xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 9dbbc3b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 /* Iterate over governors */
46 static LIST_HEAD(cpufreq_governor_list);
47 #define for_each_governor(__governor)				\
48 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
49 
50 static char default_governor[CPUFREQ_NAME_LEN];
51 
52 /*
53  * The "cpufreq driver" - the arch- or hardware-dependent low
54  * level driver of CPUFreq support, and its spinlock. This lock
55  * also protects the cpufreq_cpu_data array.
56  */
57 static struct cpufreq_driver *cpufreq_driver;
58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
59 static DEFINE_RWLOCK(cpufreq_driver_lock);
60 
61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
62 bool cpufreq_supports_freq_invariance(void)
63 {
64 	return static_branch_likely(&cpufreq_freq_invariance);
65 }
66 
67 /* Flag to suspend/resume CPUFreq governors */
68 static bool cpufreq_suspended;
69 
70 static inline bool has_target(void)
71 {
72 	return cpufreq_driver->target_index || cpufreq_driver->target;
73 }
74 
75 /* internal prototypes */
76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
77 static int cpufreq_init_governor(struct cpufreq_policy *policy);
78 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
79 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
80 static int cpufreq_set_policy(struct cpufreq_policy *policy,
81 			      struct cpufreq_governor *new_gov,
82 			      unsigned int new_pol);
83 
84 /*
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93 
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97 	return off;
98 }
99 void disable_cpufreq(void)
100 {
101 	off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104 
105 bool have_governor_per_policy(void)
106 {
107 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110 
111 static struct kobject *cpufreq_global_kobject;
112 
113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
114 {
115 	if (have_governor_per_policy())
116 		return &policy->kobj;
117 	else
118 		return cpufreq_global_kobject;
119 }
120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
121 
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124 	struct kernel_cpustat kcpustat;
125 	u64 cur_wall_time;
126 	u64 idle_time;
127 	u64 busy_time;
128 
129 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
130 
131 	kcpustat_cpu_fetch(&kcpustat, cpu);
132 
133 	busy_time = kcpustat.cpustat[CPUTIME_USER];
134 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
135 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
136 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
137 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
138 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
139 
140 	idle_time = cur_wall_time - busy_time;
141 	if (wall)
142 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
143 
144 	return div_u64(idle_time, NSEC_PER_USEC);
145 }
146 
147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
148 {
149 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
150 
151 	if (idle_time == -1ULL)
152 		return get_cpu_idle_time_jiffy(cpu, wall);
153 	else if (!io_busy)
154 		idle_time += get_cpu_iowait_time_us(cpu, wall);
155 
156 	return idle_time;
157 }
158 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
159 
160 /*
161  * This is a generic cpufreq init() routine which can be used by cpufreq
162  * drivers of SMP systems. It will do following:
163  * - validate & show freq table passed
164  * - set policies transition latency
165  * - policy->cpus with all possible CPUs
166  */
167 void cpufreq_generic_init(struct cpufreq_policy *policy,
168 		struct cpufreq_frequency_table *table,
169 		unsigned int transition_latency)
170 {
171 	policy->freq_table = table;
172 	policy->cpuinfo.transition_latency = transition_latency;
173 
174 	/*
175 	 * The driver only supports the SMP configuration where all processors
176 	 * share the clock and voltage and clock.
177 	 */
178 	cpumask_setall(policy->cpus);
179 }
180 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
181 
182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
183 {
184 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
185 
186 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
187 }
188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
189 
190 unsigned int cpufreq_generic_get(unsigned int cpu)
191 {
192 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
193 
194 	if (!policy || IS_ERR(policy->clk)) {
195 		pr_err("%s: No %s associated to cpu: %d\n",
196 		       __func__, policy ? "clk" : "policy", cpu);
197 		return 0;
198 	}
199 
200 	return clk_get_rate(policy->clk) / 1000;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
203 
204 /**
205  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
206  * @cpu: CPU to find the policy for.
207  *
208  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
209  * the kobject reference counter of that policy.  Return a valid policy on
210  * success or NULL on failure.
211  *
212  * The policy returned by this function has to be released with the help of
213  * cpufreq_cpu_put() to balance its kobject reference counter properly.
214  */
215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
216 {
217 	struct cpufreq_policy *policy = NULL;
218 	unsigned long flags;
219 
220 	if (WARN_ON(cpu >= nr_cpu_ids))
221 		return NULL;
222 
223 	/* get the cpufreq driver */
224 	read_lock_irqsave(&cpufreq_driver_lock, flags);
225 
226 	if (cpufreq_driver) {
227 		/* get the CPU */
228 		policy = cpufreq_cpu_get_raw(cpu);
229 		if (policy)
230 			kobject_get(&policy->kobj);
231 	}
232 
233 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
234 
235 	return policy;
236 }
237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
238 
239 /**
240  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
241  * @policy: cpufreq policy returned by cpufreq_cpu_get().
242  */
243 void cpufreq_cpu_put(struct cpufreq_policy *policy)
244 {
245 	kobject_put(&policy->kobj);
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
248 
249 /**
250  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
251  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
252  */
253 void cpufreq_cpu_release(struct cpufreq_policy *policy)
254 {
255 	if (WARN_ON(!policy))
256 		return;
257 
258 	lockdep_assert_held(&policy->rwsem);
259 
260 	up_write(&policy->rwsem);
261 
262 	cpufreq_cpu_put(policy);
263 }
264 
265 /**
266  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
267  * @cpu: CPU to find the policy for.
268  *
269  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
270  * if the policy returned by it is not NULL, acquire its rwsem for writing.
271  * Return the policy if it is active or release it and return NULL otherwise.
272  *
273  * The policy returned by this function has to be released with the help of
274  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
275  * counter properly.
276  */
277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
278 {
279 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
280 
281 	if (!policy)
282 		return NULL;
283 
284 	down_write(&policy->rwsem);
285 
286 	if (policy_is_inactive(policy)) {
287 		cpufreq_cpu_release(policy);
288 		return NULL;
289 	}
290 
291 	return policy;
292 }
293 
294 /*********************************************************************
295  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
296  *********************************************************************/
297 
298 /**
299  * adjust_jiffies - Adjust the system "loops_per_jiffy".
300  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
301  * @ci: Frequency change information.
302  *
303  * This function alters the system "loops_per_jiffy" for the clock
304  * speed change. Note that loops_per_jiffy cannot be updated on SMP
305  * systems as each CPU might be scaled differently. So, use the arch
306  * per-CPU loops_per_jiffy value wherever possible.
307  */
308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 #ifndef CONFIG_SMP
311 	static unsigned long l_p_j_ref;
312 	static unsigned int l_p_j_ref_freq;
313 
314 	if (ci->flags & CPUFREQ_CONST_LOOPS)
315 		return;
316 
317 	if (!l_p_j_ref_freq) {
318 		l_p_j_ref = loops_per_jiffy;
319 		l_p_j_ref_freq = ci->old;
320 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
321 			 l_p_j_ref, l_p_j_ref_freq);
322 	}
323 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
324 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
325 								ci->new);
326 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
327 			 loops_per_jiffy, ci->new);
328 	}
329 #endif
330 }
331 
332 /**
333  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
334  * @policy: cpufreq policy to enable fast frequency switching for.
335  * @freqs: contain details of the frequency update.
336  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
337  *
338  * This function calls the transition notifiers and adjust_jiffies().
339  *
340  * It is called twice on all CPU frequency changes that have external effects.
341  */
342 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
343 				      struct cpufreq_freqs *freqs,
344 				      unsigned int state)
345 {
346 	int cpu;
347 
348 	BUG_ON(irqs_disabled());
349 
350 	if (cpufreq_disabled())
351 		return;
352 
353 	freqs->policy = policy;
354 	freqs->flags = cpufreq_driver->flags;
355 	pr_debug("notification %u of frequency transition to %u kHz\n",
356 		 state, freqs->new);
357 
358 	switch (state) {
359 	case CPUFREQ_PRECHANGE:
360 		/*
361 		 * Detect if the driver reported a value as "old frequency"
362 		 * which is not equal to what the cpufreq core thinks is
363 		 * "old frequency".
364 		 */
365 		if (policy->cur && policy->cur != freqs->old) {
366 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
367 				 freqs->old, policy->cur);
368 			freqs->old = policy->cur;
369 		}
370 
371 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
372 					 CPUFREQ_PRECHANGE, freqs);
373 
374 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
375 		break;
376 
377 	case CPUFREQ_POSTCHANGE:
378 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
379 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
380 			 cpumask_pr_args(policy->cpus));
381 
382 		for_each_cpu(cpu, policy->cpus)
383 			trace_cpu_frequency(freqs->new, cpu);
384 
385 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
386 					 CPUFREQ_POSTCHANGE, freqs);
387 
388 		cpufreq_stats_record_transition(policy, freqs->new);
389 		policy->cur = freqs->new;
390 	}
391 }
392 
393 /* Do post notifications when there are chances that transition has failed */
394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
395 		struct cpufreq_freqs *freqs, int transition_failed)
396 {
397 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
398 	if (!transition_failed)
399 		return;
400 
401 	swap(freqs->old, freqs->new);
402 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 }
405 
406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
407 		struct cpufreq_freqs *freqs)
408 {
409 
410 	/*
411 	 * Catch double invocations of _begin() which lead to self-deadlock.
412 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
413 	 * doesn't invoke _begin() on their behalf, and hence the chances of
414 	 * double invocations are very low. Moreover, there are scenarios
415 	 * where these checks can emit false-positive warnings in these
416 	 * drivers; so we avoid that by skipping them altogether.
417 	 */
418 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
419 				&& current == policy->transition_task);
420 
421 wait:
422 	wait_event(policy->transition_wait, !policy->transition_ongoing);
423 
424 	spin_lock(&policy->transition_lock);
425 
426 	if (unlikely(policy->transition_ongoing)) {
427 		spin_unlock(&policy->transition_lock);
428 		goto wait;
429 	}
430 
431 	policy->transition_ongoing = true;
432 	policy->transition_task = current;
433 
434 	spin_unlock(&policy->transition_lock);
435 
436 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
437 }
438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
439 
440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
441 		struct cpufreq_freqs *freqs, int transition_failed)
442 {
443 	if (WARN_ON(!policy->transition_ongoing))
444 		return;
445 
446 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
447 
448 	arch_set_freq_scale(policy->related_cpus,
449 			    policy->cur,
450 			    policy->cpuinfo.max_freq);
451 
452 	policy->transition_ongoing = false;
453 	policy->transition_task = NULL;
454 
455 	wake_up(&policy->transition_wait);
456 }
457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
458 
459 /*
460  * Fast frequency switching status count.  Positive means "enabled", negative
461  * means "disabled" and 0 means "not decided yet".
462  */
463 static int cpufreq_fast_switch_count;
464 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
465 
466 static void cpufreq_list_transition_notifiers(void)
467 {
468 	struct notifier_block *nb;
469 
470 	pr_info("Registered transition notifiers:\n");
471 
472 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
473 
474 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
475 		pr_info("%pS\n", nb->notifier_call);
476 
477 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
478 }
479 
480 /**
481  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
482  * @policy: cpufreq policy to enable fast frequency switching for.
483  *
484  * Try to enable fast frequency switching for @policy.
485  *
486  * The attempt will fail if there is at least one transition notifier registered
487  * at this point, as fast frequency switching is quite fundamentally at odds
488  * with transition notifiers.  Thus if successful, it will make registration of
489  * transition notifiers fail going forward.
490  */
491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
492 {
493 	lockdep_assert_held(&policy->rwsem);
494 
495 	if (!policy->fast_switch_possible)
496 		return;
497 
498 	mutex_lock(&cpufreq_fast_switch_lock);
499 	if (cpufreq_fast_switch_count >= 0) {
500 		cpufreq_fast_switch_count++;
501 		policy->fast_switch_enabled = true;
502 	} else {
503 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
504 			policy->cpu);
505 		cpufreq_list_transition_notifiers();
506 	}
507 	mutex_unlock(&cpufreq_fast_switch_lock);
508 }
509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
510 
511 /**
512  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
513  * @policy: cpufreq policy to disable fast frequency switching for.
514  */
515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
516 {
517 	mutex_lock(&cpufreq_fast_switch_lock);
518 	if (policy->fast_switch_enabled) {
519 		policy->fast_switch_enabled = false;
520 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
521 			cpufreq_fast_switch_count--;
522 	}
523 	mutex_unlock(&cpufreq_fast_switch_lock);
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
526 
527 /**
528  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
529  * one.
530  * @policy: associated policy to interrogate
531  * @target_freq: target frequency to resolve.
532  *
533  * The target to driver frequency mapping is cached in the policy.
534  *
535  * Return: Lowest driver-supported frequency greater than or equal to the
536  * given target_freq, subject to policy (min/max) and driver limitations.
537  */
538 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
539 					 unsigned int target_freq)
540 {
541 	target_freq = clamp_val(target_freq, policy->min, policy->max);
542 	policy->cached_target_freq = target_freq;
543 
544 	if (cpufreq_driver->target_index) {
545 		unsigned int idx;
546 
547 		idx = cpufreq_frequency_table_target(policy, target_freq,
548 						     CPUFREQ_RELATION_L);
549 		policy->cached_resolved_idx = idx;
550 		return policy->freq_table[idx].frequency;
551 	}
552 
553 	if (cpufreq_driver->resolve_freq)
554 		return cpufreq_driver->resolve_freq(policy, target_freq);
555 
556 	return target_freq;
557 }
558 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
559 
560 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
561 {
562 	unsigned int latency;
563 
564 	if (policy->transition_delay_us)
565 		return policy->transition_delay_us;
566 
567 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
568 	if (latency) {
569 		/*
570 		 * For platforms that can change the frequency very fast (< 10
571 		 * us), the above formula gives a decent transition delay. But
572 		 * for platforms where transition_latency is in milliseconds, it
573 		 * ends up giving unrealistic values.
574 		 *
575 		 * Cap the default transition delay to 10 ms, which seems to be
576 		 * a reasonable amount of time after which we should reevaluate
577 		 * the frequency.
578 		 */
579 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
580 	}
581 
582 	return LATENCY_MULTIPLIER;
583 }
584 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
585 
586 /*********************************************************************
587  *                          SYSFS INTERFACE                          *
588  *********************************************************************/
589 static ssize_t show_boost(struct kobject *kobj,
590 			  struct kobj_attribute *attr, char *buf)
591 {
592 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
593 }
594 
595 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
596 			   const char *buf, size_t count)
597 {
598 	int ret, enable;
599 
600 	ret = sscanf(buf, "%d", &enable);
601 	if (ret != 1 || enable < 0 || enable > 1)
602 		return -EINVAL;
603 
604 	if (cpufreq_boost_trigger_state(enable)) {
605 		pr_err("%s: Cannot %s BOOST!\n",
606 		       __func__, enable ? "enable" : "disable");
607 		return -EINVAL;
608 	}
609 
610 	pr_debug("%s: cpufreq BOOST %s\n",
611 		 __func__, enable ? "enabled" : "disabled");
612 
613 	return count;
614 }
615 define_one_global_rw(boost);
616 
617 static struct cpufreq_governor *find_governor(const char *str_governor)
618 {
619 	struct cpufreq_governor *t;
620 
621 	for_each_governor(t)
622 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
623 			return t;
624 
625 	return NULL;
626 }
627 
628 static struct cpufreq_governor *get_governor(const char *str_governor)
629 {
630 	struct cpufreq_governor *t;
631 
632 	mutex_lock(&cpufreq_governor_mutex);
633 	t = find_governor(str_governor);
634 	if (!t)
635 		goto unlock;
636 
637 	if (!try_module_get(t->owner))
638 		t = NULL;
639 
640 unlock:
641 	mutex_unlock(&cpufreq_governor_mutex);
642 
643 	return t;
644 }
645 
646 static unsigned int cpufreq_parse_policy(char *str_governor)
647 {
648 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
649 		return CPUFREQ_POLICY_PERFORMANCE;
650 
651 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
652 		return CPUFREQ_POLICY_POWERSAVE;
653 
654 	return CPUFREQ_POLICY_UNKNOWN;
655 }
656 
657 /**
658  * cpufreq_parse_governor - parse a governor string only for has_target()
659  * @str_governor: Governor name.
660  */
661 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
662 {
663 	struct cpufreq_governor *t;
664 
665 	t = get_governor(str_governor);
666 	if (t)
667 		return t;
668 
669 	if (request_module("cpufreq_%s", str_governor))
670 		return NULL;
671 
672 	return get_governor(str_governor);
673 }
674 
675 /*
676  * cpufreq_per_cpu_attr_read() / show_##file_name() -
677  * print out cpufreq information
678  *
679  * Write out information from cpufreq_driver->policy[cpu]; object must be
680  * "unsigned int".
681  */
682 
683 #define show_one(file_name, object)			\
684 static ssize_t show_##file_name				\
685 (struct cpufreq_policy *policy, char *buf)		\
686 {							\
687 	return sprintf(buf, "%u\n", policy->object);	\
688 }
689 
690 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
691 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
692 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
693 show_one(scaling_min_freq, min);
694 show_one(scaling_max_freq, max);
695 
696 __weak unsigned int arch_freq_get_on_cpu(int cpu)
697 {
698 	return 0;
699 }
700 
701 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
702 {
703 	ssize_t ret;
704 	unsigned int freq;
705 
706 	freq = arch_freq_get_on_cpu(policy->cpu);
707 	if (freq)
708 		ret = sprintf(buf, "%u\n", freq);
709 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
710 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
711 	else
712 		ret = sprintf(buf, "%u\n", policy->cur);
713 	return ret;
714 }
715 
716 /*
717  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
718  */
719 #define store_one(file_name, object)			\
720 static ssize_t store_##file_name					\
721 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
722 {									\
723 	unsigned long val;						\
724 	int ret;							\
725 									\
726 	ret = sscanf(buf, "%lu", &val);					\
727 	if (ret != 1)							\
728 		return -EINVAL;						\
729 									\
730 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
731 	return ret >= 0 ? count : ret;					\
732 }
733 
734 store_one(scaling_min_freq, min);
735 store_one(scaling_max_freq, max);
736 
737 /*
738  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
739  */
740 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
741 					char *buf)
742 {
743 	unsigned int cur_freq = __cpufreq_get(policy);
744 
745 	if (cur_freq)
746 		return sprintf(buf, "%u\n", cur_freq);
747 
748 	return sprintf(buf, "<unknown>\n");
749 }
750 
751 /*
752  * show_scaling_governor - show the current policy for the specified CPU
753  */
754 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
755 {
756 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
757 		return sprintf(buf, "powersave\n");
758 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
759 		return sprintf(buf, "performance\n");
760 	else if (policy->governor)
761 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
762 				policy->governor->name);
763 	return -EINVAL;
764 }
765 
766 /*
767  * store_scaling_governor - store policy for the specified CPU
768  */
769 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
770 					const char *buf, size_t count)
771 {
772 	char str_governor[16];
773 	int ret;
774 
775 	ret = sscanf(buf, "%15s", str_governor);
776 	if (ret != 1)
777 		return -EINVAL;
778 
779 	if (cpufreq_driver->setpolicy) {
780 		unsigned int new_pol;
781 
782 		new_pol = cpufreq_parse_policy(str_governor);
783 		if (!new_pol)
784 			return -EINVAL;
785 
786 		ret = cpufreq_set_policy(policy, NULL, new_pol);
787 	} else {
788 		struct cpufreq_governor *new_gov;
789 
790 		new_gov = cpufreq_parse_governor(str_governor);
791 		if (!new_gov)
792 			return -EINVAL;
793 
794 		ret = cpufreq_set_policy(policy, new_gov,
795 					 CPUFREQ_POLICY_UNKNOWN);
796 
797 		module_put(new_gov->owner);
798 	}
799 
800 	return ret ? ret : count;
801 }
802 
803 /*
804  * show_scaling_driver - show the cpufreq driver currently loaded
805  */
806 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
807 {
808 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
809 }
810 
811 /*
812  * show_scaling_available_governors - show the available CPUfreq governors
813  */
814 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
815 						char *buf)
816 {
817 	ssize_t i = 0;
818 	struct cpufreq_governor *t;
819 
820 	if (!has_target()) {
821 		i += sprintf(buf, "performance powersave");
822 		goto out;
823 	}
824 
825 	mutex_lock(&cpufreq_governor_mutex);
826 	for_each_governor(t) {
827 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
828 		    - (CPUFREQ_NAME_LEN + 2)))
829 			break;
830 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
831 	}
832 	mutex_unlock(&cpufreq_governor_mutex);
833 out:
834 	i += sprintf(&buf[i], "\n");
835 	return i;
836 }
837 
838 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
839 {
840 	ssize_t i = 0;
841 	unsigned int cpu;
842 
843 	for_each_cpu(cpu, mask) {
844 		if (i)
845 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
846 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
847 		if (i >= (PAGE_SIZE - 5))
848 			break;
849 	}
850 	i += sprintf(&buf[i], "\n");
851 	return i;
852 }
853 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
854 
855 /*
856  * show_related_cpus - show the CPUs affected by each transition even if
857  * hw coordination is in use
858  */
859 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
860 {
861 	return cpufreq_show_cpus(policy->related_cpus, buf);
862 }
863 
864 /*
865  * show_affected_cpus - show the CPUs affected by each transition
866  */
867 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
868 {
869 	return cpufreq_show_cpus(policy->cpus, buf);
870 }
871 
872 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
873 					const char *buf, size_t count)
874 {
875 	unsigned int freq = 0;
876 	unsigned int ret;
877 
878 	if (!policy->governor || !policy->governor->store_setspeed)
879 		return -EINVAL;
880 
881 	ret = sscanf(buf, "%u", &freq);
882 	if (ret != 1)
883 		return -EINVAL;
884 
885 	policy->governor->store_setspeed(policy, freq);
886 
887 	return count;
888 }
889 
890 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
891 {
892 	if (!policy->governor || !policy->governor->show_setspeed)
893 		return sprintf(buf, "<unsupported>\n");
894 
895 	return policy->governor->show_setspeed(policy, buf);
896 }
897 
898 /*
899  * show_bios_limit - show the current cpufreq HW/BIOS limitation
900  */
901 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
902 {
903 	unsigned int limit;
904 	int ret;
905 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
906 	if (!ret)
907 		return sprintf(buf, "%u\n", limit);
908 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
909 }
910 
911 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
912 cpufreq_freq_attr_ro(cpuinfo_min_freq);
913 cpufreq_freq_attr_ro(cpuinfo_max_freq);
914 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
915 cpufreq_freq_attr_ro(scaling_available_governors);
916 cpufreq_freq_attr_ro(scaling_driver);
917 cpufreq_freq_attr_ro(scaling_cur_freq);
918 cpufreq_freq_attr_ro(bios_limit);
919 cpufreq_freq_attr_ro(related_cpus);
920 cpufreq_freq_attr_ro(affected_cpus);
921 cpufreq_freq_attr_rw(scaling_min_freq);
922 cpufreq_freq_attr_rw(scaling_max_freq);
923 cpufreq_freq_attr_rw(scaling_governor);
924 cpufreq_freq_attr_rw(scaling_setspeed);
925 
926 static struct attribute *default_attrs[] = {
927 	&cpuinfo_min_freq.attr,
928 	&cpuinfo_max_freq.attr,
929 	&cpuinfo_transition_latency.attr,
930 	&scaling_min_freq.attr,
931 	&scaling_max_freq.attr,
932 	&affected_cpus.attr,
933 	&related_cpus.attr,
934 	&scaling_governor.attr,
935 	&scaling_driver.attr,
936 	&scaling_available_governors.attr,
937 	&scaling_setspeed.attr,
938 	NULL
939 };
940 
941 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
942 #define to_attr(a) container_of(a, struct freq_attr, attr)
943 
944 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
945 {
946 	struct cpufreq_policy *policy = to_policy(kobj);
947 	struct freq_attr *fattr = to_attr(attr);
948 	ssize_t ret;
949 
950 	if (!fattr->show)
951 		return -EIO;
952 
953 	down_read(&policy->rwsem);
954 	ret = fattr->show(policy, buf);
955 	up_read(&policy->rwsem);
956 
957 	return ret;
958 }
959 
960 static ssize_t store(struct kobject *kobj, struct attribute *attr,
961 		     const char *buf, size_t count)
962 {
963 	struct cpufreq_policy *policy = to_policy(kobj);
964 	struct freq_attr *fattr = to_attr(attr);
965 	ssize_t ret = -EINVAL;
966 
967 	if (!fattr->store)
968 		return -EIO;
969 
970 	/*
971 	 * cpus_read_trylock() is used here to work around a circular lock
972 	 * dependency problem with respect to the cpufreq_register_driver().
973 	 */
974 	if (!cpus_read_trylock())
975 		return -EBUSY;
976 
977 	if (cpu_online(policy->cpu)) {
978 		down_write(&policy->rwsem);
979 		ret = fattr->store(policy, buf, count);
980 		up_write(&policy->rwsem);
981 	}
982 
983 	cpus_read_unlock();
984 
985 	return ret;
986 }
987 
988 static void cpufreq_sysfs_release(struct kobject *kobj)
989 {
990 	struct cpufreq_policy *policy = to_policy(kobj);
991 	pr_debug("last reference is dropped\n");
992 	complete(&policy->kobj_unregister);
993 }
994 
995 static const struct sysfs_ops sysfs_ops = {
996 	.show	= show,
997 	.store	= store,
998 };
999 
1000 static struct kobj_type ktype_cpufreq = {
1001 	.sysfs_ops	= &sysfs_ops,
1002 	.default_attrs	= default_attrs,
1003 	.release	= cpufreq_sysfs_release,
1004 };
1005 
1006 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1007 {
1008 	struct device *dev = get_cpu_device(cpu);
1009 
1010 	if (unlikely(!dev))
1011 		return;
1012 
1013 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1014 		return;
1015 
1016 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1017 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1018 		dev_err(dev, "cpufreq symlink creation failed\n");
1019 }
1020 
1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1022 				   struct device *dev)
1023 {
1024 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1025 	sysfs_remove_link(&dev->kobj, "cpufreq");
1026 }
1027 
1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1029 {
1030 	struct freq_attr **drv_attr;
1031 	int ret = 0;
1032 
1033 	/* set up files for this cpu device */
1034 	drv_attr = cpufreq_driver->attr;
1035 	while (drv_attr && *drv_attr) {
1036 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1037 		if (ret)
1038 			return ret;
1039 		drv_attr++;
1040 	}
1041 	if (cpufreq_driver->get) {
1042 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1043 		if (ret)
1044 			return ret;
1045 	}
1046 
1047 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1048 	if (ret)
1049 		return ret;
1050 
1051 	if (cpufreq_driver->bios_limit) {
1052 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1053 		if (ret)
1054 			return ret;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1061 {
1062 	struct cpufreq_governor *gov = NULL;
1063 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1064 	int ret;
1065 
1066 	if (has_target()) {
1067 		/* Update policy governor to the one used before hotplug. */
1068 		gov = get_governor(policy->last_governor);
1069 		if (gov) {
1070 			pr_debug("Restoring governor %s for cpu %d\n",
1071 				 gov->name, policy->cpu);
1072 		} else {
1073 			gov = get_governor(default_governor);
1074 		}
1075 
1076 		if (!gov) {
1077 			gov = cpufreq_default_governor();
1078 			__module_get(gov->owner);
1079 		}
1080 
1081 	} else {
1082 
1083 		/* Use the default policy if there is no last_policy. */
1084 		if (policy->last_policy) {
1085 			pol = policy->last_policy;
1086 		} else {
1087 			pol = cpufreq_parse_policy(default_governor);
1088 			/*
1089 			 * In case the default governor is neither "performance"
1090 			 * nor "powersave", fall back to the initial policy
1091 			 * value set by the driver.
1092 			 */
1093 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1094 				pol = policy->policy;
1095 		}
1096 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1097 		    pol != CPUFREQ_POLICY_POWERSAVE)
1098 			return -ENODATA;
1099 	}
1100 
1101 	ret = cpufreq_set_policy(policy, gov, pol);
1102 	if (gov)
1103 		module_put(gov->owner);
1104 
1105 	return ret;
1106 }
1107 
1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1109 {
1110 	int ret = 0;
1111 
1112 	/* Has this CPU been taken care of already? */
1113 	if (cpumask_test_cpu(cpu, policy->cpus))
1114 		return 0;
1115 
1116 	down_write(&policy->rwsem);
1117 	if (has_target())
1118 		cpufreq_stop_governor(policy);
1119 
1120 	cpumask_set_cpu(cpu, policy->cpus);
1121 
1122 	if (has_target()) {
1123 		ret = cpufreq_start_governor(policy);
1124 		if (ret)
1125 			pr_err("%s: Failed to start governor\n", __func__);
1126 	}
1127 	up_write(&policy->rwsem);
1128 	return ret;
1129 }
1130 
1131 void refresh_frequency_limits(struct cpufreq_policy *policy)
1132 {
1133 	if (!policy_is_inactive(policy)) {
1134 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1135 
1136 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1137 	}
1138 }
1139 EXPORT_SYMBOL(refresh_frequency_limits);
1140 
1141 static void handle_update(struct work_struct *work)
1142 {
1143 	struct cpufreq_policy *policy =
1144 		container_of(work, struct cpufreq_policy, update);
1145 
1146 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1147 	down_write(&policy->rwsem);
1148 	refresh_frequency_limits(policy);
1149 	up_write(&policy->rwsem);
1150 }
1151 
1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1153 				void *data)
1154 {
1155 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1156 
1157 	schedule_work(&policy->update);
1158 	return 0;
1159 }
1160 
1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1162 				void *data)
1163 {
1164 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1165 
1166 	schedule_work(&policy->update);
1167 	return 0;
1168 }
1169 
1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1171 {
1172 	struct kobject *kobj;
1173 	struct completion *cmp;
1174 
1175 	down_write(&policy->rwsem);
1176 	cpufreq_stats_free_table(policy);
1177 	kobj = &policy->kobj;
1178 	cmp = &policy->kobj_unregister;
1179 	up_write(&policy->rwsem);
1180 	kobject_put(kobj);
1181 
1182 	/*
1183 	 * We need to make sure that the underlying kobj is
1184 	 * actually not referenced anymore by anybody before we
1185 	 * proceed with unloading.
1186 	 */
1187 	pr_debug("waiting for dropping of refcount\n");
1188 	wait_for_completion(cmp);
1189 	pr_debug("wait complete\n");
1190 }
1191 
1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1193 {
1194 	struct cpufreq_policy *policy;
1195 	struct device *dev = get_cpu_device(cpu);
1196 	int ret;
1197 
1198 	if (!dev)
1199 		return NULL;
1200 
1201 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1202 	if (!policy)
1203 		return NULL;
1204 
1205 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1206 		goto err_free_policy;
1207 
1208 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1209 		goto err_free_cpumask;
1210 
1211 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1212 		goto err_free_rcpumask;
1213 
1214 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1215 				   cpufreq_global_kobject, "policy%u", cpu);
1216 	if (ret) {
1217 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1218 		/*
1219 		 * The entire policy object will be freed below, but the extra
1220 		 * memory allocated for the kobject name needs to be freed by
1221 		 * releasing the kobject.
1222 		 */
1223 		kobject_put(&policy->kobj);
1224 		goto err_free_real_cpus;
1225 	}
1226 
1227 	freq_constraints_init(&policy->constraints);
1228 
1229 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1230 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1231 
1232 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1233 				    &policy->nb_min);
1234 	if (ret) {
1235 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1236 			ret, cpumask_pr_args(policy->cpus));
1237 		goto err_kobj_remove;
1238 	}
1239 
1240 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1241 				    &policy->nb_max);
1242 	if (ret) {
1243 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1244 			ret, cpumask_pr_args(policy->cpus));
1245 		goto err_min_qos_notifier;
1246 	}
1247 
1248 	INIT_LIST_HEAD(&policy->policy_list);
1249 	init_rwsem(&policy->rwsem);
1250 	spin_lock_init(&policy->transition_lock);
1251 	init_waitqueue_head(&policy->transition_wait);
1252 	init_completion(&policy->kobj_unregister);
1253 	INIT_WORK(&policy->update, handle_update);
1254 
1255 	policy->cpu = cpu;
1256 	return policy;
1257 
1258 err_min_qos_notifier:
1259 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1260 				 &policy->nb_min);
1261 err_kobj_remove:
1262 	cpufreq_policy_put_kobj(policy);
1263 err_free_real_cpus:
1264 	free_cpumask_var(policy->real_cpus);
1265 err_free_rcpumask:
1266 	free_cpumask_var(policy->related_cpus);
1267 err_free_cpumask:
1268 	free_cpumask_var(policy->cpus);
1269 err_free_policy:
1270 	kfree(policy);
1271 
1272 	return NULL;
1273 }
1274 
1275 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1276 {
1277 	unsigned long flags;
1278 	int cpu;
1279 
1280 	/* Remove policy from list */
1281 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1282 	list_del(&policy->policy_list);
1283 
1284 	for_each_cpu(cpu, policy->related_cpus)
1285 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1286 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1287 
1288 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1289 				 &policy->nb_max);
1290 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1291 				 &policy->nb_min);
1292 
1293 	/* Cancel any pending policy->update work before freeing the policy. */
1294 	cancel_work_sync(&policy->update);
1295 
1296 	if (policy->max_freq_req) {
1297 		/*
1298 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1299 		 * successfully adding max_freq_req request.
1300 		 */
1301 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1302 					     CPUFREQ_REMOVE_POLICY, policy);
1303 		freq_qos_remove_request(policy->max_freq_req);
1304 	}
1305 
1306 	freq_qos_remove_request(policy->min_freq_req);
1307 	kfree(policy->min_freq_req);
1308 
1309 	cpufreq_policy_put_kobj(policy);
1310 	free_cpumask_var(policy->real_cpus);
1311 	free_cpumask_var(policy->related_cpus);
1312 	free_cpumask_var(policy->cpus);
1313 	kfree(policy);
1314 }
1315 
1316 static int cpufreq_online(unsigned int cpu)
1317 {
1318 	struct cpufreq_policy *policy;
1319 	bool new_policy;
1320 	unsigned long flags;
1321 	unsigned int j;
1322 	int ret;
1323 
1324 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1325 
1326 	/* Check if this CPU already has a policy to manage it */
1327 	policy = per_cpu(cpufreq_cpu_data, cpu);
1328 	if (policy) {
1329 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1330 		if (!policy_is_inactive(policy))
1331 			return cpufreq_add_policy_cpu(policy, cpu);
1332 
1333 		/* This is the only online CPU for the policy.  Start over. */
1334 		new_policy = false;
1335 		down_write(&policy->rwsem);
1336 		policy->cpu = cpu;
1337 		policy->governor = NULL;
1338 		up_write(&policy->rwsem);
1339 	} else {
1340 		new_policy = true;
1341 		policy = cpufreq_policy_alloc(cpu);
1342 		if (!policy)
1343 			return -ENOMEM;
1344 	}
1345 
1346 	if (!new_policy && cpufreq_driver->online) {
1347 		ret = cpufreq_driver->online(policy);
1348 		if (ret) {
1349 			pr_debug("%s: %d: initialization failed\n", __func__,
1350 				 __LINE__);
1351 			goto out_exit_policy;
1352 		}
1353 
1354 		/* Recover policy->cpus using related_cpus */
1355 		cpumask_copy(policy->cpus, policy->related_cpus);
1356 	} else {
1357 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1358 
1359 		/*
1360 		 * Call driver. From then on the cpufreq must be able
1361 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1362 		 */
1363 		ret = cpufreq_driver->init(policy);
1364 		if (ret) {
1365 			pr_debug("%s: %d: initialization failed\n", __func__,
1366 				 __LINE__);
1367 			goto out_free_policy;
1368 		}
1369 
1370 		/*
1371 		 * The initialization has succeeded and the policy is online.
1372 		 * If there is a problem with its frequency table, take it
1373 		 * offline and drop it.
1374 		 */
1375 		ret = cpufreq_table_validate_and_sort(policy);
1376 		if (ret)
1377 			goto out_offline_policy;
1378 
1379 		/* related_cpus should at least include policy->cpus. */
1380 		cpumask_copy(policy->related_cpus, policy->cpus);
1381 	}
1382 
1383 	down_write(&policy->rwsem);
1384 	/*
1385 	 * affected cpus must always be the one, which are online. We aren't
1386 	 * managing offline cpus here.
1387 	 */
1388 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1389 
1390 	if (new_policy) {
1391 		for_each_cpu(j, policy->related_cpus) {
1392 			per_cpu(cpufreq_cpu_data, j) = policy;
1393 			add_cpu_dev_symlink(policy, j);
1394 		}
1395 
1396 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1397 					       GFP_KERNEL);
1398 		if (!policy->min_freq_req) {
1399 			ret = -ENOMEM;
1400 			goto out_destroy_policy;
1401 		}
1402 
1403 		ret = freq_qos_add_request(&policy->constraints,
1404 					   policy->min_freq_req, FREQ_QOS_MIN,
1405 					   policy->min);
1406 		if (ret < 0) {
1407 			/*
1408 			 * So we don't call freq_qos_remove_request() for an
1409 			 * uninitialized request.
1410 			 */
1411 			kfree(policy->min_freq_req);
1412 			policy->min_freq_req = NULL;
1413 			goto out_destroy_policy;
1414 		}
1415 
1416 		/*
1417 		 * This must be initialized right here to avoid calling
1418 		 * freq_qos_remove_request() on uninitialized request in case
1419 		 * of errors.
1420 		 */
1421 		policy->max_freq_req = policy->min_freq_req + 1;
1422 
1423 		ret = freq_qos_add_request(&policy->constraints,
1424 					   policy->max_freq_req, FREQ_QOS_MAX,
1425 					   policy->max);
1426 		if (ret < 0) {
1427 			policy->max_freq_req = NULL;
1428 			goto out_destroy_policy;
1429 		}
1430 
1431 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1432 				CPUFREQ_CREATE_POLICY, policy);
1433 	}
1434 
1435 	if (cpufreq_driver->get && has_target()) {
1436 		policy->cur = cpufreq_driver->get(policy->cpu);
1437 		if (!policy->cur) {
1438 			ret = -EIO;
1439 			pr_err("%s: ->get() failed\n", __func__);
1440 			goto out_destroy_policy;
1441 		}
1442 	}
1443 
1444 	/*
1445 	 * Sometimes boot loaders set CPU frequency to a value outside of
1446 	 * frequency table present with cpufreq core. In such cases CPU might be
1447 	 * unstable if it has to run on that frequency for long duration of time
1448 	 * and so its better to set it to a frequency which is specified in
1449 	 * freq-table. This also makes cpufreq stats inconsistent as
1450 	 * cpufreq-stats would fail to register because current frequency of CPU
1451 	 * isn't found in freq-table.
1452 	 *
1453 	 * Because we don't want this change to effect boot process badly, we go
1454 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1455 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1456 	 * is initialized to zero).
1457 	 *
1458 	 * We are passing target-freq as "policy->cur - 1" otherwise
1459 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1460 	 * equal to target-freq.
1461 	 */
1462 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1463 	    && has_target()) {
1464 		unsigned int old_freq = policy->cur;
1465 
1466 		/* Are we running at unknown frequency ? */
1467 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1468 		if (ret == -EINVAL) {
1469 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1470 						      CPUFREQ_RELATION_L);
1471 
1472 			/*
1473 			 * Reaching here after boot in a few seconds may not
1474 			 * mean that system will remain stable at "unknown"
1475 			 * frequency for longer duration. Hence, a BUG_ON().
1476 			 */
1477 			BUG_ON(ret);
1478 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1479 				__func__, policy->cpu, old_freq, policy->cur);
1480 		}
1481 	}
1482 
1483 	if (new_policy) {
1484 		ret = cpufreq_add_dev_interface(policy);
1485 		if (ret)
1486 			goto out_destroy_policy;
1487 
1488 		cpufreq_stats_create_table(policy);
1489 
1490 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1491 		list_add(&policy->policy_list, &cpufreq_policy_list);
1492 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1493 	}
1494 
1495 	ret = cpufreq_init_policy(policy);
1496 	if (ret) {
1497 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1498 		       __func__, cpu, ret);
1499 		goto out_destroy_policy;
1500 	}
1501 
1502 	up_write(&policy->rwsem);
1503 
1504 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1505 
1506 	/* Callback for handling stuff after policy is ready */
1507 	if (cpufreq_driver->ready)
1508 		cpufreq_driver->ready(policy);
1509 
1510 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1511 		policy->cdev = of_cpufreq_cooling_register(policy);
1512 
1513 	pr_debug("initialization complete\n");
1514 
1515 	return 0;
1516 
1517 out_destroy_policy:
1518 	for_each_cpu(j, policy->real_cpus)
1519 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1520 
1521 	up_write(&policy->rwsem);
1522 
1523 out_offline_policy:
1524 	if (cpufreq_driver->offline)
1525 		cpufreq_driver->offline(policy);
1526 
1527 out_exit_policy:
1528 	if (cpufreq_driver->exit)
1529 		cpufreq_driver->exit(policy);
1530 
1531 out_free_policy:
1532 	cpufreq_policy_free(policy);
1533 	return ret;
1534 }
1535 
1536 /**
1537  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1538  * @dev: CPU device.
1539  * @sif: Subsystem interface structure pointer (not used)
1540  */
1541 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1542 {
1543 	struct cpufreq_policy *policy;
1544 	unsigned cpu = dev->id;
1545 	int ret;
1546 
1547 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1548 
1549 	if (cpu_online(cpu)) {
1550 		ret = cpufreq_online(cpu);
1551 		if (ret)
1552 			return ret;
1553 	}
1554 
1555 	/* Create sysfs link on CPU registration */
1556 	policy = per_cpu(cpufreq_cpu_data, cpu);
1557 	if (policy)
1558 		add_cpu_dev_symlink(policy, cpu);
1559 
1560 	return 0;
1561 }
1562 
1563 static int cpufreq_offline(unsigned int cpu)
1564 {
1565 	struct cpufreq_policy *policy;
1566 	int ret;
1567 
1568 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1569 
1570 	policy = cpufreq_cpu_get_raw(cpu);
1571 	if (!policy) {
1572 		pr_debug("%s: No cpu_data found\n", __func__);
1573 		return 0;
1574 	}
1575 
1576 	down_write(&policy->rwsem);
1577 	if (has_target())
1578 		cpufreq_stop_governor(policy);
1579 
1580 	cpumask_clear_cpu(cpu, policy->cpus);
1581 
1582 	if (policy_is_inactive(policy)) {
1583 		if (has_target())
1584 			strncpy(policy->last_governor, policy->governor->name,
1585 				CPUFREQ_NAME_LEN);
1586 		else
1587 			policy->last_policy = policy->policy;
1588 	} else if (cpu == policy->cpu) {
1589 		/* Nominate new CPU */
1590 		policy->cpu = cpumask_any(policy->cpus);
1591 	}
1592 
1593 	/* Start governor again for active policy */
1594 	if (!policy_is_inactive(policy)) {
1595 		if (has_target()) {
1596 			ret = cpufreq_start_governor(policy);
1597 			if (ret)
1598 				pr_err("%s: Failed to start governor\n", __func__);
1599 		}
1600 
1601 		goto unlock;
1602 	}
1603 
1604 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1605 		cpufreq_cooling_unregister(policy->cdev);
1606 		policy->cdev = NULL;
1607 	}
1608 
1609 	if (cpufreq_driver->stop_cpu)
1610 		cpufreq_driver->stop_cpu(policy);
1611 
1612 	if (has_target())
1613 		cpufreq_exit_governor(policy);
1614 
1615 	/*
1616 	 * Perform the ->offline() during light-weight tear-down, as
1617 	 * that allows fast recovery when the CPU comes back.
1618 	 */
1619 	if (cpufreq_driver->offline) {
1620 		cpufreq_driver->offline(policy);
1621 	} else if (cpufreq_driver->exit) {
1622 		cpufreq_driver->exit(policy);
1623 		policy->freq_table = NULL;
1624 	}
1625 
1626 unlock:
1627 	up_write(&policy->rwsem);
1628 	return 0;
1629 }
1630 
1631 /*
1632  * cpufreq_remove_dev - remove a CPU device
1633  *
1634  * Removes the cpufreq interface for a CPU device.
1635  */
1636 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1637 {
1638 	unsigned int cpu = dev->id;
1639 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1640 
1641 	if (!policy)
1642 		return;
1643 
1644 	if (cpu_online(cpu))
1645 		cpufreq_offline(cpu);
1646 
1647 	cpumask_clear_cpu(cpu, policy->real_cpus);
1648 	remove_cpu_dev_symlink(policy, dev);
1649 
1650 	if (cpumask_empty(policy->real_cpus)) {
1651 		/* We did light-weight exit earlier, do full tear down now */
1652 		if (cpufreq_driver->offline)
1653 			cpufreq_driver->exit(policy);
1654 
1655 		cpufreq_policy_free(policy);
1656 	}
1657 }
1658 
1659 /**
1660  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1661  * @policy: Policy managing CPUs.
1662  * @new_freq: New CPU frequency.
1663  *
1664  * Adjust to the current frequency first and clean up later by either calling
1665  * cpufreq_update_policy(), or scheduling handle_update().
1666  */
1667 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1668 				unsigned int new_freq)
1669 {
1670 	struct cpufreq_freqs freqs;
1671 
1672 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1673 		 policy->cur, new_freq);
1674 
1675 	freqs.old = policy->cur;
1676 	freqs.new = new_freq;
1677 
1678 	cpufreq_freq_transition_begin(policy, &freqs);
1679 	cpufreq_freq_transition_end(policy, &freqs, 0);
1680 }
1681 
1682 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1683 {
1684 	unsigned int new_freq;
1685 
1686 	new_freq = cpufreq_driver->get(policy->cpu);
1687 	if (!new_freq)
1688 		return 0;
1689 
1690 	/*
1691 	 * If fast frequency switching is used with the given policy, the check
1692 	 * against policy->cur is pointless, so skip it in that case.
1693 	 */
1694 	if (policy->fast_switch_enabled || !has_target())
1695 		return new_freq;
1696 
1697 	if (policy->cur != new_freq) {
1698 		cpufreq_out_of_sync(policy, new_freq);
1699 		if (update)
1700 			schedule_work(&policy->update);
1701 	}
1702 
1703 	return new_freq;
1704 }
1705 
1706 /**
1707  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1708  * @cpu: CPU number
1709  *
1710  * This is the last known freq, without actually getting it from the driver.
1711  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1712  */
1713 unsigned int cpufreq_quick_get(unsigned int cpu)
1714 {
1715 	struct cpufreq_policy *policy;
1716 	unsigned int ret_freq = 0;
1717 	unsigned long flags;
1718 
1719 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1720 
1721 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1722 		ret_freq = cpufreq_driver->get(cpu);
1723 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1724 		return ret_freq;
1725 	}
1726 
1727 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1728 
1729 	policy = cpufreq_cpu_get(cpu);
1730 	if (policy) {
1731 		ret_freq = policy->cur;
1732 		cpufreq_cpu_put(policy);
1733 	}
1734 
1735 	return ret_freq;
1736 }
1737 EXPORT_SYMBOL(cpufreq_quick_get);
1738 
1739 /**
1740  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1741  * @cpu: CPU number
1742  *
1743  * Just return the max possible frequency for a given CPU.
1744  */
1745 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1746 {
1747 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1748 	unsigned int ret_freq = 0;
1749 
1750 	if (policy) {
1751 		ret_freq = policy->max;
1752 		cpufreq_cpu_put(policy);
1753 	}
1754 
1755 	return ret_freq;
1756 }
1757 EXPORT_SYMBOL(cpufreq_quick_get_max);
1758 
1759 /**
1760  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1761  * @cpu: CPU number
1762  *
1763  * The default return value is the max_freq field of cpuinfo.
1764  */
1765 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1766 {
1767 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1768 	unsigned int ret_freq = 0;
1769 
1770 	if (policy) {
1771 		ret_freq = policy->cpuinfo.max_freq;
1772 		cpufreq_cpu_put(policy);
1773 	}
1774 
1775 	return ret_freq;
1776 }
1777 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1778 
1779 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1780 {
1781 	if (unlikely(policy_is_inactive(policy)))
1782 		return 0;
1783 
1784 	return cpufreq_verify_current_freq(policy, true);
1785 }
1786 
1787 /**
1788  * cpufreq_get - get the current CPU frequency (in kHz)
1789  * @cpu: CPU number
1790  *
1791  * Get the CPU current (static) CPU frequency
1792  */
1793 unsigned int cpufreq_get(unsigned int cpu)
1794 {
1795 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1796 	unsigned int ret_freq = 0;
1797 
1798 	if (policy) {
1799 		down_read(&policy->rwsem);
1800 		if (cpufreq_driver->get)
1801 			ret_freq = __cpufreq_get(policy);
1802 		up_read(&policy->rwsem);
1803 
1804 		cpufreq_cpu_put(policy);
1805 	}
1806 
1807 	return ret_freq;
1808 }
1809 EXPORT_SYMBOL(cpufreq_get);
1810 
1811 static struct subsys_interface cpufreq_interface = {
1812 	.name		= "cpufreq",
1813 	.subsys		= &cpu_subsys,
1814 	.add_dev	= cpufreq_add_dev,
1815 	.remove_dev	= cpufreq_remove_dev,
1816 };
1817 
1818 /*
1819  * In case platform wants some specific frequency to be configured
1820  * during suspend..
1821  */
1822 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1823 {
1824 	int ret;
1825 
1826 	if (!policy->suspend_freq) {
1827 		pr_debug("%s: suspend_freq not defined\n", __func__);
1828 		return 0;
1829 	}
1830 
1831 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1832 			policy->suspend_freq);
1833 
1834 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1835 			CPUFREQ_RELATION_H);
1836 	if (ret)
1837 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1838 				__func__, policy->suspend_freq, ret);
1839 
1840 	return ret;
1841 }
1842 EXPORT_SYMBOL(cpufreq_generic_suspend);
1843 
1844 /**
1845  * cpufreq_suspend() - Suspend CPUFreq governors.
1846  *
1847  * Called during system wide Suspend/Hibernate cycles for suspending governors
1848  * as some platforms can't change frequency after this point in suspend cycle.
1849  * Because some of the devices (like: i2c, regulators, etc) they use for
1850  * changing frequency are suspended quickly after this point.
1851  */
1852 void cpufreq_suspend(void)
1853 {
1854 	struct cpufreq_policy *policy;
1855 
1856 	if (!cpufreq_driver)
1857 		return;
1858 
1859 	if (!has_target() && !cpufreq_driver->suspend)
1860 		goto suspend;
1861 
1862 	pr_debug("%s: Suspending Governors\n", __func__);
1863 
1864 	for_each_active_policy(policy) {
1865 		if (has_target()) {
1866 			down_write(&policy->rwsem);
1867 			cpufreq_stop_governor(policy);
1868 			up_write(&policy->rwsem);
1869 		}
1870 
1871 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1872 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1873 				cpufreq_driver->name);
1874 	}
1875 
1876 suspend:
1877 	cpufreq_suspended = true;
1878 }
1879 
1880 /**
1881  * cpufreq_resume() - Resume CPUFreq governors.
1882  *
1883  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1884  * are suspended with cpufreq_suspend().
1885  */
1886 void cpufreq_resume(void)
1887 {
1888 	struct cpufreq_policy *policy;
1889 	int ret;
1890 
1891 	if (!cpufreq_driver)
1892 		return;
1893 
1894 	if (unlikely(!cpufreq_suspended))
1895 		return;
1896 
1897 	cpufreq_suspended = false;
1898 
1899 	if (!has_target() && !cpufreq_driver->resume)
1900 		return;
1901 
1902 	pr_debug("%s: Resuming Governors\n", __func__);
1903 
1904 	for_each_active_policy(policy) {
1905 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1906 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1907 				policy);
1908 		} else if (has_target()) {
1909 			down_write(&policy->rwsem);
1910 			ret = cpufreq_start_governor(policy);
1911 			up_write(&policy->rwsem);
1912 
1913 			if (ret)
1914 				pr_err("%s: Failed to start governor for policy: %p\n",
1915 				       __func__, policy);
1916 		}
1917 	}
1918 }
1919 
1920 /**
1921  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1922  * @flags: Flags to test against the current cpufreq driver's flags.
1923  *
1924  * Assumes that the driver is there, so callers must ensure that this is the
1925  * case.
1926  */
1927 bool cpufreq_driver_test_flags(u16 flags)
1928 {
1929 	return !!(cpufreq_driver->flags & flags);
1930 }
1931 
1932 /**
1933  * cpufreq_get_current_driver - Return the current driver's name.
1934  *
1935  * Return the name string of the currently registered cpufreq driver or NULL if
1936  * none.
1937  */
1938 const char *cpufreq_get_current_driver(void)
1939 {
1940 	if (cpufreq_driver)
1941 		return cpufreq_driver->name;
1942 
1943 	return NULL;
1944 }
1945 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1946 
1947 /**
1948  * cpufreq_get_driver_data - Return current driver data.
1949  *
1950  * Return the private data of the currently registered cpufreq driver, or NULL
1951  * if no cpufreq driver has been registered.
1952  */
1953 void *cpufreq_get_driver_data(void)
1954 {
1955 	if (cpufreq_driver)
1956 		return cpufreq_driver->driver_data;
1957 
1958 	return NULL;
1959 }
1960 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1961 
1962 /*********************************************************************
1963  *                     NOTIFIER LISTS INTERFACE                      *
1964  *********************************************************************/
1965 
1966 /**
1967  * cpufreq_register_notifier - Register a notifier with cpufreq.
1968  * @nb: notifier function to register.
1969  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1970  *
1971  * Add a notifier to one of two lists: either a list of notifiers that run on
1972  * clock rate changes (once before and once after every transition), or a list
1973  * of notifiers that ron on cpufreq policy changes.
1974  *
1975  * This function may sleep and it has the same return values as
1976  * blocking_notifier_chain_register().
1977  */
1978 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1979 {
1980 	int ret;
1981 
1982 	if (cpufreq_disabled())
1983 		return -EINVAL;
1984 
1985 	switch (list) {
1986 	case CPUFREQ_TRANSITION_NOTIFIER:
1987 		mutex_lock(&cpufreq_fast_switch_lock);
1988 
1989 		if (cpufreq_fast_switch_count > 0) {
1990 			mutex_unlock(&cpufreq_fast_switch_lock);
1991 			return -EBUSY;
1992 		}
1993 		ret = srcu_notifier_chain_register(
1994 				&cpufreq_transition_notifier_list, nb);
1995 		if (!ret)
1996 			cpufreq_fast_switch_count--;
1997 
1998 		mutex_unlock(&cpufreq_fast_switch_lock);
1999 		break;
2000 	case CPUFREQ_POLICY_NOTIFIER:
2001 		ret = blocking_notifier_chain_register(
2002 				&cpufreq_policy_notifier_list, nb);
2003 		break;
2004 	default:
2005 		ret = -EINVAL;
2006 	}
2007 
2008 	return ret;
2009 }
2010 EXPORT_SYMBOL(cpufreq_register_notifier);
2011 
2012 /**
2013  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2014  * @nb: notifier block to be unregistered.
2015  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2016  *
2017  * Remove a notifier from one of the cpufreq notifier lists.
2018  *
2019  * This function may sleep and it has the same return values as
2020  * blocking_notifier_chain_unregister().
2021  */
2022 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2023 {
2024 	int ret;
2025 
2026 	if (cpufreq_disabled())
2027 		return -EINVAL;
2028 
2029 	switch (list) {
2030 	case CPUFREQ_TRANSITION_NOTIFIER:
2031 		mutex_lock(&cpufreq_fast_switch_lock);
2032 
2033 		ret = srcu_notifier_chain_unregister(
2034 				&cpufreq_transition_notifier_list, nb);
2035 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2036 			cpufreq_fast_switch_count++;
2037 
2038 		mutex_unlock(&cpufreq_fast_switch_lock);
2039 		break;
2040 	case CPUFREQ_POLICY_NOTIFIER:
2041 		ret = blocking_notifier_chain_unregister(
2042 				&cpufreq_policy_notifier_list, nb);
2043 		break;
2044 	default:
2045 		ret = -EINVAL;
2046 	}
2047 
2048 	return ret;
2049 }
2050 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2051 
2052 
2053 /*********************************************************************
2054  *                              GOVERNORS                            *
2055  *********************************************************************/
2056 
2057 /**
2058  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2059  * @policy: cpufreq policy to switch the frequency for.
2060  * @target_freq: New frequency to set (may be approximate).
2061  *
2062  * Carry out a fast frequency switch without sleeping.
2063  *
2064  * The driver's ->fast_switch() callback invoked by this function must be
2065  * suitable for being called from within RCU-sched read-side critical sections
2066  * and it is expected to select the minimum available frequency greater than or
2067  * equal to @target_freq (CPUFREQ_RELATION_L).
2068  *
2069  * This function must not be called if policy->fast_switch_enabled is unset.
2070  *
2071  * Governors calling this function must guarantee that it will never be invoked
2072  * twice in parallel for the same policy and that it will never be called in
2073  * parallel with either ->target() or ->target_index() for the same policy.
2074  *
2075  * Returns the actual frequency set for the CPU.
2076  *
2077  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2078  * error condition, the hardware configuration must be preserved.
2079  */
2080 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2081 					unsigned int target_freq)
2082 {
2083 	unsigned int freq;
2084 	int cpu;
2085 
2086 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2087 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2088 
2089 	if (!freq)
2090 		return 0;
2091 
2092 	policy->cur = freq;
2093 	arch_set_freq_scale(policy->related_cpus, freq,
2094 			    policy->cpuinfo.max_freq);
2095 	cpufreq_stats_record_transition(policy, freq);
2096 
2097 	if (trace_cpu_frequency_enabled()) {
2098 		for_each_cpu(cpu, policy->cpus)
2099 			trace_cpu_frequency(freq, cpu);
2100 	}
2101 
2102 	return freq;
2103 }
2104 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2105 
2106 /**
2107  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2108  * @cpu: Target CPU.
2109  * @min_perf: Minimum (required) performance level (units of @capacity).
2110  * @target_perf: Target (desired) performance level (units of @capacity).
2111  * @capacity: Capacity of the target CPU.
2112  *
2113  * Carry out a fast performance level switch of @cpu without sleeping.
2114  *
2115  * The driver's ->adjust_perf() callback invoked by this function must be
2116  * suitable for being called from within RCU-sched read-side critical sections
2117  * and it is expected to select a suitable performance level equal to or above
2118  * @min_perf and preferably equal to or below @target_perf.
2119  *
2120  * This function must not be called if policy->fast_switch_enabled is unset.
2121  *
2122  * Governors calling this function must guarantee that it will never be invoked
2123  * twice in parallel for the same CPU and that it will never be called in
2124  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2125  * the same CPU.
2126  */
2127 void cpufreq_driver_adjust_perf(unsigned int cpu,
2128 				 unsigned long min_perf,
2129 				 unsigned long target_perf,
2130 				 unsigned long capacity)
2131 {
2132 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2133 }
2134 
2135 /**
2136  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2137  *
2138  * Return 'true' if the ->adjust_perf callback is present for the
2139  * current driver or 'false' otherwise.
2140  */
2141 bool cpufreq_driver_has_adjust_perf(void)
2142 {
2143 	return !!cpufreq_driver->adjust_perf;
2144 }
2145 
2146 /* Must set freqs->new to intermediate frequency */
2147 static int __target_intermediate(struct cpufreq_policy *policy,
2148 				 struct cpufreq_freqs *freqs, int index)
2149 {
2150 	int ret;
2151 
2152 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2153 
2154 	/* We don't need to switch to intermediate freq */
2155 	if (!freqs->new)
2156 		return 0;
2157 
2158 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2159 		 __func__, policy->cpu, freqs->old, freqs->new);
2160 
2161 	cpufreq_freq_transition_begin(policy, freqs);
2162 	ret = cpufreq_driver->target_intermediate(policy, index);
2163 	cpufreq_freq_transition_end(policy, freqs, ret);
2164 
2165 	if (ret)
2166 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2167 		       __func__, ret);
2168 
2169 	return ret;
2170 }
2171 
2172 static int __target_index(struct cpufreq_policy *policy, int index)
2173 {
2174 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2175 	unsigned int restore_freq, intermediate_freq = 0;
2176 	unsigned int newfreq = policy->freq_table[index].frequency;
2177 	int retval = -EINVAL;
2178 	bool notify;
2179 
2180 	if (newfreq == policy->cur)
2181 		return 0;
2182 
2183 	/* Save last value to restore later on errors */
2184 	restore_freq = policy->cur;
2185 
2186 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2187 	if (notify) {
2188 		/* Handle switching to intermediate frequency */
2189 		if (cpufreq_driver->get_intermediate) {
2190 			retval = __target_intermediate(policy, &freqs, index);
2191 			if (retval)
2192 				return retval;
2193 
2194 			intermediate_freq = freqs.new;
2195 			/* Set old freq to intermediate */
2196 			if (intermediate_freq)
2197 				freqs.old = freqs.new;
2198 		}
2199 
2200 		freqs.new = newfreq;
2201 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2202 			 __func__, policy->cpu, freqs.old, freqs.new);
2203 
2204 		cpufreq_freq_transition_begin(policy, &freqs);
2205 	}
2206 
2207 	retval = cpufreq_driver->target_index(policy, index);
2208 	if (retval)
2209 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2210 		       retval);
2211 
2212 	if (notify) {
2213 		cpufreq_freq_transition_end(policy, &freqs, retval);
2214 
2215 		/*
2216 		 * Failed after setting to intermediate freq? Driver should have
2217 		 * reverted back to initial frequency and so should we. Check
2218 		 * here for intermediate_freq instead of get_intermediate, in
2219 		 * case we haven't switched to intermediate freq at all.
2220 		 */
2221 		if (unlikely(retval && intermediate_freq)) {
2222 			freqs.old = intermediate_freq;
2223 			freqs.new = restore_freq;
2224 			cpufreq_freq_transition_begin(policy, &freqs);
2225 			cpufreq_freq_transition_end(policy, &freqs, 0);
2226 		}
2227 	}
2228 
2229 	return retval;
2230 }
2231 
2232 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2233 			    unsigned int target_freq,
2234 			    unsigned int relation)
2235 {
2236 	unsigned int old_target_freq = target_freq;
2237 	int index;
2238 
2239 	if (cpufreq_disabled())
2240 		return -ENODEV;
2241 
2242 	/* Make sure that target_freq is within supported range */
2243 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2244 
2245 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2246 		 policy->cpu, target_freq, relation, old_target_freq);
2247 
2248 	/*
2249 	 * This might look like a redundant call as we are checking it again
2250 	 * after finding index. But it is left intentionally for cases where
2251 	 * exactly same freq is called again and so we can save on few function
2252 	 * calls.
2253 	 */
2254 	if (target_freq == policy->cur &&
2255 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2256 		return 0;
2257 
2258 	if (cpufreq_driver->target)
2259 		return cpufreq_driver->target(policy, target_freq, relation);
2260 
2261 	if (!cpufreq_driver->target_index)
2262 		return -EINVAL;
2263 
2264 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2265 
2266 	return __target_index(policy, index);
2267 }
2268 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2269 
2270 int cpufreq_driver_target(struct cpufreq_policy *policy,
2271 			  unsigned int target_freq,
2272 			  unsigned int relation)
2273 {
2274 	int ret;
2275 
2276 	down_write(&policy->rwsem);
2277 
2278 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2279 
2280 	up_write(&policy->rwsem);
2281 
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2285 
2286 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2287 {
2288 	return NULL;
2289 }
2290 
2291 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2292 {
2293 	int ret;
2294 
2295 	/* Don't start any governor operations if we are entering suspend */
2296 	if (cpufreq_suspended)
2297 		return 0;
2298 	/*
2299 	 * Governor might not be initiated here if ACPI _PPC changed
2300 	 * notification happened, so check it.
2301 	 */
2302 	if (!policy->governor)
2303 		return -EINVAL;
2304 
2305 	/* Platform doesn't want dynamic frequency switching ? */
2306 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2307 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2308 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2309 
2310 		if (gov) {
2311 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2312 				policy->governor->name, gov->name);
2313 			policy->governor = gov;
2314 		} else {
2315 			return -EINVAL;
2316 		}
2317 	}
2318 
2319 	if (!try_module_get(policy->governor->owner))
2320 		return -EINVAL;
2321 
2322 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2323 
2324 	if (policy->governor->init) {
2325 		ret = policy->governor->init(policy);
2326 		if (ret) {
2327 			module_put(policy->governor->owner);
2328 			return ret;
2329 		}
2330 	}
2331 
2332 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2333 
2334 	return 0;
2335 }
2336 
2337 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2338 {
2339 	if (cpufreq_suspended || !policy->governor)
2340 		return;
2341 
2342 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2343 
2344 	if (policy->governor->exit)
2345 		policy->governor->exit(policy);
2346 
2347 	module_put(policy->governor->owner);
2348 }
2349 
2350 int cpufreq_start_governor(struct cpufreq_policy *policy)
2351 {
2352 	int ret;
2353 
2354 	if (cpufreq_suspended)
2355 		return 0;
2356 
2357 	if (!policy->governor)
2358 		return -EINVAL;
2359 
2360 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2361 
2362 	if (cpufreq_driver->get)
2363 		cpufreq_verify_current_freq(policy, false);
2364 
2365 	if (policy->governor->start) {
2366 		ret = policy->governor->start(policy);
2367 		if (ret)
2368 			return ret;
2369 	}
2370 
2371 	if (policy->governor->limits)
2372 		policy->governor->limits(policy);
2373 
2374 	return 0;
2375 }
2376 
2377 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2378 {
2379 	if (cpufreq_suspended || !policy->governor)
2380 		return;
2381 
2382 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2383 
2384 	if (policy->governor->stop)
2385 		policy->governor->stop(policy);
2386 }
2387 
2388 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2389 {
2390 	if (cpufreq_suspended || !policy->governor)
2391 		return;
2392 
2393 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2394 
2395 	if (policy->governor->limits)
2396 		policy->governor->limits(policy);
2397 }
2398 
2399 int cpufreq_register_governor(struct cpufreq_governor *governor)
2400 {
2401 	int err;
2402 
2403 	if (!governor)
2404 		return -EINVAL;
2405 
2406 	if (cpufreq_disabled())
2407 		return -ENODEV;
2408 
2409 	mutex_lock(&cpufreq_governor_mutex);
2410 
2411 	err = -EBUSY;
2412 	if (!find_governor(governor->name)) {
2413 		err = 0;
2414 		list_add(&governor->governor_list, &cpufreq_governor_list);
2415 	}
2416 
2417 	mutex_unlock(&cpufreq_governor_mutex);
2418 	return err;
2419 }
2420 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2421 
2422 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2423 {
2424 	struct cpufreq_policy *policy;
2425 	unsigned long flags;
2426 
2427 	if (!governor)
2428 		return;
2429 
2430 	if (cpufreq_disabled())
2431 		return;
2432 
2433 	/* clear last_governor for all inactive policies */
2434 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2435 	for_each_inactive_policy(policy) {
2436 		if (!strcmp(policy->last_governor, governor->name)) {
2437 			policy->governor = NULL;
2438 			strcpy(policy->last_governor, "\0");
2439 		}
2440 	}
2441 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2442 
2443 	mutex_lock(&cpufreq_governor_mutex);
2444 	list_del(&governor->governor_list);
2445 	mutex_unlock(&cpufreq_governor_mutex);
2446 }
2447 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2448 
2449 
2450 /*********************************************************************
2451  *                          POLICY INTERFACE                         *
2452  *********************************************************************/
2453 
2454 /**
2455  * cpufreq_get_policy - get the current cpufreq_policy
2456  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2457  *	is written
2458  * @cpu: CPU to find the policy for
2459  *
2460  * Reads the current cpufreq policy.
2461  */
2462 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2463 {
2464 	struct cpufreq_policy *cpu_policy;
2465 	if (!policy)
2466 		return -EINVAL;
2467 
2468 	cpu_policy = cpufreq_cpu_get(cpu);
2469 	if (!cpu_policy)
2470 		return -EINVAL;
2471 
2472 	memcpy(policy, cpu_policy, sizeof(*policy));
2473 
2474 	cpufreq_cpu_put(cpu_policy);
2475 	return 0;
2476 }
2477 EXPORT_SYMBOL(cpufreq_get_policy);
2478 
2479 /**
2480  * cpufreq_set_policy - Modify cpufreq policy parameters.
2481  * @policy: Policy object to modify.
2482  * @new_gov: Policy governor pointer.
2483  * @new_pol: Policy value (for drivers with built-in governors).
2484  *
2485  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2486  * limits to be set for the policy, update @policy with the verified limits
2487  * values and either invoke the driver's ->setpolicy() callback (if present) or
2488  * carry out a governor update for @policy.  That is, run the current governor's
2489  * ->limits() callback (if @new_gov points to the same object as the one in
2490  * @policy) or replace the governor for @policy with @new_gov.
2491  *
2492  * The cpuinfo part of @policy is not updated by this function.
2493  */
2494 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2495 			      struct cpufreq_governor *new_gov,
2496 			      unsigned int new_pol)
2497 {
2498 	struct cpufreq_policy_data new_data;
2499 	struct cpufreq_governor *old_gov;
2500 	int ret;
2501 
2502 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2503 	new_data.freq_table = policy->freq_table;
2504 	new_data.cpu = policy->cpu;
2505 	/*
2506 	 * PM QoS framework collects all the requests from users and provide us
2507 	 * the final aggregated value here.
2508 	 */
2509 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2510 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2511 
2512 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2513 		 new_data.cpu, new_data.min, new_data.max);
2514 
2515 	/*
2516 	 * Verify that the CPU speed can be set within these limits and make sure
2517 	 * that min <= max.
2518 	 */
2519 	ret = cpufreq_driver->verify(&new_data);
2520 	if (ret)
2521 		return ret;
2522 
2523 	policy->min = new_data.min;
2524 	policy->max = new_data.max;
2525 	trace_cpu_frequency_limits(policy);
2526 
2527 	policy->cached_target_freq = UINT_MAX;
2528 
2529 	pr_debug("new min and max freqs are %u - %u kHz\n",
2530 		 policy->min, policy->max);
2531 
2532 	if (cpufreq_driver->setpolicy) {
2533 		policy->policy = new_pol;
2534 		pr_debug("setting range\n");
2535 		return cpufreq_driver->setpolicy(policy);
2536 	}
2537 
2538 	if (new_gov == policy->governor) {
2539 		pr_debug("governor limits update\n");
2540 		cpufreq_governor_limits(policy);
2541 		return 0;
2542 	}
2543 
2544 	pr_debug("governor switch\n");
2545 
2546 	/* save old, working values */
2547 	old_gov = policy->governor;
2548 	/* end old governor */
2549 	if (old_gov) {
2550 		cpufreq_stop_governor(policy);
2551 		cpufreq_exit_governor(policy);
2552 	}
2553 
2554 	/* start new governor */
2555 	policy->governor = new_gov;
2556 	ret = cpufreq_init_governor(policy);
2557 	if (!ret) {
2558 		ret = cpufreq_start_governor(policy);
2559 		if (!ret) {
2560 			pr_debug("governor change\n");
2561 			sched_cpufreq_governor_change(policy, old_gov);
2562 			return 0;
2563 		}
2564 		cpufreq_exit_governor(policy);
2565 	}
2566 
2567 	/* new governor failed, so re-start old one */
2568 	pr_debug("starting governor %s failed\n", policy->governor->name);
2569 	if (old_gov) {
2570 		policy->governor = old_gov;
2571 		if (cpufreq_init_governor(policy))
2572 			policy->governor = NULL;
2573 		else
2574 			cpufreq_start_governor(policy);
2575 	}
2576 
2577 	return ret;
2578 }
2579 
2580 /**
2581  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2582  * @cpu: CPU to re-evaluate the policy for.
2583  *
2584  * Update the current frequency for the cpufreq policy of @cpu and use
2585  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2586  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2587  * for the policy in question, among other things.
2588  */
2589 void cpufreq_update_policy(unsigned int cpu)
2590 {
2591 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2592 
2593 	if (!policy)
2594 		return;
2595 
2596 	/*
2597 	 * BIOS might change freq behind our back
2598 	 * -> ask driver for current freq and notify governors about a change
2599 	 */
2600 	if (cpufreq_driver->get && has_target() &&
2601 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2602 		goto unlock;
2603 
2604 	refresh_frequency_limits(policy);
2605 
2606 unlock:
2607 	cpufreq_cpu_release(policy);
2608 }
2609 EXPORT_SYMBOL(cpufreq_update_policy);
2610 
2611 /**
2612  * cpufreq_update_limits - Update policy limits for a given CPU.
2613  * @cpu: CPU to update the policy limits for.
2614  *
2615  * Invoke the driver's ->update_limits callback if present or call
2616  * cpufreq_update_policy() for @cpu.
2617  */
2618 void cpufreq_update_limits(unsigned int cpu)
2619 {
2620 	if (cpufreq_driver->update_limits)
2621 		cpufreq_driver->update_limits(cpu);
2622 	else
2623 		cpufreq_update_policy(cpu);
2624 }
2625 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2626 
2627 /*********************************************************************
2628  *               BOOST						     *
2629  *********************************************************************/
2630 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2631 {
2632 	int ret;
2633 
2634 	if (!policy->freq_table)
2635 		return -ENXIO;
2636 
2637 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2638 	if (ret) {
2639 		pr_err("%s: Policy frequency update failed\n", __func__);
2640 		return ret;
2641 	}
2642 
2643 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2644 	if (ret < 0)
2645 		return ret;
2646 
2647 	return 0;
2648 }
2649 
2650 int cpufreq_boost_trigger_state(int state)
2651 {
2652 	struct cpufreq_policy *policy;
2653 	unsigned long flags;
2654 	int ret = 0;
2655 
2656 	if (cpufreq_driver->boost_enabled == state)
2657 		return 0;
2658 
2659 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2660 	cpufreq_driver->boost_enabled = state;
2661 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2662 
2663 	get_online_cpus();
2664 	for_each_active_policy(policy) {
2665 		ret = cpufreq_driver->set_boost(policy, state);
2666 		if (ret)
2667 			goto err_reset_state;
2668 	}
2669 	put_online_cpus();
2670 
2671 	return 0;
2672 
2673 err_reset_state:
2674 	put_online_cpus();
2675 
2676 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2677 	cpufreq_driver->boost_enabled = !state;
2678 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2679 
2680 	pr_err("%s: Cannot %s BOOST\n",
2681 	       __func__, state ? "enable" : "disable");
2682 
2683 	return ret;
2684 }
2685 
2686 static bool cpufreq_boost_supported(void)
2687 {
2688 	return cpufreq_driver->set_boost;
2689 }
2690 
2691 static int create_boost_sysfs_file(void)
2692 {
2693 	int ret;
2694 
2695 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2696 	if (ret)
2697 		pr_err("%s: cannot register global BOOST sysfs file\n",
2698 		       __func__);
2699 
2700 	return ret;
2701 }
2702 
2703 static void remove_boost_sysfs_file(void)
2704 {
2705 	if (cpufreq_boost_supported())
2706 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2707 }
2708 
2709 int cpufreq_enable_boost_support(void)
2710 {
2711 	if (!cpufreq_driver)
2712 		return -EINVAL;
2713 
2714 	if (cpufreq_boost_supported())
2715 		return 0;
2716 
2717 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2718 
2719 	/* This will get removed on driver unregister */
2720 	return create_boost_sysfs_file();
2721 }
2722 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2723 
2724 int cpufreq_boost_enabled(void)
2725 {
2726 	return cpufreq_driver->boost_enabled;
2727 }
2728 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2729 
2730 /*********************************************************************
2731  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2732  *********************************************************************/
2733 static enum cpuhp_state hp_online;
2734 
2735 static int cpuhp_cpufreq_online(unsigned int cpu)
2736 {
2737 	cpufreq_online(cpu);
2738 
2739 	return 0;
2740 }
2741 
2742 static int cpuhp_cpufreq_offline(unsigned int cpu)
2743 {
2744 	cpufreq_offline(cpu);
2745 
2746 	return 0;
2747 }
2748 
2749 /**
2750  * cpufreq_register_driver - register a CPU Frequency driver
2751  * @driver_data: A struct cpufreq_driver containing the values#
2752  * submitted by the CPU Frequency driver.
2753  *
2754  * Registers a CPU Frequency driver to this core code. This code
2755  * returns zero on success, -EEXIST when another driver got here first
2756  * (and isn't unregistered in the meantime).
2757  *
2758  */
2759 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2760 {
2761 	unsigned long flags;
2762 	int ret;
2763 
2764 	if (cpufreq_disabled())
2765 		return -ENODEV;
2766 
2767 	/*
2768 	 * The cpufreq core depends heavily on the availability of device
2769 	 * structure, make sure they are available before proceeding further.
2770 	 */
2771 	if (!get_cpu_device(0))
2772 		return -EPROBE_DEFER;
2773 
2774 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2775 	    !(driver_data->setpolicy || driver_data->target_index ||
2776 		    driver_data->target) ||
2777 	     (driver_data->setpolicy && (driver_data->target_index ||
2778 		    driver_data->target)) ||
2779 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2780 	     (!driver_data->online != !driver_data->offline))
2781 		return -EINVAL;
2782 
2783 	pr_debug("trying to register driver %s\n", driver_data->name);
2784 
2785 	/* Protect against concurrent CPU online/offline. */
2786 	cpus_read_lock();
2787 
2788 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2789 	if (cpufreq_driver) {
2790 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2791 		ret = -EEXIST;
2792 		goto out;
2793 	}
2794 	cpufreq_driver = driver_data;
2795 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2796 
2797 	/*
2798 	 * Mark support for the scheduler's frequency invariance engine for
2799 	 * drivers that implement target(), target_index() or fast_switch().
2800 	 */
2801 	if (!cpufreq_driver->setpolicy) {
2802 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2803 		pr_debug("supports frequency invariance");
2804 	}
2805 
2806 	if (driver_data->setpolicy)
2807 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2808 
2809 	if (cpufreq_boost_supported()) {
2810 		ret = create_boost_sysfs_file();
2811 		if (ret)
2812 			goto err_null_driver;
2813 	}
2814 
2815 	ret = subsys_interface_register(&cpufreq_interface);
2816 	if (ret)
2817 		goto err_boost_unreg;
2818 
2819 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2820 		/* if all ->init() calls failed, unregister */
2821 		ret = -ENODEV;
2822 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2823 			 driver_data->name);
2824 		goto err_if_unreg;
2825 	}
2826 
2827 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2828 						   "cpufreq:online",
2829 						   cpuhp_cpufreq_online,
2830 						   cpuhp_cpufreq_offline);
2831 	if (ret < 0)
2832 		goto err_if_unreg;
2833 	hp_online = ret;
2834 	ret = 0;
2835 
2836 	pr_debug("driver %s up and running\n", driver_data->name);
2837 	goto out;
2838 
2839 err_if_unreg:
2840 	subsys_interface_unregister(&cpufreq_interface);
2841 err_boost_unreg:
2842 	remove_boost_sysfs_file();
2843 err_null_driver:
2844 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2845 	cpufreq_driver = NULL;
2846 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2847 out:
2848 	cpus_read_unlock();
2849 	return ret;
2850 }
2851 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2852 
2853 /*
2854  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2855  *
2856  * Unregister the current CPUFreq driver. Only call this if you have
2857  * the right to do so, i.e. if you have succeeded in initialising before!
2858  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2859  * currently not initialised.
2860  */
2861 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2862 {
2863 	unsigned long flags;
2864 
2865 	if (!cpufreq_driver || (driver != cpufreq_driver))
2866 		return -EINVAL;
2867 
2868 	pr_debug("unregistering driver %s\n", driver->name);
2869 
2870 	/* Protect against concurrent cpu hotplug */
2871 	cpus_read_lock();
2872 	subsys_interface_unregister(&cpufreq_interface);
2873 	remove_boost_sysfs_file();
2874 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2875 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2876 
2877 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2878 
2879 	cpufreq_driver = NULL;
2880 
2881 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2882 	cpus_read_unlock();
2883 
2884 	return 0;
2885 }
2886 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2887 
2888 static int __init cpufreq_core_init(void)
2889 {
2890 	struct cpufreq_governor *gov = cpufreq_default_governor();
2891 
2892 	if (cpufreq_disabled())
2893 		return -ENODEV;
2894 
2895 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2896 	BUG_ON(!cpufreq_global_kobject);
2897 
2898 	if (!strlen(default_governor))
2899 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2900 
2901 	return 0;
2902 }
2903 module_param(off, int, 0444);
2904 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2905 core_initcall(cpufreq_core_init);
2906