xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision a1e58bbd)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *	Added handling for CPU hotplug
9  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10  *	Fix handling for CPU hotplug -- affected CPUs
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31 
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 						"cpufreq-core", msg)
34 
35 /**
36  * The "cpufreq driver" - the arch- or hardware-dependent low
37  * level driver of CPUFreq support, and its spinlock. This lock
38  * also protects the cpufreq_cpu_data array.
39  */
40 static struct cpufreq_driver *cpufreq_driver;
41 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS];
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static struct cpufreq_governor *cpufreq_cpu_governor[NR_CPUS];
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47 
48 /*
49  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50  * all cpufreq/hotplug/workqueue/etc related lock issues.
51  *
52  * The rules for this semaphore:
53  * - Any routine that wants to read from the policy structure will
54  *   do a down_read on this semaphore.
55  * - Any routine that will write to the policy structure and/or may take away
56  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
57  *   mode before doing so.
58  *
59  * Additional rules:
60  * - All holders of the lock should check to make sure that the CPU they
61  *   are concerned with are online after they get the lock.
62  * - Governor routines that can be called in cpufreq hotplug path should not
63  *   take this sem as top level hotplug notifier handler takes this.
64  */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67 
68 #define lock_policy_rwsem(mode, cpu)					\
69 int lock_policy_rwsem_##mode						\
70 (int cpu)								\
71 {									\
72 	int policy_cpu = per_cpu(policy_cpu, cpu);			\
73 	BUG_ON(policy_cpu == -1);					\
74 	down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));		\
75 	if (unlikely(!cpu_online(cpu))) {				\
76 		up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));	\
77 		return -1;						\
78 	}								\
79 									\
80 	return 0;							\
81 }
82 
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85 
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88 
89 void unlock_policy_rwsem_read(int cpu)
90 {
91 	int policy_cpu = per_cpu(policy_cpu, cpu);
92 	BUG_ON(policy_cpu == -1);
93 	up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96 
97 void unlock_policy_rwsem_write(int cpu)
98 {
99 	int policy_cpu = per_cpu(policy_cpu, cpu);
100 	BUG_ON(policy_cpu == -1);
101 	up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104 
105 
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
108 static unsigned int __cpufreq_get(unsigned int cpu);
109 static void handle_update(struct work_struct *work);
110 
111 /**
112  * Two notifier lists: the "policy" list is involved in the
113  * validation process for a new CPU frequency policy; the
114  * "transition" list for kernel code that needs to handle
115  * changes to devices when the CPU clock speed changes.
116  * The mutex locks both lists.
117  */
118 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
119 static struct srcu_notifier_head cpufreq_transition_notifier_list;
120 
121 static int __init init_cpufreq_transition_notifier_list(void)
122 {
123 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124 	return 0;
125 }
126 pure_initcall(init_cpufreq_transition_notifier_list);
127 
128 static LIST_HEAD(cpufreq_governor_list);
129 static DEFINE_MUTEX (cpufreq_governor_mutex);
130 
131 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
132 {
133 	struct cpufreq_policy *data;
134 	unsigned long flags;
135 
136 	if (cpu >= NR_CPUS)
137 		goto err_out;
138 
139 	/* get the cpufreq driver */
140 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
141 
142 	if (!cpufreq_driver)
143 		goto err_out_unlock;
144 
145 	if (!try_module_get(cpufreq_driver->owner))
146 		goto err_out_unlock;
147 
148 
149 	/* get the CPU */
150 	data = cpufreq_cpu_data[cpu];
151 
152 	if (!data)
153 		goto err_out_put_module;
154 
155 	if (!kobject_get(&data->kobj))
156 		goto err_out_put_module;
157 
158 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
159 	return data;
160 
161 err_out_put_module:
162 	module_put(cpufreq_driver->owner);
163 err_out_unlock:
164 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
165 err_out:
166 	return NULL;
167 }
168 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
169 
170 
171 void cpufreq_cpu_put(struct cpufreq_policy *data)
172 {
173 	kobject_put(&data->kobj);
174 	module_put(cpufreq_driver->owner);
175 }
176 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
177 
178 
179 /*********************************************************************
180  *                     UNIFIED DEBUG HELPERS                         *
181  *********************************************************************/
182 #ifdef CONFIG_CPU_FREQ_DEBUG
183 
184 /* what part(s) of the CPUfreq subsystem are debugged? */
185 static unsigned int debug;
186 
187 /* is the debug output ratelimit'ed using printk_ratelimit? User can
188  * set or modify this value.
189  */
190 static unsigned int debug_ratelimit = 1;
191 
192 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
193  * loading of a cpufreq driver, temporarily disabled when a new policy
194  * is set, and disabled upon cpufreq driver removal
195  */
196 static unsigned int disable_ratelimit = 1;
197 static DEFINE_SPINLOCK(disable_ratelimit_lock);
198 
199 static void cpufreq_debug_enable_ratelimit(void)
200 {
201 	unsigned long flags;
202 
203 	spin_lock_irqsave(&disable_ratelimit_lock, flags);
204 	if (disable_ratelimit)
205 		disable_ratelimit--;
206 	spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
207 }
208 
209 static void cpufreq_debug_disable_ratelimit(void)
210 {
211 	unsigned long flags;
212 
213 	spin_lock_irqsave(&disable_ratelimit_lock, flags);
214 	disable_ratelimit++;
215 	spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
216 }
217 
218 void cpufreq_debug_printk(unsigned int type, const char *prefix,
219 							const char *fmt, ...)
220 {
221 	char s[256];
222 	va_list args;
223 	unsigned int len;
224 	unsigned long flags;
225 
226 	WARN_ON(!prefix);
227 	if (type & debug) {
228 		spin_lock_irqsave(&disable_ratelimit_lock, flags);
229 		if (!disable_ratelimit && debug_ratelimit
230 					&& !printk_ratelimit()) {
231 			spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
232 			return;
233 		}
234 		spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235 
236 		len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
237 
238 		va_start(args, fmt);
239 		len += vsnprintf(&s[len], (256 - len), fmt, args);
240 		va_end(args);
241 
242 		printk(s);
243 
244 		WARN_ON(len < 5);
245 	}
246 }
247 EXPORT_SYMBOL(cpufreq_debug_printk);
248 
249 
250 module_param(debug, uint, 0644);
251 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
252 			" 2 to debug drivers, and 4 to debug governors.");
253 
254 module_param(debug_ratelimit, uint, 0644);
255 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
256 					" set to 0 to disable ratelimiting.");
257 
258 #else /* !CONFIG_CPU_FREQ_DEBUG */
259 
260 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
261 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
262 
263 #endif /* CONFIG_CPU_FREQ_DEBUG */
264 
265 
266 /*********************************************************************
267  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
268  *********************************************************************/
269 
270 /**
271  * adjust_jiffies - adjust the system "loops_per_jiffy"
272  *
273  * This function alters the system "loops_per_jiffy" for the clock
274  * speed change. Note that loops_per_jiffy cannot be updated on SMP
275  * systems as each CPU might be scaled differently. So, use the arch
276  * per-CPU loops_per_jiffy value wherever possible.
277  */
278 #ifndef CONFIG_SMP
279 static unsigned long l_p_j_ref;
280 static unsigned int  l_p_j_ref_freq;
281 
282 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
283 {
284 	if (ci->flags & CPUFREQ_CONST_LOOPS)
285 		return;
286 
287 	if (!l_p_j_ref_freq) {
288 		l_p_j_ref = loops_per_jiffy;
289 		l_p_j_ref_freq = ci->old;
290 		dprintk("saving %lu as reference value for loops_per_jiffy; "
291 			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
292 	}
293 	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
294 	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
295 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
296 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 								ci->new);
298 		dprintk("scaling loops_per_jiffy to %lu "
299 			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
300 	}
301 }
302 #else
303 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
304 {
305 	return;
306 }
307 #endif
308 
309 
310 /**
311  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
312  * on frequency transition.
313  *
314  * This function calls the transition notifiers and the "adjust_jiffies"
315  * function. It is called twice on all CPU frequency changes that have
316  * external effects.
317  */
318 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
319 {
320 	struct cpufreq_policy *policy;
321 
322 	BUG_ON(irqs_disabled());
323 
324 	freqs->flags = cpufreq_driver->flags;
325 	dprintk("notification %u of frequency transition to %u kHz\n",
326 		state, freqs->new);
327 
328 	policy = cpufreq_cpu_data[freqs->cpu];
329 	switch (state) {
330 
331 	case CPUFREQ_PRECHANGE:
332 		/* detect if the driver reported a value as "old frequency"
333 		 * which is not equal to what the cpufreq core thinks is
334 		 * "old frequency".
335 		 */
336 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
337 			if ((policy) && (policy->cpu == freqs->cpu) &&
338 			    (policy->cur) && (policy->cur != freqs->old)) {
339 				dprintk("Warning: CPU frequency is"
340 					" %u, cpufreq assumed %u kHz.\n",
341 					freqs->old, policy->cur);
342 				freqs->old = policy->cur;
343 			}
344 		}
345 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
346 				CPUFREQ_PRECHANGE, freqs);
347 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
348 		break;
349 
350 	case CPUFREQ_POSTCHANGE:
351 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
352 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
353 				CPUFREQ_POSTCHANGE, freqs);
354 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
355 			policy->cur = freqs->new;
356 		break;
357 	}
358 }
359 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
360 
361 
362 
363 /*********************************************************************
364  *                          SYSFS INTERFACE                          *
365  *********************************************************************/
366 
367 static struct cpufreq_governor *__find_governor(const char *str_governor)
368 {
369 	struct cpufreq_governor *t;
370 
371 	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
372 		if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN))
373 			return t;
374 
375 	return NULL;
376 }
377 
378 /**
379  * cpufreq_parse_governor - parse a governor string
380  */
381 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
382 				struct cpufreq_governor **governor)
383 {
384 	int err = -EINVAL;
385 
386 	if (!cpufreq_driver)
387 		goto out;
388 
389 	if (cpufreq_driver->setpolicy) {
390 		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
391 			*policy = CPUFREQ_POLICY_PERFORMANCE;
392 			err = 0;
393 		} else if (!strnicmp(str_governor, "powersave",
394 						CPUFREQ_NAME_LEN)) {
395 			*policy = CPUFREQ_POLICY_POWERSAVE;
396 			err = 0;
397 		}
398 	} else if (cpufreq_driver->target) {
399 		struct cpufreq_governor *t;
400 
401 		mutex_lock(&cpufreq_governor_mutex);
402 
403 		t = __find_governor(str_governor);
404 
405 		if (t == NULL) {
406 			char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
407 								str_governor);
408 
409 			if (name) {
410 				int ret;
411 
412 				mutex_unlock(&cpufreq_governor_mutex);
413 				ret = request_module(name);
414 				mutex_lock(&cpufreq_governor_mutex);
415 
416 				if (ret == 0)
417 					t = __find_governor(str_governor);
418 			}
419 
420 			kfree(name);
421 		}
422 
423 		if (t != NULL) {
424 			*governor = t;
425 			err = 0;
426 		}
427 
428 		mutex_unlock(&cpufreq_governor_mutex);
429 	}
430   out:
431 	return err;
432 }
433 
434 
435 /* drivers/base/cpu.c */
436 extern struct sysdev_class cpu_sysdev_class;
437 
438 
439 /**
440  * cpufreq_per_cpu_attr_read() / show_##file_name() -
441  * print out cpufreq information
442  *
443  * Write out information from cpufreq_driver->policy[cpu]; object must be
444  * "unsigned int".
445  */
446 
447 #define show_one(file_name, object)			\
448 static ssize_t show_##file_name				\
449 (struct cpufreq_policy * policy, char *buf)		\
450 {							\
451 	return sprintf (buf, "%u\n", policy->object);	\
452 }
453 
454 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
455 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
456 show_one(scaling_min_freq, min);
457 show_one(scaling_max_freq, max);
458 show_one(scaling_cur_freq, cur);
459 
460 static int __cpufreq_set_policy(struct cpufreq_policy *data,
461 				struct cpufreq_policy *policy);
462 
463 /**
464  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465  */
466 #define store_one(file_name, object)			\
467 static ssize_t store_##file_name					\
468 (struct cpufreq_policy * policy, const char *buf, size_t count)		\
469 {									\
470 	unsigned int ret = -EINVAL;					\
471 	struct cpufreq_policy new_policy;				\
472 									\
473 	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
474 	if (ret)							\
475 		return -EINVAL;						\
476 									\
477 	ret = sscanf (buf, "%u", &new_policy.object);			\
478 	if (ret != 1)							\
479 		return -EINVAL;						\
480 									\
481 	ret = __cpufreq_set_policy(policy, &new_policy);		\
482 	policy->user_policy.object = policy->object;			\
483 									\
484 	return ret ? ret : count;					\
485 }
486 
487 store_one(scaling_min_freq,min);
488 store_one(scaling_max_freq,max);
489 
490 /**
491  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492  */
493 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy,
494 							char *buf)
495 {
496 	unsigned int cur_freq = __cpufreq_get(policy->cpu);
497 	if (!cur_freq)
498 		return sprintf(buf, "<unknown>");
499 	return sprintf(buf, "%u\n", cur_freq);
500 }
501 
502 
503 /**
504  * show_scaling_governor - show the current policy for the specified CPU
505  */
506 static ssize_t show_scaling_governor (struct cpufreq_policy * policy,
507 							char *buf)
508 {
509 	if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
510 		return sprintf(buf, "powersave\n");
511 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
512 		return sprintf(buf, "performance\n");
513 	else if (policy->governor)
514 		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
515 	return -EINVAL;
516 }
517 
518 
519 /**
520  * store_scaling_governor - store policy for the specified CPU
521  */
522 static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
523 				       const char *buf, size_t count)
524 {
525 	unsigned int ret = -EINVAL;
526 	char	str_governor[16];
527 	struct cpufreq_policy new_policy;
528 
529 	ret = cpufreq_get_policy(&new_policy, policy->cpu);
530 	if (ret)
531 		return ret;
532 
533 	ret = sscanf (buf, "%15s", str_governor);
534 	if (ret != 1)
535 		return -EINVAL;
536 
537 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
538 						&new_policy.governor))
539 		return -EINVAL;
540 
541 	/* Do not use cpufreq_set_policy here or the user_policy.max
542 	   will be wrongly overridden */
543 	ret = __cpufreq_set_policy(policy, &new_policy);
544 
545 	policy->user_policy.policy = policy->policy;
546 	policy->user_policy.governor = policy->governor;
547 
548 	if (ret)
549 		return ret;
550 	else
551 		return count;
552 }
553 
554 /**
555  * show_scaling_driver - show the cpufreq driver currently loaded
556  */
557 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
558 {
559 	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
560 }
561 
562 /**
563  * show_scaling_available_governors - show the available CPUfreq governors
564  */
565 static ssize_t show_scaling_available_governors (struct cpufreq_policy *policy,
566 				char *buf)
567 {
568 	ssize_t i = 0;
569 	struct cpufreq_governor *t;
570 
571 	if (!cpufreq_driver->target) {
572 		i += sprintf(buf, "performance powersave");
573 		goto out;
574 	}
575 
576 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
577 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
578 			goto out;
579 		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
580 	}
581 out:
582 	i += sprintf(&buf[i], "\n");
583 	return i;
584 }
585 /**
586  * show_affected_cpus - show the CPUs affected by each transition
587  */
588 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
589 {
590 	ssize_t i = 0;
591 	unsigned int cpu;
592 
593 	for_each_cpu_mask(cpu, policy->cpus) {
594 		if (i)
595 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
596 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
597 		if (i >= (PAGE_SIZE - 5))
598 		    break;
599 	}
600 	i += sprintf(&buf[i], "\n");
601 	return i;
602 }
603 
604 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
605 		const char *buf, size_t count)
606 {
607 	unsigned int freq = 0;
608 	unsigned int ret;
609 
610 	if (!policy->governor->store_setspeed)
611 		return -EINVAL;
612 
613 	ret = sscanf(buf, "%u", &freq);
614 	if (ret != 1)
615 		return -EINVAL;
616 
617 	policy->governor->store_setspeed(policy, freq);
618 
619 	return count;
620 }
621 
622 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
623 {
624 	if (!policy->governor->show_setspeed)
625 		return sprintf(buf, "<unsupported>\n");
626 
627 	return policy->governor->show_setspeed(policy, buf);
628 }
629 
630 #define define_one_ro(_name) \
631 static struct freq_attr _name = \
632 __ATTR(_name, 0444, show_##_name, NULL)
633 
634 #define define_one_ro0400(_name) \
635 static struct freq_attr _name = \
636 __ATTR(_name, 0400, show_##_name, NULL)
637 
638 #define define_one_rw(_name) \
639 static struct freq_attr _name = \
640 __ATTR(_name, 0644, show_##_name, store_##_name)
641 
642 define_one_ro0400(cpuinfo_cur_freq);
643 define_one_ro(cpuinfo_min_freq);
644 define_one_ro(cpuinfo_max_freq);
645 define_one_ro(scaling_available_governors);
646 define_one_ro(scaling_driver);
647 define_one_ro(scaling_cur_freq);
648 define_one_ro(affected_cpus);
649 define_one_rw(scaling_min_freq);
650 define_one_rw(scaling_max_freq);
651 define_one_rw(scaling_governor);
652 define_one_rw(scaling_setspeed);
653 
654 static struct attribute * default_attrs[] = {
655 	&cpuinfo_min_freq.attr,
656 	&cpuinfo_max_freq.attr,
657 	&scaling_min_freq.attr,
658 	&scaling_max_freq.attr,
659 	&affected_cpus.attr,
660 	&scaling_governor.attr,
661 	&scaling_driver.attr,
662 	&scaling_available_governors.attr,
663 	&scaling_setspeed.attr,
664 	NULL
665 };
666 
667 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
668 #define to_attr(a) container_of(a,struct freq_attr,attr)
669 
670 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
671 {
672 	struct cpufreq_policy * policy = to_policy(kobj);
673 	struct freq_attr * fattr = to_attr(attr);
674 	ssize_t ret = -EINVAL;
675 	policy = cpufreq_cpu_get(policy->cpu);
676 	if (!policy)
677 		goto no_policy;
678 
679 	if (lock_policy_rwsem_read(policy->cpu) < 0)
680 		goto fail;
681 
682 	if (fattr->show)
683 		ret = fattr->show(policy, buf);
684 	else
685 		ret = -EIO;
686 
687 	unlock_policy_rwsem_read(policy->cpu);
688 fail:
689 	cpufreq_cpu_put(policy);
690 no_policy:
691 	return ret;
692 }
693 
694 static ssize_t store(struct kobject * kobj, struct attribute * attr,
695 		     const char * buf, size_t count)
696 {
697 	struct cpufreq_policy * policy = to_policy(kobj);
698 	struct freq_attr * fattr = to_attr(attr);
699 	ssize_t ret = -EINVAL;
700 	policy = cpufreq_cpu_get(policy->cpu);
701 	if (!policy)
702 		goto no_policy;
703 
704 	if (lock_policy_rwsem_write(policy->cpu) < 0)
705 		goto fail;
706 
707 	if (fattr->store)
708 		ret = fattr->store(policy, buf, count);
709 	else
710 		ret = -EIO;
711 
712 	unlock_policy_rwsem_write(policy->cpu);
713 fail:
714 	cpufreq_cpu_put(policy);
715 no_policy:
716 	return ret;
717 }
718 
719 static void cpufreq_sysfs_release(struct kobject * kobj)
720 {
721 	struct cpufreq_policy * policy = to_policy(kobj);
722 	dprintk("last reference is dropped\n");
723 	complete(&policy->kobj_unregister);
724 }
725 
726 static struct sysfs_ops sysfs_ops = {
727 	.show	= show,
728 	.store	= store,
729 };
730 
731 static struct kobj_type ktype_cpufreq = {
732 	.sysfs_ops	= &sysfs_ops,
733 	.default_attrs	= default_attrs,
734 	.release	= cpufreq_sysfs_release,
735 };
736 
737 
738 /**
739  * cpufreq_add_dev - add a CPU device
740  *
741  * Adds the cpufreq interface for a CPU device.
742  */
743 static int cpufreq_add_dev (struct sys_device * sys_dev)
744 {
745 	unsigned int cpu = sys_dev->id;
746 	int ret = 0;
747 	struct cpufreq_policy new_policy;
748 	struct cpufreq_policy *policy;
749 	struct freq_attr **drv_attr;
750 	struct sys_device *cpu_sys_dev;
751 	unsigned long flags;
752 	unsigned int j;
753 #ifdef CONFIG_SMP
754 	struct cpufreq_policy *managed_policy;
755 #endif
756 
757 	if (cpu_is_offline(cpu))
758 		return 0;
759 
760 	cpufreq_debug_disable_ratelimit();
761 	dprintk("adding CPU %u\n", cpu);
762 
763 #ifdef CONFIG_SMP
764 	/* check whether a different CPU already registered this
765 	 * CPU because it is in the same boat. */
766 	policy = cpufreq_cpu_get(cpu);
767 	if (unlikely(policy)) {
768 		cpufreq_cpu_put(policy);
769 		cpufreq_debug_enable_ratelimit();
770 		return 0;
771 	}
772 #endif
773 
774 	if (!try_module_get(cpufreq_driver->owner)) {
775 		ret = -EINVAL;
776 		goto module_out;
777 	}
778 
779 	policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
780 	if (!policy) {
781 		ret = -ENOMEM;
782 		goto nomem_out;
783 	}
784 
785 	policy->cpu = cpu;
786 	policy->cpus = cpumask_of_cpu(cpu);
787 
788 	/* Initially set CPU itself as the policy_cpu */
789 	per_cpu(policy_cpu, cpu) = cpu;
790 	lock_policy_rwsem_write(cpu);
791 
792 	init_completion(&policy->kobj_unregister);
793 	INIT_WORK(&policy->update, handle_update);
794 
795 	/* Set governor before ->init, so that driver could check it */
796 	policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
797 	/* call driver. From then on the cpufreq must be able
798 	 * to accept all calls to ->verify and ->setpolicy for this CPU
799 	 */
800 	ret = cpufreq_driver->init(policy);
801 	if (ret) {
802 		dprintk("initialization failed\n");
803 		unlock_policy_rwsem_write(cpu);
804 		goto err_out;
805 	}
806 	policy->user_policy.min = policy->cpuinfo.min_freq;
807 	policy->user_policy.max = policy->cpuinfo.max_freq;
808 
809 #ifdef CONFIG_SMP
810 
811 #ifdef CONFIG_HOTPLUG_CPU
812 	if (cpufreq_cpu_governor[cpu]){
813 		policy->governor = cpufreq_cpu_governor[cpu];
814 		dprintk("Restoring governor %s for cpu %d\n",
815 		       policy->governor->name, cpu);
816 	}
817 #endif
818 
819 	for_each_cpu_mask(j, policy->cpus) {
820 		if (cpu == j)
821 			continue;
822 
823 		/* check for existing affected CPUs.  They may not be aware
824 		 * of it due to CPU Hotplug.
825 		 */
826 		managed_policy = cpufreq_cpu_get(j);
827 		if (unlikely(managed_policy)) {
828 
829 			/* Set proper policy_cpu */
830 			unlock_policy_rwsem_write(cpu);
831 			per_cpu(policy_cpu, cpu) = managed_policy->cpu;
832 
833 			if (lock_policy_rwsem_write(cpu) < 0)
834 				goto err_out_driver_exit;
835 
836 			spin_lock_irqsave(&cpufreq_driver_lock, flags);
837 			managed_policy->cpus = policy->cpus;
838 			cpufreq_cpu_data[cpu] = managed_policy;
839 			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
840 
841 			dprintk("CPU already managed, adding link\n");
842 			ret = sysfs_create_link(&sys_dev->kobj,
843 						&managed_policy->kobj,
844 						"cpufreq");
845 			if (ret) {
846 				unlock_policy_rwsem_write(cpu);
847 				goto err_out_driver_exit;
848 			}
849 
850 			cpufreq_debug_enable_ratelimit();
851 			ret = 0;
852 			unlock_policy_rwsem_write(cpu);
853 			goto err_out_driver_exit; /* call driver->exit() */
854 		}
855 	}
856 #endif
857 	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
858 
859 	/* prepare interface data */
860 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &sys_dev->kobj,
861 				   "cpufreq");
862 	if (ret) {
863 		unlock_policy_rwsem_write(cpu);
864 		goto err_out_driver_exit;
865 	}
866 	/* set up files for this cpu device */
867 	drv_attr = cpufreq_driver->attr;
868 	while ((drv_attr) && (*drv_attr)) {
869 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
870 		if (ret) {
871 			unlock_policy_rwsem_write(cpu);
872 			goto err_out_driver_exit;
873 		}
874 		drv_attr++;
875 	}
876 	if (cpufreq_driver->get){
877 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
878 		if (ret) {
879 			unlock_policy_rwsem_write(cpu);
880 			goto err_out_driver_exit;
881 		}
882 	}
883 	if (cpufreq_driver->target){
884 		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
885 		if (ret) {
886 			unlock_policy_rwsem_write(cpu);
887 			goto err_out_driver_exit;
888 		}
889 	}
890 
891 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
892 	for_each_cpu_mask(j, policy->cpus) {
893 		cpufreq_cpu_data[j] = policy;
894 		per_cpu(policy_cpu, j) = policy->cpu;
895 	}
896 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
897 
898 	/* symlink affected CPUs */
899 	for_each_cpu_mask(j, policy->cpus) {
900 		if (j == cpu)
901 			continue;
902 		if (!cpu_online(j))
903 			continue;
904 
905 		dprintk("CPU %u already managed, adding link\n", j);
906 		cpufreq_cpu_get(cpu);
907 		cpu_sys_dev = get_cpu_sysdev(j);
908 		ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
909 					"cpufreq");
910 		if (ret) {
911 			unlock_policy_rwsem_write(cpu);
912 			goto err_out_unregister;
913 		}
914 	}
915 
916 	policy->governor = NULL; /* to assure that the starting sequence is
917 				  * run in cpufreq_set_policy */
918 
919 	/* set default policy */
920 	ret = __cpufreq_set_policy(policy, &new_policy);
921 	policy->user_policy.policy = policy->policy;
922 	policy->user_policy.governor = policy->governor;
923 
924 	unlock_policy_rwsem_write(cpu);
925 
926 	if (ret) {
927 		dprintk("setting policy failed\n");
928 		goto err_out_unregister;
929 	}
930 
931 	kobject_uevent(&policy->kobj, KOBJ_ADD);
932 	module_put(cpufreq_driver->owner);
933 	dprintk("initialization complete\n");
934 	cpufreq_debug_enable_ratelimit();
935 
936 	return 0;
937 
938 
939 err_out_unregister:
940 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
941 	for_each_cpu_mask(j, policy->cpus)
942 		cpufreq_cpu_data[j] = NULL;
943 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
944 
945 	kobject_put(&policy->kobj);
946 	wait_for_completion(&policy->kobj_unregister);
947 
948 err_out_driver_exit:
949 	if (cpufreq_driver->exit)
950 		cpufreq_driver->exit(policy);
951 
952 err_out:
953 	kfree(policy);
954 
955 nomem_out:
956 	module_put(cpufreq_driver->owner);
957 module_out:
958 	cpufreq_debug_enable_ratelimit();
959 	return ret;
960 }
961 
962 
963 /**
964  * __cpufreq_remove_dev - remove a CPU device
965  *
966  * Removes the cpufreq interface for a CPU device.
967  * Caller should already have policy_rwsem in write mode for this CPU.
968  * This routine frees the rwsem before returning.
969  */
970 static int __cpufreq_remove_dev (struct sys_device * sys_dev)
971 {
972 	unsigned int cpu = sys_dev->id;
973 	unsigned long flags;
974 	struct cpufreq_policy *data;
975 #ifdef CONFIG_SMP
976 	struct sys_device *cpu_sys_dev;
977 	unsigned int j;
978 #endif
979 
980 	cpufreq_debug_disable_ratelimit();
981 	dprintk("unregistering CPU %u\n", cpu);
982 
983 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
984 	data = cpufreq_cpu_data[cpu];
985 
986 	if (!data) {
987 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
988 		cpufreq_debug_enable_ratelimit();
989 		unlock_policy_rwsem_write(cpu);
990 		return -EINVAL;
991 	}
992 	cpufreq_cpu_data[cpu] = NULL;
993 
994 
995 #ifdef CONFIG_SMP
996 	/* if this isn't the CPU which is the parent of the kobj, we
997 	 * only need to unlink, put and exit
998 	 */
999 	if (unlikely(cpu != data->cpu)) {
1000 		dprintk("removing link\n");
1001 		cpu_clear(cpu, data->cpus);
1002 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1003 		sysfs_remove_link(&sys_dev->kobj, "cpufreq");
1004 		cpufreq_cpu_put(data);
1005 		cpufreq_debug_enable_ratelimit();
1006 		unlock_policy_rwsem_write(cpu);
1007 		return 0;
1008 	}
1009 #endif
1010 
1011 #ifdef CONFIG_SMP
1012 
1013 #ifdef CONFIG_HOTPLUG_CPU
1014 	cpufreq_cpu_governor[cpu] = data->governor;
1015 #endif
1016 
1017 	/* if we have other CPUs still registered, we need to unlink them,
1018 	 * or else wait_for_completion below will lock up. Clean the
1019 	 * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
1020 	 * links afterwards.
1021 	 */
1022 	if (unlikely(cpus_weight(data->cpus) > 1)) {
1023 		for_each_cpu_mask(j, data->cpus) {
1024 			if (j == cpu)
1025 				continue;
1026 			cpufreq_cpu_data[j] = NULL;
1027 		}
1028 	}
1029 
1030 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1031 
1032 	if (unlikely(cpus_weight(data->cpus) > 1)) {
1033 		for_each_cpu_mask(j, data->cpus) {
1034 			if (j == cpu)
1035 				continue;
1036 			dprintk("removing link for cpu %u\n", j);
1037 #ifdef CONFIG_HOTPLUG_CPU
1038 			cpufreq_cpu_governor[j] = data->governor;
1039 #endif
1040 			cpu_sys_dev = get_cpu_sysdev(j);
1041 			sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1042 			cpufreq_cpu_put(data);
1043 		}
1044 	}
1045 #else
1046 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1047 #endif
1048 
1049 	if (cpufreq_driver->target)
1050 		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1051 
1052 	unlock_policy_rwsem_write(cpu);
1053 
1054 	kobject_put(&data->kobj);
1055 
1056 	/* we need to make sure that the underlying kobj is actually
1057 	 * not referenced anymore by anybody before we proceed with
1058 	 * unloading.
1059 	 */
1060 	dprintk("waiting for dropping of refcount\n");
1061 	wait_for_completion(&data->kobj_unregister);
1062 	dprintk("wait complete\n");
1063 
1064 	if (cpufreq_driver->exit)
1065 		cpufreq_driver->exit(data);
1066 
1067 	kfree(data);
1068 
1069 	cpufreq_debug_enable_ratelimit();
1070 	return 0;
1071 }
1072 
1073 
1074 static int cpufreq_remove_dev (struct sys_device * sys_dev)
1075 {
1076 	unsigned int cpu = sys_dev->id;
1077 	int retval;
1078 
1079 	if (cpu_is_offline(cpu))
1080 		return 0;
1081 
1082 	if (unlikely(lock_policy_rwsem_write(cpu)))
1083 		BUG();
1084 
1085 	retval = __cpufreq_remove_dev(sys_dev);
1086 	return retval;
1087 }
1088 
1089 
1090 static void handle_update(struct work_struct *work)
1091 {
1092 	struct cpufreq_policy *policy =
1093 		container_of(work, struct cpufreq_policy, update);
1094 	unsigned int cpu = policy->cpu;
1095 	dprintk("handle_update for cpu %u called\n", cpu);
1096 	cpufreq_update_policy(cpu);
1097 }
1098 
1099 /**
1100  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1101  *	@cpu: cpu number
1102  *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1103  *	@new_freq: CPU frequency the CPU actually runs at
1104  *
1105  *	We adjust to current frequency first, and need to clean up later. So either call
1106  *	to cpufreq_update_policy() or schedule handle_update()).
1107  */
1108 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1109 				unsigned int new_freq)
1110 {
1111 	struct cpufreq_freqs freqs;
1112 
1113 	dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1114 	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1115 
1116 	freqs.cpu = cpu;
1117 	freqs.old = old_freq;
1118 	freqs.new = new_freq;
1119 	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1120 	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1121 }
1122 
1123 
1124 /**
1125  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1126  * @cpu: CPU number
1127  *
1128  * This is the last known freq, without actually getting it from the driver.
1129  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1130  */
1131 unsigned int cpufreq_quick_get(unsigned int cpu)
1132 {
1133 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1134 	unsigned int ret_freq = 0;
1135 
1136 	if (policy) {
1137 		ret_freq = policy->cur;
1138 		cpufreq_cpu_put(policy);
1139 	}
1140 
1141 	return (ret_freq);
1142 }
1143 EXPORT_SYMBOL(cpufreq_quick_get);
1144 
1145 
1146 static unsigned int __cpufreq_get(unsigned int cpu)
1147 {
1148 	struct cpufreq_policy *policy = cpufreq_cpu_data[cpu];
1149 	unsigned int ret_freq = 0;
1150 
1151 	if (!cpufreq_driver->get)
1152 		return (ret_freq);
1153 
1154 	ret_freq = cpufreq_driver->get(cpu);
1155 
1156 	if (ret_freq && policy->cur &&
1157 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1158 		/* verify no discrepancy between actual and
1159 					saved value exists */
1160 		if (unlikely(ret_freq != policy->cur)) {
1161 			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1162 			schedule_work(&policy->update);
1163 		}
1164 	}
1165 
1166 	return (ret_freq);
1167 }
1168 
1169 /**
1170  * cpufreq_get - get the current CPU frequency (in kHz)
1171  * @cpu: CPU number
1172  *
1173  * Get the CPU current (static) CPU frequency
1174  */
1175 unsigned int cpufreq_get(unsigned int cpu)
1176 {
1177 	unsigned int ret_freq = 0;
1178 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1179 
1180 	if (!policy)
1181 		goto out;
1182 
1183 	if (unlikely(lock_policy_rwsem_read(cpu)))
1184 		goto out_policy;
1185 
1186 	ret_freq = __cpufreq_get(cpu);
1187 
1188 	unlock_policy_rwsem_read(cpu);
1189 
1190 out_policy:
1191 	cpufreq_cpu_put(policy);
1192 out:
1193 	return (ret_freq);
1194 }
1195 EXPORT_SYMBOL(cpufreq_get);
1196 
1197 
1198 /**
1199  *	cpufreq_suspend - let the low level driver prepare for suspend
1200  */
1201 
1202 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
1203 {
1204 	int cpu = sysdev->id;
1205 	int ret = 0;
1206 	unsigned int cur_freq = 0;
1207 	struct cpufreq_policy *cpu_policy;
1208 
1209 	dprintk("suspending cpu %u\n", cpu);
1210 
1211 	if (!cpu_online(cpu))
1212 		return 0;
1213 
1214 	/* we may be lax here as interrupts are off. Nonetheless
1215 	 * we need to grab the correct cpu policy, as to check
1216 	 * whether we really run on this CPU.
1217 	 */
1218 
1219 	cpu_policy = cpufreq_cpu_get(cpu);
1220 	if (!cpu_policy)
1221 		return -EINVAL;
1222 
1223 	/* only handle each CPU group once */
1224 	if (unlikely(cpu_policy->cpu != cpu)) {
1225 		cpufreq_cpu_put(cpu_policy);
1226 		return 0;
1227 	}
1228 
1229 	if (cpufreq_driver->suspend) {
1230 		ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1231 		if (ret) {
1232 			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1233 					"step on CPU %u\n", cpu_policy->cpu);
1234 			cpufreq_cpu_put(cpu_policy);
1235 			return ret;
1236 		}
1237 	}
1238 
1239 
1240 	if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1241 		goto out;
1242 
1243 	if (cpufreq_driver->get)
1244 		cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1245 
1246 	if (!cur_freq || !cpu_policy->cur) {
1247 		printk(KERN_ERR "cpufreq: suspend failed to assert current "
1248 		       "frequency is what timing core thinks it is.\n");
1249 		goto out;
1250 	}
1251 
1252 	if (unlikely(cur_freq != cpu_policy->cur)) {
1253 		struct cpufreq_freqs freqs;
1254 
1255 		if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1256 			dprintk("Warning: CPU frequency is %u, "
1257 			       "cpufreq assumed %u kHz.\n",
1258 			       cur_freq, cpu_policy->cur);
1259 
1260 		freqs.cpu = cpu;
1261 		freqs.old = cpu_policy->cur;
1262 		freqs.new = cur_freq;
1263 
1264 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1265 				    CPUFREQ_SUSPENDCHANGE, &freqs);
1266 		adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1267 
1268 		cpu_policy->cur = cur_freq;
1269 	}
1270 
1271 out:
1272 	cpufreq_cpu_put(cpu_policy);
1273 	return 0;
1274 }
1275 
1276 /**
1277  *	cpufreq_resume -  restore proper CPU frequency handling after resume
1278  *
1279  *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1280  *	2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1281  *	3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1282  *	    restored.
1283  */
1284 static int cpufreq_resume(struct sys_device * sysdev)
1285 {
1286 	int cpu = sysdev->id;
1287 	int ret = 0;
1288 	struct cpufreq_policy *cpu_policy;
1289 
1290 	dprintk("resuming cpu %u\n", cpu);
1291 
1292 	if (!cpu_online(cpu))
1293 		return 0;
1294 
1295 	/* we may be lax here as interrupts are off. Nonetheless
1296 	 * we need to grab the correct cpu policy, as to check
1297 	 * whether we really run on this CPU.
1298 	 */
1299 
1300 	cpu_policy = cpufreq_cpu_get(cpu);
1301 	if (!cpu_policy)
1302 		return -EINVAL;
1303 
1304 	/* only handle each CPU group once */
1305 	if (unlikely(cpu_policy->cpu != cpu)) {
1306 		cpufreq_cpu_put(cpu_policy);
1307 		return 0;
1308 	}
1309 
1310 	if (cpufreq_driver->resume) {
1311 		ret = cpufreq_driver->resume(cpu_policy);
1312 		if (ret) {
1313 			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1314 					"step on CPU %u\n", cpu_policy->cpu);
1315 			cpufreq_cpu_put(cpu_policy);
1316 			return ret;
1317 		}
1318 	}
1319 
1320 	if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1321 		unsigned int cur_freq = 0;
1322 
1323 		if (cpufreq_driver->get)
1324 			cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1325 
1326 		if (!cur_freq || !cpu_policy->cur) {
1327 			printk(KERN_ERR "cpufreq: resume failed to assert "
1328 					"current frequency is what timing core "
1329 					"thinks it is.\n");
1330 			goto out;
1331 		}
1332 
1333 		if (unlikely(cur_freq != cpu_policy->cur)) {
1334 			struct cpufreq_freqs freqs;
1335 
1336 			if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1337 				dprintk("Warning: CPU frequency "
1338 				       "is %u, cpufreq assumed %u kHz.\n",
1339 				       cur_freq, cpu_policy->cur);
1340 
1341 			freqs.cpu = cpu;
1342 			freqs.old = cpu_policy->cur;
1343 			freqs.new = cur_freq;
1344 
1345 			srcu_notifier_call_chain(
1346 					&cpufreq_transition_notifier_list,
1347 					CPUFREQ_RESUMECHANGE, &freqs);
1348 			adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1349 
1350 			cpu_policy->cur = cur_freq;
1351 		}
1352 	}
1353 
1354 out:
1355 	schedule_work(&cpu_policy->update);
1356 	cpufreq_cpu_put(cpu_policy);
1357 	return ret;
1358 }
1359 
1360 static struct sysdev_driver cpufreq_sysdev_driver = {
1361 	.add		= cpufreq_add_dev,
1362 	.remove		= cpufreq_remove_dev,
1363 	.suspend	= cpufreq_suspend,
1364 	.resume		= cpufreq_resume,
1365 };
1366 
1367 
1368 /*********************************************************************
1369  *                     NOTIFIER LISTS INTERFACE                      *
1370  *********************************************************************/
1371 
1372 /**
1373  *	cpufreq_register_notifier - register a driver with cpufreq
1374  *	@nb: notifier function to register
1375  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1376  *
1377  *	Add a driver to one of two lists: either a list of drivers that
1378  *      are notified about clock rate changes (once before and once after
1379  *      the transition), or a list of drivers that are notified about
1380  *      changes in cpufreq policy.
1381  *
1382  *	This function may sleep, and has the same return conditions as
1383  *	blocking_notifier_chain_register.
1384  */
1385 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1386 {
1387 	int ret;
1388 
1389 	switch (list) {
1390 	case CPUFREQ_TRANSITION_NOTIFIER:
1391 		ret = srcu_notifier_chain_register(
1392 				&cpufreq_transition_notifier_list, nb);
1393 		break;
1394 	case CPUFREQ_POLICY_NOTIFIER:
1395 		ret = blocking_notifier_chain_register(
1396 				&cpufreq_policy_notifier_list, nb);
1397 		break;
1398 	default:
1399 		ret = -EINVAL;
1400 	}
1401 
1402 	return ret;
1403 }
1404 EXPORT_SYMBOL(cpufreq_register_notifier);
1405 
1406 
1407 /**
1408  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1409  *	@nb: notifier block to be unregistered
1410  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1411  *
1412  *	Remove a driver from the CPU frequency notifier list.
1413  *
1414  *	This function may sleep, and has the same return conditions as
1415  *	blocking_notifier_chain_unregister.
1416  */
1417 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1418 {
1419 	int ret;
1420 
1421 	switch (list) {
1422 	case CPUFREQ_TRANSITION_NOTIFIER:
1423 		ret = srcu_notifier_chain_unregister(
1424 				&cpufreq_transition_notifier_list, nb);
1425 		break;
1426 	case CPUFREQ_POLICY_NOTIFIER:
1427 		ret = blocking_notifier_chain_unregister(
1428 				&cpufreq_policy_notifier_list, nb);
1429 		break;
1430 	default:
1431 		ret = -EINVAL;
1432 	}
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1437 
1438 
1439 /*********************************************************************
1440  *                              GOVERNORS                            *
1441  *********************************************************************/
1442 
1443 
1444 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1445 			    unsigned int target_freq,
1446 			    unsigned int relation)
1447 {
1448 	int retval = -EINVAL;
1449 
1450 	dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1451 		target_freq, relation);
1452 	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1453 		retval = cpufreq_driver->target(policy, target_freq, relation);
1454 
1455 	return retval;
1456 }
1457 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1458 
1459 int cpufreq_driver_target(struct cpufreq_policy *policy,
1460 			  unsigned int target_freq,
1461 			  unsigned int relation)
1462 {
1463 	int ret;
1464 
1465 	policy = cpufreq_cpu_get(policy->cpu);
1466 	if (!policy)
1467 		return -EINVAL;
1468 
1469 	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1470 		return -EINVAL;
1471 
1472 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1473 
1474 	unlock_policy_rwsem_write(policy->cpu);
1475 
1476 	cpufreq_cpu_put(policy);
1477 	return ret;
1478 }
1479 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1480 
1481 int __cpufreq_driver_getavg(struct cpufreq_policy *policy)
1482 {
1483 	int ret = 0;
1484 
1485 	policy = cpufreq_cpu_get(policy->cpu);
1486 	if (!policy)
1487 		return -EINVAL;
1488 
1489 	if (cpu_online(policy->cpu) && cpufreq_driver->getavg)
1490 		ret = cpufreq_driver->getavg(policy->cpu);
1491 
1492 	cpufreq_cpu_put(policy);
1493 	return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1496 
1497 /*
1498  * when "event" is CPUFREQ_GOV_LIMITS
1499  */
1500 
1501 static int __cpufreq_governor(struct cpufreq_policy *policy,
1502 					unsigned int event)
1503 {
1504 	int ret;
1505 
1506 	/* Only must be defined when default governor is known to have latency
1507 	   restrictions, like e.g. conservative or ondemand.
1508 	   That this is the case is already ensured in Kconfig
1509 	*/
1510 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1511 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1512 #else
1513 	struct cpufreq_governor *gov = NULL;
1514 #endif
1515 
1516 	if (policy->governor->max_transition_latency &&
1517 	    policy->cpuinfo.transition_latency >
1518 	    policy->governor->max_transition_latency) {
1519 		if (!gov)
1520 			return -EINVAL;
1521 		else {
1522 			printk(KERN_WARNING "%s governor failed, too long"
1523 			       " transition latency of HW, fallback"
1524 			       " to %s governor\n",
1525 			       policy->governor->name,
1526 			       gov->name);
1527 			policy->governor = gov;
1528 		}
1529 	}
1530 
1531 	if (!try_module_get(policy->governor->owner))
1532 		return -EINVAL;
1533 
1534 	dprintk("__cpufreq_governor for CPU %u, event %u\n",
1535 						policy->cpu, event);
1536 	ret = policy->governor->governor(policy, event);
1537 
1538 	/* we keep one module reference alive for
1539 			each CPU governed by this CPU */
1540 	if ((event != CPUFREQ_GOV_START) || ret)
1541 		module_put(policy->governor->owner);
1542 	if ((event == CPUFREQ_GOV_STOP) && !ret)
1543 		module_put(policy->governor->owner);
1544 
1545 	return ret;
1546 }
1547 
1548 
1549 int cpufreq_register_governor(struct cpufreq_governor *governor)
1550 {
1551 	int err;
1552 
1553 	if (!governor)
1554 		return -EINVAL;
1555 
1556 	mutex_lock(&cpufreq_governor_mutex);
1557 
1558 	err = -EBUSY;
1559 	if (__find_governor(governor->name) == NULL) {
1560 		err = 0;
1561 		list_add(&governor->governor_list, &cpufreq_governor_list);
1562 	}
1563 
1564 	mutex_unlock(&cpufreq_governor_mutex);
1565 	return err;
1566 }
1567 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1568 
1569 
1570 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1571 {
1572 	if (!governor)
1573 		return;
1574 
1575 	mutex_lock(&cpufreq_governor_mutex);
1576 	list_del(&governor->governor_list);
1577 	mutex_unlock(&cpufreq_governor_mutex);
1578 	return;
1579 }
1580 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1581 
1582 
1583 
1584 /*********************************************************************
1585  *                          POLICY INTERFACE                         *
1586  *********************************************************************/
1587 
1588 /**
1589  * cpufreq_get_policy - get the current cpufreq_policy
1590  * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1591  *
1592  * Reads the current cpufreq policy.
1593  */
1594 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1595 {
1596 	struct cpufreq_policy *cpu_policy;
1597 	if (!policy)
1598 		return -EINVAL;
1599 
1600 	cpu_policy = cpufreq_cpu_get(cpu);
1601 	if (!cpu_policy)
1602 		return -EINVAL;
1603 
1604 	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1605 
1606 	cpufreq_cpu_put(cpu_policy);
1607 	return 0;
1608 }
1609 EXPORT_SYMBOL(cpufreq_get_policy);
1610 
1611 
1612 /*
1613  * data   : current policy.
1614  * policy : policy to be set.
1615  */
1616 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1617 				struct cpufreq_policy *policy)
1618 {
1619 	int ret = 0;
1620 
1621 	cpufreq_debug_disable_ratelimit();
1622 	dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1623 		policy->min, policy->max);
1624 
1625 	memcpy(&policy->cpuinfo, &data->cpuinfo,
1626 				sizeof(struct cpufreq_cpuinfo));
1627 
1628 	if (policy->min > data->max || policy->max < data->min) {
1629 		ret = -EINVAL;
1630 		goto error_out;
1631 	}
1632 
1633 	/* verify the cpu speed can be set within this limit */
1634 	ret = cpufreq_driver->verify(policy);
1635 	if (ret)
1636 		goto error_out;
1637 
1638 	/* adjust if necessary - all reasons */
1639 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1640 			CPUFREQ_ADJUST, policy);
1641 
1642 	/* adjust if necessary - hardware incompatibility*/
1643 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1644 			CPUFREQ_INCOMPATIBLE, policy);
1645 
1646 	/* verify the cpu speed can be set within this limit,
1647 	   which might be different to the first one */
1648 	ret = cpufreq_driver->verify(policy);
1649 	if (ret)
1650 		goto error_out;
1651 
1652 	/* notification of the new policy */
1653 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1654 			CPUFREQ_NOTIFY, policy);
1655 
1656 	data->min = policy->min;
1657 	data->max = policy->max;
1658 
1659 	dprintk("new min and max freqs are %u - %u kHz\n",
1660 					data->min, data->max);
1661 
1662 	if (cpufreq_driver->setpolicy) {
1663 		data->policy = policy->policy;
1664 		dprintk("setting range\n");
1665 		ret = cpufreq_driver->setpolicy(policy);
1666 	} else {
1667 		if (policy->governor != data->governor) {
1668 			/* save old, working values */
1669 			struct cpufreq_governor *old_gov = data->governor;
1670 
1671 			dprintk("governor switch\n");
1672 
1673 			/* end old governor */
1674 			if (data->governor)
1675 				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1676 
1677 			/* start new governor */
1678 			data->governor = policy->governor;
1679 			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1680 				/* new governor failed, so re-start old one */
1681 				dprintk("starting governor %s failed\n",
1682 							data->governor->name);
1683 				if (old_gov) {
1684 					data->governor = old_gov;
1685 					__cpufreq_governor(data,
1686 							   CPUFREQ_GOV_START);
1687 				}
1688 				ret = -EINVAL;
1689 				goto error_out;
1690 			}
1691 			/* might be a policy change, too, so fall through */
1692 		}
1693 		dprintk("governor: change or update limits\n");
1694 		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1695 	}
1696 
1697 error_out:
1698 	cpufreq_debug_enable_ratelimit();
1699 	return ret;
1700 }
1701 
1702 /**
1703  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1704  *	@cpu: CPU which shall be re-evaluated
1705  *
1706  *	Usefull for policy notifiers which have different necessities
1707  *	at different times.
1708  */
1709 int cpufreq_update_policy(unsigned int cpu)
1710 {
1711 	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1712 	struct cpufreq_policy policy;
1713 	int ret = 0;
1714 
1715 	if (!data)
1716 		return -ENODEV;
1717 
1718 	if (unlikely(lock_policy_rwsem_write(cpu)))
1719 		return -EINVAL;
1720 
1721 	dprintk("updating policy for CPU %u\n", cpu);
1722 	memcpy(&policy, data, sizeof(struct cpufreq_policy));
1723 	policy.min = data->user_policy.min;
1724 	policy.max = data->user_policy.max;
1725 	policy.policy = data->user_policy.policy;
1726 	policy.governor = data->user_policy.governor;
1727 
1728 	/* BIOS might change freq behind our back
1729 	  -> ask driver for current freq and notify governors about a change */
1730 	if (cpufreq_driver->get) {
1731 		policy.cur = cpufreq_driver->get(cpu);
1732 		if (!data->cur) {
1733 			dprintk("Driver did not initialize current freq");
1734 			data->cur = policy.cur;
1735 		} else {
1736 			if (data->cur != policy.cur)
1737 				cpufreq_out_of_sync(cpu, data->cur,
1738 								policy.cur);
1739 		}
1740 	}
1741 
1742 	ret = __cpufreq_set_policy(data, &policy);
1743 
1744 	unlock_policy_rwsem_write(cpu);
1745 
1746 	cpufreq_cpu_put(data);
1747 	return ret;
1748 }
1749 EXPORT_SYMBOL(cpufreq_update_policy);
1750 
1751 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1752 					unsigned long action, void *hcpu)
1753 {
1754 	unsigned int cpu = (unsigned long)hcpu;
1755 	struct sys_device *sys_dev;
1756 
1757 	sys_dev = get_cpu_sysdev(cpu);
1758 	if (sys_dev) {
1759 		switch (action) {
1760 		case CPU_ONLINE:
1761 		case CPU_ONLINE_FROZEN:
1762 			cpufreq_add_dev(sys_dev);
1763 			break;
1764 		case CPU_DOWN_PREPARE:
1765 		case CPU_DOWN_PREPARE_FROZEN:
1766 			if (unlikely(lock_policy_rwsem_write(cpu)))
1767 				BUG();
1768 
1769 			__cpufreq_remove_dev(sys_dev);
1770 			break;
1771 		case CPU_DOWN_FAILED:
1772 		case CPU_DOWN_FAILED_FROZEN:
1773 			cpufreq_add_dev(sys_dev);
1774 			break;
1775 		}
1776 	}
1777 	return NOTIFY_OK;
1778 }
1779 
1780 static struct notifier_block __refdata cpufreq_cpu_notifier =
1781 {
1782     .notifier_call = cpufreq_cpu_callback,
1783 };
1784 
1785 /*********************************************************************
1786  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1787  *********************************************************************/
1788 
1789 /**
1790  * cpufreq_register_driver - register a CPU Frequency driver
1791  * @driver_data: A struct cpufreq_driver containing the values#
1792  * submitted by the CPU Frequency driver.
1793  *
1794  *   Registers a CPU Frequency driver to this core code. This code
1795  * returns zero on success, -EBUSY when another driver got here first
1796  * (and isn't unregistered in the meantime).
1797  *
1798  */
1799 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1800 {
1801 	unsigned long flags;
1802 	int ret;
1803 
1804 	if (!driver_data || !driver_data->verify || !driver_data->init ||
1805 	    ((!driver_data->setpolicy) && (!driver_data->target)))
1806 		return -EINVAL;
1807 
1808 	dprintk("trying to register driver %s\n", driver_data->name);
1809 
1810 	if (driver_data->setpolicy)
1811 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1812 
1813 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1814 	if (cpufreq_driver) {
1815 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1816 		return -EBUSY;
1817 	}
1818 	cpufreq_driver = driver_data;
1819 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1820 
1821 	ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1822 
1823 	if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1824 		int i;
1825 		ret = -ENODEV;
1826 
1827 		/* check for at least one working CPU */
1828 		for (i=0; i<NR_CPUS; i++)
1829 			if (cpufreq_cpu_data[i])
1830 				ret = 0;
1831 
1832 		/* if all ->init() calls failed, unregister */
1833 		if (ret) {
1834 			dprintk("no CPU initialized for driver %s\n",
1835 							driver_data->name);
1836 			sysdev_driver_unregister(&cpu_sysdev_class,
1837 						&cpufreq_sysdev_driver);
1838 
1839 			spin_lock_irqsave(&cpufreq_driver_lock, flags);
1840 			cpufreq_driver = NULL;
1841 			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1842 		}
1843 	}
1844 
1845 	if (!ret) {
1846 		register_hotcpu_notifier(&cpufreq_cpu_notifier);
1847 		dprintk("driver %s up and running\n", driver_data->name);
1848 		cpufreq_debug_enable_ratelimit();
1849 	}
1850 
1851 	return (ret);
1852 }
1853 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1854 
1855 
1856 /**
1857  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1858  *
1859  *    Unregister the current CPUFreq driver. Only call this if you have
1860  * the right to do so, i.e. if you have succeeded in initialising before!
1861  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1862  * currently not initialised.
1863  */
1864 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1865 {
1866 	unsigned long flags;
1867 
1868 	cpufreq_debug_disable_ratelimit();
1869 
1870 	if (!cpufreq_driver || (driver != cpufreq_driver)) {
1871 		cpufreq_debug_enable_ratelimit();
1872 		return -EINVAL;
1873 	}
1874 
1875 	dprintk("unregistering driver %s\n", driver->name);
1876 
1877 	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1878 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1879 
1880 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1881 	cpufreq_driver = NULL;
1882 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1883 
1884 	return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1887 
1888 static int __init cpufreq_core_init(void)
1889 {
1890 	int cpu;
1891 
1892 	for_each_possible_cpu(cpu) {
1893 		per_cpu(policy_cpu, cpu) = -1;
1894 		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1895 	}
1896 	return 0;
1897 }
1898 
1899 core_initcall(cpufreq_core_init);
1900