1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 #define for_each_policy(__policy) \ 46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 47 48 /* Iterate over governors */ 49 static LIST_HEAD(cpufreq_governor_list); 50 #define for_each_governor(__governor) \ 51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 52 53 static char default_governor[CPUFREQ_NAME_LEN]; 54 55 /* 56 * The "cpufreq driver" - the arch- or hardware-dependent low 57 * level driver of CPUFreq support, and its spinlock. This lock 58 * also protects the cpufreq_cpu_data array. 59 */ 60 static struct cpufreq_driver *cpufreq_driver; 61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 62 static DEFINE_RWLOCK(cpufreq_driver_lock); 63 64 /* Flag to suspend/resume CPUFreq governors */ 65 static bool cpufreq_suspended; 66 67 static inline bool has_target(void) 68 { 69 return cpufreq_driver->target_index || cpufreq_driver->target; 70 } 71 72 /* internal prototypes */ 73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 74 static int cpufreq_init_governor(struct cpufreq_policy *policy); 75 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 76 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 77 static int cpufreq_set_policy(struct cpufreq_policy *policy, 78 struct cpufreq_governor *new_gov, 79 unsigned int new_pol); 80 81 /* 82 * Two notifier lists: the "policy" list is involved in the 83 * validation process for a new CPU frequency policy; the 84 * "transition" list for kernel code that needs to handle 85 * changes to devices when the CPU clock speed changes. 86 * The mutex locks both lists. 87 */ 88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 90 91 static int off __read_mostly; 92 static int cpufreq_disabled(void) 93 { 94 return off; 95 } 96 void disable_cpufreq(void) 97 { 98 off = 1; 99 } 100 static DEFINE_MUTEX(cpufreq_governor_mutex); 101 102 bool have_governor_per_policy(void) 103 { 104 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 105 } 106 EXPORT_SYMBOL_GPL(have_governor_per_policy); 107 108 static struct kobject *cpufreq_global_kobject; 109 110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 111 { 112 if (have_governor_per_policy()) 113 return &policy->kobj; 114 else 115 return cpufreq_global_kobject; 116 } 117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 118 119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 120 { 121 struct kernel_cpustat kcpustat; 122 u64 cur_wall_time; 123 u64 idle_time; 124 u64 busy_time; 125 126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 127 128 kcpustat_cpu_fetch(&kcpustat, cpu); 129 130 busy_time = kcpustat.cpustat[CPUTIME_USER]; 131 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 132 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 133 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 134 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 135 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 136 137 idle_time = cur_wall_time - busy_time; 138 if (wall) 139 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 140 141 return div_u64(idle_time, NSEC_PER_USEC); 142 } 143 144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 145 { 146 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 147 148 if (idle_time == -1ULL) 149 return get_cpu_idle_time_jiffy(cpu, wall); 150 else if (!io_busy) 151 idle_time += get_cpu_iowait_time_us(cpu, wall); 152 153 return idle_time; 154 } 155 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 156 157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 158 unsigned long max_freq) 159 { 160 } 161 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 162 163 /* 164 * This is a generic cpufreq init() routine which can be used by cpufreq 165 * drivers of SMP systems. It will do following: 166 * - validate & show freq table passed 167 * - set policies transition latency 168 * - policy->cpus with all possible CPUs 169 */ 170 void cpufreq_generic_init(struct cpufreq_policy *policy, 171 struct cpufreq_frequency_table *table, 172 unsigned int transition_latency) 173 { 174 policy->freq_table = table; 175 policy->cpuinfo.transition_latency = transition_latency; 176 177 /* 178 * The driver only supports the SMP configuration where all processors 179 * share the clock and voltage and clock. 180 */ 181 cpumask_setall(policy->cpus); 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 184 185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 188 189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 190 } 191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 192 193 unsigned int cpufreq_generic_get(unsigned int cpu) 194 { 195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 196 197 if (!policy || IS_ERR(policy->clk)) { 198 pr_err("%s: No %s associated to cpu: %d\n", 199 __func__, policy ? "clk" : "policy", cpu); 200 return 0; 201 } 202 203 return clk_get_rate(policy->clk) / 1000; 204 } 205 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 206 207 /** 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 209 * @cpu: CPU to find the policy for. 210 * 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 212 * the kobject reference counter of that policy. Return a valid policy on 213 * success or NULL on failure. 214 * 215 * The policy returned by this function has to be released with the help of 216 * cpufreq_cpu_put() to balance its kobject reference counter properly. 217 */ 218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 219 { 220 struct cpufreq_policy *policy = NULL; 221 unsigned long flags; 222 223 if (WARN_ON(cpu >= nr_cpu_ids)) 224 return NULL; 225 226 /* get the cpufreq driver */ 227 read_lock_irqsave(&cpufreq_driver_lock, flags); 228 229 if (cpufreq_driver) { 230 /* get the CPU */ 231 policy = cpufreq_cpu_get_raw(cpu); 232 if (policy) 233 kobject_get(&policy->kobj); 234 } 235 236 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 237 238 return policy; 239 } 240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 241 242 /** 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 244 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 245 */ 246 void cpufreq_cpu_put(struct cpufreq_policy *policy) 247 { 248 kobject_put(&policy->kobj); 249 } 250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 251 252 /** 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 255 */ 256 void cpufreq_cpu_release(struct cpufreq_policy *policy) 257 { 258 if (WARN_ON(!policy)) 259 return; 260 261 lockdep_assert_held(&policy->rwsem); 262 263 up_write(&policy->rwsem); 264 265 cpufreq_cpu_put(policy); 266 } 267 268 /** 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 270 * @cpu: CPU to find the policy for. 271 * 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 273 * if the policy returned by it is not NULL, acquire its rwsem for writing. 274 * Return the policy if it is active or release it and return NULL otherwise. 275 * 276 * The policy returned by this function has to be released with the help of 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 278 * counter properly. 279 */ 280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 281 { 282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 283 284 if (!policy) 285 return NULL; 286 287 down_write(&policy->rwsem); 288 289 if (policy_is_inactive(policy)) { 290 cpufreq_cpu_release(policy); 291 return NULL; 292 } 293 294 return policy; 295 } 296 297 /********************************************************************* 298 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 299 *********************************************************************/ 300 301 /* 302 * adjust_jiffies - adjust the system "loops_per_jiffy" 303 * 304 * This function alters the system "loops_per_jiffy" for the clock 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP 306 * systems as each CPU might be scaled differently. So, use the arch 307 * per-CPU loops_per_jiffy value wherever possible. 308 */ 309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 310 { 311 #ifndef CONFIG_SMP 312 static unsigned long l_p_j_ref; 313 static unsigned int l_p_j_ref_freq; 314 315 if (ci->flags & CPUFREQ_CONST_LOOPS) 316 return; 317 318 if (!l_p_j_ref_freq) { 319 l_p_j_ref = loops_per_jiffy; 320 l_p_j_ref_freq = ci->old; 321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 322 l_p_j_ref, l_p_j_ref_freq); 323 } 324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 326 ci->new); 327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 328 loops_per_jiffy, ci->new); 329 } 330 #endif 331 } 332 333 /** 334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 335 * @policy: cpufreq policy to enable fast frequency switching for. 336 * @freqs: contain details of the frequency update. 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 338 * 339 * This function calls the transition notifiers and the "adjust_jiffies" 340 * function. It is called twice on all CPU frequency changes that have 341 * external effects. 342 */ 343 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 344 struct cpufreq_freqs *freqs, 345 unsigned int state) 346 { 347 int cpu; 348 349 BUG_ON(irqs_disabled()); 350 351 if (cpufreq_disabled()) 352 return; 353 354 freqs->policy = policy; 355 freqs->flags = cpufreq_driver->flags; 356 pr_debug("notification %u of frequency transition to %u kHz\n", 357 state, freqs->new); 358 359 switch (state) { 360 case CPUFREQ_PRECHANGE: 361 /* 362 * Detect if the driver reported a value as "old frequency" 363 * which is not equal to what the cpufreq core thinks is 364 * "old frequency". 365 */ 366 if (policy->cur && policy->cur != freqs->old) { 367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 368 freqs->old, policy->cur); 369 freqs->old = policy->cur; 370 } 371 372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 373 CPUFREQ_PRECHANGE, freqs); 374 375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 376 break; 377 378 case CPUFREQ_POSTCHANGE: 379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 381 cpumask_pr_args(policy->cpus)); 382 383 for_each_cpu(cpu, policy->cpus) 384 trace_cpu_frequency(freqs->new, cpu); 385 386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 387 CPUFREQ_POSTCHANGE, freqs); 388 389 cpufreq_stats_record_transition(policy, freqs->new); 390 policy->cur = freqs->new; 391 } 392 } 393 394 /* Do post notifications when there are chances that transition has failed */ 395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 396 struct cpufreq_freqs *freqs, int transition_failed) 397 { 398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 399 if (!transition_failed) 400 return; 401 402 swap(freqs->old, freqs->new); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 } 406 407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 408 struct cpufreq_freqs *freqs) 409 { 410 411 /* 412 * Catch double invocations of _begin() which lead to self-deadlock. 413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 414 * doesn't invoke _begin() on their behalf, and hence the chances of 415 * double invocations are very low. Moreover, there are scenarios 416 * where these checks can emit false-positive warnings in these 417 * drivers; so we avoid that by skipping them altogether. 418 */ 419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 420 && current == policy->transition_task); 421 422 wait: 423 wait_event(policy->transition_wait, !policy->transition_ongoing); 424 425 spin_lock(&policy->transition_lock); 426 427 if (unlikely(policy->transition_ongoing)) { 428 spin_unlock(&policy->transition_lock); 429 goto wait; 430 } 431 432 policy->transition_ongoing = true; 433 policy->transition_task = current; 434 435 spin_unlock(&policy->transition_lock); 436 437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 438 } 439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 440 441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 442 struct cpufreq_freqs *freqs, int transition_failed) 443 { 444 if (WARN_ON(!policy->transition_ongoing)) 445 return; 446 447 cpufreq_notify_post_transition(policy, freqs, transition_failed); 448 449 policy->transition_ongoing = false; 450 policy->transition_task = NULL; 451 452 wake_up(&policy->transition_wait); 453 } 454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 455 456 /* 457 * Fast frequency switching status count. Positive means "enabled", negative 458 * means "disabled" and 0 means "not decided yet". 459 */ 460 static int cpufreq_fast_switch_count; 461 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 462 463 static void cpufreq_list_transition_notifiers(void) 464 { 465 struct notifier_block *nb; 466 467 pr_info("Registered transition notifiers:\n"); 468 469 mutex_lock(&cpufreq_transition_notifier_list.mutex); 470 471 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 472 pr_info("%pS\n", nb->notifier_call); 473 474 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 475 } 476 477 /** 478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 479 * @policy: cpufreq policy to enable fast frequency switching for. 480 * 481 * Try to enable fast frequency switching for @policy. 482 * 483 * The attempt will fail if there is at least one transition notifier registered 484 * at this point, as fast frequency switching is quite fundamentally at odds 485 * with transition notifiers. Thus if successful, it will make registration of 486 * transition notifiers fail going forward. 487 */ 488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 489 { 490 lockdep_assert_held(&policy->rwsem); 491 492 if (!policy->fast_switch_possible) 493 return; 494 495 mutex_lock(&cpufreq_fast_switch_lock); 496 if (cpufreq_fast_switch_count >= 0) { 497 cpufreq_fast_switch_count++; 498 policy->fast_switch_enabled = true; 499 } else { 500 pr_warn("CPU%u: Fast frequency switching not enabled\n", 501 policy->cpu); 502 cpufreq_list_transition_notifiers(); 503 } 504 mutex_unlock(&cpufreq_fast_switch_lock); 505 } 506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 507 508 /** 509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 510 * @policy: cpufreq policy to disable fast frequency switching for. 511 */ 512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 513 { 514 mutex_lock(&cpufreq_fast_switch_lock); 515 if (policy->fast_switch_enabled) { 516 policy->fast_switch_enabled = false; 517 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 518 cpufreq_fast_switch_count--; 519 } 520 mutex_unlock(&cpufreq_fast_switch_lock); 521 } 522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 523 524 /** 525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 526 * one. 527 * @policy: associated policy to interrogate 528 * @target_freq: target frequency to resolve. 529 * 530 * The target to driver frequency mapping is cached in the policy. 531 * 532 * Return: Lowest driver-supported frequency greater than or equal to the 533 * given target_freq, subject to policy (min/max) and driver limitations. 534 */ 535 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 536 unsigned int target_freq) 537 { 538 target_freq = clamp_val(target_freq, policy->min, policy->max); 539 policy->cached_target_freq = target_freq; 540 541 if (cpufreq_driver->target_index) { 542 unsigned int idx; 543 544 idx = cpufreq_frequency_table_target(policy, target_freq, 545 CPUFREQ_RELATION_L); 546 policy->cached_resolved_idx = idx; 547 return policy->freq_table[idx].frequency; 548 } 549 550 if (cpufreq_driver->resolve_freq) 551 return cpufreq_driver->resolve_freq(policy, target_freq); 552 553 return target_freq; 554 } 555 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 556 557 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 558 { 559 unsigned int latency; 560 561 if (policy->transition_delay_us) 562 return policy->transition_delay_us; 563 564 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 565 if (latency) { 566 /* 567 * For platforms that can change the frequency very fast (< 10 568 * us), the above formula gives a decent transition delay. But 569 * for platforms where transition_latency is in milliseconds, it 570 * ends up giving unrealistic values. 571 * 572 * Cap the default transition delay to 10 ms, which seems to be 573 * a reasonable amount of time after which we should reevaluate 574 * the frequency. 575 */ 576 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 577 } 578 579 return LATENCY_MULTIPLIER; 580 } 581 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 582 583 /********************************************************************* 584 * SYSFS INTERFACE * 585 *********************************************************************/ 586 static ssize_t show_boost(struct kobject *kobj, 587 struct kobj_attribute *attr, char *buf) 588 { 589 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 590 } 591 592 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 593 const char *buf, size_t count) 594 { 595 int ret, enable; 596 597 ret = sscanf(buf, "%d", &enable); 598 if (ret != 1 || enable < 0 || enable > 1) 599 return -EINVAL; 600 601 if (cpufreq_boost_trigger_state(enable)) { 602 pr_err("%s: Cannot %s BOOST!\n", 603 __func__, enable ? "enable" : "disable"); 604 return -EINVAL; 605 } 606 607 pr_debug("%s: cpufreq BOOST %s\n", 608 __func__, enable ? "enabled" : "disabled"); 609 610 return count; 611 } 612 define_one_global_rw(boost); 613 614 static struct cpufreq_governor *find_governor(const char *str_governor) 615 { 616 struct cpufreq_governor *t; 617 618 for_each_governor(t) 619 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 620 return t; 621 622 return NULL; 623 } 624 625 static struct cpufreq_governor *get_governor(const char *str_governor) 626 { 627 struct cpufreq_governor *t; 628 629 mutex_lock(&cpufreq_governor_mutex); 630 t = find_governor(str_governor); 631 if (!t) 632 goto unlock; 633 634 if (!try_module_get(t->owner)) 635 t = NULL; 636 637 unlock: 638 mutex_unlock(&cpufreq_governor_mutex); 639 640 return t; 641 } 642 643 static unsigned int cpufreq_parse_policy(char *str_governor) 644 { 645 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 646 return CPUFREQ_POLICY_PERFORMANCE; 647 648 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 649 return CPUFREQ_POLICY_POWERSAVE; 650 651 return CPUFREQ_POLICY_UNKNOWN; 652 } 653 654 /** 655 * cpufreq_parse_governor - parse a governor string only for has_target() 656 * @str_governor: Governor name. 657 */ 658 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 659 { 660 struct cpufreq_governor *t; 661 662 t = get_governor(str_governor); 663 if (t) 664 return t; 665 666 if (request_module("cpufreq_%s", str_governor)) 667 return NULL; 668 669 return get_governor(str_governor); 670 } 671 672 /* 673 * cpufreq_per_cpu_attr_read() / show_##file_name() - 674 * print out cpufreq information 675 * 676 * Write out information from cpufreq_driver->policy[cpu]; object must be 677 * "unsigned int". 678 */ 679 680 #define show_one(file_name, object) \ 681 static ssize_t show_##file_name \ 682 (struct cpufreq_policy *policy, char *buf) \ 683 { \ 684 return sprintf(buf, "%u\n", policy->object); \ 685 } 686 687 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 688 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 689 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 690 show_one(scaling_min_freq, min); 691 show_one(scaling_max_freq, max); 692 693 __weak unsigned int arch_freq_get_on_cpu(int cpu) 694 { 695 return 0; 696 } 697 698 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 699 { 700 ssize_t ret; 701 unsigned int freq; 702 703 freq = arch_freq_get_on_cpu(policy->cpu); 704 if (freq) 705 ret = sprintf(buf, "%u\n", freq); 706 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 707 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 708 else 709 ret = sprintf(buf, "%u\n", policy->cur); 710 return ret; 711 } 712 713 /* 714 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 715 */ 716 #define store_one(file_name, object) \ 717 static ssize_t store_##file_name \ 718 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 719 { \ 720 unsigned long val; \ 721 int ret; \ 722 \ 723 ret = sscanf(buf, "%lu", &val); \ 724 if (ret != 1) \ 725 return -EINVAL; \ 726 \ 727 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 728 return ret >= 0 ? count : ret; \ 729 } 730 731 store_one(scaling_min_freq, min); 732 store_one(scaling_max_freq, max); 733 734 /* 735 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 736 */ 737 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 738 char *buf) 739 { 740 unsigned int cur_freq = __cpufreq_get(policy); 741 742 if (cur_freq) 743 return sprintf(buf, "%u\n", cur_freq); 744 745 return sprintf(buf, "<unknown>\n"); 746 } 747 748 /* 749 * show_scaling_governor - show the current policy for the specified CPU 750 */ 751 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 752 { 753 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 754 return sprintf(buf, "powersave\n"); 755 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 756 return sprintf(buf, "performance\n"); 757 else if (policy->governor) 758 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 759 policy->governor->name); 760 return -EINVAL; 761 } 762 763 /* 764 * store_scaling_governor - store policy for the specified CPU 765 */ 766 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 767 const char *buf, size_t count) 768 { 769 char str_governor[16]; 770 int ret; 771 772 ret = sscanf(buf, "%15s", str_governor); 773 if (ret != 1) 774 return -EINVAL; 775 776 if (cpufreq_driver->setpolicy) { 777 unsigned int new_pol; 778 779 new_pol = cpufreq_parse_policy(str_governor); 780 if (!new_pol) 781 return -EINVAL; 782 783 ret = cpufreq_set_policy(policy, NULL, new_pol); 784 } else { 785 struct cpufreq_governor *new_gov; 786 787 new_gov = cpufreq_parse_governor(str_governor); 788 if (!new_gov) 789 return -EINVAL; 790 791 ret = cpufreq_set_policy(policy, new_gov, 792 CPUFREQ_POLICY_UNKNOWN); 793 794 module_put(new_gov->owner); 795 } 796 797 return ret ? ret : count; 798 } 799 800 /* 801 * show_scaling_driver - show the cpufreq driver currently loaded 802 */ 803 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 804 { 805 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 806 } 807 808 /* 809 * show_scaling_available_governors - show the available CPUfreq governors 810 */ 811 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 812 char *buf) 813 { 814 ssize_t i = 0; 815 struct cpufreq_governor *t; 816 817 if (!has_target()) { 818 i += sprintf(buf, "performance powersave"); 819 goto out; 820 } 821 822 mutex_lock(&cpufreq_governor_mutex); 823 for_each_governor(t) { 824 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 825 - (CPUFREQ_NAME_LEN + 2))) 826 break; 827 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 828 } 829 mutex_unlock(&cpufreq_governor_mutex); 830 out: 831 i += sprintf(&buf[i], "\n"); 832 return i; 833 } 834 835 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 836 { 837 ssize_t i = 0; 838 unsigned int cpu; 839 840 for_each_cpu(cpu, mask) { 841 if (i) 842 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 843 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 844 if (i >= (PAGE_SIZE - 5)) 845 break; 846 } 847 i += sprintf(&buf[i], "\n"); 848 return i; 849 } 850 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 851 852 /* 853 * show_related_cpus - show the CPUs affected by each transition even if 854 * hw coordination is in use 855 */ 856 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 857 { 858 return cpufreq_show_cpus(policy->related_cpus, buf); 859 } 860 861 /* 862 * show_affected_cpus - show the CPUs affected by each transition 863 */ 864 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 865 { 866 return cpufreq_show_cpus(policy->cpus, buf); 867 } 868 869 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 870 const char *buf, size_t count) 871 { 872 unsigned int freq = 0; 873 unsigned int ret; 874 875 if (!policy->governor || !policy->governor->store_setspeed) 876 return -EINVAL; 877 878 ret = sscanf(buf, "%u", &freq); 879 if (ret != 1) 880 return -EINVAL; 881 882 policy->governor->store_setspeed(policy, freq); 883 884 return count; 885 } 886 887 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 888 { 889 if (!policy->governor || !policy->governor->show_setspeed) 890 return sprintf(buf, "<unsupported>\n"); 891 892 return policy->governor->show_setspeed(policy, buf); 893 } 894 895 /* 896 * show_bios_limit - show the current cpufreq HW/BIOS limitation 897 */ 898 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 899 { 900 unsigned int limit; 901 int ret; 902 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 903 if (!ret) 904 return sprintf(buf, "%u\n", limit); 905 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 906 } 907 908 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 909 cpufreq_freq_attr_ro(cpuinfo_min_freq); 910 cpufreq_freq_attr_ro(cpuinfo_max_freq); 911 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 912 cpufreq_freq_attr_ro(scaling_available_governors); 913 cpufreq_freq_attr_ro(scaling_driver); 914 cpufreq_freq_attr_ro(scaling_cur_freq); 915 cpufreq_freq_attr_ro(bios_limit); 916 cpufreq_freq_attr_ro(related_cpus); 917 cpufreq_freq_attr_ro(affected_cpus); 918 cpufreq_freq_attr_rw(scaling_min_freq); 919 cpufreq_freq_attr_rw(scaling_max_freq); 920 cpufreq_freq_attr_rw(scaling_governor); 921 cpufreq_freq_attr_rw(scaling_setspeed); 922 923 static struct attribute *default_attrs[] = { 924 &cpuinfo_min_freq.attr, 925 &cpuinfo_max_freq.attr, 926 &cpuinfo_transition_latency.attr, 927 &scaling_min_freq.attr, 928 &scaling_max_freq.attr, 929 &affected_cpus.attr, 930 &related_cpus.attr, 931 &scaling_governor.attr, 932 &scaling_driver.attr, 933 &scaling_available_governors.attr, 934 &scaling_setspeed.attr, 935 NULL 936 }; 937 938 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 939 #define to_attr(a) container_of(a, struct freq_attr, attr) 940 941 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 942 { 943 struct cpufreq_policy *policy = to_policy(kobj); 944 struct freq_attr *fattr = to_attr(attr); 945 ssize_t ret; 946 947 if (!fattr->show) 948 return -EIO; 949 950 down_read(&policy->rwsem); 951 ret = fattr->show(policy, buf); 952 up_read(&policy->rwsem); 953 954 return ret; 955 } 956 957 static ssize_t store(struct kobject *kobj, struct attribute *attr, 958 const char *buf, size_t count) 959 { 960 struct cpufreq_policy *policy = to_policy(kobj); 961 struct freq_attr *fattr = to_attr(attr); 962 ssize_t ret = -EINVAL; 963 964 if (!fattr->store) 965 return -EIO; 966 967 /* 968 * cpus_read_trylock() is used here to work around a circular lock 969 * dependency problem with respect to the cpufreq_register_driver(). 970 */ 971 if (!cpus_read_trylock()) 972 return -EBUSY; 973 974 if (cpu_online(policy->cpu)) { 975 down_write(&policy->rwsem); 976 ret = fattr->store(policy, buf, count); 977 up_write(&policy->rwsem); 978 } 979 980 cpus_read_unlock(); 981 982 return ret; 983 } 984 985 static void cpufreq_sysfs_release(struct kobject *kobj) 986 { 987 struct cpufreq_policy *policy = to_policy(kobj); 988 pr_debug("last reference is dropped\n"); 989 complete(&policy->kobj_unregister); 990 } 991 992 static const struct sysfs_ops sysfs_ops = { 993 .show = show, 994 .store = store, 995 }; 996 997 static struct kobj_type ktype_cpufreq = { 998 .sysfs_ops = &sysfs_ops, 999 .default_attrs = default_attrs, 1000 .release = cpufreq_sysfs_release, 1001 }; 1002 1003 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1004 { 1005 struct device *dev = get_cpu_device(cpu); 1006 1007 if (unlikely(!dev)) 1008 return; 1009 1010 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1011 return; 1012 1013 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1014 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1015 dev_err(dev, "cpufreq symlink creation failed\n"); 1016 } 1017 1018 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1019 struct device *dev) 1020 { 1021 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1022 sysfs_remove_link(&dev->kobj, "cpufreq"); 1023 } 1024 1025 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1026 { 1027 struct freq_attr **drv_attr; 1028 int ret = 0; 1029 1030 /* set up files for this cpu device */ 1031 drv_attr = cpufreq_driver->attr; 1032 while (drv_attr && *drv_attr) { 1033 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1034 if (ret) 1035 return ret; 1036 drv_attr++; 1037 } 1038 if (cpufreq_driver->get) { 1039 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1040 if (ret) 1041 return ret; 1042 } 1043 1044 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1045 if (ret) 1046 return ret; 1047 1048 if (cpufreq_driver->bios_limit) { 1049 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1050 if (ret) 1051 return ret; 1052 } 1053 1054 return 0; 1055 } 1056 1057 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1058 { 1059 struct cpufreq_governor *gov = NULL; 1060 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1061 int ret; 1062 1063 if (has_target()) { 1064 /* Update policy governor to the one used before hotplug. */ 1065 gov = get_governor(policy->last_governor); 1066 if (gov) { 1067 pr_debug("Restoring governor %s for cpu %d\n", 1068 gov->name, policy->cpu); 1069 } else { 1070 gov = get_governor(default_governor); 1071 } 1072 1073 if (!gov) { 1074 gov = cpufreq_default_governor(); 1075 __module_get(gov->owner); 1076 } 1077 1078 } else { 1079 1080 /* Use the default policy if there is no last_policy. */ 1081 if (policy->last_policy) { 1082 pol = policy->last_policy; 1083 } else { 1084 pol = cpufreq_parse_policy(default_governor); 1085 /* 1086 * In case the default governor is neither "performance" 1087 * nor "powersave", fall back to the initial policy 1088 * value set by the driver. 1089 */ 1090 if (pol == CPUFREQ_POLICY_UNKNOWN) 1091 pol = policy->policy; 1092 } 1093 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1094 pol != CPUFREQ_POLICY_POWERSAVE) 1095 return -ENODATA; 1096 } 1097 1098 ret = cpufreq_set_policy(policy, gov, pol); 1099 if (gov) 1100 module_put(gov->owner); 1101 1102 return ret; 1103 } 1104 1105 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1106 { 1107 int ret = 0; 1108 1109 /* Has this CPU been taken care of already? */ 1110 if (cpumask_test_cpu(cpu, policy->cpus)) 1111 return 0; 1112 1113 down_write(&policy->rwsem); 1114 if (has_target()) 1115 cpufreq_stop_governor(policy); 1116 1117 cpumask_set_cpu(cpu, policy->cpus); 1118 1119 if (has_target()) { 1120 ret = cpufreq_start_governor(policy); 1121 if (ret) 1122 pr_err("%s: Failed to start governor\n", __func__); 1123 } 1124 up_write(&policy->rwsem); 1125 return ret; 1126 } 1127 1128 void refresh_frequency_limits(struct cpufreq_policy *policy) 1129 { 1130 if (!policy_is_inactive(policy)) { 1131 pr_debug("updating policy for CPU %u\n", policy->cpu); 1132 1133 cpufreq_set_policy(policy, policy->governor, policy->policy); 1134 } 1135 } 1136 EXPORT_SYMBOL(refresh_frequency_limits); 1137 1138 static void handle_update(struct work_struct *work) 1139 { 1140 struct cpufreq_policy *policy = 1141 container_of(work, struct cpufreq_policy, update); 1142 1143 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1144 down_write(&policy->rwsem); 1145 refresh_frequency_limits(policy); 1146 up_write(&policy->rwsem); 1147 } 1148 1149 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1150 void *data) 1151 { 1152 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1153 1154 schedule_work(&policy->update); 1155 return 0; 1156 } 1157 1158 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1159 void *data) 1160 { 1161 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1162 1163 schedule_work(&policy->update); 1164 return 0; 1165 } 1166 1167 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1168 { 1169 struct kobject *kobj; 1170 struct completion *cmp; 1171 1172 down_write(&policy->rwsem); 1173 cpufreq_stats_free_table(policy); 1174 kobj = &policy->kobj; 1175 cmp = &policy->kobj_unregister; 1176 up_write(&policy->rwsem); 1177 kobject_put(kobj); 1178 1179 /* 1180 * We need to make sure that the underlying kobj is 1181 * actually not referenced anymore by anybody before we 1182 * proceed with unloading. 1183 */ 1184 pr_debug("waiting for dropping of refcount\n"); 1185 wait_for_completion(cmp); 1186 pr_debug("wait complete\n"); 1187 } 1188 1189 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1190 { 1191 struct cpufreq_policy *policy; 1192 struct device *dev = get_cpu_device(cpu); 1193 int ret; 1194 1195 if (!dev) 1196 return NULL; 1197 1198 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1199 if (!policy) 1200 return NULL; 1201 1202 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1203 goto err_free_policy; 1204 1205 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1206 goto err_free_cpumask; 1207 1208 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1209 goto err_free_rcpumask; 1210 1211 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1212 cpufreq_global_kobject, "policy%u", cpu); 1213 if (ret) { 1214 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1215 /* 1216 * The entire policy object will be freed below, but the extra 1217 * memory allocated for the kobject name needs to be freed by 1218 * releasing the kobject. 1219 */ 1220 kobject_put(&policy->kobj); 1221 goto err_free_real_cpus; 1222 } 1223 1224 freq_constraints_init(&policy->constraints); 1225 1226 policy->nb_min.notifier_call = cpufreq_notifier_min; 1227 policy->nb_max.notifier_call = cpufreq_notifier_max; 1228 1229 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1230 &policy->nb_min); 1231 if (ret) { 1232 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1233 ret, cpumask_pr_args(policy->cpus)); 1234 goto err_kobj_remove; 1235 } 1236 1237 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1238 &policy->nb_max); 1239 if (ret) { 1240 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1241 ret, cpumask_pr_args(policy->cpus)); 1242 goto err_min_qos_notifier; 1243 } 1244 1245 INIT_LIST_HEAD(&policy->policy_list); 1246 init_rwsem(&policy->rwsem); 1247 spin_lock_init(&policy->transition_lock); 1248 init_waitqueue_head(&policy->transition_wait); 1249 init_completion(&policy->kobj_unregister); 1250 INIT_WORK(&policy->update, handle_update); 1251 1252 policy->cpu = cpu; 1253 return policy; 1254 1255 err_min_qos_notifier: 1256 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1257 &policy->nb_min); 1258 err_kobj_remove: 1259 cpufreq_policy_put_kobj(policy); 1260 err_free_real_cpus: 1261 free_cpumask_var(policy->real_cpus); 1262 err_free_rcpumask: 1263 free_cpumask_var(policy->related_cpus); 1264 err_free_cpumask: 1265 free_cpumask_var(policy->cpus); 1266 err_free_policy: 1267 kfree(policy); 1268 1269 return NULL; 1270 } 1271 1272 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1273 { 1274 unsigned long flags; 1275 int cpu; 1276 1277 /* Remove policy from list */ 1278 write_lock_irqsave(&cpufreq_driver_lock, flags); 1279 list_del(&policy->policy_list); 1280 1281 for_each_cpu(cpu, policy->related_cpus) 1282 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1283 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1284 1285 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1286 &policy->nb_max); 1287 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1288 &policy->nb_min); 1289 1290 /* Cancel any pending policy->update work before freeing the policy. */ 1291 cancel_work_sync(&policy->update); 1292 1293 if (policy->max_freq_req) { 1294 /* 1295 * CPUFREQ_CREATE_POLICY notification is sent only after 1296 * successfully adding max_freq_req request. 1297 */ 1298 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1299 CPUFREQ_REMOVE_POLICY, policy); 1300 freq_qos_remove_request(policy->max_freq_req); 1301 } 1302 1303 freq_qos_remove_request(policy->min_freq_req); 1304 kfree(policy->min_freq_req); 1305 1306 cpufreq_policy_put_kobj(policy); 1307 free_cpumask_var(policy->real_cpus); 1308 free_cpumask_var(policy->related_cpus); 1309 free_cpumask_var(policy->cpus); 1310 kfree(policy); 1311 } 1312 1313 static int cpufreq_online(unsigned int cpu) 1314 { 1315 struct cpufreq_policy *policy; 1316 bool new_policy; 1317 unsigned long flags; 1318 unsigned int j; 1319 int ret; 1320 1321 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1322 1323 /* Check if this CPU already has a policy to manage it */ 1324 policy = per_cpu(cpufreq_cpu_data, cpu); 1325 if (policy) { 1326 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1327 if (!policy_is_inactive(policy)) 1328 return cpufreq_add_policy_cpu(policy, cpu); 1329 1330 /* This is the only online CPU for the policy. Start over. */ 1331 new_policy = false; 1332 down_write(&policy->rwsem); 1333 policy->cpu = cpu; 1334 policy->governor = NULL; 1335 up_write(&policy->rwsem); 1336 } else { 1337 new_policy = true; 1338 policy = cpufreq_policy_alloc(cpu); 1339 if (!policy) 1340 return -ENOMEM; 1341 } 1342 1343 if (!new_policy && cpufreq_driver->online) { 1344 ret = cpufreq_driver->online(policy); 1345 if (ret) { 1346 pr_debug("%s: %d: initialization failed\n", __func__, 1347 __LINE__); 1348 goto out_exit_policy; 1349 } 1350 1351 /* Recover policy->cpus using related_cpus */ 1352 cpumask_copy(policy->cpus, policy->related_cpus); 1353 } else { 1354 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1355 1356 /* 1357 * Call driver. From then on the cpufreq must be able 1358 * to accept all calls to ->verify and ->setpolicy for this CPU. 1359 */ 1360 ret = cpufreq_driver->init(policy); 1361 if (ret) { 1362 pr_debug("%s: %d: initialization failed\n", __func__, 1363 __LINE__); 1364 goto out_free_policy; 1365 } 1366 1367 ret = cpufreq_table_validate_and_sort(policy); 1368 if (ret) 1369 goto out_exit_policy; 1370 1371 /* related_cpus should at least include policy->cpus. */ 1372 cpumask_copy(policy->related_cpus, policy->cpus); 1373 } 1374 1375 down_write(&policy->rwsem); 1376 /* 1377 * affected cpus must always be the one, which are online. We aren't 1378 * managing offline cpus here. 1379 */ 1380 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1381 1382 if (new_policy) { 1383 for_each_cpu(j, policy->related_cpus) { 1384 per_cpu(cpufreq_cpu_data, j) = policy; 1385 add_cpu_dev_symlink(policy, j); 1386 } 1387 1388 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1389 GFP_KERNEL); 1390 if (!policy->min_freq_req) 1391 goto out_destroy_policy; 1392 1393 ret = freq_qos_add_request(&policy->constraints, 1394 policy->min_freq_req, FREQ_QOS_MIN, 1395 policy->min); 1396 if (ret < 0) { 1397 /* 1398 * So we don't call freq_qos_remove_request() for an 1399 * uninitialized request. 1400 */ 1401 kfree(policy->min_freq_req); 1402 policy->min_freq_req = NULL; 1403 goto out_destroy_policy; 1404 } 1405 1406 /* 1407 * This must be initialized right here to avoid calling 1408 * freq_qos_remove_request() on uninitialized request in case 1409 * of errors. 1410 */ 1411 policy->max_freq_req = policy->min_freq_req + 1; 1412 1413 ret = freq_qos_add_request(&policy->constraints, 1414 policy->max_freq_req, FREQ_QOS_MAX, 1415 policy->max); 1416 if (ret < 0) { 1417 policy->max_freq_req = NULL; 1418 goto out_destroy_policy; 1419 } 1420 1421 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1422 CPUFREQ_CREATE_POLICY, policy); 1423 } 1424 1425 if (cpufreq_driver->get && has_target()) { 1426 policy->cur = cpufreq_driver->get(policy->cpu); 1427 if (!policy->cur) { 1428 pr_err("%s: ->get() failed\n", __func__); 1429 goto out_destroy_policy; 1430 } 1431 } 1432 1433 /* 1434 * Sometimes boot loaders set CPU frequency to a value outside of 1435 * frequency table present with cpufreq core. In such cases CPU might be 1436 * unstable if it has to run on that frequency for long duration of time 1437 * and so its better to set it to a frequency which is specified in 1438 * freq-table. This also makes cpufreq stats inconsistent as 1439 * cpufreq-stats would fail to register because current frequency of CPU 1440 * isn't found in freq-table. 1441 * 1442 * Because we don't want this change to effect boot process badly, we go 1443 * for the next freq which is >= policy->cur ('cur' must be set by now, 1444 * otherwise we will end up setting freq to lowest of the table as 'cur' 1445 * is initialized to zero). 1446 * 1447 * We are passing target-freq as "policy->cur - 1" otherwise 1448 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1449 * equal to target-freq. 1450 */ 1451 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1452 && has_target()) { 1453 /* Are we running at unknown frequency ? */ 1454 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1455 if (ret == -EINVAL) { 1456 /* Warn user and fix it */ 1457 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1458 __func__, policy->cpu, policy->cur); 1459 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1460 CPUFREQ_RELATION_L); 1461 1462 /* 1463 * Reaching here after boot in a few seconds may not 1464 * mean that system will remain stable at "unknown" 1465 * frequency for longer duration. Hence, a BUG_ON(). 1466 */ 1467 BUG_ON(ret); 1468 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1469 __func__, policy->cpu, policy->cur); 1470 } 1471 } 1472 1473 if (new_policy) { 1474 ret = cpufreq_add_dev_interface(policy); 1475 if (ret) 1476 goto out_destroy_policy; 1477 1478 cpufreq_stats_create_table(policy); 1479 1480 write_lock_irqsave(&cpufreq_driver_lock, flags); 1481 list_add(&policy->policy_list, &cpufreq_policy_list); 1482 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1483 } 1484 1485 ret = cpufreq_init_policy(policy); 1486 if (ret) { 1487 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1488 __func__, cpu, ret); 1489 goto out_destroy_policy; 1490 } 1491 1492 up_write(&policy->rwsem); 1493 1494 kobject_uevent(&policy->kobj, KOBJ_ADD); 1495 1496 /* Callback for handling stuff after policy is ready */ 1497 if (cpufreq_driver->ready) 1498 cpufreq_driver->ready(policy); 1499 1500 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1501 policy->cdev = of_cpufreq_cooling_register(policy); 1502 1503 pr_debug("initialization complete\n"); 1504 1505 return 0; 1506 1507 out_destroy_policy: 1508 for_each_cpu(j, policy->real_cpus) 1509 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1510 1511 up_write(&policy->rwsem); 1512 1513 out_exit_policy: 1514 if (cpufreq_driver->exit) 1515 cpufreq_driver->exit(policy); 1516 1517 out_free_policy: 1518 cpufreq_policy_free(policy); 1519 return ret; 1520 } 1521 1522 /** 1523 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1524 * @dev: CPU device. 1525 * @sif: Subsystem interface structure pointer (not used) 1526 */ 1527 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1528 { 1529 struct cpufreq_policy *policy; 1530 unsigned cpu = dev->id; 1531 int ret; 1532 1533 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1534 1535 if (cpu_online(cpu)) { 1536 ret = cpufreq_online(cpu); 1537 if (ret) 1538 return ret; 1539 } 1540 1541 /* Create sysfs link on CPU registration */ 1542 policy = per_cpu(cpufreq_cpu_data, cpu); 1543 if (policy) 1544 add_cpu_dev_symlink(policy, cpu); 1545 1546 return 0; 1547 } 1548 1549 static int cpufreq_offline(unsigned int cpu) 1550 { 1551 struct cpufreq_policy *policy; 1552 int ret; 1553 1554 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1555 1556 policy = cpufreq_cpu_get_raw(cpu); 1557 if (!policy) { 1558 pr_debug("%s: No cpu_data found\n", __func__); 1559 return 0; 1560 } 1561 1562 down_write(&policy->rwsem); 1563 if (has_target()) 1564 cpufreq_stop_governor(policy); 1565 1566 cpumask_clear_cpu(cpu, policy->cpus); 1567 1568 if (policy_is_inactive(policy)) { 1569 if (has_target()) 1570 strncpy(policy->last_governor, policy->governor->name, 1571 CPUFREQ_NAME_LEN); 1572 else 1573 policy->last_policy = policy->policy; 1574 } else if (cpu == policy->cpu) { 1575 /* Nominate new CPU */ 1576 policy->cpu = cpumask_any(policy->cpus); 1577 } 1578 1579 /* Start governor again for active policy */ 1580 if (!policy_is_inactive(policy)) { 1581 if (has_target()) { 1582 ret = cpufreq_start_governor(policy); 1583 if (ret) 1584 pr_err("%s: Failed to start governor\n", __func__); 1585 } 1586 1587 goto unlock; 1588 } 1589 1590 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1591 cpufreq_cooling_unregister(policy->cdev); 1592 policy->cdev = NULL; 1593 } 1594 1595 if (cpufreq_driver->stop_cpu) 1596 cpufreq_driver->stop_cpu(policy); 1597 1598 if (has_target()) 1599 cpufreq_exit_governor(policy); 1600 1601 /* 1602 * Perform the ->offline() during light-weight tear-down, as 1603 * that allows fast recovery when the CPU comes back. 1604 */ 1605 if (cpufreq_driver->offline) { 1606 cpufreq_driver->offline(policy); 1607 } else if (cpufreq_driver->exit) { 1608 cpufreq_driver->exit(policy); 1609 policy->freq_table = NULL; 1610 } 1611 1612 unlock: 1613 up_write(&policy->rwsem); 1614 return 0; 1615 } 1616 1617 /* 1618 * cpufreq_remove_dev - remove a CPU device 1619 * 1620 * Removes the cpufreq interface for a CPU device. 1621 */ 1622 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1623 { 1624 unsigned int cpu = dev->id; 1625 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1626 1627 if (!policy) 1628 return; 1629 1630 if (cpu_online(cpu)) 1631 cpufreq_offline(cpu); 1632 1633 cpumask_clear_cpu(cpu, policy->real_cpus); 1634 remove_cpu_dev_symlink(policy, dev); 1635 1636 if (cpumask_empty(policy->real_cpus)) { 1637 /* We did light-weight exit earlier, do full tear down now */ 1638 if (cpufreq_driver->offline) 1639 cpufreq_driver->exit(policy); 1640 1641 cpufreq_policy_free(policy); 1642 } 1643 } 1644 1645 /** 1646 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1647 * in deep trouble. 1648 * @policy: policy managing CPUs 1649 * @new_freq: CPU frequency the CPU actually runs at 1650 * 1651 * We adjust to current frequency first, and need to clean up later. 1652 * So either call to cpufreq_update_policy() or schedule handle_update()). 1653 */ 1654 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1655 unsigned int new_freq) 1656 { 1657 struct cpufreq_freqs freqs; 1658 1659 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1660 policy->cur, new_freq); 1661 1662 freqs.old = policy->cur; 1663 freqs.new = new_freq; 1664 1665 cpufreq_freq_transition_begin(policy, &freqs); 1666 cpufreq_freq_transition_end(policy, &freqs, 0); 1667 } 1668 1669 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1670 { 1671 unsigned int new_freq; 1672 1673 new_freq = cpufreq_driver->get(policy->cpu); 1674 if (!new_freq) 1675 return 0; 1676 1677 /* 1678 * If fast frequency switching is used with the given policy, the check 1679 * against policy->cur is pointless, so skip it in that case. 1680 */ 1681 if (policy->fast_switch_enabled || !has_target()) 1682 return new_freq; 1683 1684 if (policy->cur != new_freq) { 1685 cpufreq_out_of_sync(policy, new_freq); 1686 if (update) 1687 schedule_work(&policy->update); 1688 } 1689 1690 return new_freq; 1691 } 1692 1693 /** 1694 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1695 * @cpu: CPU number 1696 * 1697 * This is the last known freq, without actually getting it from the driver. 1698 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1699 */ 1700 unsigned int cpufreq_quick_get(unsigned int cpu) 1701 { 1702 struct cpufreq_policy *policy; 1703 unsigned int ret_freq = 0; 1704 unsigned long flags; 1705 1706 read_lock_irqsave(&cpufreq_driver_lock, flags); 1707 1708 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1709 ret_freq = cpufreq_driver->get(cpu); 1710 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1711 return ret_freq; 1712 } 1713 1714 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1715 1716 policy = cpufreq_cpu_get(cpu); 1717 if (policy) { 1718 ret_freq = policy->cur; 1719 cpufreq_cpu_put(policy); 1720 } 1721 1722 return ret_freq; 1723 } 1724 EXPORT_SYMBOL(cpufreq_quick_get); 1725 1726 /** 1727 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1728 * @cpu: CPU number 1729 * 1730 * Just return the max possible frequency for a given CPU. 1731 */ 1732 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1733 { 1734 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1735 unsigned int ret_freq = 0; 1736 1737 if (policy) { 1738 ret_freq = policy->max; 1739 cpufreq_cpu_put(policy); 1740 } 1741 1742 return ret_freq; 1743 } 1744 EXPORT_SYMBOL(cpufreq_quick_get_max); 1745 1746 /** 1747 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1748 * @cpu: CPU number 1749 * 1750 * The default return value is the max_freq field of cpuinfo. 1751 */ 1752 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1753 { 1754 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1755 unsigned int ret_freq = 0; 1756 1757 if (policy) { 1758 ret_freq = policy->cpuinfo.max_freq; 1759 cpufreq_cpu_put(policy); 1760 } 1761 1762 return ret_freq; 1763 } 1764 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1765 1766 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1767 { 1768 if (unlikely(policy_is_inactive(policy))) 1769 return 0; 1770 1771 return cpufreq_verify_current_freq(policy, true); 1772 } 1773 1774 /** 1775 * cpufreq_get - get the current CPU frequency (in kHz) 1776 * @cpu: CPU number 1777 * 1778 * Get the CPU current (static) CPU frequency 1779 */ 1780 unsigned int cpufreq_get(unsigned int cpu) 1781 { 1782 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1783 unsigned int ret_freq = 0; 1784 1785 if (policy) { 1786 down_read(&policy->rwsem); 1787 if (cpufreq_driver->get) 1788 ret_freq = __cpufreq_get(policy); 1789 up_read(&policy->rwsem); 1790 1791 cpufreq_cpu_put(policy); 1792 } 1793 1794 return ret_freq; 1795 } 1796 EXPORT_SYMBOL(cpufreq_get); 1797 1798 static struct subsys_interface cpufreq_interface = { 1799 .name = "cpufreq", 1800 .subsys = &cpu_subsys, 1801 .add_dev = cpufreq_add_dev, 1802 .remove_dev = cpufreq_remove_dev, 1803 }; 1804 1805 /* 1806 * In case platform wants some specific frequency to be configured 1807 * during suspend.. 1808 */ 1809 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1810 { 1811 int ret; 1812 1813 if (!policy->suspend_freq) { 1814 pr_debug("%s: suspend_freq not defined\n", __func__); 1815 return 0; 1816 } 1817 1818 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1819 policy->suspend_freq); 1820 1821 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1822 CPUFREQ_RELATION_H); 1823 if (ret) 1824 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1825 __func__, policy->suspend_freq, ret); 1826 1827 return ret; 1828 } 1829 EXPORT_SYMBOL(cpufreq_generic_suspend); 1830 1831 /** 1832 * cpufreq_suspend() - Suspend CPUFreq governors 1833 * 1834 * Called during system wide Suspend/Hibernate cycles for suspending governors 1835 * as some platforms can't change frequency after this point in suspend cycle. 1836 * Because some of the devices (like: i2c, regulators, etc) they use for 1837 * changing frequency are suspended quickly after this point. 1838 */ 1839 void cpufreq_suspend(void) 1840 { 1841 struct cpufreq_policy *policy; 1842 1843 if (!cpufreq_driver) 1844 return; 1845 1846 if (!has_target() && !cpufreq_driver->suspend) 1847 goto suspend; 1848 1849 pr_debug("%s: Suspending Governors\n", __func__); 1850 1851 for_each_active_policy(policy) { 1852 if (has_target()) { 1853 down_write(&policy->rwsem); 1854 cpufreq_stop_governor(policy); 1855 up_write(&policy->rwsem); 1856 } 1857 1858 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1859 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1860 cpufreq_driver->name); 1861 } 1862 1863 suspend: 1864 cpufreq_suspended = true; 1865 } 1866 1867 /** 1868 * cpufreq_resume() - Resume CPUFreq governors 1869 * 1870 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1871 * are suspended with cpufreq_suspend(). 1872 */ 1873 void cpufreq_resume(void) 1874 { 1875 struct cpufreq_policy *policy; 1876 int ret; 1877 1878 if (!cpufreq_driver) 1879 return; 1880 1881 if (unlikely(!cpufreq_suspended)) 1882 return; 1883 1884 cpufreq_suspended = false; 1885 1886 if (!has_target() && !cpufreq_driver->resume) 1887 return; 1888 1889 pr_debug("%s: Resuming Governors\n", __func__); 1890 1891 for_each_active_policy(policy) { 1892 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1893 pr_err("%s: Failed to resume driver: %p\n", __func__, 1894 policy); 1895 } else if (has_target()) { 1896 down_write(&policy->rwsem); 1897 ret = cpufreq_start_governor(policy); 1898 up_write(&policy->rwsem); 1899 1900 if (ret) 1901 pr_err("%s: Failed to start governor for policy: %p\n", 1902 __func__, policy); 1903 } 1904 } 1905 } 1906 1907 /** 1908 * cpufreq_get_current_driver - return current driver's name 1909 * 1910 * Return the name string of the currently loaded cpufreq driver 1911 * or NULL, if none. 1912 */ 1913 const char *cpufreq_get_current_driver(void) 1914 { 1915 if (cpufreq_driver) 1916 return cpufreq_driver->name; 1917 1918 return NULL; 1919 } 1920 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1921 1922 /** 1923 * cpufreq_get_driver_data - return current driver data 1924 * 1925 * Return the private data of the currently loaded cpufreq 1926 * driver, or NULL if no cpufreq driver is loaded. 1927 */ 1928 void *cpufreq_get_driver_data(void) 1929 { 1930 if (cpufreq_driver) 1931 return cpufreq_driver->driver_data; 1932 1933 return NULL; 1934 } 1935 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1936 1937 /********************************************************************* 1938 * NOTIFIER LISTS INTERFACE * 1939 *********************************************************************/ 1940 1941 /** 1942 * cpufreq_register_notifier - register a driver with cpufreq 1943 * @nb: notifier function to register 1944 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1945 * 1946 * Add a driver to one of two lists: either a list of drivers that 1947 * are notified about clock rate changes (once before and once after 1948 * the transition), or a list of drivers that are notified about 1949 * changes in cpufreq policy. 1950 * 1951 * This function may sleep, and has the same return conditions as 1952 * blocking_notifier_chain_register. 1953 */ 1954 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1955 { 1956 int ret; 1957 1958 if (cpufreq_disabled()) 1959 return -EINVAL; 1960 1961 switch (list) { 1962 case CPUFREQ_TRANSITION_NOTIFIER: 1963 mutex_lock(&cpufreq_fast_switch_lock); 1964 1965 if (cpufreq_fast_switch_count > 0) { 1966 mutex_unlock(&cpufreq_fast_switch_lock); 1967 return -EBUSY; 1968 } 1969 ret = srcu_notifier_chain_register( 1970 &cpufreq_transition_notifier_list, nb); 1971 if (!ret) 1972 cpufreq_fast_switch_count--; 1973 1974 mutex_unlock(&cpufreq_fast_switch_lock); 1975 break; 1976 case CPUFREQ_POLICY_NOTIFIER: 1977 ret = blocking_notifier_chain_register( 1978 &cpufreq_policy_notifier_list, nb); 1979 break; 1980 default: 1981 ret = -EINVAL; 1982 } 1983 1984 return ret; 1985 } 1986 EXPORT_SYMBOL(cpufreq_register_notifier); 1987 1988 /** 1989 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1990 * @nb: notifier block to be unregistered 1991 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1992 * 1993 * Remove a driver from the CPU frequency notifier list. 1994 * 1995 * This function may sleep, and has the same return conditions as 1996 * blocking_notifier_chain_unregister. 1997 */ 1998 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1999 { 2000 int ret; 2001 2002 if (cpufreq_disabled()) 2003 return -EINVAL; 2004 2005 switch (list) { 2006 case CPUFREQ_TRANSITION_NOTIFIER: 2007 mutex_lock(&cpufreq_fast_switch_lock); 2008 2009 ret = srcu_notifier_chain_unregister( 2010 &cpufreq_transition_notifier_list, nb); 2011 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2012 cpufreq_fast_switch_count++; 2013 2014 mutex_unlock(&cpufreq_fast_switch_lock); 2015 break; 2016 case CPUFREQ_POLICY_NOTIFIER: 2017 ret = blocking_notifier_chain_unregister( 2018 &cpufreq_policy_notifier_list, nb); 2019 break; 2020 default: 2021 ret = -EINVAL; 2022 } 2023 2024 return ret; 2025 } 2026 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2027 2028 2029 /********************************************************************* 2030 * GOVERNORS * 2031 *********************************************************************/ 2032 2033 /** 2034 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2035 * @policy: cpufreq policy to switch the frequency for. 2036 * @target_freq: New frequency to set (may be approximate). 2037 * 2038 * Carry out a fast frequency switch without sleeping. 2039 * 2040 * The driver's ->fast_switch() callback invoked by this function must be 2041 * suitable for being called from within RCU-sched read-side critical sections 2042 * and it is expected to select the minimum available frequency greater than or 2043 * equal to @target_freq (CPUFREQ_RELATION_L). 2044 * 2045 * This function must not be called if policy->fast_switch_enabled is unset. 2046 * 2047 * Governors calling this function must guarantee that it will never be invoked 2048 * twice in parallel for the same policy and that it will never be called in 2049 * parallel with either ->target() or ->target_index() for the same policy. 2050 * 2051 * Returns the actual frequency set for the CPU. 2052 * 2053 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2054 * error condition, the hardware configuration must be preserved. 2055 */ 2056 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2057 unsigned int target_freq) 2058 { 2059 target_freq = clamp_val(target_freq, policy->min, policy->max); 2060 2061 return cpufreq_driver->fast_switch(policy, target_freq); 2062 } 2063 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2064 2065 /* Must set freqs->new to intermediate frequency */ 2066 static int __target_intermediate(struct cpufreq_policy *policy, 2067 struct cpufreq_freqs *freqs, int index) 2068 { 2069 int ret; 2070 2071 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2072 2073 /* We don't need to switch to intermediate freq */ 2074 if (!freqs->new) 2075 return 0; 2076 2077 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2078 __func__, policy->cpu, freqs->old, freqs->new); 2079 2080 cpufreq_freq_transition_begin(policy, freqs); 2081 ret = cpufreq_driver->target_intermediate(policy, index); 2082 cpufreq_freq_transition_end(policy, freqs, ret); 2083 2084 if (ret) 2085 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2086 __func__, ret); 2087 2088 return ret; 2089 } 2090 2091 static int __target_index(struct cpufreq_policy *policy, int index) 2092 { 2093 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2094 unsigned int intermediate_freq = 0; 2095 unsigned int newfreq = policy->freq_table[index].frequency; 2096 int retval = -EINVAL; 2097 bool notify; 2098 2099 if (newfreq == policy->cur) 2100 return 0; 2101 2102 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2103 if (notify) { 2104 /* Handle switching to intermediate frequency */ 2105 if (cpufreq_driver->get_intermediate) { 2106 retval = __target_intermediate(policy, &freqs, index); 2107 if (retval) 2108 return retval; 2109 2110 intermediate_freq = freqs.new; 2111 /* Set old freq to intermediate */ 2112 if (intermediate_freq) 2113 freqs.old = freqs.new; 2114 } 2115 2116 freqs.new = newfreq; 2117 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2118 __func__, policy->cpu, freqs.old, freqs.new); 2119 2120 cpufreq_freq_transition_begin(policy, &freqs); 2121 } 2122 2123 retval = cpufreq_driver->target_index(policy, index); 2124 if (retval) 2125 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2126 retval); 2127 2128 if (notify) { 2129 cpufreq_freq_transition_end(policy, &freqs, retval); 2130 2131 /* 2132 * Failed after setting to intermediate freq? Driver should have 2133 * reverted back to initial frequency and so should we. Check 2134 * here for intermediate_freq instead of get_intermediate, in 2135 * case we haven't switched to intermediate freq at all. 2136 */ 2137 if (unlikely(retval && intermediate_freq)) { 2138 freqs.old = intermediate_freq; 2139 freqs.new = policy->restore_freq; 2140 cpufreq_freq_transition_begin(policy, &freqs); 2141 cpufreq_freq_transition_end(policy, &freqs, 0); 2142 } 2143 } 2144 2145 return retval; 2146 } 2147 2148 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2149 unsigned int target_freq, 2150 unsigned int relation) 2151 { 2152 unsigned int old_target_freq = target_freq; 2153 int index; 2154 2155 if (cpufreq_disabled()) 2156 return -ENODEV; 2157 2158 /* Make sure that target_freq is within supported range */ 2159 target_freq = clamp_val(target_freq, policy->min, policy->max); 2160 2161 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2162 policy->cpu, target_freq, relation, old_target_freq); 2163 2164 /* 2165 * This might look like a redundant call as we are checking it again 2166 * after finding index. But it is left intentionally for cases where 2167 * exactly same freq is called again and so we can save on few function 2168 * calls. 2169 */ 2170 if (target_freq == policy->cur) 2171 return 0; 2172 2173 /* Save last value to restore later on errors */ 2174 policy->restore_freq = policy->cur; 2175 2176 if (cpufreq_driver->target) 2177 return cpufreq_driver->target(policy, target_freq, relation); 2178 2179 if (!cpufreq_driver->target_index) 2180 return -EINVAL; 2181 2182 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2183 2184 return __target_index(policy, index); 2185 } 2186 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2187 2188 int cpufreq_driver_target(struct cpufreq_policy *policy, 2189 unsigned int target_freq, 2190 unsigned int relation) 2191 { 2192 int ret; 2193 2194 down_write(&policy->rwsem); 2195 2196 ret = __cpufreq_driver_target(policy, target_freq, relation); 2197 2198 up_write(&policy->rwsem); 2199 2200 return ret; 2201 } 2202 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2203 2204 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2205 { 2206 return NULL; 2207 } 2208 2209 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2210 { 2211 int ret; 2212 2213 /* Don't start any governor operations if we are entering suspend */ 2214 if (cpufreq_suspended) 2215 return 0; 2216 /* 2217 * Governor might not be initiated here if ACPI _PPC changed 2218 * notification happened, so check it. 2219 */ 2220 if (!policy->governor) 2221 return -EINVAL; 2222 2223 /* Platform doesn't want dynamic frequency switching ? */ 2224 if (policy->governor->dynamic_switching && 2225 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2226 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2227 2228 if (gov) { 2229 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2230 policy->governor->name, gov->name); 2231 policy->governor = gov; 2232 } else { 2233 return -EINVAL; 2234 } 2235 } 2236 2237 if (!try_module_get(policy->governor->owner)) 2238 return -EINVAL; 2239 2240 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2241 2242 if (policy->governor->init) { 2243 ret = policy->governor->init(policy); 2244 if (ret) { 2245 module_put(policy->governor->owner); 2246 return ret; 2247 } 2248 } 2249 2250 return 0; 2251 } 2252 2253 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2254 { 2255 if (cpufreq_suspended || !policy->governor) 2256 return; 2257 2258 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2259 2260 if (policy->governor->exit) 2261 policy->governor->exit(policy); 2262 2263 module_put(policy->governor->owner); 2264 } 2265 2266 int cpufreq_start_governor(struct cpufreq_policy *policy) 2267 { 2268 int ret; 2269 2270 if (cpufreq_suspended) 2271 return 0; 2272 2273 if (!policy->governor) 2274 return -EINVAL; 2275 2276 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2277 2278 if (cpufreq_driver->get) 2279 cpufreq_verify_current_freq(policy, false); 2280 2281 if (policy->governor->start) { 2282 ret = policy->governor->start(policy); 2283 if (ret) 2284 return ret; 2285 } 2286 2287 if (policy->governor->limits) 2288 policy->governor->limits(policy); 2289 2290 return 0; 2291 } 2292 2293 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2294 { 2295 if (cpufreq_suspended || !policy->governor) 2296 return; 2297 2298 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2299 2300 if (policy->governor->stop) 2301 policy->governor->stop(policy); 2302 } 2303 2304 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2305 { 2306 if (cpufreq_suspended || !policy->governor) 2307 return; 2308 2309 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2310 2311 if (policy->governor->limits) 2312 policy->governor->limits(policy); 2313 } 2314 2315 int cpufreq_register_governor(struct cpufreq_governor *governor) 2316 { 2317 int err; 2318 2319 if (!governor) 2320 return -EINVAL; 2321 2322 if (cpufreq_disabled()) 2323 return -ENODEV; 2324 2325 mutex_lock(&cpufreq_governor_mutex); 2326 2327 err = -EBUSY; 2328 if (!find_governor(governor->name)) { 2329 err = 0; 2330 list_add(&governor->governor_list, &cpufreq_governor_list); 2331 } 2332 2333 mutex_unlock(&cpufreq_governor_mutex); 2334 return err; 2335 } 2336 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2337 2338 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2339 { 2340 struct cpufreq_policy *policy; 2341 unsigned long flags; 2342 2343 if (!governor) 2344 return; 2345 2346 if (cpufreq_disabled()) 2347 return; 2348 2349 /* clear last_governor for all inactive policies */ 2350 read_lock_irqsave(&cpufreq_driver_lock, flags); 2351 for_each_inactive_policy(policy) { 2352 if (!strcmp(policy->last_governor, governor->name)) { 2353 policy->governor = NULL; 2354 strcpy(policy->last_governor, "\0"); 2355 } 2356 } 2357 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2358 2359 mutex_lock(&cpufreq_governor_mutex); 2360 list_del(&governor->governor_list); 2361 mutex_unlock(&cpufreq_governor_mutex); 2362 } 2363 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2364 2365 2366 /********************************************************************* 2367 * POLICY INTERFACE * 2368 *********************************************************************/ 2369 2370 /** 2371 * cpufreq_get_policy - get the current cpufreq_policy 2372 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2373 * is written 2374 * @cpu: CPU to find the policy for 2375 * 2376 * Reads the current cpufreq policy. 2377 */ 2378 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2379 { 2380 struct cpufreq_policy *cpu_policy; 2381 if (!policy) 2382 return -EINVAL; 2383 2384 cpu_policy = cpufreq_cpu_get(cpu); 2385 if (!cpu_policy) 2386 return -EINVAL; 2387 2388 memcpy(policy, cpu_policy, sizeof(*policy)); 2389 2390 cpufreq_cpu_put(cpu_policy); 2391 return 0; 2392 } 2393 EXPORT_SYMBOL(cpufreq_get_policy); 2394 2395 /** 2396 * cpufreq_set_policy - Modify cpufreq policy parameters. 2397 * @policy: Policy object to modify. 2398 * @new_gov: Policy governor pointer. 2399 * @new_pol: Policy value (for drivers with built-in governors). 2400 * 2401 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2402 * limits to be set for the policy, update @policy with the verified limits 2403 * values and either invoke the driver's ->setpolicy() callback (if present) or 2404 * carry out a governor update for @policy. That is, run the current governor's 2405 * ->limits() callback (if @new_gov points to the same object as the one in 2406 * @policy) or replace the governor for @policy with @new_gov. 2407 * 2408 * The cpuinfo part of @policy is not updated by this function. 2409 */ 2410 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2411 struct cpufreq_governor *new_gov, 2412 unsigned int new_pol) 2413 { 2414 struct cpufreq_policy_data new_data; 2415 struct cpufreq_governor *old_gov; 2416 int ret; 2417 2418 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2419 new_data.freq_table = policy->freq_table; 2420 new_data.cpu = policy->cpu; 2421 /* 2422 * PM QoS framework collects all the requests from users and provide us 2423 * the final aggregated value here. 2424 */ 2425 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2426 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2427 2428 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2429 new_data.cpu, new_data.min, new_data.max); 2430 2431 /* 2432 * Verify that the CPU speed can be set within these limits and make sure 2433 * that min <= max. 2434 */ 2435 ret = cpufreq_driver->verify(&new_data); 2436 if (ret) 2437 return ret; 2438 2439 policy->min = new_data.min; 2440 policy->max = new_data.max; 2441 trace_cpu_frequency_limits(policy); 2442 2443 policy->cached_target_freq = UINT_MAX; 2444 2445 pr_debug("new min and max freqs are %u - %u kHz\n", 2446 policy->min, policy->max); 2447 2448 if (cpufreq_driver->setpolicy) { 2449 policy->policy = new_pol; 2450 pr_debug("setting range\n"); 2451 return cpufreq_driver->setpolicy(policy); 2452 } 2453 2454 if (new_gov == policy->governor) { 2455 pr_debug("governor limits update\n"); 2456 cpufreq_governor_limits(policy); 2457 return 0; 2458 } 2459 2460 pr_debug("governor switch\n"); 2461 2462 /* save old, working values */ 2463 old_gov = policy->governor; 2464 /* end old governor */ 2465 if (old_gov) { 2466 cpufreq_stop_governor(policy); 2467 cpufreq_exit_governor(policy); 2468 } 2469 2470 /* start new governor */ 2471 policy->governor = new_gov; 2472 ret = cpufreq_init_governor(policy); 2473 if (!ret) { 2474 ret = cpufreq_start_governor(policy); 2475 if (!ret) { 2476 pr_debug("governor change\n"); 2477 sched_cpufreq_governor_change(policy, old_gov); 2478 return 0; 2479 } 2480 cpufreq_exit_governor(policy); 2481 } 2482 2483 /* new governor failed, so re-start old one */ 2484 pr_debug("starting governor %s failed\n", policy->governor->name); 2485 if (old_gov) { 2486 policy->governor = old_gov; 2487 if (cpufreq_init_governor(policy)) 2488 policy->governor = NULL; 2489 else 2490 cpufreq_start_governor(policy); 2491 } 2492 2493 return ret; 2494 } 2495 2496 /** 2497 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2498 * @cpu: CPU to re-evaluate the policy for. 2499 * 2500 * Update the current frequency for the cpufreq policy of @cpu and use 2501 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2502 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2503 * for the policy in question, among other things. 2504 */ 2505 void cpufreq_update_policy(unsigned int cpu) 2506 { 2507 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2508 2509 if (!policy) 2510 return; 2511 2512 /* 2513 * BIOS might change freq behind our back 2514 * -> ask driver for current freq and notify governors about a change 2515 */ 2516 if (cpufreq_driver->get && has_target() && 2517 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2518 goto unlock; 2519 2520 refresh_frequency_limits(policy); 2521 2522 unlock: 2523 cpufreq_cpu_release(policy); 2524 } 2525 EXPORT_SYMBOL(cpufreq_update_policy); 2526 2527 /** 2528 * cpufreq_update_limits - Update policy limits for a given CPU. 2529 * @cpu: CPU to update the policy limits for. 2530 * 2531 * Invoke the driver's ->update_limits callback if present or call 2532 * cpufreq_update_policy() for @cpu. 2533 */ 2534 void cpufreq_update_limits(unsigned int cpu) 2535 { 2536 if (cpufreq_driver->update_limits) 2537 cpufreq_driver->update_limits(cpu); 2538 else 2539 cpufreq_update_policy(cpu); 2540 } 2541 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2542 2543 /********************************************************************* 2544 * BOOST * 2545 *********************************************************************/ 2546 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2547 { 2548 int ret; 2549 2550 if (!policy->freq_table) 2551 return -ENXIO; 2552 2553 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2554 if (ret) { 2555 pr_err("%s: Policy frequency update failed\n", __func__); 2556 return ret; 2557 } 2558 2559 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2560 if (ret < 0) 2561 return ret; 2562 2563 return 0; 2564 } 2565 2566 int cpufreq_boost_trigger_state(int state) 2567 { 2568 struct cpufreq_policy *policy; 2569 unsigned long flags; 2570 int ret = 0; 2571 2572 if (cpufreq_driver->boost_enabled == state) 2573 return 0; 2574 2575 write_lock_irqsave(&cpufreq_driver_lock, flags); 2576 cpufreq_driver->boost_enabled = state; 2577 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2578 2579 get_online_cpus(); 2580 for_each_active_policy(policy) { 2581 ret = cpufreq_driver->set_boost(policy, state); 2582 if (ret) 2583 goto err_reset_state; 2584 } 2585 put_online_cpus(); 2586 2587 return 0; 2588 2589 err_reset_state: 2590 put_online_cpus(); 2591 2592 write_lock_irqsave(&cpufreq_driver_lock, flags); 2593 cpufreq_driver->boost_enabled = !state; 2594 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2595 2596 pr_err("%s: Cannot %s BOOST\n", 2597 __func__, state ? "enable" : "disable"); 2598 2599 return ret; 2600 } 2601 2602 static bool cpufreq_boost_supported(void) 2603 { 2604 return cpufreq_driver->set_boost; 2605 } 2606 2607 static int create_boost_sysfs_file(void) 2608 { 2609 int ret; 2610 2611 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2612 if (ret) 2613 pr_err("%s: cannot register global BOOST sysfs file\n", 2614 __func__); 2615 2616 return ret; 2617 } 2618 2619 static void remove_boost_sysfs_file(void) 2620 { 2621 if (cpufreq_boost_supported()) 2622 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2623 } 2624 2625 int cpufreq_enable_boost_support(void) 2626 { 2627 if (!cpufreq_driver) 2628 return -EINVAL; 2629 2630 if (cpufreq_boost_supported()) 2631 return 0; 2632 2633 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2634 2635 /* This will get removed on driver unregister */ 2636 return create_boost_sysfs_file(); 2637 } 2638 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2639 2640 int cpufreq_boost_enabled(void) 2641 { 2642 return cpufreq_driver->boost_enabled; 2643 } 2644 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2645 2646 /********************************************************************* 2647 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2648 *********************************************************************/ 2649 static enum cpuhp_state hp_online; 2650 2651 static int cpuhp_cpufreq_online(unsigned int cpu) 2652 { 2653 cpufreq_online(cpu); 2654 2655 return 0; 2656 } 2657 2658 static int cpuhp_cpufreq_offline(unsigned int cpu) 2659 { 2660 cpufreq_offline(cpu); 2661 2662 return 0; 2663 } 2664 2665 /** 2666 * cpufreq_register_driver - register a CPU Frequency driver 2667 * @driver_data: A struct cpufreq_driver containing the values# 2668 * submitted by the CPU Frequency driver. 2669 * 2670 * Registers a CPU Frequency driver to this core code. This code 2671 * returns zero on success, -EEXIST when another driver got here first 2672 * (and isn't unregistered in the meantime). 2673 * 2674 */ 2675 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2676 { 2677 unsigned long flags; 2678 int ret; 2679 2680 if (cpufreq_disabled()) 2681 return -ENODEV; 2682 2683 /* 2684 * The cpufreq core depends heavily on the availability of device 2685 * structure, make sure they are available before proceeding further. 2686 */ 2687 if (!get_cpu_device(0)) 2688 return -EPROBE_DEFER; 2689 2690 if (!driver_data || !driver_data->verify || !driver_data->init || 2691 !(driver_data->setpolicy || driver_data->target_index || 2692 driver_data->target) || 2693 (driver_data->setpolicy && (driver_data->target_index || 2694 driver_data->target)) || 2695 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2696 (!driver_data->online != !driver_data->offline)) 2697 return -EINVAL; 2698 2699 pr_debug("trying to register driver %s\n", driver_data->name); 2700 2701 /* Protect against concurrent CPU online/offline. */ 2702 cpus_read_lock(); 2703 2704 write_lock_irqsave(&cpufreq_driver_lock, flags); 2705 if (cpufreq_driver) { 2706 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2707 ret = -EEXIST; 2708 goto out; 2709 } 2710 cpufreq_driver = driver_data; 2711 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2712 2713 if (driver_data->setpolicy) 2714 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2715 2716 if (cpufreq_boost_supported()) { 2717 ret = create_boost_sysfs_file(); 2718 if (ret) 2719 goto err_null_driver; 2720 } 2721 2722 ret = subsys_interface_register(&cpufreq_interface); 2723 if (ret) 2724 goto err_boost_unreg; 2725 2726 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2727 list_empty(&cpufreq_policy_list)) { 2728 /* if all ->init() calls failed, unregister */ 2729 ret = -ENODEV; 2730 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2731 driver_data->name); 2732 goto err_if_unreg; 2733 } 2734 2735 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2736 "cpufreq:online", 2737 cpuhp_cpufreq_online, 2738 cpuhp_cpufreq_offline); 2739 if (ret < 0) 2740 goto err_if_unreg; 2741 hp_online = ret; 2742 ret = 0; 2743 2744 pr_debug("driver %s up and running\n", driver_data->name); 2745 goto out; 2746 2747 err_if_unreg: 2748 subsys_interface_unregister(&cpufreq_interface); 2749 err_boost_unreg: 2750 remove_boost_sysfs_file(); 2751 err_null_driver: 2752 write_lock_irqsave(&cpufreq_driver_lock, flags); 2753 cpufreq_driver = NULL; 2754 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2755 out: 2756 cpus_read_unlock(); 2757 return ret; 2758 } 2759 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2760 2761 /* 2762 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2763 * 2764 * Unregister the current CPUFreq driver. Only call this if you have 2765 * the right to do so, i.e. if you have succeeded in initialising before! 2766 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2767 * currently not initialised. 2768 */ 2769 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2770 { 2771 unsigned long flags; 2772 2773 if (!cpufreq_driver || (driver != cpufreq_driver)) 2774 return -EINVAL; 2775 2776 pr_debug("unregistering driver %s\n", driver->name); 2777 2778 /* Protect against concurrent cpu hotplug */ 2779 cpus_read_lock(); 2780 subsys_interface_unregister(&cpufreq_interface); 2781 remove_boost_sysfs_file(); 2782 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2783 2784 write_lock_irqsave(&cpufreq_driver_lock, flags); 2785 2786 cpufreq_driver = NULL; 2787 2788 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2789 cpus_read_unlock(); 2790 2791 return 0; 2792 } 2793 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2794 2795 static int __init cpufreq_core_init(void) 2796 { 2797 struct cpufreq_governor *gov = cpufreq_default_governor(); 2798 2799 if (cpufreq_disabled()) 2800 return -ENODEV; 2801 2802 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2803 BUG_ON(!cpufreq_global_kobject); 2804 2805 if (!strlen(default_governor)) 2806 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2807 2808 return 0; 2809 } 2810 module_param(off, int, 0444); 2811 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2812 core_initcall(cpufreq_core_init); 2813