1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 static bool suitable_policy(struct cpufreq_policy *policy, bool active) 42 { 43 return active == !policy_is_inactive(policy); 44 } 45 46 /* Finds Next Acive/Inactive policy */ 47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy, 48 bool active) 49 { 50 do { 51 policy = list_next_entry(policy, policy_list); 52 53 /* No more policies in the list */ 54 if (&policy->policy_list == &cpufreq_policy_list) 55 return NULL; 56 } while (!suitable_policy(policy, active)); 57 58 return policy; 59 } 60 61 static struct cpufreq_policy *first_policy(bool active) 62 { 63 struct cpufreq_policy *policy; 64 65 /* No policies in the list */ 66 if (list_empty(&cpufreq_policy_list)) 67 return NULL; 68 69 policy = list_first_entry(&cpufreq_policy_list, typeof(*policy), 70 policy_list); 71 72 if (!suitable_policy(policy, active)) 73 policy = next_policy(policy, active); 74 75 return policy; 76 } 77 78 /* Macros to iterate over CPU policies */ 79 #define for_each_suitable_policy(__policy, __active) \ 80 for (__policy = first_policy(__active); \ 81 __policy; \ 82 __policy = next_policy(__policy, __active)) 83 84 #define for_each_active_policy(__policy) \ 85 for_each_suitable_policy(__policy, true) 86 #define for_each_inactive_policy(__policy) \ 87 for_each_suitable_policy(__policy, false) 88 89 #define for_each_policy(__policy) \ 90 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 91 92 /* Iterate over governors */ 93 static LIST_HEAD(cpufreq_governor_list); 94 #define for_each_governor(__governor) \ 95 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 96 97 /** 98 * The "cpufreq driver" - the arch- or hardware-dependent low 99 * level driver of CPUFreq support, and its spinlock. This lock 100 * also protects the cpufreq_cpu_data array. 101 */ 102 static struct cpufreq_driver *cpufreq_driver; 103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 104 static DEFINE_RWLOCK(cpufreq_driver_lock); 105 DEFINE_MUTEX(cpufreq_governor_lock); 106 107 /* Flag to suspend/resume CPUFreq governors */ 108 static bool cpufreq_suspended; 109 110 static inline bool has_target(void) 111 { 112 return cpufreq_driver->target_index || cpufreq_driver->target; 113 } 114 115 /* internal prototypes */ 116 static int __cpufreq_governor(struct cpufreq_policy *policy, 117 unsigned int event); 118 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 119 static void handle_update(struct work_struct *work); 120 121 /** 122 * Two notifier lists: the "policy" list is involved in the 123 * validation process for a new CPU frequency policy; the 124 * "transition" list for kernel code that needs to handle 125 * changes to devices when the CPU clock speed changes. 126 * The mutex locks both lists. 127 */ 128 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 129 static struct srcu_notifier_head cpufreq_transition_notifier_list; 130 131 static bool init_cpufreq_transition_notifier_list_called; 132 static int __init init_cpufreq_transition_notifier_list(void) 133 { 134 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 135 init_cpufreq_transition_notifier_list_called = true; 136 return 0; 137 } 138 pure_initcall(init_cpufreq_transition_notifier_list); 139 140 static int off __read_mostly; 141 static int cpufreq_disabled(void) 142 { 143 return off; 144 } 145 void disable_cpufreq(void) 146 { 147 off = 1; 148 } 149 static DEFINE_MUTEX(cpufreq_governor_mutex); 150 151 bool have_governor_per_policy(void) 152 { 153 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 154 } 155 EXPORT_SYMBOL_GPL(have_governor_per_policy); 156 157 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 158 { 159 if (have_governor_per_policy()) 160 return &policy->kobj; 161 else 162 return cpufreq_global_kobject; 163 } 164 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 165 166 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu) 167 { 168 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 169 170 return policy && !policy_is_inactive(policy) ? 171 policy->freq_table : NULL; 172 } 173 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table); 174 175 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 176 { 177 u64 idle_time; 178 u64 cur_wall_time; 179 u64 busy_time; 180 181 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 182 183 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 184 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 185 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 186 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 187 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 188 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 189 190 idle_time = cur_wall_time - busy_time; 191 if (wall) 192 *wall = cputime_to_usecs(cur_wall_time); 193 194 return cputime_to_usecs(idle_time); 195 } 196 197 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 198 { 199 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 200 201 if (idle_time == -1ULL) 202 return get_cpu_idle_time_jiffy(cpu, wall); 203 else if (!io_busy) 204 idle_time += get_cpu_iowait_time_us(cpu, wall); 205 206 return idle_time; 207 } 208 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 209 210 /* 211 * This is a generic cpufreq init() routine which can be used by cpufreq 212 * drivers of SMP systems. It will do following: 213 * - validate & show freq table passed 214 * - set policies transition latency 215 * - policy->cpus with all possible CPUs 216 */ 217 int cpufreq_generic_init(struct cpufreq_policy *policy, 218 struct cpufreq_frequency_table *table, 219 unsigned int transition_latency) 220 { 221 int ret; 222 223 ret = cpufreq_table_validate_and_show(policy, table); 224 if (ret) { 225 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 226 return ret; 227 } 228 229 policy->cpuinfo.transition_latency = transition_latency; 230 231 /* 232 * The driver only supports the SMP configuration where all processors 233 * share the clock and voltage and clock. 234 */ 235 cpumask_setall(policy->cpus); 236 237 return 0; 238 } 239 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 240 241 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 242 { 243 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 244 245 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 246 } 247 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 248 249 unsigned int cpufreq_generic_get(unsigned int cpu) 250 { 251 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 252 253 if (!policy || IS_ERR(policy->clk)) { 254 pr_err("%s: No %s associated to cpu: %d\n", 255 __func__, policy ? "clk" : "policy", cpu); 256 return 0; 257 } 258 259 return clk_get_rate(policy->clk) / 1000; 260 } 261 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 262 263 /** 264 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 265 * 266 * @cpu: cpu to find policy for. 267 * 268 * This returns policy for 'cpu', returns NULL if it doesn't exist. 269 * It also increments the kobject reference count to mark it busy and so would 270 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 271 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 272 * freed as that depends on the kobj count. 273 * 274 * Return: A valid policy on success, otherwise NULL on failure. 275 */ 276 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 277 { 278 struct cpufreq_policy *policy = NULL; 279 unsigned long flags; 280 281 if (WARN_ON(cpu >= nr_cpu_ids)) 282 return NULL; 283 284 /* get the cpufreq driver */ 285 read_lock_irqsave(&cpufreq_driver_lock, flags); 286 287 if (cpufreq_driver) { 288 /* get the CPU */ 289 policy = cpufreq_cpu_get_raw(cpu); 290 if (policy) 291 kobject_get(&policy->kobj); 292 } 293 294 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 295 296 return policy; 297 } 298 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 299 300 /** 301 * cpufreq_cpu_put: Decrements the usage count of a policy 302 * 303 * @policy: policy earlier returned by cpufreq_cpu_get(). 304 * 305 * This decrements the kobject reference count incremented earlier by calling 306 * cpufreq_cpu_get(). 307 */ 308 void cpufreq_cpu_put(struct cpufreq_policy *policy) 309 { 310 kobject_put(&policy->kobj); 311 } 312 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 313 314 /********************************************************************* 315 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 316 *********************************************************************/ 317 318 /** 319 * adjust_jiffies - adjust the system "loops_per_jiffy" 320 * 321 * This function alters the system "loops_per_jiffy" for the clock 322 * speed change. Note that loops_per_jiffy cannot be updated on SMP 323 * systems as each CPU might be scaled differently. So, use the arch 324 * per-CPU loops_per_jiffy value wherever possible. 325 */ 326 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 327 { 328 #ifndef CONFIG_SMP 329 static unsigned long l_p_j_ref; 330 static unsigned int l_p_j_ref_freq; 331 332 if (ci->flags & CPUFREQ_CONST_LOOPS) 333 return; 334 335 if (!l_p_j_ref_freq) { 336 l_p_j_ref = loops_per_jiffy; 337 l_p_j_ref_freq = ci->old; 338 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 339 l_p_j_ref, l_p_j_ref_freq); 340 } 341 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 342 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 343 ci->new); 344 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 345 loops_per_jiffy, ci->new); 346 } 347 #endif 348 } 349 350 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 351 struct cpufreq_freqs *freqs, unsigned int state) 352 { 353 BUG_ON(irqs_disabled()); 354 355 if (cpufreq_disabled()) 356 return; 357 358 freqs->flags = cpufreq_driver->flags; 359 pr_debug("notification %u of frequency transition to %u kHz\n", 360 state, freqs->new); 361 362 switch (state) { 363 364 case CPUFREQ_PRECHANGE: 365 /* detect if the driver reported a value as "old frequency" 366 * which is not equal to what the cpufreq core thinks is 367 * "old frequency". 368 */ 369 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 370 if ((policy) && (policy->cpu == freqs->cpu) && 371 (policy->cur) && (policy->cur != freqs->old)) { 372 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 373 freqs->old, policy->cur); 374 freqs->old = policy->cur; 375 } 376 } 377 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 378 CPUFREQ_PRECHANGE, freqs); 379 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 380 break; 381 382 case CPUFREQ_POSTCHANGE: 383 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 384 pr_debug("FREQ: %lu - CPU: %lu\n", 385 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 386 trace_cpu_frequency(freqs->new, freqs->cpu); 387 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 388 CPUFREQ_POSTCHANGE, freqs); 389 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 390 policy->cur = freqs->new; 391 break; 392 } 393 } 394 395 /** 396 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 397 * on frequency transition. 398 * 399 * This function calls the transition notifiers and the "adjust_jiffies" 400 * function. It is called twice on all CPU frequency changes that have 401 * external effects. 402 */ 403 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 404 struct cpufreq_freqs *freqs, unsigned int state) 405 { 406 for_each_cpu(freqs->cpu, policy->cpus) 407 __cpufreq_notify_transition(policy, freqs, state); 408 } 409 410 /* Do post notifications when there are chances that transition has failed */ 411 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 412 struct cpufreq_freqs *freqs, int transition_failed) 413 { 414 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 415 if (!transition_failed) 416 return; 417 418 swap(freqs->old, freqs->new); 419 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 420 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 421 } 422 423 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 424 struct cpufreq_freqs *freqs) 425 { 426 427 /* 428 * Catch double invocations of _begin() which lead to self-deadlock. 429 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 430 * doesn't invoke _begin() on their behalf, and hence the chances of 431 * double invocations are very low. Moreover, there are scenarios 432 * where these checks can emit false-positive warnings in these 433 * drivers; so we avoid that by skipping them altogether. 434 */ 435 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 436 && current == policy->transition_task); 437 438 wait: 439 wait_event(policy->transition_wait, !policy->transition_ongoing); 440 441 spin_lock(&policy->transition_lock); 442 443 if (unlikely(policy->transition_ongoing)) { 444 spin_unlock(&policy->transition_lock); 445 goto wait; 446 } 447 448 policy->transition_ongoing = true; 449 policy->transition_task = current; 450 451 spin_unlock(&policy->transition_lock); 452 453 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 454 } 455 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 456 457 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 458 struct cpufreq_freqs *freqs, int transition_failed) 459 { 460 if (unlikely(WARN_ON(!policy->transition_ongoing))) 461 return; 462 463 cpufreq_notify_post_transition(policy, freqs, transition_failed); 464 465 policy->transition_ongoing = false; 466 policy->transition_task = NULL; 467 468 wake_up(&policy->transition_wait); 469 } 470 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 471 472 473 /********************************************************************* 474 * SYSFS INTERFACE * 475 *********************************************************************/ 476 static ssize_t show_boost(struct kobject *kobj, 477 struct attribute *attr, char *buf) 478 { 479 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 480 } 481 482 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 483 const char *buf, size_t count) 484 { 485 int ret, enable; 486 487 ret = sscanf(buf, "%d", &enable); 488 if (ret != 1 || enable < 0 || enable > 1) 489 return -EINVAL; 490 491 if (cpufreq_boost_trigger_state(enable)) { 492 pr_err("%s: Cannot %s BOOST!\n", 493 __func__, enable ? "enable" : "disable"); 494 return -EINVAL; 495 } 496 497 pr_debug("%s: cpufreq BOOST %s\n", 498 __func__, enable ? "enabled" : "disabled"); 499 500 return count; 501 } 502 define_one_global_rw(boost); 503 504 static struct cpufreq_governor *find_governor(const char *str_governor) 505 { 506 struct cpufreq_governor *t; 507 508 for_each_governor(t) 509 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 510 return t; 511 512 return NULL; 513 } 514 515 /** 516 * cpufreq_parse_governor - parse a governor string 517 */ 518 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 519 struct cpufreq_governor **governor) 520 { 521 int err = -EINVAL; 522 523 if (cpufreq_driver->setpolicy) { 524 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 525 *policy = CPUFREQ_POLICY_PERFORMANCE; 526 err = 0; 527 } else if (!strncasecmp(str_governor, "powersave", 528 CPUFREQ_NAME_LEN)) { 529 *policy = CPUFREQ_POLICY_POWERSAVE; 530 err = 0; 531 } 532 } else { 533 struct cpufreq_governor *t; 534 535 mutex_lock(&cpufreq_governor_mutex); 536 537 t = find_governor(str_governor); 538 539 if (t == NULL) { 540 int ret; 541 542 mutex_unlock(&cpufreq_governor_mutex); 543 ret = request_module("cpufreq_%s", str_governor); 544 mutex_lock(&cpufreq_governor_mutex); 545 546 if (ret == 0) 547 t = find_governor(str_governor); 548 } 549 550 if (t != NULL) { 551 *governor = t; 552 err = 0; 553 } 554 555 mutex_unlock(&cpufreq_governor_mutex); 556 } 557 return err; 558 } 559 560 /** 561 * cpufreq_per_cpu_attr_read() / show_##file_name() - 562 * print out cpufreq information 563 * 564 * Write out information from cpufreq_driver->policy[cpu]; object must be 565 * "unsigned int". 566 */ 567 568 #define show_one(file_name, object) \ 569 static ssize_t show_##file_name \ 570 (struct cpufreq_policy *policy, char *buf) \ 571 { \ 572 return sprintf(buf, "%u\n", policy->object); \ 573 } 574 575 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 576 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 577 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 578 show_one(scaling_min_freq, min); 579 show_one(scaling_max_freq, max); 580 581 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 582 { 583 ssize_t ret; 584 585 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 586 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 587 else 588 ret = sprintf(buf, "%u\n", policy->cur); 589 return ret; 590 } 591 592 static int cpufreq_set_policy(struct cpufreq_policy *policy, 593 struct cpufreq_policy *new_policy); 594 595 /** 596 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 597 */ 598 #define store_one(file_name, object) \ 599 static ssize_t store_##file_name \ 600 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 601 { \ 602 int ret, temp; \ 603 struct cpufreq_policy new_policy; \ 604 \ 605 memcpy(&new_policy, policy, sizeof(*policy)); \ 606 \ 607 ret = sscanf(buf, "%u", &new_policy.object); \ 608 if (ret != 1) \ 609 return -EINVAL; \ 610 \ 611 temp = new_policy.object; \ 612 ret = cpufreq_set_policy(policy, &new_policy); \ 613 if (!ret) \ 614 policy->user_policy.object = temp; \ 615 \ 616 return ret ? ret : count; \ 617 } 618 619 store_one(scaling_min_freq, min); 620 store_one(scaling_max_freq, max); 621 622 /** 623 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 624 */ 625 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 626 char *buf) 627 { 628 unsigned int cur_freq = __cpufreq_get(policy); 629 if (!cur_freq) 630 return sprintf(buf, "<unknown>"); 631 return sprintf(buf, "%u\n", cur_freq); 632 } 633 634 /** 635 * show_scaling_governor - show the current policy for the specified CPU 636 */ 637 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 638 { 639 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 640 return sprintf(buf, "powersave\n"); 641 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 642 return sprintf(buf, "performance\n"); 643 else if (policy->governor) 644 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 645 policy->governor->name); 646 return -EINVAL; 647 } 648 649 /** 650 * store_scaling_governor - store policy for the specified CPU 651 */ 652 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 653 const char *buf, size_t count) 654 { 655 int ret; 656 char str_governor[16]; 657 struct cpufreq_policy new_policy; 658 659 memcpy(&new_policy, policy, sizeof(*policy)); 660 661 ret = sscanf(buf, "%15s", str_governor); 662 if (ret != 1) 663 return -EINVAL; 664 665 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 666 &new_policy.governor)) 667 return -EINVAL; 668 669 ret = cpufreq_set_policy(policy, &new_policy); 670 return ret ? ret : count; 671 } 672 673 /** 674 * show_scaling_driver - show the cpufreq driver currently loaded 675 */ 676 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 677 { 678 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 679 } 680 681 /** 682 * show_scaling_available_governors - show the available CPUfreq governors 683 */ 684 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 685 char *buf) 686 { 687 ssize_t i = 0; 688 struct cpufreq_governor *t; 689 690 if (!has_target()) { 691 i += sprintf(buf, "performance powersave"); 692 goto out; 693 } 694 695 for_each_governor(t) { 696 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 697 - (CPUFREQ_NAME_LEN + 2))) 698 goto out; 699 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 700 } 701 out: 702 i += sprintf(&buf[i], "\n"); 703 return i; 704 } 705 706 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 707 { 708 ssize_t i = 0; 709 unsigned int cpu; 710 711 for_each_cpu(cpu, mask) { 712 if (i) 713 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 714 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 715 if (i >= (PAGE_SIZE - 5)) 716 break; 717 } 718 i += sprintf(&buf[i], "\n"); 719 return i; 720 } 721 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 722 723 /** 724 * show_related_cpus - show the CPUs affected by each transition even if 725 * hw coordination is in use 726 */ 727 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 728 { 729 return cpufreq_show_cpus(policy->related_cpus, buf); 730 } 731 732 /** 733 * show_affected_cpus - show the CPUs affected by each transition 734 */ 735 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 736 { 737 return cpufreq_show_cpus(policy->cpus, buf); 738 } 739 740 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 741 const char *buf, size_t count) 742 { 743 unsigned int freq = 0; 744 unsigned int ret; 745 746 if (!policy->governor || !policy->governor->store_setspeed) 747 return -EINVAL; 748 749 ret = sscanf(buf, "%u", &freq); 750 if (ret != 1) 751 return -EINVAL; 752 753 policy->governor->store_setspeed(policy, freq); 754 755 return count; 756 } 757 758 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 759 { 760 if (!policy->governor || !policy->governor->show_setspeed) 761 return sprintf(buf, "<unsupported>\n"); 762 763 return policy->governor->show_setspeed(policy, buf); 764 } 765 766 /** 767 * show_bios_limit - show the current cpufreq HW/BIOS limitation 768 */ 769 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 770 { 771 unsigned int limit; 772 int ret; 773 if (cpufreq_driver->bios_limit) { 774 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 775 if (!ret) 776 return sprintf(buf, "%u\n", limit); 777 } 778 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 779 } 780 781 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 782 cpufreq_freq_attr_ro(cpuinfo_min_freq); 783 cpufreq_freq_attr_ro(cpuinfo_max_freq); 784 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 785 cpufreq_freq_attr_ro(scaling_available_governors); 786 cpufreq_freq_attr_ro(scaling_driver); 787 cpufreq_freq_attr_ro(scaling_cur_freq); 788 cpufreq_freq_attr_ro(bios_limit); 789 cpufreq_freq_attr_ro(related_cpus); 790 cpufreq_freq_attr_ro(affected_cpus); 791 cpufreq_freq_attr_rw(scaling_min_freq); 792 cpufreq_freq_attr_rw(scaling_max_freq); 793 cpufreq_freq_attr_rw(scaling_governor); 794 cpufreq_freq_attr_rw(scaling_setspeed); 795 796 static struct attribute *default_attrs[] = { 797 &cpuinfo_min_freq.attr, 798 &cpuinfo_max_freq.attr, 799 &cpuinfo_transition_latency.attr, 800 &scaling_min_freq.attr, 801 &scaling_max_freq.attr, 802 &affected_cpus.attr, 803 &related_cpus.attr, 804 &scaling_governor.attr, 805 &scaling_driver.attr, 806 &scaling_available_governors.attr, 807 &scaling_setspeed.attr, 808 NULL 809 }; 810 811 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 812 #define to_attr(a) container_of(a, struct freq_attr, attr) 813 814 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 815 { 816 struct cpufreq_policy *policy = to_policy(kobj); 817 struct freq_attr *fattr = to_attr(attr); 818 ssize_t ret; 819 820 down_read(&policy->rwsem); 821 822 if (fattr->show) 823 ret = fattr->show(policy, buf); 824 else 825 ret = -EIO; 826 827 up_read(&policy->rwsem); 828 829 return ret; 830 } 831 832 static ssize_t store(struct kobject *kobj, struct attribute *attr, 833 const char *buf, size_t count) 834 { 835 struct cpufreq_policy *policy = to_policy(kobj); 836 struct freq_attr *fattr = to_attr(attr); 837 ssize_t ret = -EINVAL; 838 839 get_online_cpus(); 840 841 if (!cpu_online(policy->cpu)) 842 goto unlock; 843 844 down_write(&policy->rwsem); 845 846 if (fattr->store) 847 ret = fattr->store(policy, buf, count); 848 else 849 ret = -EIO; 850 851 up_write(&policy->rwsem); 852 unlock: 853 put_online_cpus(); 854 855 return ret; 856 } 857 858 static void cpufreq_sysfs_release(struct kobject *kobj) 859 { 860 struct cpufreq_policy *policy = to_policy(kobj); 861 pr_debug("last reference is dropped\n"); 862 complete(&policy->kobj_unregister); 863 } 864 865 static const struct sysfs_ops sysfs_ops = { 866 .show = show, 867 .store = store, 868 }; 869 870 static struct kobj_type ktype_cpufreq = { 871 .sysfs_ops = &sysfs_ops, 872 .default_attrs = default_attrs, 873 .release = cpufreq_sysfs_release, 874 }; 875 876 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 877 { 878 struct device *cpu_dev; 879 880 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu); 881 882 if (!policy) 883 return 0; 884 885 cpu_dev = get_cpu_device(cpu); 886 if (WARN_ON(!cpu_dev)) 887 return 0; 888 889 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq"); 890 } 891 892 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 893 { 894 struct device *cpu_dev; 895 896 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu); 897 898 cpu_dev = get_cpu_device(cpu); 899 if (WARN_ON(!cpu_dev)) 900 return; 901 902 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 903 } 904 905 /* Add/remove symlinks for all related CPUs */ 906 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 907 { 908 unsigned int j; 909 int ret = 0; 910 911 /* Some related CPUs might not be present (physically hotplugged) */ 912 for_each_cpu(j, policy->real_cpus) { 913 ret = add_cpu_dev_symlink(policy, j); 914 if (ret) 915 break; 916 } 917 918 return ret; 919 } 920 921 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy) 922 { 923 unsigned int j; 924 925 /* Some related CPUs might not be present (physically hotplugged) */ 926 for_each_cpu(j, policy->real_cpus) 927 remove_cpu_dev_symlink(policy, j); 928 } 929 930 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 931 { 932 struct freq_attr **drv_attr; 933 int ret = 0; 934 935 /* set up files for this cpu device */ 936 drv_attr = cpufreq_driver->attr; 937 while (drv_attr && *drv_attr) { 938 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 939 if (ret) 940 return ret; 941 drv_attr++; 942 } 943 if (cpufreq_driver->get) { 944 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 945 if (ret) 946 return ret; 947 } 948 949 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 950 if (ret) 951 return ret; 952 953 if (cpufreq_driver->bios_limit) { 954 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 955 if (ret) 956 return ret; 957 } 958 959 return cpufreq_add_dev_symlink(policy); 960 } 961 962 static int cpufreq_init_policy(struct cpufreq_policy *policy) 963 { 964 struct cpufreq_governor *gov = NULL; 965 struct cpufreq_policy new_policy; 966 967 memcpy(&new_policy, policy, sizeof(*policy)); 968 969 /* Update governor of new_policy to the governor used before hotplug */ 970 gov = find_governor(policy->last_governor); 971 if (gov) 972 pr_debug("Restoring governor %s for cpu %d\n", 973 policy->governor->name, policy->cpu); 974 else 975 gov = CPUFREQ_DEFAULT_GOVERNOR; 976 977 new_policy.governor = gov; 978 979 /* Use the default policy if there is no last_policy. */ 980 if (cpufreq_driver->setpolicy) { 981 if (policy->last_policy) 982 new_policy.policy = policy->last_policy; 983 else 984 cpufreq_parse_governor(gov->name, &new_policy.policy, 985 NULL); 986 } 987 /* set default policy */ 988 return cpufreq_set_policy(policy, &new_policy); 989 } 990 991 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 992 { 993 int ret = 0; 994 995 /* Has this CPU been taken care of already? */ 996 if (cpumask_test_cpu(cpu, policy->cpus)) 997 return 0; 998 999 if (has_target()) { 1000 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1001 if (ret) { 1002 pr_err("%s: Failed to stop governor\n", __func__); 1003 return ret; 1004 } 1005 } 1006 1007 down_write(&policy->rwsem); 1008 cpumask_set_cpu(cpu, policy->cpus); 1009 up_write(&policy->rwsem); 1010 1011 if (has_target()) { 1012 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1013 if (!ret) 1014 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1015 1016 if (ret) { 1017 pr_err("%s: Failed to start governor\n", __func__); 1018 return ret; 1019 } 1020 } 1021 1022 return 0; 1023 } 1024 1025 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1026 { 1027 struct device *dev = get_cpu_device(cpu); 1028 struct cpufreq_policy *policy; 1029 1030 if (WARN_ON(!dev)) 1031 return NULL; 1032 1033 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1034 if (!policy) 1035 return NULL; 1036 1037 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1038 goto err_free_policy; 1039 1040 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1041 goto err_free_cpumask; 1042 1043 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1044 goto err_free_rcpumask; 1045 1046 kobject_init(&policy->kobj, &ktype_cpufreq); 1047 INIT_LIST_HEAD(&policy->policy_list); 1048 init_rwsem(&policy->rwsem); 1049 spin_lock_init(&policy->transition_lock); 1050 init_waitqueue_head(&policy->transition_wait); 1051 init_completion(&policy->kobj_unregister); 1052 INIT_WORK(&policy->update, handle_update); 1053 1054 policy->cpu = cpu; 1055 return policy; 1056 1057 err_free_rcpumask: 1058 free_cpumask_var(policy->related_cpus); 1059 err_free_cpumask: 1060 free_cpumask_var(policy->cpus); 1061 err_free_policy: 1062 kfree(policy); 1063 1064 return NULL; 1065 } 1066 1067 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify) 1068 { 1069 struct kobject *kobj; 1070 struct completion *cmp; 1071 1072 if (notify) 1073 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1074 CPUFREQ_REMOVE_POLICY, policy); 1075 1076 down_write(&policy->rwsem); 1077 cpufreq_remove_dev_symlink(policy); 1078 kobj = &policy->kobj; 1079 cmp = &policy->kobj_unregister; 1080 up_write(&policy->rwsem); 1081 kobject_put(kobj); 1082 1083 /* 1084 * We need to make sure that the underlying kobj is 1085 * actually not referenced anymore by anybody before we 1086 * proceed with unloading. 1087 */ 1088 pr_debug("waiting for dropping of refcount\n"); 1089 wait_for_completion(cmp); 1090 pr_debug("wait complete\n"); 1091 } 1092 1093 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify) 1094 { 1095 unsigned long flags; 1096 int cpu; 1097 1098 /* Remove policy from list */ 1099 write_lock_irqsave(&cpufreq_driver_lock, flags); 1100 list_del(&policy->policy_list); 1101 1102 for_each_cpu(cpu, policy->related_cpus) 1103 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1104 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1105 1106 cpufreq_policy_put_kobj(policy, notify); 1107 free_cpumask_var(policy->real_cpus); 1108 free_cpumask_var(policy->related_cpus); 1109 free_cpumask_var(policy->cpus); 1110 kfree(policy); 1111 } 1112 1113 static int cpufreq_online(unsigned int cpu) 1114 { 1115 struct cpufreq_policy *policy; 1116 bool new_policy; 1117 unsigned long flags; 1118 unsigned int j; 1119 int ret; 1120 1121 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1122 1123 /* Check if this CPU already has a policy to manage it */ 1124 policy = per_cpu(cpufreq_cpu_data, cpu); 1125 if (policy) { 1126 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1127 if (!policy_is_inactive(policy)) 1128 return cpufreq_add_policy_cpu(policy, cpu); 1129 1130 /* This is the only online CPU for the policy. Start over. */ 1131 new_policy = false; 1132 down_write(&policy->rwsem); 1133 policy->cpu = cpu; 1134 policy->governor = NULL; 1135 up_write(&policy->rwsem); 1136 } else { 1137 new_policy = true; 1138 policy = cpufreq_policy_alloc(cpu); 1139 if (!policy) 1140 return -ENOMEM; 1141 } 1142 1143 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1144 1145 /* call driver. From then on the cpufreq must be able 1146 * to accept all calls to ->verify and ->setpolicy for this CPU 1147 */ 1148 ret = cpufreq_driver->init(policy); 1149 if (ret) { 1150 pr_debug("initialization failed\n"); 1151 goto out_free_policy; 1152 } 1153 1154 down_write(&policy->rwsem); 1155 1156 if (new_policy) { 1157 /* related_cpus should at least include policy->cpus. */ 1158 cpumask_copy(policy->related_cpus, policy->cpus); 1159 /* Remember CPUs present at the policy creation time. */ 1160 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask); 1161 1162 /* Name and add the kobject */ 1163 ret = kobject_add(&policy->kobj, cpufreq_global_kobject, 1164 "policy%u", 1165 cpumask_first(policy->related_cpus)); 1166 if (ret) { 1167 pr_err("%s: failed to add policy->kobj: %d\n", __func__, 1168 ret); 1169 goto out_exit_policy; 1170 } 1171 } 1172 1173 /* 1174 * affected cpus must always be the one, which are online. We aren't 1175 * managing offline cpus here. 1176 */ 1177 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1178 1179 if (new_policy) { 1180 policy->user_policy.min = policy->min; 1181 policy->user_policy.max = policy->max; 1182 1183 write_lock_irqsave(&cpufreq_driver_lock, flags); 1184 for_each_cpu(j, policy->related_cpus) 1185 per_cpu(cpufreq_cpu_data, j) = policy; 1186 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1187 } 1188 1189 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1190 policy->cur = cpufreq_driver->get(policy->cpu); 1191 if (!policy->cur) { 1192 pr_err("%s: ->get() failed\n", __func__); 1193 goto out_exit_policy; 1194 } 1195 } 1196 1197 /* 1198 * Sometimes boot loaders set CPU frequency to a value outside of 1199 * frequency table present with cpufreq core. In such cases CPU might be 1200 * unstable if it has to run on that frequency for long duration of time 1201 * and so its better to set it to a frequency which is specified in 1202 * freq-table. This also makes cpufreq stats inconsistent as 1203 * cpufreq-stats would fail to register because current frequency of CPU 1204 * isn't found in freq-table. 1205 * 1206 * Because we don't want this change to effect boot process badly, we go 1207 * for the next freq which is >= policy->cur ('cur' must be set by now, 1208 * otherwise we will end up setting freq to lowest of the table as 'cur' 1209 * is initialized to zero). 1210 * 1211 * We are passing target-freq as "policy->cur - 1" otherwise 1212 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1213 * equal to target-freq. 1214 */ 1215 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1216 && has_target()) { 1217 /* Are we running at unknown frequency ? */ 1218 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1219 if (ret == -EINVAL) { 1220 /* Warn user and fix it */ 1221 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1222 __func__, policy->cpu, policy->cur); 1223 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1224 CPUFREQ_RELATION_L); 1225 1226 /* 1227 * Reaching here after boot in a few seconds may not 1228 * mean that system will remain stable at "unknown" 1229 * frequency for longer duration. Hence, a BUG_ON(). 1230 */ 1231 BUG_ON(ret); 1232 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1233 __func__, policy->cpu, policy->cur); 1234 } 1235 } 1236 1237 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1238 CPUFREQ_START, policy); 1239 1240 if (new_policy) { 1241 ret = cpufreq_add_dev_interface(policy); 1242 if (ret) 1243 goto out_exit_policy; 1244 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1245 CPUFREQ_CREATE_POLICY, policy); 1246 1247 write_lock_irqsave(&cpufreq_driver_lock, flags); 1248 list_add(&policy->policy_list, &cpufreq_policy_list); 1249 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1250 } 1251 1252 ret = cpufreq_init_policy(policy); 1253 if (ret) { 1254 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1255 __func__, cpu, ret); 1256 /* cpufreq_policy_free() will notify based on this */ 1257 new_policy = false; 1258 goto out_exit_policy; 1259 } 1260 1261 up_write(&policy->rwsem); 1262 1263 kobject_uevent(&policy->kobj, KOBJ_ADD); 1264 1265 /* Callback for handling stuff after policy is ready */ 1266 if (cpufreq_driver->ready) 1267 cpufreq_driver->ready(policy); 1268 1269 pr_debug("initialization complete\n"); 1270 1271 return 0; 1272 1273 out_exit_policy: 1274 up_write(&policy->rwsem); 1275 1276 if (cpufreq_driver->exit) 1277 cpufreq_driver->exit(policy); 1278 out_free_policy: 1279 cpufreq_policy_free(policy, !new_policy); 1280 return ret; 1281 } 1282 1283 /** 1284 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1285 * @dev: CPU device. 1286 * @sif: Subsystem interface structure pointer (not used) 1287 */ 1288 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1289 { 1290 unsigned cpu = dev->id; 1291 int ret; 1292 1293 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1294 1295 if (cpu_online(cpu)) { 1296 ret = cpufreq_online(cpu); 1297 } else { 1298 /* 1299 * A hotplug notifier will follow and we will handle it as CPU 1300 * online then. For now, just create the sysfs link, unless 1301 * there is no policy or the link is already present. 1302 */ 1303 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1304 1305 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus) 1306 ? add_cpu_dev_symlink(policy, cpu) : 0; 1307 } 1308 1309 return ret; 1310 } 1311 1312 static void cpufreq_offline_prepare(unsigned int cpu) 1313 { 1314 struct cpufreq_policy *policy; 1315 1316 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1317 1318 policy = cpufreq_cpu_get_raw(cpu); 1319 if (!policy) { 1320 pr_debug("%s: No cpu_data found\n", __func__); 1321 return; 1322 } 1323 1324 if (has_target()) { 1325 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1326 if (ret) 1327 pr_err("%s: Failed to stop governor\n", __func__); 1328 } 1329 1330 down_write(&policy->rwsem); 1331 cpumask_clear_cpu(cpu, policy->cpus); 1332 1333 if (policy_is_inactive(policy)) { 1334 if (has_target()) 1335 strncpy(policy->last_governor, policy->governor->name, 1336 CPUFREQ_NAME_LEN); 1337 else 1338 policy->last_policy = policy->policy; 1339 } else if (cpu == policy->cpu) { 1340 /* Nominate new CPU */ 1341 policy->cpu = cpumask_any(policy->cpus); 1342 } 1343 up_write(&policy->rwsem); 1344 1345 /* Start governor again for active policy */ 1346 if (!policy_is_inactive(policy)) { 1347 if (has_target()) { 1348 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1349 if (!ret) 1350 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1351 1352 if (ret) 1353 pr_err("%s: Failed to start governor\n", __func__); 1354 } 1355 } else if (cpufreq_driver->stop_cpu) { 1356 cpufreq_driver->stop_cpu(policy); 1357 } 1358 } 1359 1360 static void cpufreq_offline_finish(unsigned int cpu) 1361 { 1362 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1363 1364 if (!policy) { 1365 pr_debug("%s: No cpu_data found\n", __func__); 1366 return; 1367 } 1368 1369 /* Only proceed for inactive policies */ 1370 if (!policy_is_inactive(policy)) 1371 return; 1372 1373 /* If cpu is last user of policy, free policy */ 1374 if (has_target()) { 1375 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 1376 if (ret) 1377 pr_err("%s: Failed to exit governor\n", __func__); 1378 } 1379 1380 /* 1381 * Perform the ->exit() even during light-weight tear-down, 1382 * since this is a core component, and is essential for the 1383 * subsequent light-weight ->init() to succeed. 1384 */ 1385 if (cpufreq_driver->exit) { 1386 cpufreq_driver->exit(policy); 1387 policy->freq_table = NULL; 1388 } 1389 } 1390 1391 /** 1392 * cpufreq_remove_dev - remove a CPU device 1393 * 1394 * Removes the cpufreq interface for a CPU device. 1395 */ 1396 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1397 { 1398 unsigned int cpu = dev->id; 1399 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1400 1401 if (!policy) 1402 return; 1403 1404 if (cpu_online(cpu)) { 1405 cpufreq_offline_prepare(cpu); 1406 cpufreq_offline_finish(cpu); 1407 } 1408 1409 cpumask_clear_cpu(cpu, policy->real_cpus); 1410 remove_cpu_dev_symlink(policy, cpu); 1411 1412 if (cpumask_empty(policy->real_cpus)) 1413 cpufreq_policy_free(policy, true); 1414 } 1415 1416 static void handle_update(struct work_struct *work) 1417 { 1418 struct cpufreq_policy *policy = 1419 container_of(work, struct cpufreq_policy, update); 1420 unsigned int cpu = policy->cpu; 1421 pr_debug("handle_update for cpu %u called\n", cpu); 1422 cpufreq_update_policy(cpu); 1423 } 1424 1425 /** 1426 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1427 * in deep trouble. 1428 * @policy: policy managing CPUs 1429 * @new_freq: CPU frequency the CPU actually runs at 1430 * 1431 * We adjust to current frequency first, and need to clean up later. 1432 * So either call to cpufreq_update_policy() or schedule handle_update()). 1433 */ 1434 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1435 unsigned int new_freq) 1436 { 1437 struct cpufreq_freqs freqs; 1438 1439 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1440 policy->cur, new_freq); 1441 1442 freqs.old = policy->cur; 1443 freqs.new = new_freq; 1444 1445 cpufreq_freq_transition_begin(policy, &freqs); 1446 cpufreq_freq_transition_end(policy, &freqs, 0); 1447 } 1448 1449 /** 1450 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1451 * @cpu: CPU number 1452 * 1453 * This is the last known freq, without actually getting it from the driver. 1454 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1455 */ 1456 unsigned int cpufreq_quick_get(unsigned int cpu) 1457 { 1458 struct cpufreq_policy *policy; 1459 unsigned int ret_freq = 0; 1460 1461 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1462 return cpufreq_driver->get(cpu); 1463 1464 policy = cpufreq_cpu_get(cpu); 1465 if (policy) { 1466 ret_freq = policy->cur; 1467 cpufreq_cpu_put(policy); 1468 } 1469 1470 return ret_freq; 1471 } 1472 EXPORT_SYMBOL(cpufreq_quick_get); 1473 1474 /** 1475 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1476 * @cpu: CPU number 1477 * 1478 * Just return the max possible frequency for a given CPU. 1479 */ 1480 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1481 { 1482 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1483 unsigned int ret_freq = 0; 1484 1485 if (policy) { 1486 ret_freq = policy->max; 1487 cpufreq_cpu_put(policy); 1488 } 1489 1490 return ret_freq; 1491 } 1492 EXPORT_SYMBOL(cpufreq_quick_get_max); 1493 1494 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1495 { 1496 unsigned int ret_freq = 0; 1497 1498 if (!cpufreq_driver->get) 1499 return ret_freq; 1500 1501 ret_freq = cpufreq_driver->get(policy->cpu); 1502 1503 /* Updating inactive policies is invalid, so avoid doing that. */ 1504 if (unlikely(policy_is_inactive(policy))) 1505 return ret_freq; 1506 1507 if (ret_freq && policy->cur && 1508 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1509 /* verify no discrepancy between actual and 1510 saved value exists */ 1511 if (unlikely(ret_freq != policy->cur)) { 1512 cpufreq_out_of_sync(policy, ret_freq); 1513 schedule_work(&policy->update); 1514 } 1515 } 1516 1517 return ret_freq; 1518 } 1519 1520 /** 1521 * cpufreq_get - get the current CPU frequency (in kHz) 1522 * @cpu: CPU number 1523 * 1524 * Get the CPU current (static) CPU frequency 1525 */ 1526 unsigned int cpufreq_get(unsigned int cpu) 1527 { 1528 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1529 unsigned int ret_freq = 0; 1530 1531 if (policy) { 1532 down_read(&policy->rwsem); 1533 ret_freq = __cpufreq_get(policy); 1534 up_read(&policy->rwsem); 1535 1536 cpufreq_cpu_put(policy); 1537 } 1538 1539 return ret_freq; 1540 } 1541 EXPORT_SYMBOL(cpufreq_get); 1542 1543 static struct subsys_interface cpufreq_interface = { 1544 .name = "cpufreq", 1545 .subsys = &cpu_subsys, 1546 .add_dev = cpufreq_add_dev, 1547 .remove_dev = cpufreq_remove_dev, 1548 }; 1549 1550 /* 1551 * In case platform wants some specific frequency to be configured 1552 * during suspend.. 1553 */ 1554 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1555 { 1556 int ret; 1557 1558 if (!policy->suspend_freq) { 1559 pr_debug("%s: suspend_freq not defined\n", __func__); 1560 return 0; 1561 } 1562 1563 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1564 policy->suspend_freq); 1565 1566 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1567 CPUFREQ_RELATION_H); 1568 if (ret) 1569 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1570 __func__, policy->suspend_freq, ret); 1571 1572 return ret; 1573 } 1574 EXPORT_SYMBOL(cpufreq_generic_suspend); 1575 1576 /** 1577 * cpufreq_suspend() - Suspend CPUFreq governors 1578 * 1579 * Called during system wide Suspend/Hibernate cycles for suspending governors 1580 * as some platforms can't change frequency after this point in suspend cycle. 1581 * Because some of the devices (like: i2c, regulators, etc) they use for 1582 * changing frequency are suspended quickly after this point. 1583 */ 1584 void cpufreq_suspend(void) 1585 { 1586 struct cpufreq_policy *policy; 1587 1588 if (!cpufreq_driver) 1589 return; 1590 1591 if (!has_target()) 1592 goto suspend; 1593 1594 pr_debug("%s: Suspending Governors\n", __func__); 1595 1596 for_each_active_policy(policy) { 1597 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1598 pr_err("%s: Failed to stop governor for policy: %p\n", 1599 __func__, policy); 1600 else if (cpufreq_driver->suspend 1601 && cpufreq_driver->suspend(policy)) 1602 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1603 policy); 1604 } 1605 1606 suspend: 1607 cpufreq_suspended = true; 1608 } 1609 1610 /** 1611 * cpufreq_resume() - Resume CPUFreq governors 1612 * 1613 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1614 * are suspended with cpufreq_suspend(). 1615 */ 1616 void cpufreq_resume(void) 1617 { 1618 struct cpufreq_policy *policy; 1619 1620 if (!cpufreq_driver) 1621 return; 1622 1623 cpufreq_suspended = false; 1624 1625 if (!has_target()) 1626 return; 1627 1628 pr_debug("%s: Resuming Governors\n", __func__); 1629 1630 for_each_active_policy(policy) { 1631 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1632 pr_err("%s: Failed to resume driver: %p\n", __func__, 1633 policy); 1634 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1635 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1636 pr_err("%s: Failed to start governor for policy: %p\n", 1637 __func__, policy); 1638 } 1639 1640 /* 1641 * schedule call cpufreq_update_policy() for first-online CPU, as that 1642 * wouldn't be hotplugged-out on suspend. It will verify that the 1643 * current freq is in sync with what we believe it to be. 1644 */ 1645 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask)); 1646 if (WARN_ON(!policy)) 1647 return; 1648 1649 schedule_work(&policy->update); 1650 } 1651 1652 /** 1653 * cpufreq_get_current_driver - return current driver's name 1654 * 1655 * Return the name string of the currently loaded cpufreq driver 1656 * or NULL, if none. 1657 */ 1658 const char *cpufreq_get_current_driver(void) 1659 { 1660 if (cpufreq_driver) 1661 return cpufreq_driver->name; 1662 1663 return NULL; 1664 } 1665 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1666 1667 /** 1668 * cpufreq_get_driver_data - return current driver data 1669 * 1670 * Return the private data of the currently loaded cpufreq 1671 * driver, or NULL if no cpufreq driver is loaded. 1672 */ 1673 void *cpufreq_get_driver_data(void) 1674 { 1675 if (cpufreq_driver) 1676 return cpufreq_driver->driver_data; 1677 1678 return NULL; 1679 } 1680 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1681 1682 /********************************************************************* 1683 * NOTIFIER LISTS INTERFACE * 1684 *********************************************************************/ 1685 1686 /** 1687 * cpufreq_register_notifier - register a driver with cpufreq 1688 * @nb: notifier function to register 1689 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1690 * 1691 * Add a driver to one of two lists: either a list of drivers that 1692 * are notified about clock rate changes (once before and once after 1693 * the transition), or a list of drivers that are notified about 1694 * changes in cpufreq policy. 1695 * 1696 * This function may sleep, and has the same return conditions as 1697 * blocking_notifier_chain_register. 1698 */ 1699 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1700 { 1701 int ret; 1702 1703 if (cpufreq_disabled()) 1704 return -EINVAL; 1705 1706 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1707 1708 switch (list) { 1709 case CPUFREQ_TRANSITION_NOTIFIER: 1710 ret = srcu_notifier_chain_register( 1711 &cpufreq_transition_notifier_list, nb); 1712 break; 1713 case CPUFREQ_POLICY_NOTIFIER: 1714 ret = blocking_notifier_chain_register( 1715 &cpufreq_policy_notifier_list, nb); 1716 break; 1717 default: 1718 ret = -EINVAL; 1719 } 1720 1721 return ret; 1722 } 1723 EXPORT_SYMBOL(cpufreq_register_notifier); 1724 1725 /** 1726 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1727 * @nb: notifier block to be unregistered 1728 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1729 * 1730 * Remove a driver from the CPU frequency notifier list. 1731 * 1732 * This function may sleep, and has the same return conditions as 1733 * blocking_notifier_chain_unregister. 1734 */ 1735 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1736 { 1737 int ret; 1738 1739 if (cpufreq_disabled()) 1740 return -EINVAL; 1741 1742 switch (list) { 1743 case CPUFREQ_TRANSITION_NOTIFIER: 1744 ret = srcu_notifier_chain_unregister( 1745 &cpufreq_transition_notifier_list, nb); 1746 break; 1747 case CPUFREQ_POLICY_NOTIFIER: 1748 ret = blocking_notifier_chain_unregister( 1749 &cpufreq_policy_notifier_list, nb); 1750 break; 1751 default: 1752 ret = -EINVAL; 1753 } 1754 1755 return ret; 1756 } 1757 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1758 1759 1760 /********************************************************************* 1761 * GOVERNORS * 1762 *********************************************************************/ 1763 1764 /* Must set freqs->new to intermediate frequency */ 1765 static int __target_intermediate(struct cpufreq_policy *policy, 1766 struct cpufreq_freqs *freqs, int index) 1767 { 1768 int ret; 1769 1770 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1771 1772 /* We don't need to switch to intermediate freq */ 1773 if (!freqs->new) 1774 return 0; 1775 1776 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1777 __func__, policy->cpu, freqs->old, freqs->new); 1778 1779 cpufreq_freq_transition_begin(policy, freqs); 1780 ret = cpufreq_driver->target_intermediate(policy, index); 1781 cpufreq_freq_transition_end(policy, freqs, ret); 1782 1783 if (ret) 1784 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1785 __func__, ret); 1786 1787 return ret; 1788 } 1789 1790 static int __target_index(struct cpufreq_policy *policy, 1791 struct cpufreq_frequency_table *freq_table, int index) 1792 { 1793 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1794 unsigned int intermediate_freq = 0; 1795 int retval = -EINVAL; 1796 bool notify; 1797 1798 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1799 if (notify) { 1800 /* Handle switching to intermediate frequency */ 1801 if (cpufreq_driver->get_intermediate) { 1802 retval = __target_intermediate(policy, &freqs, index); 1803 if (retval) 1804 return retval; 1805 1806 intermediate_freq = freqs.new; 1807 /* Set old freq to intermediate */ 1808 if (intermediate_freq) 1809 freqs.old = freqs.new; 1810 } 1811 1812 freqs.new = freq_table[index].frequency; 1813 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1814 __func__, policy->cpu, freqs.old, freqs.new); 1815 1816 cpufreq_freq_transition_begin(policy, &freqs); 1817 } 1818 1819 retval = cpufreq_driver->target_index(policy, index); 1820 if (retval) 1821 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1822 retval); 1823 1824 if (notify) { 1825 cpufreq_freq_transition_end(policy, &freqs, retval); 1826 1827 /* 1828 * Failed after setting to intermediate freq? Driver should have 1829 * reverted back to initial frequency and so should we. Check 1830 * here for intermediate_freq instead of get_intermediate, in 1831 * case we haven't switched to intermediate freq at all. 1832 */ 1833 if (unlikely(retval && intermediate_freq)) { 1834 freqs.old = intermediate_freq; 1835 freqs.new = policy->restore_freq; 1836 cpufreq_freq_transition_begin(policy, &freqs); 1837 cpufreq_freq_transition_end(policy, &freqs, 0); 1838 } 1839 } 1840 1841 return retval; 1842 } 1843 1844 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1845 unsigned int target_freq, 1846 unsigned int relation) 1847 { 1848 unsigned int old_target_freq = target_freq; 1849 int retval = -EINVAL; 1850 1851 if (cpufreq_disabled()) 1852 return -ENODEV; 1853 1854 /* Make sure that target_freq is within supported range */ 1855 if (target_freq > policy->max) 1856 target_freq = policy->max; 1857 if (target_freq < policy->min) 1858 target_freq = policy->min; 1859 1860 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1861 policy->cpu, target_freq, relation, old_target_freq); 1862 1863 /* 1864 * This might look like a redundant call as we are checking it again 1865 * after finding index. But it is left intentionally for cases where 1866 * exactly same freq is called again and so we can save on few function 1867 * calls. 1868 */ 1869 if (target_freq == policy->cur) 1870 return 0; 1871 1872 /* Save last value to restore later on errors */ 1873 policy->restore_freq = policy->cur; 1874 1875 if (cpufreq_driver->target) 1876 retval = cpufreq_driver->target(policy, target_freq, relation); 1877 else if (cpufreq_driver->target_index) { 1878 struct cpufreq_frequency_table *freq_table; 1879 int index; 1880 1881 freq_table = cpufreq_frequency_get_table(policy->cpu); 1882 if (unlikely(!freq_table)) { 1883 pr_err("%s: Unable to find freq_table\n", __func__); 1884 goto out; 1885 } 1886 1887 retval = cpufreq_frequency_table_target(policy, freq_table, 1888 target_freq, relation, &index); 1889 if (unlikely(retval)) { 1890 pr_err("%s: Unable to find matching freq\n", __func__); 1891 goto out; 1892 } 1893 1894 if (freq_table[index].frequency == policy->cur) { 1895 retval = 0; 1896 goto out; 1897 } 1898 1899 retval = __target_index(policy, freq_table, index); 1900 } 1901 1902 out: 1903 return retval; 1904 } 1905 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1906 1907 int cpufreq_driver_target(struct cpufreq_policy *policy, 1908 unsigned int target_freq, 1909 unsigned int relation) 1910 { 1911 int ret = -EINVAL; 1912 1913 down_write(&policy->rwsem); 1914 1915 ret = __cpufreq_driver_target(policy, target_freq, relation); 1916 1917 up_write(&policy->rwsem); 1918 1919 return ret; 1920 } 1921 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1922 1923 static int __cpufreq_governor(struct cpufreq_policy *policy, 1924 unsigned int event) 1925 { 1926 int ret; 1927 1928 /* Only must be defined when default governor is known to have latency 1929 restrictions, like e.g. conservative or ondemand. 1930 That this is the case is already ensured in Kconfig 1931 */ 1932 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1933 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1934 #else 1935 struct cpufreq_governor *gov = NULL; 1936 #endif 1937 1938 /* Don't start any governor operations if we are entering suspend */ 1939 if (cpufreq_suspended) 1940 return 0; 1941 /* 1942 * Governor might not be initiated here if ACPI _PPC changed 1943 * notification happened, so check it. 1944 */ 1945 if (!policy->governor) 1946 return -EINVAL; 1947 1948 if (policy->governor->max_transition_latency && 1949 policy->cpuinfo.transition_latency > 1950 policy->governor->max_transition_latency) { 1951 if (!gov) 1952 return -EINVAL; 1953 else { 1954 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 1955 policy->governor->name, gov->name); 1956 policy->governor = gov; 1957 } 1958 } 1959 1960 if (event == CPUFREQ_GOV_POLICY_INIT) 1961 if (!try_module_get(policy->governor->owner)) 1962 return -EINVAL; 1963 1964 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event); 1965 1966 mutex_lock(&cpufreq_governor_lock); 1967 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 1968 || (!policy->governor_enabled 1969 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 1970 mutex_unlock(&cpufreq_governor_lock); 1971 return -EBUSY; 1972 } 1973 1974 if (event == CPUFREQ_GOV_STOP) 1975 policy->governor_enabled = false; 1976 else if (event == CPUFREQ_GOV_START) 1977 policy->governor_enabled = true; 1978 1979 mutex_unlock(&cpufreq_governor_lock); 1980 1981 ret = policy->governor->governor(policy, event); 1982 1983 if (!ret) { 1984 if (event == CPUFREQ_GOV_POLICY_INIT) 1985 policy->governor->initialized++; 1986 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1987 policy->governor->initialized--; 1988 } else { 1989 /* Restore original values */ 1990 mutex_lock(&cpufreq_governor_lock); 1991 if (event == CPUFREQ_GOV_STOP) 1992 policy->governor_enabled = true; 1993 else if (event == CPUFREQ_GOV_START) 1994 policy->governor_enabled = false; 1995 mutex_unlock(&cpufreq_governor_lock); 1996 } 1997 1998 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 1999 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2000 module_put(policy->governor->owner); 2001 2002 return ret; 2003 } 2004 2005 int cpufreq_register_governor(struct cpufreq_governor *governor) 2006 { 2007 int err; 2008 2009 if (!governor) 2010 return -EINVAL; 2011 2012 if (cpufreq_disabled()) 2013 return -ENODEV; 2014 2015 mutex_lock(&cpufreq_governor_mutex); 2016 2017 governor->initialized = 0; 2018 err = -EBUSY; 2019 if (!find_governor(governor->name)) { 2020 err = 0; 2021 list_add(&governor->governor_list, &cpufreq_governor_list); 2022 } 2023 2024 mutex_unlock(&cpufreq_governor_mutex); 2025 return err; 2026 } 2027 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2028 2029 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2030 { 2031 struct cpufreq_policy *policy; 2032 unsigned long flags; 2033 2034 if (!governor) 2035 return; 2036 2037 if (cpufreq_disabled()) 2038 return; 2039 2040 /* clear last_governor for all inactive policies */ 2041 read_lock_irqsave(&cpufreq_driver_lock, flags); 2042 for_each_inactive_policy(policy) { 2043 if (!strcmp(policy->last_governor, governor->name)) { 2044 policy->governor = NULL; 2045 strcpy(policy->last_governor, "\0"); 2046 } 2047 } 2048 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2049 2050 mutex_lock(&cpufreq_governor_mutex); 2051 list_del(&governor->governor_list); 2052 mutex_unlock(&cpufreq_governor_mutex); 2053 return; 2054 } 2055 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2056 2057 2058 /********************************************************************* 2059 * POLICY INTERFACE * 2060 *********************************************************************/ 2061 2062 /** 2063 * cpufreq_get_policy - get the current cpufreq_policy 2064 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2065 * is written 2066 * 2067 * Reads the current cpufreq policy. 2068 */ 2069 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2070 { 2071 struct cpufreq_policy *cpu_policy; 2072 if (!policy) 2073 return -EINVAL; 2074 2075 cpu_policy = cpufreq_cpu_get(cpu); 2076 if (!cpu_policy) 2077 return -EINVAL; 2078 2079 memcpy(policy, cpu_policy, sizeof(*policy)); 2080 2081 cpufreq_cpu_put(cpu_policy); 2082 return 0; 2083 } 2084 EXPORT_SYMBOL(cpufreq_get_policy); 2085 2086 /* 2087 * policy : current policy. 2088 * new_policy: policy to be set. 2089 */ 2090 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2091 struct cpufreq_policy *new_policy) 2092 { 2093 struct cpufreq_governor *old_gov; 2094 int ret; 2095 2096 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2097 new_policy->cpu, new_policy->min, new_policy->max); 2098 2099 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2100 2101 /* 2102 * This check works well when we store new min/max freq attributes, 2103 * because new_policy is a copy of policy with one field updated. 2104 */ 2105 if (new_policy->min > new_policy->max) 2106 return -EINVAL; 2107 2108 /* verify the cpu speed can be set within this limit */ 2109 ret = cpufreq_driver->verify(new_policy); 2110 if (ret) 2111 return ret; 2112 2113 /* adjust if necessary - all reasons */ 2114 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2115 CPUFREQ_ADJUST, new_policy); 2116 2117 /* 2118 * verify the cpu speed can be set within this limit, which might be 2119 * different to the first one 2120 */ 2121 ret = cpufreq_driver->verify(new_policy); 2122 if (ret) 2123 return ret; 2124 2125 /* notification of the new policy */ 2126 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2127 CPUFREQ_NOTIFY, new_policy); 2128 2129 policy->min = new_policy->min; 2130 policy->max = new_policy->max; 2131 2132 pr_debug("new min and max freqs are %u - %u kHz\n", 2133 policy->min, policy->max); 2134 2135 if (cpufreq_driver->setpolicy) { 2136 policy->policy = new_policy->policy; 2137 pr_debug("setting range\n"); 2138 return cpufreq_driver->setpolicy(new_policy); 2139 } 2140 2141 if (new_policy->governor == policy->governor) 2142 goto out; 2143 2144 pr_debug("governor switch\n"); 2145 2146 /* save old, working values */ 2147 old_gov = policy->governor; 2148 /* end old governor */ 2149 if (old_gov) { 2150 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2151 if (ret) { 2152 /* This can happen due to race with other operations */ 2153 pr_debug("%s: Failed to Stop Governor: %s (%d)\n", 2154 __func__, old_gov->name, ret); 2155 return ret; 2156 } 2157 2158 up_write(&policy->rwsem); 2159 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2160 down_write(&policy->rwsem); 2161 2162 if (ret) { 2163 pr_err("%s: Failed to Exit Governor: %s (%d)\n", 2164 __func__, old_gov->name, ret); 2165 return ret; 2166 } 2167 } 2168 2169 /* start new governor */ 2170 policy->governor = new_policy->governor; 2171 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2172 if (!ret) { 2173 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 2174 if (!ret) 2175 goto out; 2176 2177 up_write(&policy->rwsem); 2178 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2179 down_write(&policy->rwsem); 2180 } 2181 2182 /* new governor failed, so re-start old one */ 2183 pr_debug("starting governor %s failed\n", policy->governor->name); 2184 if (old_gov) { 2185 policy->governor = old_gov; 2186 if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) 2187 policy->governor = NULL; 2188 else 2189 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2190 } 2191 2192 return ret; 2193 2194 out: 2195 pr_debug("governor: change or update limits\n"); 2196 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2197 } 2198 2199 /** 2200 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2201 * @cpu: CPU which shall be re-evaluated 2202 * 2203 * Useful for policy notifiers which have different necessities 2204 * at different times. 2205 */ 2206 int cpufreq_update_policy(unsigned int cpu) 2207 { 2208 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2209 struct cpufreq_policy new_policy; 2210 int ret; 2211 2212 if (!policy) 2213 return -ENODEV; 2214 2215 down_write(&policy->rwsem); 2216 2217 pr_debug("updating policy for CPU %u\n", cpu); 2218 memcpy(&new_policy, policy, sizeof(*policy)); 2219 new_policy.min = policy->user_policy.min; 2220 new_policy.max = policy->user_policy.max; 2221 2222 /* 2223 * BIOS might change freq behind our back 2224 * -> ask driver for current freq and notify governors about a change 2225 */ 2226 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2227 new_policy.cur = cpufreq_driver->get(cpu); 2228 if (WARN_ON(!new_policy.cur)) { 2229 ret = -EIO; 2230 goto unlock; 2231 } 2232 2233 if (!policy->cur) { 2234 pr_debug("Driver did not initialize current freq\n"); 2235 policy->cur = new_policy.cur; 2236 } else { 2237 if (policy->cur != new_policy.cur && has_target()) 2238 cpufreq_out_of_sync(policy, new_policy.cur); 2239 } 2240 } 2241 2242 ret = cpufreq_set_policy(policy, &new_policy); 2243 2244 unlock: 2245 up_write(&policy->rwsem); 2246 2247 cpufreq_cpu_put(policy); 2248 return ret; 2249 } 2250 EXPORT_SYMBOL(cpufreq_update_policy); 2251 2252 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2253 unsigned long action, void *hcpu) 2254 { 2255 unsigned int cpu = (unsigned long)hcpu; 2256 2257 switch (action & ~CPU_TASKS_FROZEN) { 2258 case CPU_ONLINE: 2259 cpufreq_online(cpu); 2260 break; 2261 2262 case CPU_DOWN_PREPARE: 2263 cpufreq_offline_prepare(cpu); 2264 break; 2265 2266 case CPU_POST_DEAD: 2267 cpufreq_offline_finish(cpu); 2268 break; 2269 2270 case CPU_DOWN_FAILED: 2271 cpufreq_online(cpu); 2272 break; 2273 } 2274 return NOTIFY_OK; 2275 } 2276 2277 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2278 .notifier_call = cpufreq_cpu_callback, 2279 }; 2280 2281 /********************************************************************* 2282 * BOOST * 2283 *********************************************************************/ 2284 static int cpufreq_boost_set_sw(int state) 2285 { 2286 struct cpufreq_frequency_table *freq_table; 2287 struct cpufreq_policy *policy; 2288 int ret = -EINVAL; 2289 2290 for_each_active_policy(policy) { 2291 freq_table = cpufreq_frequency_get_table(policy->cpu); 2292 if (freq_table) { 2293 ret = cpufreq_frequency_table_cpuinfo(policy, 2294 freq_table); 2295 if (ret) { 2296 pr_err("%s: Policy frequency update failed\n", 2297 __func__); 2298 break; 2299 } 2300 policy->user_policy.max = policy->max; 2301 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2302 } 2303 } 2304 2305 return ret; 2306 } 2307 2308 int cpufreq_boost_trigger_state(int state) 2309 { 2310 unsigned long flags; 2311 int ret = 0; 2312 2313 if (cpufreq_driver->boost_enabled == state) 2314 return 0; 2315 2316 write_lock_irqsave(&cpufreq_driver_lock, flags); 2317 cpufreq_driver->boost_enabled = state; 2318 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2319 2320 ret = cpufreq_driver->set_boost(state); 2321 if (ret) { 2322 write_lock_irqsave(&cpufreq_driver_lock, flags); 2323 cpufreq_driver->boost_enabled = !state; 2324 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2325 2326 pr_err("%s: Cannot %s BOOST\n", 2327 __func__, state ? "enable" : "disable"); 2328 } 2329 2330 return ret; 2331 } 2332 2333 static bool cpufreq_boost_supported(void) 2334 { 2335 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2336 } 2337 2338 static int create_boost_sysfs_file(void) 2339 { 2340 int ret; 2341 2342 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2343 if (ret) 2344 pr_err("%s: cannot register global BOOST sysfs file\n", 2345 __func__); 2346 2347 return ret; 2348 } 2349 2350 static void remove_boost_sysfs_file(void) 2351 { 2352 if (cpufreq_boost_supported()) 2353 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2354 } 2355 2356 int cpufreq_enable_boost_support(void) 2357 { 2358 if (!cpufreq_driver) 2359 return -EINVAL; 2360 2361 if (cpufreq_boost_supported()) 2362 return 0; 2363 2364 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2365 2366 /* This will get removed on driver unregister */ 2367 return create_boost_sysfs_file(); 2368 } 2369 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2370 2371 int cpufreq_boost_enabled(void) 2372 { 2373 return cpufreq_driver->boost_enabled; 2374 } 2375 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2376 2377 /********************************************************************* 2378 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2379 *********************************************************************/ 2380 2381 /** 2382 * cpufreq_register_driver - register a CPU Frequency driver 2383 * @driver_data: A struct cpufreq_driver containing the values# 2384 * submitted by the CPU Frequency driver. 2385 * 2386 * Registers a CPU Frequency driver to this core code. This code 2387 * returns zero on success, -EBUSY when another driver got here first 2388 * (and isn't unregistered in the meantime). 2389 * 2390 */ 2391 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2392 { 2393 unsigned long flags; 2394 int ret; 2395 2396 if (cpufreq_disabled()) 2397 return -ENODEV; 2398 2399 if (!driver_data || !driver_data->verify || !driver_data->init || 2400 !(driver_data->setpolicy || driver_data->target_index || 2401 driver_data->target) || 2402 (driver_data->setpolicy && (driver_data->target_index || 2403 driver_data->target)) || 2404 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2405 return -EINVAL; 2406 2407 pr_debug("trying to register driver %s\n", driver_data->name); 2408 2409 /* Protect against concurrent CPU online/offline. */ 2410 get_online_cpus(); 2411 2412 write_lock_irqsave(&cpufreq_driver_lock, flags); 2413 if (cpufreq_driver) { 2414 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2415 ret = -EEXIST; 2416 goto out; 2417 } 2418 cpufreq_driver = driver_data; 2419 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2420 2421 if (driver_data->setpolicy) 2422 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2423 2424 if (cpufreq_boost_supported()) { 2425 ret = create_boost_sysfs_file(); 2426 if (ret) 2427 goto err_null_driver; 2428 } 2429 2430 ret = subsys_interface_register(&cpufreq_interface); 2431 if (ret) 2432 goto err_boost_unreg; 2433 2434 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2435 list_empty(&cpufreq_policy_list)) { 2436 /* if all ->init() calls failed, unregister */ 2437 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2438 driver_data->name); 2439 goto err_if_unreg; 2440 } 2441 2442 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2443 pr_debug("driver %s up and running\n", driver_data->name); 2444 2445 out: 2446 put_online_cpus(); 2447 return ret; 2448 2449 err_if_unreg: 2450 subsys_interface_unregister(&cpufreq_interface); 2451 err_boost_unreg: 2452 remove_boost_sysfs_file(); 2453 err_null_driver: 2454 write_lock_irqsave(&cpufreq_driver_lock, flags); 2455 cpufreq_driver = NULL; 2456 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2457 goto out; 2458 } 2459 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2460 2461 /** 2462 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2463 * 2464 * Unregister the current CPUFreq driver. Only call this if you have 2465 * the right to do so, i.e. if you have succeeded in initialising before! 2466 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2467 * currently not initialised. 2468 */ 2469 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2470 { 2471 unsigned long flags; 2472 2473 if (!cpufreq_driver || (driver != cpufreq_driver)) 2474 return -EINVAL; 2475 2476 pr_debug("unregistering driver %s\n", driver->name); 2477 2478 /* Protect against concurrent cpu hotplug */ 2479 get_online_cpus(); 2480 subsys_interface_unregister(&cpufreq_interface); 2481 remove_boost_sysfs_file(); 2482 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2483 2484 write_lock_irqsave(&cpufreq_driver_lock, flags); 2485 2486 cpufreq_driver = NULL; 2487 2488 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2489 put_online_cpus(); 2490 2491 return 0; 2492 } 2493 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2494 2495 /* 2496 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2497 * or mutexes when secondary CPUs are halted. 2498 */ 2499 static struct syscore_ops cpufreq_syscore_ops = { 2500 .shutdown = cpufreq_suspend, 2501 }; 2502 2503 struct kobject *cpufreq_global_kobject; 2504 EXPORT_SYMBOL(cpufreq_global_kobject); 2505 2506 static int __init cpufreq_core_init(void) 2507 { 2508 if (cpufreq_disabled()) 2509 return -ENODEV; 2510 2511 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2512 BUG_ON(!cpufreq_global_kobject); 2513 2514 register_syscore_ops(&cpufreq_syscore_ops); 2515 2516 return 0; 2517 } 2518 core_initcall(cpufreq_core_init); 2519