** 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 270 * @cpu: CPU to find the policy for. 271 * 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 273 * if the policy returned by it is not NULL, acquire its rwsem for writing. 274 * Return the policy if it is active or release it and return NULL otherwise. 275 * 276 * The policy returned by this function has to be released with the help of 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 278 * counter properly. 279 */ 280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 281 { 282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 283 284 if (!policy) 285 return NULL; 286 287 down_write(&policy->rwsem); 288 289 if (policy_is_inactive(policy)) { 290 cpufreq_cpu_release(policy); 291 return NULL; 292 } 293 294 return policy; 295 } 296 297 /********************************************************************* 298 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 299 *********************************************************************/ 300 301 /* 302 * adjust_jiffies - adjust the system "loops_per_jiffy" 303 * 304 * This function alters the system "loops_per_jiffy" for the clock 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP 306 * systems as each CPU might be scaled differently. So, use the arch 307 * per-CPU loops_per_jiffy value wherever possible. 308 */ 309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 310 { 311 #ifndef CONFIG_SMP 312 static unsigned long l_p_j_ref; 313 static unsigned int l_p_j_ref_freq; 314 315 if (ci->flags & CPUFREQ_CONST_LOOPS) 316 return; 317 318 if (!l_p_j_ref_freq) { 319 l_p_j_ref = loops_per_jiffy; 320 l_p_j_ref_freq = ci->old; 321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 322 l_p_j_ref, l_p_j_ref_freq); 323 } 324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 326 ci->new); 327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 328 loops_per_jiffy, ci->new); 329 } 330 #endif 331 } 332 333 /** 334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 335 * @policy: cpufreq policy to enable fast frequency switching for. 336 * @freqs: contain details of the frequency update. 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 338 * 339 * This function calls the transition notifiers and the "adjust_jiffies" 340 * function. It is called twice on all CPU frequency changes that have 341 * external effects. 342 */ 343 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 344 struct cpufreq_freqs *freqs, 345 unsigned int state) 346 { 347 int cpu; 348 349 BUG_ON(irqs_disabled()); 350 351 if (cpufreq_disabled()) 352 return; 353 354 freqs->policy = policy; 355 freqs->flags = cpufreq_driver->flags; 356 pr_debug("notification %u of frequency transition to %u kHz\n", 357 state, freqs->new); 358 359 switch (state) { 360 case CPUFREQ_PRECHANGE: 361 /* 362 * Detect if the driver reported a value as "old frequency" 363 * which is not equal to what the cpufreq core thinks is 364 * "old frequency". 365 */ 366 if (policy->cur && policy->cur != freqs->old) { 367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 368 freqs->old, policy->cur); 369 freqs->old = policy->cur; 370 } 371 372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 373 CPUFREQ_PRECHANGE, freqs); 374 375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 376 break; 377 378 case CPUFREQ_POSTCHANGE: 379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 381 cpumask_pr_args(policy->cpus)); 382 383 for_each_cpu(cpu, policy->cpus) 384 trace_cpu_frequency(freqs->new, cpu); 385 386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 387 CPUFREQ_POSTCHANGE, freqs); 388 389 cpufreq_stats_record_transition(policy, freqs->new); 390 policy->cur = freqs->new; 391 } 392 } 393 394 /* Do post notifications when there are chances that transition has failed */ 395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 396 struct cpufreq_freqs *freqs, int transition_failed) 397 { 398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 399 if (!transition_failed) 400 return; 401 402 swap(freqs->old, freqs->new); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 } 406 407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 408 struct cpufreq_freqs *freqs) 409 { 410 411 /* 412 * Catch double invocations of _begin() which lead to self-deadlock. 413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 414 * doesn't invoke _begin() on their behalf, and hence the chances of 415 * double invocations are very low. Moreover, there are scenarios 416 * where these checks can emit false-positive warnings in these 417 * drivers; so we avoid that by skipping them altogether. 418 */ 419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 420 && current == policy->transition_task); 421 422 wait: 423 wait_event(policy->transition_wait, !policy->transition_ongoing); 424 425 spin_lock(&policy->transition_lock); 426 427 if (unlikely(policy->transition_ongoing)) { 428 spin_unlock(&policy->transition_lock); 429 goto wait; 430 } 431 432 policy->transition_ongoing = true; 433 policy->transition_task = current; 434 435 spin_unlock(&policy->transition_lock); 436 437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 438 } 439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 440 441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 442 struct cpufreq_freqs *freqs, int transition_failed) 443 { 444 if (WARN_ON(!policy->transition_ongoing)) 445 return; 446 447 cpufreq_notify_post_transition(policy, freqs, transition_failed); 448 449 arch_set_freq_scale(policy->related_cpus, 450 policy->cur, 451 policy->cpuinfo.max_freq); 452 453 policy->transition_ongoing = false; 454 policy->transition_task = NULL; 455 456 wake_up(&policy->transition_wait); 457 } 458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 459 460 /* 461 * Fast frequency switching status count. Positive means "enabled", negative 462 * means "disabled" and 0 means "not decided yet". 463 */ 464 static int cpufreq_fast_switch_count; 465 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 466 467 static void cpufreq_list_transition_notifiers(void) 468 { 469 struct notifier_block *nb; 470 471 pr_info("Registered transition notifiers:\n"); 472 473 mutex_lock(&cpufreq_transition_notifier_list.mutex); 474 475 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 476 pr_info("%pS\n", nb->notifier_call); 477 478 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 479 } 480 481 /** 482 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 483 * @policy: cpufreq policy to enable fast frequency switching for. 484 * 485 * Try to enable fast frequency switching for @policy. 486 * 487 * The attempt will fail if there is at least one transition notifier registered 488 * at this point, as fast frequency switching is quite fundamentally at odds 489 * with transition notifiers. Thus if successful, it will make registration of 490 * transition notifiers fail going forward. 491 */ 492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 493 { 494 lockdep_assert_held(&policy->rwsem); 495 496 if (!policy->fast_switch_possible) 497 return; 498 499 mutex_lock(&cpufreq_fast_switch_lock); 500 if (cpufreq_fast_switch_count >= 0) { 501 cpufreq_fast_switch_count++; 502 policy->fast_switch_enabled = true; 503 } else { 504 pr_warn("CPU%u: Fast frequency switching not enabled\n", 505 policy->cpu); 506 cpufreq_list_transition_notifiers(); 507 } 508 mutex_unlock(&cpufreq_fast_switch_lock); 509 } 510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 511 512 /** 513 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 514 * @policy: cpufreq policy to disable fast frequency switching for. 515 */ 516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 517 { 518 mutex_lock(&cpufreq_fast_switch_lock); 519 if (policy->fast_switch_enabled) { 520 policy->fast_switch_enabled = false; 521 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 522 cpufreq_fast_switch_count--; 523 } 524 mutex_unlock(&cpufreq_fast_switch_lock); 525 } 526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 527 528 /** 529 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 530 * one. 531 * @policy: associated policy to interrogate 532 * @target_freq: target frequency to resolve. 533 * 534 * The target to driver frequency mapping is cached in the policy. 535 * 536 * Return: Lowest driver-supported frequency greater than or equal to the 537 * given target_freq, subject to policy (min/max) and driver limitations. 538 */ 539 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 540 unsigned int target_freq) 541 { 542 target_freq = clamp_val(target_freq, policy->min, policy->max); 543 policy->cached_target_freq = target_freq; 544 545 if (cpufreq_driver->target_index) { 546 unsigned int idx; 547 548 idx = cpufreq_frequency_table_target(policy, target_freq, 549 CPUFREQ_RELATION_L); 550 policy->cached_resolved_idx = idx; 551 return policy->freq_table[idx].frequency; 552 } 553 554 if (cpufreq_driver->resolve_freq) 555 return cpufreq_driver->resolve_freq(policy, target_freq); 556 557 return target_freq; 558 } 559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 560 561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 562 { 563 unsigned int latency; 564 565 if (policy->transition_delay_us) 566 return policy->transition_delay_us; 567 568 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 569 if (latency) { 570 /* 571 * For platforms that can change the frequency very fast (< 10 572 * us), the above formula gives a decent transition delay. But 573 * for platforms where transition_latency is in milliseconds, it 574 * ends up giving unrealistic values. 575 * 576 * Cap the default transition delay to 10 ms, which seems to be 577 * a reasonable amount of time after which we should reevaluate 578 * the frequency. 579 */ 580 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 581 } 582 583 return LATENCY_MULTIPLIER; 584 } 585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 586 587 /********************************************************************* 588 * SYSFS INTERFACE * 589 *********************************************************************/ 590 static ssize_t show_boost(struct kobject *kobj, 591 struct kobj_attribute *attr, char *buf) 592 { 593 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 594 } 595 596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 597 const char *buf, size_t count) 598 { 599 int ret, enable; 600 601 ret = sscanf(buf, "%d", &enable); 602 if (ret != 1 || enable < 0 || enable > 1) 603 return -EINVAL; 604 605 if (cpufreq_boost_trigger_state(enable)) { 606 pr_err("%s: Cannot %s BOOST!\n", 607 __func__, enable ? "enable" : "disable"); 608 return -EINVAL; 609 } 610 611 pr_debug("%s: cpufreq BOOST %s\n", 612 __func__, enable ? "enabled" : "disabled"); 613 614 return count; 615 } 616 define_one_global_rw(boost); 617 618 static struct cpufreq_governor *find_governor(const char *str_governor) 619 { 620 struct cpufreq_governor *t; 621 622 for_each_governor(t) 623 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 624 return t; 625 626 return NULL; 627 } 628 629 static struct cpufreq_governor *get_governor(const char *str_governor) 630 { 631 struct cpufreq_governor *t; 632 633 mutex_lock(&cpufreq_governor_mutex); 634 t = find_governor(str_governor); 635 if (!t) 636 goto unlock; 637 638 if (!try_module_get(t->owner)) 639 t = NULL; 640 641 unlock: 642 mutex_unlock(&cpufreq_governor_mutex); 643 644 return t; 645 } 646 647 static unsigned int cpufreq_parse_policy(char *str_governor) 648 { 649 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 650 return CPUFREQ_POLICY_PERFORMANCE; 651 652 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 653 return CPUFREQ_POLICY_POWERSAVE; 654 655 return CPUFREQ_POLICY_UNKNOWN; 656 } 657 658 /** 659 * cpufreq_parse_governor - parse a governor string only for has_target() 660 * @str_governor: Governor name. 661 */ 662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 663 { 664 struct cpufreq_governor *t; 665 666 t = get_governor(str_governor); 667 if (t) 668 return t; 669 670 if (request_module("cpufreq_%s", str_governor)) 671 return NULL; 672 673 return get_governor(str_governor); 674 } 675 676 /* 677 * cpufreq_per_cpu_attr_read() / show_##file_name() - 678 * print out cpufreq information 679 * 680 * Write out information from cpufreq_driver->policy[cpu]; object must be 681 * "unsigned int". 682 */ 683 684 #define show_one(file_name, object) \ 685 static ssize_t show_##file_name \ 686 (struct cpufreq_policy *policy, char *buf) \ 687 { \ 688 return sprintf(buf, "%u\n", policy->object); \ 689 } 690 691 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 692 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 694 show_one(scaling_min_freq, min); 695 show_one(scaling_max_freq, max); 696 697 __weak unsigned int arch_freq_get_on_cpu(int cpu) 698 { 699 return 0; 700 } 701 702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 703 { 704 ssize_t ret; 705 unsigned int freq; 706 707 freq = arch_freq_get_on_cpu(policy->cpu); 708 if (freq) 709 ret = sprintf(buf, "%u\n", freq); 710 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 711 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 712 else 713 ret = sprintf(buf, "%u\n", policy->cur); 714 return ret; 715 } 716 717 /* 718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 719 */ 720 #define store_one(file_name, object) \ 721 static ssize_t store_##file_name \ 722 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 723 { \ 724 unsigned long val; \ 725 int ret; \ 726 \ 727 ret = sscanf(buf, "%lu", &val); \ 728 if (ret != 1) \ 729 return -EINVAL; \ 730 \ 731 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 732 return ret >= 0 ? count : ret; \ 733 } 734 735 store_one(scaling_min_freq, min); 736 store_one(scaling_max_freq, max); 737 738 /* 739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 740 */ 741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 742 char *buf) 743 { 744 unsigned int cur_freq = __cpufreq_get(policy); 745 746 if (cur_freq) 747 return sprintf(buf, "%u\n", cur_freq); 748 749 return sprintf(buf, "<unknown>\n"); 750 } 751 752 /* 753 * show_scaling_governor - show the current policy for the specified CPU 754 */ 755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 756 { 757 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 758 return sprintf(buf, "powersave\n"); 759 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 760 return sprintf(buf, "performance\n"); 761 else if (policy->governor) 762 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 763 policy->governor->name); 764 return -EINVAL; 765 } 766 767 /* 768 * store_scaling_governor - store policy for the specified CPU 769 */ 770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 771 const char *buf, size_t count) 772 { 773 char str_governor[16]; 774 int ret; 775 776 ret = sscanf(buf, "%15s", str_governor); 777 if (ret != 1) 778 return -EINVAL; 779 780 if (cpufreq_driver->setpolicy) { 781 unsigned int new_pol; 782 783 new_pol = cpufreq_parse_policy(str_governor); 784 if (!new_pol) 785 return -EINVAL; 786 787 ret = cpufreq_set_policy(policy, NULL, new_pol); 788 } else { 789 struct cpufreq_governor *new_gov; 790 791 new_gov = cpufreq_parse_governor(str_governor); 792 if (!new_gov) 793 return -EINVAL; 794 795 ret = cpufreq_set_policy(policy, new_gov, 796 CPUFREQ_POLICY_UNKNOWN); 797 798 module_put(new_gov->owner); 799 } 800 801 return ret ? ret : count; 802 } 803 804 /* 805 * show_scaling_driver - show the cpufreq driver currently loaded 806 */ 807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 808 { 809 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 810 } 811 812 /* 813 * show_scaling_available_governors - show the available CPUfreq governors 814 */ 815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 816 char *buf) 817 { 818 ssize_t i = 0; 819 struct cpufreq_governor *t; 820 821 if (!has_target()) { 822 i += sprintf(buf, "performance powersave"); 823 goto out; 824 } 825 826 mutex_lock(&cpufreq_governor_mutex); 827 for_each_governor(t) { 828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 829 - (CPUFREQ_NAME_LEN + 2))) 830 break; 831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 832 } 833 mutex_unlock(&cpufreq_governor_mutex); 834 out: 835 i += sprintf(&buf[i], "\n"); 836 return i; 837 } 838 839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 840 { 841 ssize_t i = 0; 842 unsigned int cpu; 843 844 for_each_cpu(cpu, mask) { 845 if (i) 846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 848 if (i >= (PAGE_SIZE - 5)) 849 break; 850 } 851 i += sprintf(&buf[i], "\n"); 852 return i; 853 } 854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 855 856 /* 857 * show_related_cpus - show the CPUs affected by each transition even if 858 * hw coordination is in use 859 */ 860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 861 { 862 return cpufreq_show_cpus(policy->related_cpus, buf); 863 } 864 865 /* 866 * show_affected_cpus - show the CPUs affected by each transition 867 */ 868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 869 { 870 return cpufreq_show_cpus(policy->cpus, buf); 871 } 872 873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 874 const char *buf, size_t count) 875 { 876 unsigned int freq = 0; 877 unsigned int ret; 878 879 if (!policy->governor || !policy->governor->store_setspeed) 880 return -EINVAL; 881 882 ret = sscanf(buf, "%u", &freq); 883 if (ret != 1) 884 return -EINVAL; 885 886 policy->governor->store_setspeed(policy, freq); 887 888 return count; 889 } 890 891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 892 { 893 if (!policy->governor || !policy->governor->show_setspeed) 894 return sprintf(buf, "<unsupported>\n"); 895 896 return policy->governor->show_setspeed(policy, buf); 897 } 898 899 /* 900 * show_bios_limit - show the current cpufreq HW/BIOS limitation 901 */ 902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 903 { 904 unsigned int limit; 905 int ret; 906 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 907 if (!ret) 908 return sprintf(buf, "%u\n", limit); 909 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 910 } 911 912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 913 cpufreq_freq_attr_ro(cpuinfo_min_freq); 914 cpufreq_freq_attr_ro(cpuinfo_max_freq); 915 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 916 cpufreq_freq_attr_ro(scaling_available_governors); 917 cpufreq_freq_attr_ro(scaling_driver); 918 cpufreq_freq_attr_ro(scaling_cur_freq); 919 cpufreq_freq_attr_ro(bios_limit); 920 cpufreq_freq_attr_ro(related_cpus); 921 cpufreq_freq_attr_ro(affected_cpus); 922 cpufreq_freq_attr_rw(scaling_min_freq); 923 cpufreq_freq_attr_rw(scaling_max_freq); 924 cpufreq_freq_attr_rw(scaling_governor); 925 cpufreq_freq_attr_rw(scaling_setspeed); 926 927 static struct attribute *default_attrs[] = { 928 &cpuinfo_min_freq.attr, 929 &cpuinfo_max_freq.attr, 930 &cpuinfo_transition_latency.attr, 931 &scaling_min_freq.attr, 932 &scaling_max_freq.attr, 933 &affected_cpus.attr, 934 &related_cpus.attr, 935 &scaling_governor.attr, 936 &scaling_driver.attr, 937 &scaling_available_governors.attr, 938 &scaling_setspeed.attr, 939 NULL 940 }; 941 942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 943 #define to_attr(a) container_of(a, struct freq_attr, attr) 944 945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 946 { 947 struct cpufreq_policy *policy = to_policy(kobj); 948 struct freq_attr *fattr = to_attr(attr); 949 ssize_t ret; 950 951 if (!fattr->show) 952 return -EIO; 953 954 down_read(&policy->rwsem); 955 ret = fattr->show(policy, buf); 956 up_read(&policy->rwsem); 957 958 return ret; 959 } 960 961 static ssize_t store(struct kobject *kobj, struct attribute *attr, 962 const char *buf, size_t count) 963 { 964 struct cpufreq_policy *policy = to_policy(kobj); 965 struct freq_attr *fattr = to_attr(attr); 966 ssize_t ret = -EINVAL; 967 968 if (!fattr->store) 969 return -EIO; 970 971 /* 972 * cpus_read_trylock() is used here to work around a circular lock 973 * dependency problem with respect to the cpufreq_register_driver(). 974 */ 975 if (!cpus_read_trylock()) 976 return -EBUSY; 977 978 if (cpu_online(policy->cpu)) { 979 down_write(&policy->rwsem); 980 ret = fattr->store(policy, buf, count); 981 up_write(&policy->rwsem); 982 } 983 984 cpus_read_unlock(); 985 986 return ret; 987 } 988 989 static void cpufreq_sysfs_release(struct kobject *kobj) 990 { 991 struct cpufreq_policy *policy = to_policy(kobj); 992 pr_debug("last reference is dropped\n"); 993 complete(&policy->kobj_unregister); 994 } 995 996 static const struct sysfs_ops sysfs_ops = { 997 .show = show, 998 .store = store, 999 }; 1000 1001 static struct kobj_type ktype_cpufreq = { 1002 .sysfs_ops = &sysfs_ops, 1003 .default_attrs = default_attrs, 1004 .release = cpufreq_sysfs_release, 1005 }; 1006 1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1008 { 1009 struct device *dev = get_cpu_device(cpu); 1010 1011 if (unlikely(!dev)) 1012 return; 1013 1014 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1015 return; 1016 1017 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1018 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1019 dev_err(dev, "cpufreq symlink creation failed\n"); 1020 } 1021 1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1023 struct device *dev) 1024 { 1025 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1026 sysfs_remove_link(&dev->kobj, "cpufreq"); 1027 } 1028 1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1030 { 1031 struct freq_attr **drv_attr; 1032 int ret = 0; 1033 1034 /* set up files for this cpu device */ 1035 drv_attr = cpufreq_driver->attr; 1036 while (drv_attr && *drv_attr) { 1037 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1038 if (ret) 1039 return ret; 1040 drv_attr++; 1041 } 1042 if (cpufreq_driver->get) { 1043 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1049 if (ret) 1050 return ret; 1051 1052 if (cpufreq_driver->bios_limit) { 1053 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1054 if (ret) 1055 return ret; 1056 } 1057 1058 return 0; 1059 } 1060 1061 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1062 { 1063 struct cpufreq_governor *gov = NULL; 1064 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1065 int ret; 1066 1067 if (has_target()) { 1068 /* Update policy governor to the one used before hotplug. */ 1069 gov = get_governor(policy->last_governor); 1070 if (gov) { 1071 pr_debug("Restoring governor %s for cpu %d\n", 1072 gov->name, policy->cpu); 1073 } else { 1074 gov = get_governor(default_governor); 1075 } 1076 1077 if (!gov) { 1078 gov = cpufreq_default_governor(); 1079 __module_get(gov->owner); 1080 } 1081 1082 } else { 1083 1084 /* Use the default policy if there is no last_policy. */ 1085 if (policy->last_policy) { 1086 pol = policy->last_policy; 1087 } else { 1088 pol = cpufreq_parse_policy(default_governor); 1089 /* 1090 * In case the default governor is neither "performance" 1091 * nor "powersave", fall back to the initial policy 1092 * value set by the driver. 1093 */ 1094 if (pol == CPUFREQ_POLICY_UNKNOWN) 1095 pol = policy->policy; 1096 } 1097 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1098 pol != CPUFREQ_POLICY_POWERSAVE) 1099 return -ENODATA; 1100 } 1101 1102 ret = cpufreq_set_policy(policy, gov, pol); 1103 if (gov) 1104 module_put(gov->owner); 1105 1106 return ret; 1107 } 1108 1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1110 { 1111 int ret = 0; 1112 1113 /* Has this CPU been taken care of already? */ 1114 if (cpumask_test_cpu(cpu, policy->cpus)) 1115 return 0; 1116 1117 down_write(&policy->rwsem); 1118 if (has_target()) 1119 cpufreq_stop_governor(policy); 1120 1121 cpumask_set_cpu(cpu, policy->cpus); 1122 1123 if (has_target()) { 1124 ret = cpufreq_start_governor(policy); 1125 if (ret) 1126 pr_err("%s: Failed to start governor\n", __func__); 1127 } 1128 up_write(&policy->rwsem); 1129 return ret; 1130 } 1131 1132 void refresh_frequency_limits(struct cpufreq_policy *policy) 1133 { 1134 if (!policy_is_inactive(policy)) { 1135 pr_debug("updating policy for CPU %u\n", policy->cpu); 1136 1137 cpufreq_set_policy(policy, policy->governor, policy->policy); 1138 } 1139 } 1140 EXPORT_SYMBOL(refresh_frequency_limits); 1141 1142 static void handle_update(struct work_struct *work) 1143 { 1144 struct cpufreq_policy *policy = 1145 container_of(work, struct cpufreq_policy, update); 1146 1147 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1148 down_write(&policy->rwsem); 1149 refresh_frequency_limits(policy); 1150 up_write(&policy->rwsem); 1151 } 1152 1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1154 void *data) 1155 { 1156 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1157 1158 schedule_work(&policy->update); 1159 return 0; 1160 } 1161 1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1163 void *data) 1164 { 1165 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1166 1167 schedule_work(&policy->update); 1168 return 0; 1169 } 1170 1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1172 { 1173 struct kobject *kobj; 1174 struct completion *cmp; 1175 1176 down_write(&policy->rwsem); 1177 cpufreq_stats_free_table(policy); 1178 kobj = &policy->kobj; 1179 cmp = &policy->kobj_unregister; 1180 up_write(&policy->rwsem); 1181 kobject_put(kobj); 1182 1183 /* 1184 * We need to make sure that the underlying kobj is 1185 * actually not referenced anymore by anybody before we 1186 * proceed with unloading. 1187 */ 1188 pr_debug("waiting for dropping of refcount\n"); 1189 wait_for_completion(cmp); 1190 pr_debug("wait complete\n"); 1191 } 1192 1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1194 { 1195 struct cpufreq_policy *policy; 1196 struct device *dev = get_cpu_device(cpu); 1197 int ret; 1198 1199 if (!dev) 1200 return NULL; 1201 1202 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1203 if (!policy) 1204 return NULL; 1205 1206 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1207 goto err_free_policy; 1208 1209 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1210 goto err_free_cpumask; 1211 1212 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1213 goto err_free_rcpumask; 1214 1215 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1216 cpufreq_global_kobject, "policy%u", cpu); 1217 if (ret) { 1218 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1219 /* 1220 * The entire policy object will be freed below, but the extra 1221 * memory allocated for the kobject name needs to be freed by 1222 * releasing the kobject. 1223 */ 1224 kobject_put(&policy->kobj); 1225 goto err_free_real_cpus; 1226 } 1227 1228 freq_constraints_init(&policy->constraints); 1229 1230 policy->nb_min.notifier_call = cpufreq_notifier_min; 1231 policy->nb_max.notifier_call = cpufreq_notifier_max; 1232 1233 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1234 &policy->nb_min); 1235 if (ret) { 1236 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1237 ret, cpumask_pr_args(policy->cpus)); 1238 goto err_kobj_remove; 1239 } 1240 1241 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1242 &policy->nb_max); 1243 if (ret) { 1244 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1245 ret, cpumask_pr_args(policy->cpus)); 1246 goto err_min_qos_notifier; 1247 } 1248 1249 INIT_LIST_HEAD(&policy->policy_list); 1250 init_rwsem(&policy->rwsem); 1251 spin_lock_init(&policy->transition_lock); 1252 init_waitqueue_head(&policy->transition_wait); 1253 init_completion(&policy->kobj_unregister); 1254 INIT_WORK(&policy->update, handle_update); 1255 1256 policy->cpu = cpu; 1257 return policy; 1258 1259 err_min_qos_notifier: 1260 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1261 &policy->nb_min); 1262 err_kobj_remove: 1263 cpufreq_policy_put_kobj(policy); 1264 err_free_real_cpus: 1265 free_cpumask_var(policy->real_cpus); 1266 err_free_rcpumask: 1267 free_cpumask_var(policy->related_cpus); 1268 err_free_cpumask: 1269 free_cpumask_var(policy->cpus); 1270 err_free_policy: 1271 kfree(policy); 1272 1273 return NULL; 1274 } 1275 1276 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1277 { 1278 unsigned long flags; 1279 int cpu; 1280 1281 /* Remove policy from list */ 1282 write_lock_irqsave(&cpufreq_driver_lock, flags); 1283 list_del(&policy->policy_list); 1284 1285 for_each_cpu(cpu, policy->related_cpus) 1286 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1287 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1288 1289 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1290 &policy->nb_max); 1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1292 &policy->nb_min); 1293 1294 /* Cancel any pending policy->update work before freeing the policy. */ 1295 cancel_work_sync(&policy->update); 1296 1297 if (policy->max_freq_req) { 1298 /* 1299 * CPUFREQ_CREATE_POLICY notification is sent only after 1300 * successfully adding max_freq_req request. 1301 */ 1302 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1303 CPUFREQ_REMOVE_POLICY, policy); 1304 freq_qos_remove_request(policy->max_freq_req); 1305 } 1306 1307 freq_qos_remove_request(policy->min_freq_req); 1308 kfree(policy->min_freq_req); 1309 1310 cpufreq_policy_put_kobj(policy); 1311 free_cpumask_var(policy->real_cpus); 1312 free_cpumask_var(policy->related_cpus); 1313 free_cpumask_var(policy->cpus); 1314 kfree(policy); 1315 } 1316 1317 static int cpufreq_online(unsigned int cpu) 1318 { 1319 struct cpufreq_policy *policy; 1320 bool new_policy; 1321 unsigned long flags; 1322 unsigned int j; 1323 int ret; 1324 1325 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1326 1327 /* Check if this CPU already has a policy to manage it */ 1328 policy = per_cpu(cpufreq_cpu_data, cpu); 1329 if (policy) { 1330 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1331 if (!policy_is_inactive(policy)) 1332 return cpufreq_add_policy_cpu(policy, cpu); 1333 1334 /* This is the only online CPU for the policy. Start over. */ 1335 new_policy = false; 1336 down_write(&policy->rwsem); 1337 policy->cpu = cpu; 1338 policy->governor = NULL; 1339 up_write(&policy->rwsem); 1340 } else { 1341 new_policy = true; 1342 policy = cpufreq_policy_alloc(cpu); 1343 if (!policy) 1344 return -ENOMEM; 1345 } 1346 1347 if (!new_policy && cpufreq_driver->online) { 1348 ret = cpufreq_driver->online(policy); 1349 if (ret) { 1350 pr_debug("%s: %d: initialization failed\n", __func__, 1351 __LINE__); 1352 goto out_exit_policy; 1353 } 1354 1355 /* Recover policy->cpus using related_cpus */ 1356 cpumask_copy(policy->cpus, policy->related_cpus); 1357 } else { 1358 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1359 1360 /* 1361 * Call driver. From then on the cpufreq must be able 1362 * to accept all calls to ->verify and ->setpolicy for this CPU. 1363 */ 1364 ret = cpufreq_driver->init(policy); 1365 if (ret) { 1366 pr_debug("%s: %d: initialization failed\n", __func__, 1367 __LINE__); 1368 goto out_free_policy; 1369 } 1370 1371 ret = cpufreq_table_validate_and_sort(policy); 1372 if (ret) 1373 goto out_exit_policy; 1374 1375 /* related_cpus should at least include policy->cpus. */ 1376 cpumask_copy(policy->related_cpus, policy->cpus); 1377 } 1378 1379 down_write(&policy->rwsem); 1380 /* 1381 * affected cpus must always be the one, which are online. We aren't 1382 * managing offline cpus here. 1383 */ 1384 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1385 1386 if (new_policy) { 1387 for_each_cpu(j, policy->related_cpus) { 1388 per_cpu(cpufreq_cpu_data, j) = policy; 1389 add_cpu_dev_symlink(policy, j); 1390 } 1391 1392 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1393 GFP_KERNEL); 1394 if (!policy->min_freq_req) 1395 goto out_destroy_policy; 1396 1397 ret = freq_qos_add_request(&policy->constraints, 1398 policy->min_freq_req, FREQ_QOS_MIN, 1399 policy->min); 1400 if (ret < 0) { 1401 /* 1402 * So we don't call freq_qos_remove_request() for an 1403 * uninitialized request. 1404 */ 1405 kfree(policy->min_freq_req); 1406 policy->min_freq_req = NULL; 1407 goto out_destroy_policy; 1408 } 1409 1410 /* 1411 * This must be initialized right here to avoid calling 1412 * freq_qos_remove_request() on uninitialized request in case 1413 * of errors. 1414 */ 1415 policy->max_freq_req = policy->min_freq_req + 1; 1416 1417 ret = freq_qos_add_request(&policy->constraints, 1418 policy->max_freq_req, FREQ_QOS_MAX, 1419 policy->max); 1420 if (ret < 0) { 1421 policy->max_freq_req = NULL; 1422 goto out_destroy_policy; 1423 } 1424 1425 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1426 CPUFREQ_CREATE_POLICY, policy); 1427 } 1428 1429 if (cpufreq_driver->get && has_target()) { 1430 policy->cur = cpufreq_driver->get(policy->cpu); 1431 if (!policy->cur) { 1432 pr_err("%s: ->get() failed\n", __func__); 1433 goto out_destroy_policy; 1434 } 1435 } 1436 1437 /* 1438 * Sometimes boot loaders set CPU frequency to a value outside of 1439 * frequency table present with cpufreq core. In such cases CPU might be 1440 * unstable if it has to run on that frequency for long duration of time 1441 * and so its better to set it to a frequency which is specified in 1442 * freq-table. This also makes cpufreq stats inconsistent as 1443 * cpufreq-stats would fail to register because current frequency of CPU 1444 * isn't found in freq-table. 1445 * 1446 * Because we don't want this change to effect boot process badly, we go 1447 * for the next freq which is >= policy->cur ('cur' must be set by now, 1448 * otherwise we will end up setting freq to lowest of the table as 'cur' 1449 * is initialized to zero). 1450 * 1451 * We are passing target-freq as "policy->cur - 1" otherwise 1452 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1453 * equal to target-freq. 1454 */ 1455 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1456 && has_target()) { 1457 /* Are we running at unknown frequency ? */ 1458 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1459 if (ret == -EINVAL) { 1460 /* Warn user and fix it */ 1461 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1462 __func__, policy->cpu, policy->cur); 1463 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1464 CPUFREQ_RELATION_L); 1465 1466 /* 1467 * Reaching here after boot in a few seconds may not 1468 * mean that system will remain stable at "unknown" 1469 * frequency for longer duration. Hence, a BUG_ON(). 1470 */ 1471 BUG_ON(ret); 1472 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1473 __func__, policy->cpu, policy->cur); 1474 } 1475 } 1476 1477 if (new_policy) { 1478 ret = cpufreq_add_dev_interface(policy); 1479 if (ret) 1480 goto out_destroy_policy; 1481 1482 cpufreq_stats_create_table(policy); 1483 1484 write_lock_irqsave(&cpufreq_driver_lock, flags); 1485 list_add(&policy->policy_list, &cpufreq_policy_list); 1486 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1487 } 1488 1489 ret = cpufreq_init_policy(policy); 1490 if (ret) { 1491 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1492 __func__, cpu, ret); 1493 goto out_destroy_policy; 1494 } 1495 1496 up_write(&policy->rwsem); 1497 1498 kobject_uevent(&policy->kobj, KOBJ_ADD); 1499 1500 /* Callback for handling stuff after policy is ready */ 1501 if (cpufreq_driver->ready) 1502 cpufreq_driver->ready(policy); 1503 1504 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1505 policy->cdev = of_cpufreq_cooling_register(policy); 1506 1507 pr_debug("initialization complete\n"); 1508 1509 return 0; 1510 1511 out_destroy_policy: 1512 for_each_cpu(j, policy->real_cpus) 1513 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1514 1515 up_write(&policy->rwsem); 1516 1517 out_exit_policy: 1518 if (cpufreq_driver->exit) 1519 cpufreq_driver->exit(policy); 1520 1521 out_free_policy: 1522 cpufreq_policy_free(policy); 1523 return ret; 1524 } 1525 1526 /** 1527 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1528 * @dev: CPU device. 1529 * @sif: Subsystem interface structure pointer (not used) 1530 */ 1531 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1532 { 1533 struct cpufreq_policy *policy; 1534 unsigned cpu = dev->id; 1535 int ret; 1536 1537 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1538 1539 if (cpu_online(cpu)) { 1540 ret = cpufreq_online(cpu); 1541 if (ret) 1542 return ret; 1543 } 1544 1545 /* Create sysfs link on CPU registration */ 1546 policy = per_cpu(cpufreq_cpu_data, cpu); 1547 if (policy) 1548 add_cpu_dev_symlink(policy, cpu); 1549 1550 return 0; 1551 } 1552 1553 static int cpufreq_offline(unsigned int cpu) 1554 { 1555 struct cpufreq_policy *policy; 1556 int ret; 1557 1558 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1559 1560 policy = cpufreq_cpu_get_raw(cpu); 1561 if (!policy) { 1562 pr_debug("%s: No cpu_data found\n", __func__); 1563 return 0; 1564 } 1565 1566 down_write(&policy->rwsem); 1567 if (has_target()) 1568 cpufreq_stop_governor(policy); 1569 1570 cpumask_clear_cpu(cpu, policy->cpus); 1571 1572 if (policy_is_inactive(policy)) { 1573 if (has_target()) 1574 strncpy(policy->last_governor, policy->governor->name, 1575 CPUFREQ_NAME_LEN); 1576 else 1577 policy->last_policy = policy->policy; 1578 } else if (cpu == policy->cpu) { 1579 /* Nominate new CPU */ 1580 policy->cpu = cpumask_any(policy->cpus); 1581 } 1582 1583 /* Start governor again for active policy */ 1584 if (!policy_is_inactive(policy)) { 1585 if (has_target()) { 1586 ret = cpufreq_start_governor(policy); 1587 if (ret) 1588 pr_err("%s: Failed to start governor\n", __func__); 1589 } 1590 1591 goto unlock; 1592 } 1593 1594 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1595 cpufreq_cooling_unregister(policy->cdev); 1596 policy->cdev = NULL; 1597 } 1598 1599 if (cpufreq_driver->stop_cpu) 1600 cpufreq_driver->stop_cpu(policy); 1601 1602 if (has_target()) 1603 cpufreq_exit_governor(policy); 1604 1605 /* 1606 * Perform the ->offline() during light-weight tear-down, as 1607 * that allows fast recovery when the CPU comes back. 1608 */ 1609 if (cpufreq_driver->offline) { 1610 cpufreq_driver->offline(policy); 1611 } else if (cpufreq_driver->exit) { 1612 cpufreq_driver->exit(policy); 1613 policy->freq_table = NULL; 1614 } 1615 1616 unlock: 1617 up_write(&policy->rwsem); 1618 return 0; 1619 } 1620 1621 /* 1622 * cpufreq_remove_dev - remove a CPU device 1623 * 1624 * Removes the cpufreq interface for a CPU device. 1625 */ 1626 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1627 { 1628 unsigned int cpu = dev->id; 1629 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1630 1631 if (!policy) 1632 return; 1633 1634 if (cpu_online(cpu)) 1635 cpufreq_offline(cpu); 1636 1637 cpumask_clear_cpu(cpu, policy->real_cpus); 1638 remove_cpu_dev_symlink(policy, dev); 1639 1640 if (cpumask_empty(policy->real_cpus)) { 1641 /* We did light-weight exit earlier, do full tear down now */ 1642 if (cpufreq_driver->offline) 1643 cpufreq_driver->exit(policy); 1644 1645 cpufreq_policy_free(policy); 1646 } 1647 } 1648 1649 /** 1650 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1651 * in deep trouble. 1652 * @policy: policy managing CPUs 1653 * @new_freq: CPU frequency the CPU actually runs at 1654 * 1655 * We adjust to current frequency first, and need to clean up later. 1656 * So either call to cpufreq_update_policy() or schedule handle_update()). 1657 */ 1658 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1659 unsigned int new_freq) 1660 { 1661 struct cpufreq_freqs freqs; 1662 1663 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1664 policy->cur, new_freq); 1665 1666 freqs.old = policy->cur; 1667 freqs.new = new_freq; 1668 1669 cpufreq_freq_transition_begin(policy, &freqs); 1670 cpufreq_freq_transition_end(policy, &freqs, 0); 1671 } 1672 1673 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1674 { 1675 unsigned int new_freq; 1676 1677 new_freq = cpufreq_driver->get(policy->cpu); 1678 if (!new_freq) 1679 return 0; 1680 1681 /* 1682 * If fast frequency switching is used with the given policy, the check 1683 * against policy->cur is pointless, so skip it in that case. 1684 */ 1685 if (policy->fast_switch_enabled || !has_target()) 1686 return new_freq; 1687 1688 if (policy->cur != new_freq) { 1689 cpufreq_out_of_sync(policy, new_freq); 1690 if (update) 1691 schedule_work(&policy->update); 1692 } 1693 1694 return new_freq; 1695 } 1696 1697 /** 1698 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1699 * @cpu: CPU number 1700 * 1701 * This is the last known freq, without actually getting it from the driver. 1702 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1703 */ 1704 unsigned int cpufreq_quick_get(unsigned int cpu) 1705 { 1706 struct cpufreq_policy *policy; 1707 unsigned int ret_freq = 0; 1708 unsigned long flags; 1709 1710 read_lock_irqsave(&cpufreq_driver_lock, flags); 1711 1712 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1713 ret_freq = cpufreq_driver->get(cpu); 1714 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1715 return ret_freq; 1716 } 1717 1718 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1719 1720 policy = cpufreq_cpu_get(cpu); 1721 if (policy) { 1722 ret_freq = policy->cur; 1723 cpufreq_cpu_put(policy); 1724 } 1725 1726 return ret_freq; 1727 } 1728 EXPORT_SYMBOL(cpufreq_quick_get); 1729 1730 /** 1731 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1732 * @cpu: CPU number 1733 * 1734 * Just return the max possible frequency for a given CPU. 1735 */ 1736 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1737 { 1738 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1739 unsigned int ret_freq = 0; 1740 1741 if (policy) { 1742 ret_freq = policy->max; 1743 cpufreq_cpu_put(policy); 1744 } 1745 1746 return ret_freq; 1747 } 1748 EXPORT_SYMBOL(cpufreq_quick_get_max); 1749 1750 /** 1751 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1752 * @cpu: CPU number 1753 * 1754 * The default return value is the max_freq field of cpuinfo. 1755 */ 1756 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1757 { 1758 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1759 unsigned int ret_freq = 0; 1760 1761 if (policy) { 1762 ret_freq = policy->cpuinfo.max_freq; 1763 cpufreq_cpu_put(policy); 1764 } 1765 1766 return ret_freq; 1767 } 1768 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1769 1770 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1771 { 1772 if (unlikely(policy_is_inactive(policy))) 1773 return 0; 1774 1775 return cpufreq_verify_current_freq(policy, true); 1776 } 1777 1778 /** 1779 * cpufreq_get - get the current CPU frequency (in kHz) 1780 * @cpu: CPU number 1781 * 1782 * Get the CPU current (static) CPU frequency 1783 */ 1784 unsigned int cpufreq_get(unsigned int cpu) 1785 { 1786 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1787 unsigned int ret_freq = 0; 1788 1789 if (policy) { 1790 down_read(&policy->rwsem); 1791 if (cpufreq_driver->get) 1792 ret_freq = __cpufreq_get(policy); 1793 up_read(&policy->rwsem); 1794 1795 cpufreq_cpu_put(policy); 1796 } 1797 1798 return ret_freq; 1799 } 1800 EXPORT_SYMBOL(cpufreq_get); 1801 1802 static struct subsys_interface cpufreq_interface = { 1803 .name = "cpufreq", 1804 .subsys = &cpu_subsys, 1805 .add_dev = cpufreq_add_dev, 1806 .remove_dev = cpufreq_remove_dev, 1807 }; 1808 1809 /* 1810 * In case platform wants some specific frequency to be configured 1811 * during suspend.. 1812 */ 1813 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1814 { 1815 int ret; 1816 1817 if (!policy->suspend_freq) { 1818 pr_debug("%s: suspend_freq not defined\n", __func__); 1819 return 0; 1820 } 1821 1822 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1823 policy->suspend_freq); 1824 1825 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1826 CPUFREQ_RELATION_H); 1827 if (ret) 1828 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1829 __func__, policy->suspend_freq, ret); 1830 1831 return ret; 1832 } 1833 EXPORT_SYMBOL(cpufreq_generic_suspend); 1834 1835 /** 1836 * cpufreq_suspend() - Suspend CPUFreq governors 1837 * 1838 * Called during system wide Suspend/Hibernate cycles for suspending governors 1839 * as some platforms can't change frequency after this point in suspend cycle. 1840 * Because some of the devices (like: i2c, regulators, etc) they use for 1841 * changing frequency are suspended quickly after this point. 1842 */ 1843 void cpufreq_suspend(void) 1844 { 1845 struct cpufreq_policy *policy; 1846 1847 if (!cpufreq_driver) 1848 return; 1849 1850 if (!has_target() && !cpufreq_driver->suspend) 1851 goto suspend; 1852 1853 pr_debug("%s: Suspending Governors\n", __func__); 1854 1855 for_each_active_policy(policy) { 1856 if (has_target()) { 1857 down_write(&policy->rwsem); 1858 cpufreq_stop_governor(policy); 1859 up_write(&policy->rwsem); 1860 } 1861 1862 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1863 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1864 cpufreq_driver->name); 1865 } 1866 1867 suspend: 1868 cpufreq_suspended = true; 1869 } 1870 1871 /** 1872 * cpufreq_resume() - Resume CPUFreq governors 1873 * 1874 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1875 * are suspended with cpufreq_suspend(). 1876 */ 1877 void cpufreq_resume(void) 1878 { 1879 struct cpufreq_policy *policy; 1880 int ret; 1881 1882 if (!cpufreq_driver) 1883 return; 1884 1885 if (unlikely(!cpufreq_suspended)) 1886 return; 1887 1888 cpufreq_suspended = false; 1889 1890 if (!has_target() && !cpufreq_driver->resume) 1891 return; 1892 1893 pr_debug("%s: Resuming Governors\n", __func__); 1894 1895 for_each_active_policy(policy) { 1896 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1897 pr_err("%s: Failed to resume driver: %p\n", __func__, 1898 policy); 1899 } else if (has_target()) { 1900 down_write(&policy->rwsem); 1901 ret = cpufreq_start_governor(policy); 1902 up_write(&policy->rwsem); 1903 1904 if (ret) 1905 pr_err("%s: Failed to start governor for policy: %p\n", 1906 __func__, policy); 1907 } 1908 } 1909 } 1910 1911 /** 1912 * cpufreq_get_current_driver - return current driver's name 1913 * 1914 * Return the name string of the currently loaded cpufreq driver 1915 * or NULL, if none. 1916 */ 1917 const char *cpufreq_get_current_driver(void) 1918 { 1919 if (cpufreq_driver) 1920 return cpufreq_driver->name; 1921 1922 return NULL; 1923 } 1924 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1925 1926 /** 1927 * cpufreq_get_driver_data - return current driver data 1928 * 1929 * Return the private data of the currently loaded cpufreq 1930 * driver, or NULL if no cpufreq driver is loaded. 1931 */ 1932 void *cpufreq_get_driver_data(void) 1933 { 1934 if (cpufreq_driver) 1935 return cpufreq_driver->driver_data; 1936 1937 return NULL; 1938 } 1939 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1940 1941 /********************************************************************* 1942 * NOTIFIER LISTS INTERFACE * 1943 *********************************************************************/ 1944 1945 /** 1946 * cpufreq_register_notifier - register a driver with cpufreq 1947 * @nb: notifier function to register 1948 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1949 * 1950 * Add a driver to one of two lists: either a list of drivers that 1951 * are notified about clock rate changes (once before and once after 1952 * the transition), or a list of drivers that are notified about 1953 * changes in cpufreq policy. 1954 * 1955 * This function may sleep, and has the same return conditions as 1956 * blocking_notifier_chain_register. 1957 */ 1958 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1959 { 1960 int ret; 1961 1962 if (cpufreq_disabled()) 1963 return -EINVAL; 1964 1965 switch (list) { 1966 case CPUFREQ_TRANSITION_NOTIFIER: 1967 mutex_lock(&cpufreq_fast_switch_lock); 1968 1969 if (cpufreq_fast_switch_count > 0) { 1970 mutex_unlock(&cpufreq_fast_switch_lock); 1971 return -EBUSY; 1972 } 1973 ret = srcu_notifier_chain_register( 1974 &cpufreq_transition_notifier_list, nb); 1975 if (!ret) 1976 cpufreq_fast_switch_count--; 1977 1978 mutex_unlock(&cpufreq_fast_switch_lock); 1979 break; 1980 case CPUFREQ_POLICY_NOTIFIER: 1981 ret = blocking_notifier_chain_register( 1982 &cpufreq_policy_notifier_list, nb); 1983 break; 1984 default: 1985 ret = -EINVAL; 1986 } 1987 1988 return ret; 1989 } 1990 EXPORT_SYMBOL(cpufreq_register_notifier); 1991 1992 /** 1993 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1994 * @nb: notifier block to be unregistered 1995 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1996 * 1997 * Remove a driver from the CPU frequency notifier list. 1998 * 1999 * This function may sleep, and has the same return conditions as 2000 * blocking_notifier_chain_unregister. 2001 */ 2002 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2003 { 2004 int ret; 2005 2006 if (cpufreq_disabled()) 2007 return -EINVAL; 2008 2009 switch (list) { 2010 case CPUFREQ_TRANSITION_NOTIFIER: 2011 mutex_lock(&cpufreq_fast_switch_lock); 2012 2013 ret = srcu_notifier_chain_unregister( 2014 &cpufreq_transition_notifier_list, nb); 2015 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2016 cpufreq_fast_switch_count++; 2017 2018 mutex_unlock(&cpufreq_fast_switch_lock); 2019 break; 2020 case CPUFREQ_POLICY_NOTIFIER: 2021 ret = blocking_notifier_chain_unregister( 2022 &cpufreq_policy_notifier_list, nb); 2023 break; 2024 default: 2025 ret = -EINVAL; 2026 } 2027 2028 return ret; 2029 } 2030 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2031 2032 2033 /********************************************************************* 2034 * GOVERNORS * 2035 *********************************************************************/ 2036 2037 /** 2038 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2039 * @policy: cpufreq policy to switch the frequency for. 2040 * @target_freq: New frequency to set (may be approximate). 2041 * 2042 * Carry out a fast frequency switch without sleeping. 2043 * 2044 * The driver's ->fast_switch() callback invoked by this function must be 2045 * suitable for being called from within RCU-sched read-side critical sections 2046 * and it is expected to select the minimum available frequency greater than or 2047 * equal to @target_freq (CPUFREQ_RELATION_L). 2048 * 2049 * This function must not be called if policy->fast_switch_enabled is unset. 2050 * 2051 * Governors calling this function must guarantee that it will never be invoked 2052 * twice in parallel for the same policy and that it will never be called in 2053 * parallel with either ->target() or ->target_index() for the same policy. 2054 * 2055 * Returns the actual frequency set for the CPU. 2056 * 2057 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2058 * error condition, the hardware configuration must be preserved. 2059 */ 2060 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2061 unsigned int target_freq) 2062 { 2063 unsigned int freq; 2064 int cpu; 2065 2066 target_freq = clamp_val(target_freq, policy->min, policy->max); 2067 freq = cpufreq_driver->fast_switch(policy, target_freq); 2068 2069 if (!freq) 2070 return 0; 2071 2072 policy->cur = freq; 2073 arch_set_freq_scale(policy->related_cpus, freq, 2074 policy->cpuinfo.max_freq); 2075 cpufreq_stats_record_transition(policy, freq); 2076 2077 if (trace_cpu_frequency_enabled()) { 2078 for_each_cpu(cpu, policy->cpus) 2079 trace_cpu_frequency(freq, cpu); 2080 } 2081 2082 return freq; 2083 } 2084 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2085 2086 /* Must set freqs->new to intermediate frequency */ 2087 static int __target_intermediate(struct cpufreq_policy *policy, 2088 struct cpufreq_freqs *freqs, int index) 2089 { 2090 int ret; 2091 2092 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2093 2094 /* We don't need to switch to intermediate freq */ 2095 if (!freqs->new) 2096 return 0; 2097 2098 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2099 __func__, policy->cpu, freqs->old, freqs->new); 2100 2101 cpufreq_freq_transition_begin(policy, freqs); 2102 ret = cpufreq_driver->target_intermediate(policy, index); 2103 cpufreq_freq_transition_end(policy, freqs, ret); 2104 2105 if (ret) 2106 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2107 __func__, ret); 2108 2109 return ret; 2110 } 2111 2112 static int __target_index(struct cpufreq_policy *policy, int index) 2113 { 2114 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2115 unsigned int intermediate_freq = 0; 2116 unsigned int newfreq = policy->freq_table[index].frequency; 2117 int retval = -EINVAL; 2118 bool notify; 2119 2120 if (newfreq == policy->cur) 2121 return 0; 2122 2123 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2124 if (notify) { 2125 /* Handle switching to intermediate frequency */ 2126 if (cpufreq_driver->get_intermediate) { 2127 retval = __target_intermediate(policy, &freqs, index); 2128 if (retval) 2129 return retval; 2130 2131 intermediate_freq = freqs.new; 2132 /* Set old freq to intermediate */ 2133 if (intermediate_freq) 2134 freqs.old = freqs.new; 2135 } 2136 2137 freqs.new = newfreq; 2138 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2139 __func__, policy->cpu, freqs.old, freqs.new); 2140 2141 cpufreq_freq_transition_begin(policy, &freqs); 2142 } 2143 2144 retval = cpufreq_driver->target_index(policy, index); 2145 if (retval) 2146 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2147 retval); 2148 2149 if (notify) { 2150 cpufreq_freq_transition_end(policy, &freqs, retval); 2151 2152 /* 2153 * Failed after setting to intermediate freq? Driver should have 2154 * reverted back to initial frequency and so should we. Check 2155 * here for intermediate_freq instead of get_intermediate, in 2156 * case we haven't switched to intermediate freq at all. 2157 */ 2158 if (unlikely(retval && intermediate_freq)) { 2159 freqs.old = intermediate_freq; 2160 freqs.new = policy->restore_freq; 2161 cpufreq_freq_transition_begin(policy, &freqs); 2162 cpufreq_freq_transition_end(policy, &freqs, 0); 2163 } 2164 } 2165 2166 return retval; 2167 } 2168 2169 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2170 unsigned int target_freq, 2171 unsigned int relation) 2172 { 2173 unsigned int old_target_freq = target_freq; 2174 int index; 2175 2176 if (cpufreq_disabled()) 2177 return -ENODEV; 2178 2179 /* Make sure that target_freq is within supported range */ 2180 target_freq = clamp_val(target_freq, policy->min, policy->max); 2181 2182 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2183 policy->cpu, target_freq, relation, old_target_freq); 2184 2185 /* 2186 * This might look like a redundant call as we are checking it again 2187 * after finding index. But it is left intentionally for cases where 2188 * exactly same freq is called again and so we can save on few function 2189 * calls. 2190 */ 2191 if (target_freq == policy->cur) 2192 return 0; 2193 2194 /* Save last value to restore later on errors */ 2195 policy->restore_freq = policy->cur; 2196 2197 if (cpufreq_driver->target) 2198 return cpufreq_driver->target(policy, target_freq, relation); 2199 2200 if (!cpufreq_driver->target_index) 2201 return -EINVAL; 2202 2203 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2204 2205 return __target_index(policy, index); 2206 } 2207 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2208 2209 int cpufreq_driver_target(struct cpufreq_policy *policy, 2210 unsigned int target_freq, 2211 unsigned int relation) 2212 { 2213 int ret; 2214 2215 down_write(&policy->rwsem); 2216 2217 ret = __cpufreq_driver_target(policy, target_freq, relation); 2218 2219 up_write(&policy->rwsem); 2220 2221 return ret; 2222 } 2223 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2224 2225 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2226 { 2227 return NULL; 2228 } 2229 2230 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2231 { 2232 int ret; 2233 2234 /* Don't start any governor operations if we are entering suspend */ 2235 if (cpufreq_suspended) 2236 return 0; 2237 /* 2238 * Governor might not be initiated here if ACPI _PPC changed 2239 * notification happened, so check it. 2240 */ 2241 if (!policy->governor) 2242 return -EINVAL; 2243 2244 /* Platform doesn't want dynamic frequency switching ? */ 2245 if (policy->governor->dynamic_switching && 2246 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2247 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2248 2249 if (gov) { 2250 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2251 policy->governor->name, gov->name); 2252 policy->governor = gov; 2253 } else { 2254 return -EINVAL; 2255 } 2256 } 2257 2258 if (!try_module_get(policy->governor->owner)) 2259 return -EINVAL; 2260 2261 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2262 2263 if (policy->governor->init) { 2264 ret = policy->governor->init(policy); 2265 if (ret) { 2266 module_put(policy->governor->owner); 2267 return ret; 2268 } 2269 } 2270 2271 return 0; 2272 } 2273 2274 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2275 { 2276 if (cpufreq_suspended || !policy->governor) 2277 return; 2278 2279 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2280 2281 if (policy->governor->exit) 2282 policy->governor->exit(policy); 2283 2284 module_put(policy->governor->owner); 2285 } 2286 2287 int cpufreq_start_governor(struct cpufreq_policy *policy) 2288 { 2289 int ret; 2290 2291 if (cpufreq_suspended) 2292 return 0; 2293 2294 if (!policy->governor) 2295 return -EINVAL; 2296 2297 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2298 2299 if (cpufreq_driver->get) 2300 cpufreq_verify_current_freq(policy, false); 2301 2302 if (policy->governor->start) { 2303 ret = policy->governor->start(policy); 2304 if (ret) 2305 return ret; 2306 } 2307 2308 if (policy->governor->limits) 2309 policy->governor->limits(policy); 2310 2311 return 0; 2312 } 2313 2314 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2315 { 2316 if (cpufreq_suspended || !policy->governor) 2317 return; 2318 2319 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2320 2321 if (policy->governor->stop) 2322 policy->governor->stop(policy); 2323 } 2324 2325 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2326 { 2327 if (cpufreq_suspended || !policy->governor) 2328 return; 2329 2330 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2331 2332 if (policy->governor->limits) 2333 policy->governor->limits(policy); 2334 } 2335 2336 int cpufreq_register_governor(struct cpufreq_governor *governor) 2337 { 2338 int err; 2339 2340 if (!governor) 2341 return -EINVAL; 2342 2343 if (cpufreq_disabled()) 2344 return -ENODEV; 2345 2346 mutex_lock(&cpufreq_governor_mutex); 2347 2348 err = -EBUSY; 2349 if (!find_governor(governor->name)) { 2350 err = 0; 2351 list_add(&governor->governor_list, &cpufreq_governor_list); 2352 } 2353 2354 mutex_unlock(&cpufreq_governor_mutex); 2355 return err; 2356 } 2357 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2358 2359 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2360 { 2361 struct cpufreq_policy *policy; 2362 unsigned long flags; 2363 2364 if (!governor) 2365 return; 2366 2367 if (cpufreq_disabled()) 2368 return; 2369 2370 /* clear last_governor for all inactive policies */ 2371 read_lock_irqsave(&cpufreq_driver_lock, flags); 2372 for_each_inactive_policy(policy) { 2373 if (!strcmp(policy->last_governor, governor->name)) { 2374 policy->governor = NULL; 2375 strcpy(policy->last_governor, "\0"); 2376 } 2377 } 2378 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2379 2380 mutex_lock(&cpufreq_governor_mutex); 2381 list_del(&governor->governor_list); 2382 mutex_unlock(&cpufreq_governor_mutex); 2383 } 2384 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2385 2386 2387 /********************************************************************* 2388 * POLICY INTERFACE * 2389 *********************************************************************/ 2390 2391 /** 2392 * cpufreq_get_policy - get the current cpufreq_policy 2393 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2394 * is written 2395 * @cpu: CPU to find the policy for 2396 * 2397 * Reads the current cpufreq policy. 2398 */ 2399 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2400 { 2401 struct cpufreq_policy *cpu_policy; 2402 if (!policy) 2403 return -EINVAL; 2404 2405 cpu_policy = cpufreq_cpu_get(cpu); 2406 if (!cpu_policy) 2407 return -EINVAL; 2408 2409 memcpy(policy, cpu_policy, sizeof(*policy)); 2410 2411 cpufreq_cpu_put(cpu_policy); 2412 return 0; 2413 } 2414 EXPORT_SYMBOL(cpufreq_get_policy); 2415 2416 /** 2417 * cpufreq_set_policy - Modify cpufreq policy parameters. 2418 * @policy: Policy object to modify. 2419 * @new_gov: Policy governor pointer. 2420 * @new_pol: Policy value (for drivers with built-in governors). 2421 * 2422 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2423 * limits to be set for the policy, update @policy with the verified limits 2424 * values and either invoke the driver's ->setpolicy() callback (if present) or 2425 * carry out a governor update for @policy. That is, run the current governor's 2426 * ->limits() callback (if @new_gov points to the same object as the one in 2427 * @policy) or replace the governor for @policy with @new_gov. 2428 * 2429 * The cpuinfo part of @policy is not updated by this function. 2430 */ 2431 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2432 struct cpufreq_governor *new_gov, 2433 unsigned int new_pol) 2434 { 2435 struct cpufreq_policy_data new_data; 2436 struct cpufreq_governor *old_gov; 2437 int ret; 2438 2439 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2440 new_data.freq_table = policy->freq_table; 2441 new_data.cpu = policy->cpu; 2442 /* 2443 * PM QoS framework collects all the requests from users and provide us 2444 * the final aggregated value here. 2445 */ 2446 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2447 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2448 2449 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2450 new_data.cpu, new_data.min, new_data.max); 2451 2452 /* 2453 * Verify that the CPU speed can be set within these limits and make sure 2454 * that min <= max. 2455 */ 2456 ret = cpufreq_driver->verify(&new_data); 2457 if (ret) 2458 return ret; 2459 2460 policy->min = new_data.min; 2461 policy->max = new_data.max; 2462 trace_cpu_frequency_limits(policy); 2463 2464 policy->cached_target_freq = UINT_MAX; 2465 2466 pr_debug("new min and max freqs are %u - %u kHz\n", 2467 policy->min, policy->max); 2468 2469 if (cpufreq_driver->setpolicy) { 2470 policy->policy = new_pol; 2471 pr_debug("setting range\n"); 2472 return cpufreq_driver->setpolicy(policy); 2473 } 2474 2475 if (new_gov == policy->governor) { 2476 pr_debug("governor limits update\n"); 2477 cpufreq_governor_limits(policy); 2478 return 0; 2479 } 2480 2481 pr_debug("governor switch\n"); 2482 2483 /* save old, working values */ 2484 old_gov = policy->governor; 2485 /* end old governor */ 2486 if (old_gov) { 2487 cpufreq_stop_governor(policy); 2488 cpufreq_exit_governor(policy); 2489 } 2490 2491 /* start new governor */ 2492 policy->governor = new_gov; 2493 ret = cpufreq_init_governor(policy); 2494 if (!ret) { 2495 ret = cpufreq_start_governor(policy); 2496 if (!ret) { 2497 pr_debug("governor change\n"); 2498 sched_cpufreq_governor_change(policy, old_gov); 2499 return 0; 2500 } 2501 cpufreq_exit_governor(policy); 2502 } 2503 2504 /* new governor failed, so re-start old one */ 2505 pr_debug("starting governor %s failed\n", policy->governor->name); 2506 if (old_gov) { 2507 policy->governor = old_gov; 2508 if (cpufreq_init_governor(policy)) 2509 policy->governor = NULL; 2510 else 2511 cpufreq_start_governor(policy); 2512 } 2513 2514 return ret; 2515 } 2516 2517 /** 2518 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2519 * @cpu: CPU to re-evaluate the policy for. 2520 * 2521 * Update the current frequency for the cpufreq policy of @cpu and use 2522 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2523 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2524 * for the policy in question, among other things. 2525 */ 2526 void cpufreq_update_policy(unsigned int cpu) 2527 { 2528 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2529 2530 if (!policy) 2531 return; 2532 2533 /* 2534 * BIOS might change freq behind our back 2535 * -> ask driver for current freq and notify governors about a change 2536 */ 2537 if (cpufreq_driver->get && has_target() && 2538 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2539 goto unlock; 2540 2541 refresh_frequency_limits(policy); 2542 2543 unlock: 2544 cpufreq_cpu_release(policy); 2545 } 2546 EXPORT_SYMBOL(cpufreq_update_policy); 2547 2548 /** 2549 * cpufreq_update_limits - Update policy limits for a given CPU. 2550 * @cpu: CPU to update the policy limits for. 2551 * 2552 * Invoke the driver's ->update_limits callback if present or call 2553 * cpufreq_update_policy() for @cpu. 2554 */ 2555 void cpufreq_update_limits(unsigned int cpu) 2556 { 2557 if (cpufreq_driver->update_limits) 2558 cpufreq_driver->update_limits(cpu); 2559 else 2560 cpufreq_update_policy(cpu); 2561 } 2562 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2563 2564 /********************************************************************* 2565 * BOOST * 2566 *********************************************************************/ 2567 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2568 { 2569 int ret; 2570 2571 if (!policy->freq_table) 2572 return -ENXIO; 2573 2574 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2575 if (ret) { 2576 pr_err("%s: Policy frequency update failed\n", __func__); 2577 return ret; 2578 } 2579 2580 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2581 if (ret < 0) 2582 return ret; 2583 2584 return 0; 2585 } 2586 2587 int cpufreq_boost_trigger_state(int state) 2588 { 2589 struct cpufreq_policy *policy; 2590 unsigned long flags; 2591 int ret = 0; 2592 2593 if (cpufreq_driver->boost_enabled == state) 2594 return 0; 2595 2596 write_lock_irqsave(&cpufreq_driver_lock, flags); 2597 cpufreq_driver->boost_enabled = state; 2598 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2599 2600 get_online_cpus(); 2601 for_each_active_policy(policy) { 2602 ret = cpufreq_driver->set_boost(policy, state); 2603 if (ret) 2604 goto err_reset_state; 2605 } 2606 put_online_cpus(); 2607 2608 return 0; 2609 2610 err_reset_state: 2611 put_online_cpus(); 2612 2613 write_lock_irqsave(&cpufreq_driver_lock, flags); 2614 cpufreq_driver->boost_enabled = !state; 2615 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2616 2617 pr_err("%s: Cannot %s BOOST\n", 2618 __func__, state ? "enable" : "disable"); 2619 2620 return ret; 2621 } 2622 2623 static bool cpufreq_boost_supported(void) 2624 { 2625 return cpufreq_driver->set_boost; 2626 } 2627 2628 static int create_boost_sysfs_file(void) 2629 { 2630 int ret; 2631 2632 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2633 if (ret) 2634 pr_err("%s: cannot register global BOOST sysfs file\n", 2635 __func__); 2636 2637 return ret; 2638 } 2639 2640 static void remove_boost_sysfs_file(void) 2641 { 2642 if (cpufreq_boost_supported()) 2643 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2644 } 2645 2646 int cpufreq_enable_boost_support(void) 2647 { 2648 if (!cpufreq_driver) 2649 return -EINVAL; 2650 2651 if (cpufreq_boost_supported()) 2652 return 0; 2653 2654 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2655 2656 /* This will get removed on driver unregister */ 2657 return create_boost_sysfs_file(); 2658 } 2659 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2660 2661 int cpufreq_boost_enabled(void) 2662 { 2663 return cpufreq_driver->boost_enabled; 2664 } 2665 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2666 2667 /********************************************************************* 2668 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2669 *********************************************************************/ 2670 static enum cpuhp_state hp_online; 2671 2672 static int cpuhp_cpufreq_online(unsigned int cpu) 2673 { 2674 cpufreq_online(cpu); 2675 2676 return 0; 2677 } 2678 2679 static int cpuhp_cpufreq_offline(unsigned int cpu) 2680 { 2681 cpufreq_offline(cpu); 2682 2683 return 0; 2684 } 2685 2686 /** 2687 * cpufreq_register_driver - register a CPU Frequency driver 2688 * @driver_data: A struct cpufreq_driver containing the values# 2689 * submitted by the CPU Frequency driver. 2690 * 2691 * Registers a CPU Frequency driver to this core code. This code 2692 * returns zero on success, -EEXIST when another driver got here first 2693 * (and isn't unregistered in the meantime). 2694 * 2695 */ 2696 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2697 { 2698 unsigned long flags; 2699 int ret; 2700 2701 if (cpufreq_disabled()) 2702 return -ENODEV; 2703 2704 /* 2705 * The cpufreq core depends heavily on the availability of device 2706 * structure, make sure they are available before proceeding further. 2707 */ 2708 if (!get_cpu_device(0)) 2709 return -EPROBE_DEFER; 2710 2711 if (!driver_data || !driver_data->verify || !driver_data->init || 2712 !(driver_data->setpolicy || driver_data->target_index || 2713 driver_data->target) || 2714 (driver_data->setpolicy && (driver_data->target_index || 2715 driver_data->target)) || 2716 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2717 (!driver_data->online != !driver_data->offline)) 2718 return -EINVAL; 2719 2720 pr_debug("trying to register driver %s\n", driver_data->name); 2721 2722 /* Protect against concurrent CPU online/offline. */ 2723 cpus_read_lock(); 2724 2725 write_lock_irqsave(&cpufreq_driver_lock, flags); 2726 if (cpufreq_driver) { 2727 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2728 ret = -EEXIST; 2729 goto out; 2730 } 2731 cpufreq_driver = driver_data; 2732 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2733 2734 /* 2735 * Mark support for the scheduler's frequency invariance engine for 2736 * drivers that implement target(), target_index() or fast_switch(). 2737 */ 2738 if (!cpufreq_driver->setpolicy) { 2739 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2740 pr_debug("supports frequency invariance"); 2741 } 2742 2743 if (driver_data->setpolicy) 2744 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2745 2746 if (cpufreq_boost_supported()) { 2747 ret = create_boost_sysfs_file(); 2748 if (ret) 2749 goto err_null_driver; 2750 } 2751 2752 ret = subsys_interface_register(&cpufreq_interface); 2753 if (ret) 2754 goto err_boost_unreg; 2755 2756 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2757 list_empty(&cpufreq_policy_list)) { 2758 /* if all ->init() calls failed, unregister */ 2759 ret = -ENODEV; 2760 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2761 driver_data->name); 2762 goto err_if_unreg; 2763 } 2764 2765 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2766 "cpufreq:online", 2767 cpuhp_cpufreq_online, 2768 cpuhp_cpufreq_offline); 2769 if (ret < 0) 2770 goto err_if_unreg; 2771 hp_online = ret; 2772 ret = 0; 2773 2774 pr_debug("driver %s up and running\n", driver_data->name); 2775 goto out; 2776 2777 err_if_unreg: 2778 subsys_interface_unregister(&cpufreq_interface); 2779 err_boost_unreg: 2780 remove_boost_sysfs_file(); 2781 err_null_driver: 2782 write_lock_irqsave(&cpufreq_driver_lock, flags); 2783 cpufreq_driver = NULL; 2784 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2785 out: 2786 cpus_read_unlock(); 2787 return ret; 2788 } 2789 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2790 2791 /* 2792 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2793 * 2794 * Unregister the current CPUFreq driver. Only call this if you have 2795 * the right to do so, i.e. if you have succeeded in initialising before! 2796 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2797 * currently not initialised. 2798 */ 2799 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2800 { 2801 unsigned long flags; 2802 2803 if (!cpufreq_driver || (driver != cpufreq_driver)) 2804 return -EINVAL; 2805 2806 pr_debug("unregistering driver %s\n", driver->name); 2807 2808 /* Protect against concurrent cpu hotplug */ 2809 cpus_read_lock(); 2810 subsys_interface_unregister(&cpufreq_interface); 2811 remove_boost_sysfs_file(); 2812 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2813 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2814 2815 write_lock_irqsave(&cpufreq_driver_lock, flags); 2816 2817 cpufreq_driver = NULL; 2818 2819 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2820 cpus_read_unlock(); 2821 2822 return 0; 2823 } 2824 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2825 2826 static int __init cpufreq_core_init(void) 2827 { 2828 struct cpufreq_governor *gov = cpufreq_default_governor(); 2829 2830 if (cpufreq_disabled()) 2831 return -ENODEV; 2832 2833 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2834 BUG_ON(!cpufreq_global_kobject); 2835 2836 if (!strlen(default_governor)) 2837 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2838 2839 return 0; 2840 } 2841 module_param(off, int, 0444); 2842 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2843 core_initcall(cpufreq_core_init); 2844