1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 /* Iterate over governors */ 46 static LIST_HEAD(cpufreq_governor_list); 47 #define for_each_governor(__governor) \ 48 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 49 50 static char default_governor[CPUFREQ_NAME_LEN]; 51 52 /* 53 * The "cpufreq driver" - the arch- or hardware-dependent low 54 * level driver of CPUFreq support, and its spinlock. This lock 55 * also protects the cpufreq_cpu_data array. 56 */ 57 static struct cpufreq_driver *cpufreq_driver; 58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 59 static DEFINE_RWLOCK(cpufreq_driver_lock); 60 61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 62 bool cpufreq_supports_freq_invariance(void) 63 { 64 return static_branch_likely(&cpufreq_freq_invariance); 65 } 66 67 /* Flag to suspend/resume CPUFreq governors */ 68 static bool cpufreq_suspended; 69 70 static inline bool has_target(void) 71 { 72 return cpufreq_driver->target_index || cpufreq_driver->target; 73 } 74 75 /* internal prototypes */ 76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 77 static int cpufreq_init_governor(struct cpufreq_policy *policy); 78 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 79 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 80 static int cpufreq_set_policy(struct cpufreq_policy *policy, 81 struct cpufreq_governor *new_gov, 82 unsigned int new_pol); 83 84 /* 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 93 94 static int off __read_mostly; 95 static int cpufreq_disabled(void) 96 { 97 return off; 98 } 99 void disable_cpufreq(void) 100 { 101 off = 1; 102 } 103 static DEFINE_MUTEX(cpufreq_governor_mutex); 104 105 bool have_governor_per_policy(void) 106 { 107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 108 } 109 EXPORT_SYMBOL_GPL(have_governor_per_policy); 110 111 static struct kobject *cpufreq_global_kobject; 112 113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 114 { 115 if (have_governor_per_policy()) 116 return &policy->kobj; 117 else 118 return cpufreq_global_kobject; 119 } 120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 121 122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 123 { 124 struct kernel_cpustat kcpustat; 125 u64 cur_wall_time; 126 u64 idle_time; 127 u64 busy_time; 128 129 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 130 131 kcpustat_cpu_fetch(&kcpustat, cpu); 132 133 busy_time = kcpustat.cpustat[CPUTIME_USER]; 134 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 135 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 136 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 137 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 138 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 139 140 idle_time = cur_wall_time - busy_time; 141 if (wall) 142 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 143 144 return div_u64(idle_time, NSEC_PER_USEC); 145 } 146 147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 148 { 149 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 150 151 if (idle_time == -1ULL) 152 return get_cpu_idle_time_jiffy(cpu, wall); 153 else if (!io_busy) 154 idle_time += get_cpu_iowait_time_us(cpu, wall); 155 156 return idle_time; 157 } 158 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 159 160 /* 161 * This is a generic cpufreq init() routine which can be used by cpufreq 162 * drivers of SMP systems. It will do following: 163 * - validate & show freq table passed 164 * - set policies transition latency 165 * - policy->cpus with all possible CPUs 166 */ 167 void cpufreq_generic_init(struct cpufreq_policy *policy, 168 struct cpufreq_frequency_table *table, 169 unsigned int transition_latency) 170 { 171 policy->freq_table = table; 172 policy->cpuinfo.transition_latency = transition_latency; 173 174 /* 175 * The driver only supports the SMP configuration where all processors 176 * share the clock and voltage and clock. 177 */ 178 cpumask_setall(policy->cpus); 179 } 180 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 181 182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 183 { 184 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 185 186 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 187 } 188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 189 190 unsigned int cpufreq_generic_get(unsigned int cpu) 191 { 192 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 193 194 if (!policy || IS_ERR(policy->clk)) { 195 pr_err("%s: No %s associated to cpu: %d\n", 196 __func__, policy ? "clk" : "policy", cpu); 197 return 0; 198 } 199 200 return clk_get_rate(policy->clk) / 1000; 201 } 202 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 203 204 /** 205 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 206 * @cpu: CPU to find the policy for. 207 * 208 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 209 * the kobject reference counter of that policy. Return a valid policy on 210 * success or NULL on failure. 211 * 212 * The policy returned by this function has to be released with the help of 213 * cpufreq_cpu_put() to balance its kobject reference counter properly. 214 */ 215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 216 { 217 struct cpufreq_policy *policy = NULL; 218 unsigned long flags; 219 220 if (WARN_ON(cpu >= nr_cpu_ids)) 221 return NULL; 222 223 /* get the cpufreq driver */ 224 read_lock_irqsave(&cpufreq_driver_lock, flags); 225 226 if (cpufreq_driver) { 227 /* get the CPU */ 228 policy = cpufreq_cpu_get_raw(cpu); 229 if (policy) 230 kobject_get(&policy->kobj); 231 } 232 233 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 234 235 return policy; 236 } 237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 238 239 /** 240 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 241 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 242 */ 243 void cpufreq_cpu_put(struct cpufreq_policy *policy) 244 { 245 kobject_put(&policy->kobj); 246 } 247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 248 249 /** 250 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 251 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 252 */ 253 void cpufreq_cpu_release(struct cpufreq_policy *policy) 254 { 255 if (WARN_ON(!policy)) 256 return; 257 258 lockdep_assert_held(&policy->rwsem); 259 260 up_write(&policy->rwsem); 261 262 cpufreq_cpu_put(policy); 263 } 264 265 /** 266 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 267 * @cpu: CPU to find the policy for. 268 * 269 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 270 * if the policy returned by it is not NULL, acquire its rwsem for writing. 271 * Return the policy if it is active or release it and return NULL otherwise. 272 * 273 * The policy returned by this function has to be released with the help of 274 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 275 * counter properly. 276 */ 277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 278 { 279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 280 281 if (!policy) 282 return NULL; 283 284 down_write(&policy->rwsem); 285 286 if (policy_is_inactive(policy)) { 287 cpufreq_cpu_release(policy); 288 return NULL; 289 } 290 291 return policy; 292 } 293 294 /********************************************************************* 295 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 296 *********************************************************************/ 297 298 /** 299 * adjust_jiffies - Adjust the system "loops_per_jiffy". 300 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 301 * @ci: Frequency change information. 302 * 303 * This function alters the system "loops_per_jiffy" for the clock 304 * speed change. Note that loops_per_jiffy cannot be updated on SMP 305 * systems as each CPU might be scaled differently. So, use the arch 306 * per-CPU loops_per_jiffy value wherever possible. 307 */ 308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 309 { 310 #ifndef CONFIG_SMP 311 static unsigned long l_p_j_ref; 312 static unsigned int l_p_j_ref_freq; 313 314 if (ci->flags & CPUFREQ_CONST_LOOPS) 315 return; 316 317 if (!l_p_j_ref_freq) { 318 l_p_j_ref = loops_per_jiffy; 319 l_p_j_ref_freq = ci->old; 320 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 321 l_p_j_ref, l_p_j_ref_freq); 322 } 323 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 324 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 325 ci->new); 326 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 327 loops_per_jiffy, ci->new); 328 } 329 #endif 330 } 331 332 /** 333 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 334 * @policy: cpufreq policy to enable fast frequency switching for. 335 * @freqs: contain details of the frequency update. 336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 337 * 338 * This function calls the transition notifiers and adjust_jiffies(). 339 * 340 * It is called twice on all CPU frequency changes that have external effects. 341 */ 342 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 343 struct cpufreq_freqs *freqs, 344 unsigned int state) 345 { 346 int cpu; 347 348 BUG_ON(irqs_disabled()); 349 350 if (cpufreq_disabled()) 351 return; 352 353 freqs->policy = policy; 354 freqs->flags = cpufreq_driver->flags; 355 pr_debug("notification %u of frequency transition to %u kHz\n", 356 state, freqs->new); 357 358 switch (state) { 359 case CPUFREQ_PRECHANGE: 360 /* 361 * Detect if the driver reported a value as "old frequency" 362 * which is not equal to what the cpufreq core thinks is 363 * "old frequency". 364 */ 365 if (policy->cur && policy->cur != freqs->old) { 366 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 367 freqs->old, policy->cur); 368 freqs->old = policy->cur; 369 } 370 371 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 372 CPUFREQ_PRECHANGE, freqs); 373 374 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 375 break; 376 377 case CPUFREQ_POSTCHANGE: 378 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 379 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 380 cpumask_pr_args(policy->cpus)); 381 382 for_each_cpu(cpu, policy->cpus) 383 trace_cpu_frequency(freqs->new, cpu); 384 385 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 386 CPUFREQ_POSTCHANGE, freqs); 387 388 cpufreq_stats_record_transition(policy, freqs->new); 389 policy->cur = freqs->new; 390 } 391 } 392 393 /* Do post notifications when there are chances that transition has failed */ 394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 395 struct cpufreq_freqs *freqs, int transition_failed) 396 { 397 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 398 if (!transition_failed) 399 return; 400 401 swap(freqs->old, freqs->new); 402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 404 } 405 406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 407 struct cpufreq_freqs *freqs) 408 { 409 410 /* 411 * Catch double invocations of _begin() which lead to self-deadlock. 412 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 413 * doesn't invoke _begin() on their behalf, and hence the chances of 414 * double invocations are very low. Moreover, there are scenarios 415 * where these checks can emit false-positive warnings in these 416 * drivers; so we avoid that by skipping them altogether. 417 */ 418 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 419 && current == policy->transition_task); 420 421 wait: 422 wait_event(policy->transition_wait, !policy->transition_ongoing); 423 424 spin_lock(&policy->transition_lock); 425 426 if (unlikely(policy->transition_ongoing)) { 427 spin_unlock(&policy->transition_lock); 428 goto wait; 429 } 430 431 policy->transition_ongoing = true; 432 policy->transition_task = current; 433 434 spin_unlock(&policy->transition_lock); 435 436 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 437 } 438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 439 440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 441 struct cpufreq_freqs *freqs, int transition_failed) 442 { 443 if (WARN_ON(!policy->transition_ongoing)) 444 return; 445 446 cpufreq_notify_post_transition(policy, freqs, transition_failed); 447 448 arch_set_freq_scale(policy->related_cpus, 449 policy->cur, 450 policy->cpuinfo.max_freq); 451 452 policy->transition_ongoing = false; 453 policy->transition_task = NULL; 454 455 wake_up(&policy->transition_wait); 456 } 457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 458 459 /* 460 * Fast frequency switching status count. Positive means "enabled", negative 461 * means "disabled" and 0 means "not decided yet". 462 */ 463 static int cpufreq_fast_switch_count; 464 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 465 466 static void cpufreq_list_transition_notifiers(void) 467 { 468 struct notifier_block *nb; 469 470 pr_info("Registered transition notifiers:\n"); 471 472 mutex_lock(&cpufreq_transition_notifier_list.mutex); 473 474 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 475 pr_info("%pS\n", nb->notifier_call); 476 477 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 478 } 479 480 /** 481 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 482 * @policy: cpufreq policy to enable fast frequency switching for. 483 * 484 * Try to enable fast frequency switching for @policy. 485 * 486 * The attempt will fail if there is at least one transition notifier registered 487 * at this point, as fast frequency switching is quite fundamentally at odds 488 * with transition notifiers. Thus if successful, it will make registration of 489 * transition notifiers fail going forward. 490 */ 491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 492 { 493 lockdep_assert_held(&policy->rwsem); 494 495 if (!policy->fast_switch_possible) 496 return; 497 498 mutex_lock(&cpufreq_fast_switch_lock); 499 if (cpufreq_fast_switch_count >= 0) { 500 cpufreq_fast_switch_count++; 501 policy->fast_switch_enabled = true; 502 } else { 503 pr_warn("CPU%u: Fast frequency switching not enabled\n", 504 policy->cpu); 505 cpufreq_list_transition_notifiers(); 506 } 507 mutex_unlock(&cpufreq_fast_switch_lock); 508 } 509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 510 511 /** 512 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 513 * @policy: cpufreq policy to disable fast frequency switching for. 514 */ 515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 516 { 517 mutex_lock(&cpufreq_fast_switch_lock); 518 if (policy->fast_switch_enabled) { 519 policy->fast_switch_enabled = false; 520 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 521 cpufreq_fast_switch_count--; 522 } 523 mutex_unlock(&cpufreq_fast_switch_lock); 524 } 525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 526 527 /** 528 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 529 * one. 530 * @policy: associated policy to interrogate 531 * @target_freq: target frequency to resolve. 532 * 533 * The target to driver frequency mapping is cached in the policy. 534 * 535 * Return: Lowest driver-supported frequency greater than or equal to the 536 * given target_freq, subject to policy (min/max) and driver limitations. 537 */ 538 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 539 unsigned int target_freq) 540 { 541 target_freq = clamp_val(target_freq, policy->min, policy->max); 542 policy->cached_target_freq = target_freq; 543 544 if (cpufreq_driver->target_index) { 545 unsigned int idx; 546 547 idx = cpufreq_frequency_table_target(policy, target_freq, 548 CPUFREQ_RELATION_L); 549 policy->cached_resolved_idx = idx; 550 return policy->freq_table[idx].frequency; 551 } 552 553 if (cpufreq_driver->resolve_freq) 554 return cpufreq_driver->resolve_freq(policy, target_freq); 555 556 return target_freq; 557 } 558 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 559 560 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 561 { 562 unsigned int latency; 563 564 if (policy->transition_delay_us) 565 return policy->transition_delay_us; 566 567 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 568 if (latency) { 569 /* 570 * For platforms that can change the frequency very fast (< 10 571 * us), the above formula gives a decent transition delay. But 572 * for platforms where transition_latency is in milliseconds, it 573 * ends up giving unrealistic values. 574 * 575 * Cap the default transition delay to 10 ms, which seems to be 576 * a reasonable amount of time after which we should reevaluate 577 * the frequency. 578 */ 579 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 580 } 581 582 return LATENCY_MULTIPLIER; 583 } 584 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 585 586 /********************************************************************* 587 * SYSFS INTERFACE * 588 *********************************************************************/ 589 static ssize_t show_boost(struct kobject *kobj, 590 struct kobj_attribute *attr, char *buf) 591 { 592 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 593 } 594 595 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 596 const char *buf, size_t count) 597 { 598 int ret, enable; 599 600 ret = sscanf(buf, "%d", &enable); 601 if (ret != 1 || enable < 0 || enable > 1) 602 return -EINVAL; 603 604 if (cpufreq_boost_trigger_state(enable)) { 605 pr_err("%s: Cannot %s BOOST!\n", 606 __func__, enable ? "enable" : "disable"); 607 return -EINVAL; 608 } 609 610 pr_debug("%s: cpufreq BOOST %s\n", 611 __func__, enable ? "enabled" : "disabled"); 612 613 return count; 614 } 615 define_one_global_rw(boost); 616 617 static struct cpufreq_governor *find_governor(const char *str_governor) 618 { 619 struct cpufreq_governor *t; 620 621 for_each_governor(t) 622 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 623 return t; 624 625 return NULL; 626 } 627 628 static struct cpufreq_governor *get_governor(const char *str_governor) 629 { 630 struct cpufreq_governor *t; 631 632 mutex_lock(&cpufreq_governor_mutex); 633 t = find_governor(str_governor); 634 if (!t) 635 goto unlock; 636 637 if (!try_module_get(t->owner)) 638 t = NULL; 639 640 unlock: 641 mutex_unlock(&cpufreq_governor_mutex); 642 643 return t; 644 } 645 646 static unsigned int cpufreq_parse_policy(char *str_governor) 647 { 648 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 649 return CPUFREQ_POLICY_PERFORMANCE; 650 651 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 652 return CPUFREQ_POLICY_POWERSAVE; 653 654 return CPUFREQ_POLICY_UNKNOWN; 655 } 656 657 /** 658 * cpufreq_parse_governor - parse a governor string only for has_target() 659 * @str_governor: Governor name. 660 */ 661 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 662 { 663 struct cpufreq_governor *t; 664 665 t = get_governor(str_governor); 666 if (t) 667 return t; 668 669 if (request_module("cpufreq_%s", str_governor)) 670 return NULL; 671 672 return get_governor(str_governor); 673 } 674 675 /* 676 * cpufreq_per_cpu_attr_read() / show_##file_name() - 677 * print out cpufreq information 678 * 679 * Write out information from cpufreq_driver->policy[cpu]; object must be 680 * "unsigned int". 681 */ 682 683 #define show_one(file_name, object) \ 684 static ssize_t show_##file_name \ 685 (struct cpufreq_policy *policy, char *buf) \ 686 { \ 687 return sprintf(buf, "%u\n", policy->object); \ 688 } 689 690 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 691 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 692 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 693 show_one(scaling_min_freq, min); 694 show_one(scaling_max_freq, max); 695 696 __weak unsigned int arch_freq_get_on_cpu(int cpu) 697 { 698 return 0; 699 } 700 701 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 702 { 703 ssize_t ret; 704 unsigned int freq; 705 706 freq = arch_freq_get_on_cpu(policy->cpu); 707 if (freq) 708 ret = sprintf(buf, "%u\n", freq); 709 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 710 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 711 else 712 ret = sprintf(buf, "%u\n", policy->cur); 713 return ret; 714 } 715 716 /* 717 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 718 */ 719 #define store_one(file_name, object) \ 720 static ssize_t store_##file_name \ 721 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 722 { \ 723 unsigned long val; \ 724 int ret; \ 725 \ 726 ret = sscanf(buf, "%lu", &val); \ 727 if (ret != 1) \ 728 return -EINVAL; \ 729 \ 730 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 731 return ret >= 0 ? count : ret; \ 732 } 733 734 store_one(scaling_min_freq, min); 735 store_one(scaling_max_freq, max); 736 737 /* 738 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 739 */ 740 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 741 char *buf) 742 { 743 unsigned int cur_freq = __cpufreq_get(policy); 744 745 if (cur_freq) 746 return sprintf(buf, "%u\n", cur_freq); 747 748 return sprintf(buf, "<unknown>\n"); 749 } 750 751 /* 752 * show_scaling_governor - show the current policy for the specified CPU 753 */ 754 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 755 { 756 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 757 return sprintf(buf, "powersave\n"); 758 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 759 return sprintf(buf, "performance\n"); 760 else if (policy->governor) 761 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 762 policy->governor->name); 763 return -EINVAL; 764 } 765 766 /* 767 * store_scaling_governor - store policy for the specified CPU 768 */ 769 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 770 const char *buf, size_t count) 771 { 772 char str_governor[16]; 773 int ret; 774 775 ret = sscanf(buf, "%15s", str_governor); 776 if (ret != 1) 777 return -EINVAL; 778 779 if (cpufreq_driver->setpolicy) { 780 unsigned int new_pol; 781 782 new_pol = cpufreq_parse_policy(str_governor); 783 if (!new_pol) 784 return -EINVAL; 785 786 ret = cpufreq_set_policy(policy, NULL, new_pol); 787 } else { 788 struct cpufreq_governor *new_gov; 789 790 new_gov = cpufreq_parse_governor(str_governor); 791 if (!new_gov) 792 return -EINVAL; 793 794 ret = cpufreq_set_policy(policy, new_gov, 795 CPUFREQ_POLICY_UNKNOWN); 796 797 module_put(new_gov->owner); 798 } 799 800 return ret ? ret : count; 801 } 802 803 /* 804 * show_scaling_driver - show the cpufreq driver currently loaded 805 */ 806 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 807 { 808 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 809 } 810 811 /* 812 * show_scaling_available_governors - show the available CPUfreq governors 813 */ 814 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 815 char *buf) 816 { 817 ssize_t i = 0; 818 struct cpufreq_governor *t; 819 820 if (!has_target()) { 821 i += sprintf(buf, "performance powersave"); 822 goto out; 823 } 824 825 mutex_lock(&cpufreq_governor_mutex); 826 for_each_governor(t) { 827 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 828 - (CPUFREQ_NAME_LEN + 2))) 829 break; 830 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 831 } 832 mutex_unlock(&cpufreq_governor_mutex); 833 out: 834 i += sprintf(&buf[i], "\n"); 835 return i; 836 } 837 838 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 839 { 840 ssize_t i = 0; 841 unsigned int cpu; 842 843 for_each_cpu(cpu, mask) { 844 if (i) 845 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 847 if (i >= (PAGE_SIZE - 5)) 848 break; 849 } 850 i += sprintf(&buf[i], "\n"); 851 return i; 852 } 853 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 854 855 /* 856 * show_related_cpus - show the CPUs affected by each transition even if 857 * hw coordination is in use 858 */ 859 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 860 { 861 return cpufreq_show_cpus(policy->related_cpus, buf); 862 } 863 864 /* 865 * show_affected_cpus - show the CPUs affected by each transition 866 */ 867 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 868 { 869 return cpufreq_show_cpus(policy->cpus, buf); 870 } 871 872 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 873 const char *buf, size_t count) 874 { 875 unsigned int freq = 0; 876 unsigned int ret; 877 878 if (!policy->governor || !policy->governor->store_setspeed) 879 return -EINVAL; 880 881 ret = sscanf(buf, "%u", &freq); 882 if (ret != 1) 883 return -EINVAL; 884 885 policy->governor->store_setspeed(policy, freq); 886 887 return count; 888 } 889 890 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 891 { 892 if (!policy->governor || !policy->governor->show_setspeed) 893 return sprintf(buf, "<unsupported>\n"); 894 895 return policy->governor->show_setspeed(policy, buf); 896 } 897 898 /* 899 * show_bios_limit - show the current cpufreq HW/BIOS limitation 900 */ 901 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 902 { 903 unsigned int limit; 904 int ret; 905 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 906 if (!ret) 907 return sprintf(buf, "%u\n", limit); 908 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 909 } 910 911 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 912 cpufreq_freq_attr_ro(cpuinfo_min_freq); 913 cpufreq_freq_attr_ro(cpuinfo_max_freq); 914 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 915 cpufreq_freq_attr_ro(scaling_available_governors); 916 cpufreq_freq_attr_ro(scaling_driver); 917 cpufreq_freq_attr_ro(scaling_cur_freq); 918 cpufreq_freq_attr_ro(bios_limit); 919 cpufreq_freq_attr_ro(related_cpus); 920 cpufreq_freq_attr_ro(affected_cpus); 921 cpufreq_freq_attr_rw(scaling_min_freq); 922 cpufreq_freq_attr_rw(scaling_max_freq); 923 cpufreq_freq_attr_rw(scaling_governor); 924 cpufreq_freq_attr_rw(scaling_setspeed); 925 926 static struct attribute *default_attrs[] = { 927 &cpuinfo_min_freq.attr, 928 &cpuinfo_max_freq.attr, 929 &cpuinfo_transition_latency.attr, 930 &scaling_min_freq.attr, 931 &scaling_max_freq.attr, 932 &affected_cpus.attr, 933 &related_cpus.attr, 934 &scaling_governor.attr, 935 &scaling_driver.attr, 936 &scaling_available_governors.attr, 937 &scaling_setspeed.attr, 938 NULL 939 }; 940 941 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 942 #define to_attr(a) container_of(a, struct freq_attr, attr) 943 944 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 945 { 946 struct cpufreq_policy *policy = to_policy(kobj); 947 struct freq_attr *fattr = to_attr(attr); 948 ssize_t ret; 949 950 if (!fattr->show) 951 return -EIO; 952 953 down_read(&policy->rwsem); 954 ret = fattr->show(policy, buf); 955 up_read(&policy->rwsem); 956 957 return ret; 958 } 959 960 static ssize_t store(struct kobject *kobj, struct attribute *attr, 961 const char *buf, size_t count) 962 { 963 struct cpufreq_policy *policy = to_policy(kobj); 964 struct freq_attr *fattr = to_attr(attr); 965 ssize_t ret = -EINVAL; 966 967 if (!fattr->store) 968 return -EIO; 969 970 /* 971 * cpus_read_trylock() is used here to work around a circular lock 972 * dependency problem with respect to the cpufreq_register_driver(). 973 */ 974 if (!cpus_read_trylock()) 975 return -EBUSY; 976 977 if (cpu_online(policy->cpu)) { 978 down_write(&policy->rwsem); 979 ret = fattr->store(policy, buf, count); 980 up_write(&policy->rwsem); 981 } 982 983 cpus_read_unlock(); 984 985 return ret; 986 } 987 988 static void cpufreq_sysfs_release(struct kobject *kobj) 989 { 990 struct cpufreq_policy *policy = to_policy(kobj); 991 pr_debug("last reference is dropped\n"); 992 complete(&policy->kobj_unregister); 993 } 994 995 static const struct sysfs_ops sysfs_ops = { 996 .show = show, 997 .store = store, 998 }; 999 1000 static struct kobj_type ktype_cpufreq = { 1001 .sysfs_ops = &sysfs_ops, 1002 .default_attrs = default_attrs, 1003 .release = cpufreq_sysfs_release, 1004 }; 1005 1006 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1007 { 1008 struct device *dev = get_cpu_device(cpu); 1009 1010 if (unlikely(!dev)) 1011 return; 1012 1013 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1014 return; 1015 1016 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1017 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1018 dev_err(dev, "cpufreq symlink creation failed\n"); 1019 } 1020 1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1022 struct device *dev) 1023 { 1024 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1025 sysfs_remove_link(&dev->kobj, "cpufreq"); 1026 } 1027 1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1029 { 1030 struct freq_attr **drv_attr; 1031 int ret = 0; 1032 1033 /* set up files for this cpu device */ 1034 drv_attr = cpufreq_driver->attr; 1035 while (drv_attr && *drv_attr) { 1036 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1037 if (ret) 1038 return ret; 1039 drv_attr++; 1040 } 1041 if (cpufreq_driver->get) { 1042 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1043 if (ret) 1044 return ret; 1045 } 1046 1047 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1048 if (ret) 1049 return ret; 1050 1051 if (cpufreq_driver->bios_limit) { 1052 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1053 if (ret) 1054 return ret; 1055 } 1056 1057 return 0; 1058 } 1059 1060 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1061 { 1062 struct cpufreq_governor *gov = NULL; 1063 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1064 int ret; 1065 1066 if (has_target()) { 1067 /* Update policy governor to the one used before hotplug. */ 1068 gov = get_governor(policy->last_governor); 1069 if (gov) { 1070 pr_debug("Restoring governor %s for cpu %d\n", 1071 gov->name, policy->cpu); 1072 } else { 1073 gov = get_governor(default_governor); 1074 } 1075 1076 if (!gov) { 1077 gov = cpufreq_default_governor(); 1078 __module_get(gov->owner); 1079 } 1080 1081 } else { 1082 1083 /* Use the default policy if there is no last_policy. */ 1084 if (policy->last_policy) { 1085 pol = policy->last_policy; 1086 } else { 1087 pol = cpufreq_parse_policy(default_governor); 1088 /* 1089 * In case the default governor is neither "performance" 1090 * nor "powersave", fall back to the initial policy 1091 * value set by the driver. 1092 */ 1093 if (pol == CPUFREQ_POLICY_UNKNOWN) 1094 pol = policy->policy; 1095 } 1096 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1097 pol != CPUFREQ_POLICY_POWERSAVE) 1098 return -ENODATA; 1099 } 1100 1101 ret = cpufreq_set_policy(policy, gov, pol); 1102 if (gov) 1103 module_put(gov->owner); 1104 1105 return ret; 1106 } 1107 1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1109 { 1110 int ret = 0; 1111 1112 /* Has this CPU been taken care of already? */ 1113 if (cpumask_test_cpu(cpu, policy->cpus)) 1114 return 0; 1115 1116 down_write(&policy->rwsem); 1117 if (has_target()) 1118 cpufreq_stop_governor(policy); 1119 1120 cpumask_set_cpu(cpu, policy->cpus); 1121 1122 if (has_target()) { 1123 ret = cpufreq_start_governor(policy); 1124 if (ret) 1125 pr_err("%s: Failed to start governor\n", __func__); 1126 } 1127 up_write(&policy->rwsem); 1128 return ret; 1129 } 1130 1131 void refresh_frequency_limits(struct cpufreq_policy *policy) 1132 { 1133 if (!policy_is_inactive(policy)) { 1134 pr_debug("updating policy for CPU %u\n", policy->cpu); 1135 1136 cpufreq_set_policy(policy, policy->governor, policy->policy); 1137 } 1138 } 1139 EXPORT_SYMBOL(refresh_frequency_limits); 1140 1141 static void handle_update(struct work_struct *work) 1142 { 1143 struct cpufreq_policy *policy = 1144 container_of(work, struct cpufreq_policy, update); 1145 1146 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1147 down_write(&policy->rwsem); 1148 refresh_frequency_limits(policy); 1149 up_write(&policy->rwsem); 1150 } 1151 1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1153 void *data) 1154 { 1155 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1156 1157 schedule_work(&policy->update); 1158 return 0; 1159 } 1160 1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1162 void *data) 1163 { 1164 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1165 1166 schedule_work(&policy->update); 1167 return 0; 1168 } 1169 1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1171 { 1172 struct kobject *kobj; 1173 struct completion *cmp; 1174 1175 down_write(&policy->rwsem); 1176 cpufreq_stats_free_table(policy); 1177 kobj = &policy->kobj; 1178 cmp = &policy->kobj_unregister; 1179 up_write(&policy->rwsem); 1180 kobject_put(kobj); 1181 1182 /* 1183 * We need to make sure that the underlying kobj is 1184 * actually not referenced anymore by anybody before we 1185 * proceed with unloading. 1186 */ 1187 pr_debug("waiting for dropping of refcount\n"); 1188 wait_for_completion(cmp); 1189 pr_debug("wait complete\n"); 1190 } 1191 1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1193 { 1194 struct cpufreq_policy *policy; 1195 struct device *dev = get_cpu_device(cpu); 1196 int ret; 1197 1198 if (!dev) 1199 return NULL; 1200 1201 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1202 if (!policy) 1203 return NULL; 1204 1205 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1206 goto err_free_policy; 1207 1208 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1209 goto err_free_cpumask; 1210 1211 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1212 goto err_free_rcpumask; 1213 1214 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1215 cpufreq_global_kobject, "policy%u", cpu); 1216 if (ret) { 1217 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1218 /* 1219 * The entire policy object will be freed below, but the extra 1220 * memory allocated for the kobject name needs to be freed by 1221 * releasing the kobject. 1222 */ 1223 kobject_put(&policy->kobj); 1224 goto err_free_real_cpus; 1225 } 1226 1227 freq_constraints_init(&policy->constraints); 1228 1229 policy->nb_min.notifier_call = cpufreq_notifier_min; 1230 policy->nb_max.notifier_call = cpufreq_notifier_max; 1231 1232 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1233 &policy->nb_min); 1234 if (ret) { 1235 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1236 ret, cpumask_pr_args(policy->cpus)); 1237 goto err_kobj_remove; 1238 } 1239 1240 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1241 &policy->nb_max); 1242 if (ret) { 1243 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1244 ret, cpumask_pr_args(policy->cpus)); 1245 goto err_min_qos_notifier; 1246 } 1247 1248 INIT_LIST_HEAD(&policy->policy_list); 1249 init_rwsem(&policy->rwsem); 1250 spin_lock_init(&policy->transition_lock); 1251 init_waitqueue_head(&policy->transition_wait); 1252 init_completion(&policy->kobj_unregister); 1253 INIT_WORK(&policy->update, handle_update); 1254 1255 policy->cpu = cpu; 1256 return policy; 1257 1258 err_min_qos_notifier: 1259 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1260 &policy->nb_min); 1261 err_kobj_remove: 1262 cpufreq_policy_put_kobj(policy); 1263 err_free_real_cpus: 1264 free_cpumask_var(policy->real_cpus); 1265 err_free_rcpumask: 1266 free_cpumask_var(policy->related_cpus); 1267 err_free_cpumask: 1268 free_cpumask_var(policy->cpus); 1269 err_free_policy: 1270 kfree(policy); 1271 1272 return NULL; 1273 } 1274 1275 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1276 { 1277 unsigned long flags; 1278 int cpu; 1279 1280 /* Remove policy from list */ 1281 write_lock_irqsave(&cpufreq_driver_lock, flags); 1282 list_del(&policy->policy_list); 1283 1284 for_each_cpu(cpu, policy->related_cpus) 1285 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1286 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1287 1288 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1289 &policy->nb_max); 1290 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1291 &policy->nb_min); 1292 1293 /* Cancel any pending policy->update work before freeing the policy. */ 1294 cancel_work_sync(&policy->update); 1295 1296 if (policy->max_freq_req) { 1297 /* 1298 * CPUFREQ_CREATE_POLICY notification is sent only after 1299 * successfully adding max_freq_req request. 1300 */ 1301 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1302 CPUFREQ_REMOVE_POLICY, policy); 1303 freq_qos_remove_request(policy->max_freq_req); 1304 } 1305 1306 freq_qos_remove_request(policy->min_freq_req); 1307 kfree(policy->min_freq_req); 1308 1309 cpufreq_policy_put_kobj(policy); 1310 free_cpumask_var(policy->real_cpus); 1311 free_cpumask_var(policy->related_cpus); 1312 free_cpumask_var(policy->cpus); 1313 kfree(policy); 1314 } 1315 1316 static int cpufreq_online(unsigned int cpu) 1317 { 1318 struct cpufreq_policy *policy; 1319 bool new_policy; 1320 unsigned long flags; 1321 unsigned int j; 1322 int ret; 1323 1324 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1325 1326 /* Check if this CPU already has a policy to manage it */ 1327 policy = per_cpu(cpufreq_cpu_data, cpu); 1328 if (policy) { 1329 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1330 if (!policy_is_inactive(policy)) 1331 return cpufreq_add_policy_cpu(policy, cpu); 1332 1333 /* This is the only online CPU for the policy. Start over. */ 1334 new_policy = false; 1335 down_write(&policy->rwsem); 1336 policy->cpu = cpu; 1337 policy->governor = NULL; 1338 up_write(&policy->rwsem); 1339 } else { 1340 new_policy = true; 1341 policy = cpufreq_policy_alloc(cpu); 1342 if (!policy) 1343 return -ENOMEM; 1344 } 1345 1346 if (!new_policy && cpufreq_driver->online) { 1347 ret = cpufreq_driver->online(policy); 1348 if (ret) { 1349 pr_debug("%s: %d: initialization failed\n", __func__, 1350 __LINE__); 1351 goto out_exit_policy; 1352 } 1353 1354 /* Recover policy->cpus using related_cpus */ 1355 cpumask_copy(policy->cpus, policy->related_cpus); 1356 } else { 1357 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1358 1359 /* 1360 * Call driver. From then on the cpufreq must be able 1361 * to accept all calls to ->verify and ->setpolicy for this CPU. 1362 */ 1363 ret = cpufreq_driver->init(policy); 1364 if (ret) { 1365 pr_debug("%s: %d: initialization failed\n", __func__, 1366 __LINE__); 1367 goto out_free_policy; 1368 } 1369 1370 /* 1371 * The initialization has succeeded and the policy is online. 1372 * If there is a problem with its frequency table, take it 1373 * offline and drop it. 1374 */ 1375 ret = cpufreq_table_validate_and_sort(policy); 1376 if (ret) 1377 goto out_offline_policy; 1378 1379 /* related_cpus should at least include policy->cpus. */ 1380 cpumask_copy(policy->related_cpus, policy->cpus); 1381 } 1382 1383 down_write(&policy->rwsem); 1384 /* 1385 * affected cpus must always be the one, which are online. We aren't 1386 * managing offline cpus here. 1387 */ 1388 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1389 1390 if (new_policy) { 1391 for_each_cpu(j, policy->related_cpus) { 1392 per_cpu(cpufreq_cpu_data, j) = policy; 1393 add_cpu_dev_symlink(policy, j); 1394 } 1395 1396 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1397 GFP_KERNEL); 1398 if (!policy->min_freq_req) { 1399 ret = -ENOMEM; 1400 goto out_destroy_policy; 1401 } 1402 1403 ret = freq_qos_add_request(&policy->constraints, 1404 policy->min_freq_req, FREQ_QOS_MIN, 1405 policy->min); 1406 if (ret < 0) { 1407 /* 1408 * So we don't call freq_qos_remove_request() for an 1409 * uninitialized request. 1410 */ 1411 kfree(policy->min_freq_req); 1412 policy->min_freq_req = NULL; 1413 goto out_destroy_policy; 1414 } 1415 1416 /* 1417 * This must be initialized right here to avoid calling 1418 * freq_qos_remove_request() on uninitialized request in case 1419 * of errors. 1420 */ 1421 policy->max_freq_req = policy->min_freq_req + 1; 1422 1423 ret = freq_qos_add_request(&policy->constraints, 1424 policy->max_freq_req, FREQ_QOS_MAX, 1425 policy->max); 1426 if (ret < 0) { 1427 policy->max_freq_req = NULL; 1428 goto out_destroy_policy; 1429 } 1430 1431 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1432 CPUFREQ_CREATE_POLICY, policy); 1433 } 1434 1435 if (cpufreq_driver->get && has_target()) { 1436 policy->cur = cpufreq_driver->get(policy->cpu); 1437 if (!policy->cur) { 1438 ret = -EIO; 1439 pr_err("%s: ->get() failed\n", __func__); 1440 goto out_destroy_policy; 1441 } 1442 } 1443 1444 /* 1445 * Sometimes boot loaders set CPU frequency to a value outside of 1446 * frequency table present with cpufreq core. In such cases CPU might be 1447 * unstable if it has to run on that frequency for long duration of time 1448 * and so its better to set it to a frequency which is specified in 1449 * freq-table. This also makes cpufreq stats inconsistent as 1450 * cpufreq-stats would fail to register because current frequency of CPU 1451 * isn't found in freq-table. 1452 * 1453 * Because we don't want this change to effect boot process badly, we go 1454 * for the next freq which is >= policy->cur ('cur' must be set by now, 1455 * otherwise we will end up setting freq to lowest of the table as 'cur' 1456 * is initialized to zero). 1457 * 1458 * We are passing target-freq as "policy->cur - 1" otherwise 1459 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1460 * equal to target-freq. 1461 */ 1462 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1463 && has_target()) { 1464 unsigned int old_freq = policy->cur; 1465 1466 /* Are we running at unknown frequency ? */ 1467 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1468 if (ret == -EINVAL) { 1469 ret = __cpufreq_driver_target(policy, old_freq - 1, 1470 CPUFREQ_RELATION_L); 1471 1472 /* 1473 * Reaching here after boot in a few seconds may not 1474 * mean that system will remain stable at "unknown" 1475 * frequency for longer duration. Hence, a BUG_ON(). 1476 */ 1477 BUG_ON(ret); 1478 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1479 __func__, policy->cpu, old_freq, policy->cur); 1480 } 1481 } 1482 1483 if (new_policy) { 1484 ret = cpufreq_add_dev_interface(policy); 1485 if (ret) 1486 goto out_destroy_policy; 1487 1488 cpufreq_stats_create_table(policy); 1489 1490 write_lock_irqsave(&cpufreq_driver_lock, flags); 1491 list_add(&policy->policy_list, &cpufreq_policy_list); 1492 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1493 } 1494 1495 ret = cpufreq_init_policy(policy); 1496 if (ret) { 1497 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1498 __func__, cpu, ret); 1499 goto out_destroy_policy; 1500 } 1501 1502 up_write(&policy->rwsem); 1503 1504 kobject_uevent(&policy->kobj, KOBJ_ADD); 1505 1506 /* Callback for handling stuff after policy is ready */ 1507 if (cpufreq_driver->ready) 1508 cpufreq_driver->ready(policy); 1509 1510 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1511 policy->cdev = of_cpufreq_cooling_register(policy); 1512 1513 pr_debug("initialization complete\n"); 1514 1515 return 0; 1516 1517 out_destroy_policy: 1518 for_each_cpu(j, policy->real_cpus) 1519 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1520 1521 up_write(&policy->rwsem); 1522 1523 out_offline_policy: 1524 if (cpufreq_driver->offline) 1525 cpufreq_driver->offline(policy); 1526 1527 out_exit_policy: 1528 if (cpufreq_driver->exit) 1529 cpufreq_driver->exit(policy); 1530 1531 out_free_policy: 1532 cpufreq_policy_free(policy); 1533 return ret; 1534 } 1535 1536 /** 1537 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1538 * @dev: CPU device. 1539 * @sif: Subsystem interface structure pointer (not used) 1540 */ 1541 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1542 { 1543 struct cpufreq_policy *policy; 1544 unsigned cpu = dev->id; 1545 int ret; 1546 1547 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1548 1549 if (cpu_online(cpu)) { 1550 ret = cpufreq_online(cpu); 1551 if (ret) 1552 return ret; 1553 } 1554 1555 /* Create sysfs link on CPU registration */ 1556 policy = per_cpu(cpufreq_cpu_data, cpu); 1557 if (policy) 1558 add_cpu_dev_symlink(policy, cpu); 1559 1560 return 0; 1561 } 1562 1563 static int cpufreq_offline(unsigned int cpu) 1564 { 1565 struct cpufreq_policy *policy; 1566 int ret; 1567 1568 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1569 1570 policy = cpufreq_cpu_get_raw(cpu); 1571 if (!policy) { 1572 pr_debug("%s: No cpu_data found\n", __func__); 1573 return 0; 1574 } 1575 1576 down_write(&policy->rwsem); 1577 if (has_target()) 1578 cpufreq_stop_governor(policy); 1579 1580 cpumask_clear_cpu(cpu, policy->cpus); 1581 1582 if (policy_is_inactive(policy)) { 1583 if (has_target()) 1584 strncpy(policy->last_governor, policy->governor->name, 1585 CPUFREQ_NAME_LEN); 1586 else 1587 policy->last_policy = policy->policy; 1588 } else if (cpu == policy->cpu) { 1589 /* Nominate new CPU */ 1590 policy->cpu = cpumask_any(policy->cpus); 1591 } 1592 1593 /* Start governor again for active policy */ 1594 if (!policy_is_inactive(policy)) { 1595 if (has_target()) { 1596 ret = cpufreq_start_governor(policy); 1597 if (ret) 1598 pr_err("%s: Failed to start governor\n", __func__); 1599 } 1600 1601 goto unlock; 1602 } 1603 1604 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1605 cpufreq_cooling_unregister(policy->cdev); 1606 policy->cdev = NULL; 1607 } 1608 1609 if (cpufreq_driver->stop_cpu) 1610 cpufreq_driver->stop_cpu(policy); 1611 1612 if (has_target()) 1613 cpufreq_exit_governor(policy); 1614 1615 /* 1616 * Perform the ->offline() during light-weight tear-down, as 1617 * that allows fast recovery when the CPU comes back. 1618 */ 1619 if (cpufreq_driver->offline) { 1620 cpufreq_driver->offline(policy); 1621 } else if (cpufreq_driver->exit) { 1622 cpufreq_driver->exit(policy); 1623 policy->freq_table = NULL; 1624 } 1625 1626 unlock: 1627 up_write(&policy->rwsem); 1628 return 0; 1629 } 1630 1631 /* 1632 * cpufreq_remove_dev - remove a CPU device 1633 * 1634 * Removes the cpufreq interface for a CPU device. 1635 */ 1636 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1637 { 1638 unsigned int cpu = dev->id; 1639 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1640 1641 if (!policy) 1642 return; 1643 1644 if (cpu_online(cpu)) 1645 cpufreq_offline(cpu); 1646 1647 cpumask_clear_cpu(cpu, policy->real_cpus); 1648 remove_cpu_dev_symlink(policy, dev); 1649 1650 if (cpumask_empty(policy->real_cpus)) { 1651 /* We did light-weight exit earlier, do full tear down now */ 1652 if (cpufreq_driver->offline) 1653 cpufreq_driver->exit(policy); 1654 1655 cpufreq_policy_free(policy); 1656 } 1657 } 1658 1659 /** 1660 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1661 * @policy: Policy managing CPUs. 1662 * @new_freq: New CPU frequency. 1663 * 1664 * Adjust to the current frequency first and clean up later by either calling 1665 * cpufreq_update_policy(), or scheduling handle_update(). 1666 */ 1667 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1668 unsigned int new_freq) 1669 { 1670 struct cpufreq_freqs freqs; 1671 1672 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1673 policy->cur, new_freq); 1674 1675 freqs.old = policy->cur; 1676 freqs.new = new_freq; 1677 1678 cpufreq_freq_transition_begin(policy, &freqs); 1679 cpufreq_freq_transition_end(policy, &freqs, 0); 1680 } 1681 1682 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1683 { 1684 unsigned int new_freq; 1685 1686 new_freq = cpufreq_driver->get(policy->cpu); 1687 if (!new_freq) 1688 return 0; 1689 1690 /* 1691 * If fast frequency switching is used with the given policy, the check 1692 * against policy->cur is pointless, so skip it in that case. 1693 */ 1694 if (policy->fast_switch_enabled || !has_target()) 1695 return new_freq; 1696 1697 if (policy->cur != new_freq) { 1698 cpufreq_out_of_sync(policy, new_freq); 1699 if (update) 1700 schedule_work(&policy->update); 1701 } 1702 1703 return new_freq; 1704 } 1705 1706 /** 1707 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1708 * @cpu: CPU number 1709 * 1710 * This is the last known freq, without actually getting it from the driver. 1711 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1712 */ 1713 unsigned int cpufreq_quick_get(unsigned int cpu) 1714 { 1715 struct cpufreq_policy *policy; 1716 unsigned int ret_freq = 0; 1717 unsigned long flags; 1718 1719 read_lock_irqsave(&cpufreq_driver_lock, flags); 1720 1721 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1722 ret_freq = cpufreq_driver->get(cpu); 1723 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1724 return ret_freq; 1725 } 1726 1727 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1728 1729 policy = cpufreq_cpu_get(cpu); 1730 if (policy) { 1731 ret_freq = policy->cur; 1732 cpufreq_cpu_put(policy); 1733 } 1734 1735 return ret_freq; 1736 } 1737 EXPORT_SYMBOL(cpufreq_quick_get); 1738 1739 /** 1740 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1741 * @cpu: CPU number 1742 * 1743 * Just return the max possible frequency for a given CPU. 1744 */ 1745 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1746 { 1747 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1748 unsigned int ret_freq = 0; 1749 1750 if (policy) { 1751 ret_freq = policy->max; 1752 cpufreq_cpu_put(policy); 1753 } 1754 1755 return ret_freq; 1756 } 1757 EXPORT_SYMBOL(cpufreq_quick_get_max); 1758 1759 /** 1760 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1761 * @cpu: CPU number 1762 * 1763 * The default return value is the max_freq field of cpuinfo. 1764 */ 1765 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1766 { 1767 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1768 unsigned int ret_freq = 0; 1769 1770 if (policy) { 1771 ret_freq = policy->cpuinfo.max_freq; 1772 cpufreq_cpu_put(policy); 1773 } 1774 1775 return ret_freq; 1776 } 1777 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1778 1779 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1780 { 1781 if (unlikely(policy_is_inactive(policy))) 1782 return 0; 1783 1784 return cpufreq_verify_current_freq(policy, true); 1785 } 1786 1787 /** 1788 * cpufreq_get - get the current CPU frequency (in kHz) 1789 * @cpu: CPU number 1790 * 1791 * Get the CPU current (static) CPU frequency 1792 */ 1793 unsigned int cpufreq_get(unsigned int cpu) 1794 { 1795 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1796 unsigned int ret_freq = 0; 1797 1798 if (policy) { 1799 down_read(&policy->rwsem); 1800 if (cpufreq_driver->get) 1801 ret_freq = __cpufreq_get(policy); 1802 up_read(&policy->rwsem); 1803 1804 cpufreq_cpu_put(policy); 1805 } 1806 1807 return ret_freq; 1808 } 1809 EXPORT_SYMBOL(cpufreq_get); 1810 1811 static struct subsys_interface cpufreq_interface = { 1812 .name = "cpufreq", 1813 .subsys = &cpu_subsys, 1814 .add_dev = cpufreq_add_dev, 1815 .remove_dev = cpufreq_remove_dev, 1816 }; 1817 1818 /* 1819 * In case platform wants some specific frequency to be configured 1820 * during suspend.. 1821 */ 1822 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1823 { 1824 int ret; 1825 1826 if (!policy->suspend_freq) { 1827 pr_debug("%s: suspend_freq not defined\n", __func__); 1828 return 0; 1829 } 1830 1831 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1832 policy->suspend_freq); 1833 1834 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1835 CPUFREQ_RELATION_H); 1836 if (ret) 1837 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1838 __func__, policy->suspend_freq, ret); 1839 1840 return ret; 1841 } 1842 EXPORT_SYMBOL(cpufreq_generic_suspend); 1843 1844 /** 1845 * cpufreq_suspend() - Suspend CPUFreq governors. 1846 * 1847 * Called during system wide Suspend/Hibernate cycles for suspending governors 1848 * as some platforms can't change frequency after this point in suspend cycle. 1849 * Because some of the devices (like: i2c, regulators, etc) they use for 1850 * changing frequency are suspended quickly after this point. 1851 */ 1852 void cpufreq_suspend(void) 1853 { 1854 struct cpufreq_policy *policy; 1855 1856 if (!cpufreq_driver) 1857 return; 1858 1859 if (!has_target() && !cpufreq_driver->suspend) 1860 goto suspend; 1861 1862 pr_debug("%s: Suspending Governors\n", __func__); 1863 1864 for_each_active_policy(policy) { 1865 if (has_target()) { 1866 down_write(&policy->rwsem); 1867 cpufreq_stop_governor(policy); 1868 up_write(&policy->rwsem); 1869 } 1870 1871 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1872 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1873 cpufreq_driver->name); 1874 } 1875 1876 suspend: 1877 cpufreq_suspended = true; 1878 } 1879 1880 /** 1881 * cpufreq_resume() - Resume CPUFreq governors. 1882 * 1883 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1884 * are suspended with cpufreq_suspend(). 1885 */ 1886 void cpufreq_resume(void) 1887 { 1888 struct cpufreq_policy *policy; 1889 int ret; 1890 1891 if (!cpufreq_driver) 1892 return; 1893 1894 if (unlikely(!cpufreq_suspended)) 1895 return; 1896 1897 cpufreq_suspended = false; 1898 1899 if (!has_target() && !cpufreq_driver->resume) 1900 return; 1901 1902 pr_debug("%s: Resuming Governors\n", __func__); 1903 1904 for_each_active_policy(policy) { 1905 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1906 pr_err("%s: Failed to resume driver: %p\n", __func__, 1907 policy); 1908 } else if (has_target()) { 1909 down_write(&policy->rwsem); 1910 ret = cpufreq_start_governor(policy); 1911 up_write(&policy->rwsem); 1912 1913 if (ret) 1914 pr_err("%s: Failed to start governor for policy: %p\n", 1915 __func__, policy); 1916 } 1917 } 1918 } 1919 1920 /** 1921 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1922 * @flags: Flags to test against the current cpufreq driver's flags. 1923 * 1924 * Assumes that the driver is there, so callers must ensure that this is the 1925 * case. 1926 */ 1927 bool cpufreq_driver_test_flags(u16 flags) 1928 { 1929 return !!(cpufreq_driver->flags & flags); 1930 } 1931 1932 /** 1933 * cpufreq_get_current_driver - Return the current driver's name. 1934 * 1935 * Return the name string of the currently registered cpufreq driver or NULL if 1936 * none. 1937 */ 1938 const char *cpufreq_get_current_driver(void) 1939 { 1940 if (cpufreq_driver) 1941 return cpufreq_driver->name; 1942 1943 return NULL; 1944 } 1945 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1946 1947 /** 1948 * cpufreq_get_driver_data - Return current driver data. 1949 * 1950 * Return the private data of the currently registered cpufreq driver, or NULL 1951 * if no cpufreq driver has been registered. 1952 */ 1953 void *cpufreq_get_driver_data(void) 1954 { 1955 if (cpufreq_driver) 1956 return cpufreq_driver->driver_data; 1957 1958 return NULL; 1959 } 1960 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1961 1962 /********************************************************************* 1963 * NOTIFIER LISTS INTERFACE * 1964 *********************************************************************/ 1965 1966 /** 1967 * cpufreq_register_notifier - Register a notifier with cpufreq. 1968 * @nb: notifier function to register. 1969 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 1970 * 1971 * Add a notifier to one of two lists: either a list of notifiers that run on 1972 * clock rate changes (once before and once after every transition), or a list 1973 * of notifiers that ron on cpufreq policy changes. 1974 * 1975 * This function may sleep and it has the same return values as 1976 * blocking_notifier_chain_register(). 1977 */ 1978 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1979 { 1980 int ret; 1981 1982 if (cpufreq_disabled()) 1983 return -EINVAL; 1984 1985 switch (list) { 1986 case CPUFREQ_TRANSITION_NOTIFIER: 1987 mutex_lock(&cpufreq_fast_switch_lock); 1988 1989 if (cpufreq_fast_switch_count > 0) { 1990 mutex_unlock(&cpufreq_fast_switch_lock); 1991 return -EBUSY; 1992 } 1993 ret = srcu_notifier_chain_register( 1994 &cpufreq_transition_notifier_list, nb); 1995 if (!ret) 1996 cpufreq_fast_switch_count--; 1997 1998 mutex_unlock(&cpufreq_fast_switch_lock); 1999 break; 2000 case CPUFREQ_POLICY_NOTIFIER: 2001 ret = blocking_notifier_chain_register( 2002 &cpufreq_policy_notifier_list, nb); 2003 break; 2004 default: 2005 ret = -EINVAL; 2006 } 2007 2008 return ret; 2009 } 2010 EXPORT_SYMBOL(cpufreq_register_notifier); 2011 2012 /** 2013 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2014 * @nb: notifier block to be unregistered. 2015 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2016 * 2017 * Remove a notifier from one of the cpufreq notifier lists. 2018 * 2019 * This function may sleep and it has the same return values as 2020 * blocking_notifier_chain_unregister(). 2021 */ 2022 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2023 { 2024 int ret; 2025 2026 if (cpufreq_disabled()) 2027 return -EINVAL; 2028 2029 switch (list) { 2030 case CPUFREQ_TRANSITION_NOTIFIER: 2031 mutex_lock(&cpufreq_fast_switch_lock); 2032 2033 ret = srcu_notifier_chain_unregister( 2034 &cpufreq_transition_notifier_list, nb); 2035 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2036 cpufreq_fast_switch_count++; 2037 2038 mutex_unlock(&cpufreq_fast_switch_lock); 2039 break; 2040 case CPUFREQ_POLICY_NOTIFIER: 2041 ret = blocking_notifier_chain_unregister( 2042 &cpufreq_policy_notifier_list, nb); 2043 break; 2044 default: 2045 ret = -EINVAL; 2046 } 2047 2048 return ret; 2049 } 2050 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2051 2052 2053 /********************************************************************* 2054 * GOVERNORS * 2055 *********************************************************************/ 2056 2057 /** 2058 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2059 * @policy: cpufreq policy to switch the frequency for. 2060 * @target_freq: New frequency to set (may be approximate). 2061 * 2062 * Carry out a fast frequency switch without sleeping. 2063 * 2064 * The driver's ->fast_switch() callback invoked by this function must be 2065 * suitable for being called from within RCU-sched read-side critical sections 2066 * and it is expected to select the minimum available frequency greater than or 2067 * equal to @target_freq (CPUFREQ_RELATION_L). 2068 * 2069 * This function must not be called if policy->fast_switch_enabled is unset. 2070 * 2071 * Governors calling this function must guarantee that it will never be invoked 2072 * twice in parallel for the same policy and that it will never be called in 2073 * parallel with either ->target() or ->target_index() for the same policy. 2074 * 2075 * Returns the actual frequency set for the CPU. 2076 * 2077 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2078 * error condition, the hardware configuration must be preserved. 2079 */ 2080 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2081 unsigned int target_freq) 2082 { 2083 unsigned int freq; 2084 int cpu; 2085 2086 target_freq = clamp_val(target_freq, policy->min, policy->max); 2087 freq = cpufreq_driver->fast_switch(policy, target_freq); 2088 2089 if (!freq) 2090 return 0; 2091 2092 policy->cur = freq; 2093 arch_set_freq_scale(policy->related_cpus, freq, 2094 policy->cpuinfo.max_freq); 2095 cpufreq_stats_record_transition(policy, freq); 2096 2097 if (trace_cpu_frequency_enabled()) { 2098 for_each_cpu(cpu, policy->cpus) 2099 trace_cpu_frequency(freq, cpu); 2100 } 2101 2102 return freq; 2103 } 2104 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2105 2106 /** 2107 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2108 * @cpu: Target CPU. 2109 * @min_perf: Minimum (required) performance level (units of @capacity). 2110 * @target_perf: Target (desired) performance level (units of @capacity). 2111 * @capacity: Capacity of the target CPU. 2112 * 2113 * Carry out a fast performance level switch of @cpu without sleeping. 2114 * 2115 * The driver's ->adjust_perf() callback invoked by this function must be 2116 * suitable for being called from within RCU-sched read-side critical sections 2117 * and it is expected to select a suitable performance level equal to or above 2118 * @min_perf and preferably equal to or below @target_perf. 2119 * 2120 * This function must not be called if policy->fast_switch_enabled is unset. 2121 * 2122 * Governors calling this function must guarantee that it will never be invoked 2123 * twice in parallel for the same CPU and that it will never be called in 2124 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2125 * the same CPU. 2126 */ 2127 void cpufreq_driver_adjust_perf(unsigned int cpu, 2128 unsigned long min_perf, 2129 unsigned long target_perf, 2130 unsigned long capacity) 2131 { 2132 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2133 } 2134 2135 /** 2136 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2137 * 2138 * Return 'true' if the ->adjust_perf callback is present for the 2139 * current driver or 'false' otherwise. 2140 */ 2141 bool cpufreq_driver_has_adjust_perf(void) 2142 { 2143 return !!cpufreq_driver->adjust_perf; 2144 } 2145 2146 /* Must set freqs->new to intermediate frequency */ 2147 static int __target_intermediate(struct cpufreq_policy *policy, 2148 struct cpufreq_freqs *freqs, int index) 2149 { 2150 int ret; 2151 2152 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2153 2154 /* We don't need to switch to intermediate freq */ 2155 if (!freqs->new) 2156 return 0; 2157 2158 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2159 __func__, policy->cpu, freqs->old, freqs->new); 2160 2161 cpufreq_freq_transition_begin(policy, freqs); 2162 ret = cpufreq_driver->target_intermediate(policy, index); 2163 cpufreq_freq_transition_end(policy, freqs, ret); 2164 2165 if (ret) 2166 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2167 __func__, ret); 2168 2169 return ret; 2170 } 2171 2172 static int __target_index(struct cpufreq_policy *policy, int index) 2173 { 2174 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2175 unsigned int restore_freq, intermediate_freq = 0; 2176 unsigned int newfreq = policy->freq_table[index].frequency; 2177 int retval = -EINVAL; 2178 bool notify; 2179 2180 if (newfreq == policy->cur) 2181 return 0; 2182 2183 /* Save last value to restore later on errors */ 2184 restore_freq = policy->cur; 2185 2186 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2187 if (notify) { 2188 /* Handle switching to intermediate frequency */ 2189 if (cpufreq_driver->get_intermediate) { 2190 retval = __target_intermediate(policy, &freqs, index); 2191 if (retval) 2192 return retval; 2193 2194 intermediate_freq = freqs.new; 2195 /* Set old freq to intermediate */ 2196 if (intermediate_freq) 2197 freqs.old = freqs.new; 2198 } 2199 2200 freqs.new = newfreq; 2201 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2202 __func__, policy->cpu, freqs.old, freqs.new); 2203 2204 cpufreq_freq_transition_begin(policy, &freqs); 2205 } 2206 2207 retval = cpufreq_driver->target_index(policy, index); 2208 if (retval) 2209 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2210 retval); 2211 2212 if (notify) { 2213 cpufreq_freq_transition_end(policy, &freqs, retval); 2214 2215 /* 2216 * Failed after setting to intermediate freq? Driver should have 2217 * reverted back to initial frequency and so should we. Check 2218 * here for intermediate_freq instead of get_intermediate, in 2219 * case we haven't switched to intermediate freq at all. 2220 */ 2221 if (unlikely(retval && intermediate_freq)) { 2222 freqs.old = intermediate_freq; 2223 freqs.new = restore_freq; 2224 cpufreq_freq_transition_begin(policy, &freqs); 2225 cpufreq_freq_transition_end(policy, &freqs, 0); 2226 } 2227 } 2228 2229 return retval; 2230 } 2231 2232 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2233 unsigned int target_freq, 2234 unsigned int relation) 2235 { 2236 unsigned int old_target_freq = target_freq; 2237 int index; 2238 2239 if (cpufreq_disabled()) 2240 return -ENODEV; 2241 2242 /* Make sure that target_freq is within supported range */ 2243 target_freq = clamp_val(target_freq, policy->min, policy->max); 2244 2245 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2246 policy->cpu, target_freq, relation, old_target_freq); 2247 2248 /* 2249 * This might look like a redundant call as we are checking it again 2250 * after finding index. But it is left intentionally for cases where 2251 * exactly same freq is called again and so we can save on few function 2252 * calls. 2253 */ 2254 if (target_freq == policy->cur && 2255 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2256 return 0; 2257 2258 if (cpufreq_driver->target) 2259 return cpufreq_driver->target(policy, target_freq, relation); 2260 2261 if (!cpufreq_driver->target_index) 2262 return -EINVAL; 2263 2264 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2265 2266 return __target_index(policy, index); 2267 } 2268 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2269 2270 int cpufreq_driver_target(struct cpufreq_policy *policy, 2271 unsigned int target_freq, 2272 unsigned int relation) 2273 { 2274 int ret; 2275 2276 down_write(&policy->rwsem); 2277 2278 ret = __cpufreq_driver_target(policy, target_freq, relation); 2279 2280 up_write(&policy->rwsem); 2281 2282 return ret; 2283 } 2284 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2285 2286 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2287 { 2288 return NULL; 2289 } 2290 2291 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2292 { 2293 int ret; 2294 2295 /* Don't start any governor operations if we are entering suspend */ 2296 if (cpufreq_suspended) 2297 return 0; 2298 /* 2299 * Governor might not be initiated here if ACPI _PPC changed 2300 * notification happened, so check it. 2301 */ 2302 if (!policy->governor) 2303 return -EINVAL; 2304 2305 /* Platform doesn't want dynamic frequency switching ? */ 2306 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2307 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2308 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2309 2310 if (gov) { 2311 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2312 policy->governor->name, gov->name); 2313 policy->governor = gov; 2314 } else { 2315 return -EINVAL; 2316 } 2317 } 2318 2319 if (!try_module_get(policy->governor->owner)) 2320 return -EINVAL; 2321 2322 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2323 2324 if (policy->governor->init) { 2325 ret = policy->governor->init(policy); 2326 if (ret) { 2327 module_put(policy->governor->owner); 2328 return ret; 2329 } 2330 } 2331 2332 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2333 2334 return 0; 2335 } 2336 2337 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2338 { 2339 if (cpufreq_suspended || !policy->governor) 2340 return; 2341 2342 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2343 2344 if (policy->governor->exit) 2345 policy->governor->exit(policy); 2346 2347 module_put(policy->governor->owner); 2348 } 2349 2350 int cpufreq_start_governor(struct cpufreq_policy *policy) 2351 { 2352 int ret; 2353 2354 if (cpufreq_suspended) 2355 return 0; 2356 2357 if (!policy->governor) 2358 return -EINVAL; 2359 2360 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2361 2362 if (cpufreq_driver->get) 2363 cpufreq_verify_current_freq(policy, false); 2364 2365 if (policy->governor->start) { 2366 ret = policy->governor->start(policy); 2367 if (ret) 2368 return ret; 2369 } 2370 2371 if (policy->governor->limits) 2372 policy->governor->limits(policy); 2373 2374 return 0; 2375 } 2376 2377 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2378 { 2379 if (cpufreq_suspended || !policy->governor) 2380 return; 2381 2382 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2383 2384 if (policy->governor->stop) 2385 policy->governor->stop(policy); 2386 } 2387 2388 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2389 { 2390 if (cpufreq_suspended || !policy->governor) 2391 return; 2392 2393 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2394 2395 if (policy->governor->limits) 2396 policy->governor->limits(policy); 2397 } 2398 2399 int cpufreq_register_governor(struct cpufreq_governor *governor) 2400 { 2401 int err; 2402 2403 if (!governor) 2404 return -EINVAL; 2405 2406 if (cpufreq_disabled()) 2407 return -ENODEV; 2408 2409 mutex_lock(&cpufreq_governor_mutex); 2410 2411 err = -EBUSY; 2412 if (!find_governor(governor->name)) { 2413 err = 0; 2414 list_add(&governor->governor_list, &cpufreq_governor_list); 2415 } 2416 2417 mutex_unlock(&cpufreq_governor_mutex); 2418 return err; 2419 } 2420 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2421 2422 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2423 { 2424 struct cpufreq_policy *policy; 2425 unsigned long flags; 2426 2427 if (!governor) 2428 return; 2429 2430 if (cpufreq_disabled()) 2431 return; 2432 2433 /* clear last_governor for all inactive policies */ 2434 read_lock_irqsave(&cpufreq_driver_lock, flags); 2435 for_each_inactive_policy(policy) { 2436 if (!strcmp(policy->last_governor, governor->name)) { 2437 policy->governor = NULL; 2438 strcpy(policy->last_governor, "\0"); 2439 } 2440 } 2441 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2442 2443 mutex_lock(&cpufreq_governor_mutex); 2444 list_del(&governor->governor_list); 2445 mutex_unlock(&cpufreq_governor_mutex); 2446 } 2447 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2448 2449 2450 /********************************************************************* 2451 * POLICY INTERFACE * 2452 *********************************************************************/ 2453 2454 /** 2455 * cpufreq_get_policy - get the current cpufreq_policy 2456 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2457 * is written 2458 * @cpu: CPU to find the policy for 2459 * 2460 * Reads the current cpufreq policy. 2461 */ 2462 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2463 { 2464 struct cpufreq_policy *cpu_policy; 2465 if (!policy) 2466 return -EINVAL; 2467 2468 cpu_policy = cpufreq_cpu_get(cpu); 2469 if (!cpu_policy) 2470 return -EINVAL; 2471 2472 memcpy(policy, cpu_policy, sizeof(*policy)); 2473 2474 cpufreq_cpu_put(cpu_policy); 2475 return 0; 2476 } 2477 EXPORT_SYMBOL(cpufreq_get_policy); 2478 2479 /** 2480 * cpufreq_set_policy - Modify cpufreq policy parameters. 2481 * @policy: Policy object to modify. 2482 * @new_gov: Policy governor pointer. 2483 * @new_pol: Policy value (for drivers with built-in governors). 2484 * 2485 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2486 * limits to be set for the policy, update @policy with the verified limits 2487 * values and either invoke the driver's ->setpolicy() callback (if present) or 2488 * carry out a governor update for @policy. That is, run the current governor's 2489 * ->limits() callback (if @new_gov points to the same object as the one in 2490 * @policy) or replace the governor for @policy with @new_gov. 2491 * 2492 * The cpuinfo part of @policy is not updated by this function. 2493 */ 2494 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2495 struct cpufreq_governor *new_gov, 2496 unsigned int new_pol) 2497 { 2498 struct cpufreq_policy_data new_data; 2499 struct cpufreq_governor *old_gov; 2500 int ret; 2501 2502 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2503 new_data.freq_table = policy->freq_table; 2504 new_data.cpu = policy->cpu; 2505 /* 2506 * PM QoS framework collects all the requests from users and provide us 2507 * the final aggregated value here. 2508 */ 2509 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2510 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2511 2512 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2513 new_data.cpu, new_data.min, new_data.max); 2514 2515 /* 2516 * Verify that the CPU speed can be set within these limits and make sure 2517 * that min <= max. 2518 */ 2519 ret = cpufreq_driver->verify(&new_data); 2520 if (ret) 2521 return ret; 2522 2523 policy->min = new_data.min; 2524 policy->max = new_data.max; 2525 trace_cpu_frequency_limits(policy); 2526 2527 policy->cached_target_freq = UINT_MAX; 2528 2529 pr_debug("new min and max freqs are %u - %u kHz\n", 2530 policy->min, policy->max); 2531 2532 if (cpufreq_driver->setpolicy) { 2533 policy->policy = new_pol; 2534 pr_debug("setting range\n"); 2535 return cpufreq_driver->setpolicy(policy); 2536 } 2537 2538 if (new_gov == policy->governor) { 2539 pr_debug("governor limits update\n"); 2540 cpufreq_governor_limits(policy); 2541 return 0; 2542 } 2543 2544 pr_debug("governor switch\n"); 2545 2546 /* save old, working values */ 2547 old_gov = policy->governor; 2548 /* end old governor */ 2549 if (old_gov) { 2550 cpufreq_stop_governor(policy); 2551 cpufreq_exit_governor(policy); 2552 } 2553 2554 /* start new governor */ 2555 policy->governor = new_gov; 2556 ret = cpufreq_init_governor(policy); 2557 if (!ret) { 2558 ret = cpufreq_start_governor(policy); 2559 if (!ret) { 2560 pr_debug("governor change\n"); 2561 sched_cpufreq_governor_change(policy, old_gov); 2562 return 0; 2563 } 2564 cpufreq_exit_governor(policy); 2565 } 2566 2567 /* new governor failed, so re-start old one */ 2568 pr_debug("starting governor %s failed\n", policy->governor->name); 2569 if (old_gov) { 2570 policy->governor = old_gov; 2571 if (cpufreq_init_governor(policy)) 2572 policy->governor = NULL; 2573 else 2574 cpufreq_start_governor(policy); 2575 } 2576 2577 return ret; 2578 } 2579 2580 /** 2581 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2582 * @cpu: CPU to re-evaluate the policy for. 2583 * 2584 * Update the current frequency for the cpufreq policy of @cpu and use 2585 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2586 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2587 * for the policy in question, among other things. 2588 */ 2589 void cpufreq_update_policy(unsigned int cpu) 2590 { 2591 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2592 2593 if (!policy) 2594 return; 2595 2596 /* 2597 * BIOS might change freq behind our back 2598 * -> ask driver for current freq and notify governors about a change 2599 */ 2600 if (cpufreq_driver->get && has_target() && 2601 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2602 goto unlock; 2603 2604 refresh_frequency_limits(policy); 2605 2606 unlock: 2607 cpufreq_cpu_release(policy); 2608 } 2609 EXPORT_SYMBOL(cpufreq_update_policy); 2610 2611 /** 2612 * cpufreq_update_limits - Update policy limits for a given CPU. 2613 * @cpu: CPU to update the policy limits for. 2614 * 2615 * Invoke the driver's ->update_limits callback if present or call 2616 * cpufreq_update_policy() for @cpu. 2617 */ 2618 void cpufreq_update_limits(unsigned int cpu) 2619 { 2620 if (cpufreq_driver->update_limits) 2621 cpufreq_driver->update_limits(cpu); 2622 else 2623 cpufreq_update_policy(cpu); 2624 } 2625 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2626 2627 /********************************************************************* 2628 * BOOST * 2629 *********************************************************************/ 2630 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2631 { 2632 int ret; 2633 2634 if (!policy->freq_table) 2635 return -ENXIO; 2636 2637 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2638 if (ret) { 2639 pr_err("%s: Policy frequency update failed\n", __func__); 2640 return ret; 2641 } 2642 2643 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2644 if (ret < 0) 2645 return ret; 2646 2647 return 0; 2648 } 2649 2650 int cpufreq_boost_trigger_state(int state) 2651 { 2652 struct cpufreq_policy *policy; 2653 unsigned long flags; 2654 int ret = 0; 2655 2656 if (cpufreq_driver->boost_enabled == state) 2657 return 0; 2658 2659 write_lock_irqsave(&cpufreq_driver_lock, flags); 2660 cpufreq_driver->boost_enabled = state; 2661 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2662 2663 get_online_cpus(); 2664 for_each_active_policy(policy) { 2665 ret = cpufreq_driver->set_boost(policy, state); 2666 if (ret) 2667 goto err_reset_state; 2668 } 2669 put_online_cpus(); 2670 2671 return 0; 2672 2673 err_reset_state: 2674 put_online_cpus(); 2675 2676 write_lock_irqsave(&cpufreq_driver_lock, flags); 2677 cpufreq_driver->boost_enabled = !state; 2678 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2679 2680 pr_err("%s: Cannot %s BOOST\n", 2681 __func__, state ? "enable" : "disable"); 2682 2683 return ret; 2684 } 2685 2686 static bool cpufreq_boost_supported(void) 2687 { 2688 return cpufreq_driver->set_boost; 2689 } 2690 2691 static int create_boost_sysfs_file(void) 2692 { 2693 int ret; 2694 2695 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2696 if (ret) 2697 pr_err("%s: cannot register global BOOST sysfs file\n", 2698 __func__); 2699 2700 return ret; 2701 } 2702 2703 static void remove_boost_sysfs_file(void) 2704 { 2705 if (cpufreq_boost_supported()) 2706 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2707 } 2708 2709 int cpufreq_enable_boost_support(void) 2710 { 2711 if (!cpufreq_driver) 2712 return -EINVAL; 2713 2714 if (cpufreq_boost_supported()) 2715 return 0; 2716 2717 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2718 2719 /* This will get removed on driver unregister */ 2720 return create_boost_sysfs_file(); 2721 } 2722 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2723 2724 int cpufreq_boost_enabled(void) 2725 { 2726 return cpufreq_driver->boost_enabled; 2727 } 2728 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2729 2730 /********************************************************************* 2731 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2732 *********************************************************************/ 2733 static enum cpuhp_state hp_online; 2734 2735 static int cpuhp_cpufreq_online(unsigned int cpu) 2736 { 2737 cpufreq_online(cpu); 2738 2739 return 0; 2740 } 2741 2742 static int cpuhp_cpufreq_offline(unsigned int cpu) 2743 { 2744 cpufreq_offline(cpu); 2745 2746 return 0; 2747 } 2748 2749 /** 2750 * cpufreq_register_driver - register a CPU Frequency driver 2751 * @driver_data: A struct cpufreq_driver containing the values# 2752 * submitted by the CPU Frequency driver. 2753 * 2754 * Registers a CPU Frequency driver to this core code. This code 2755 * returns zero on success, -EEXIST when another driver got here first 2756 * (and isn't unregistered in the meantime). 2757 * 2758 */ 2759 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2760 { 2761 unsigned long flags; 2762 int ret; 2763 2764 if (cpufreq_disabled()) 2765 return -ENODEV; 2766 2767 /* 2768 * The cpufreq core depends heavily on the availability of device 2769 * structure, make sure they are available before proceeding further. 2770 */ 2771 if (!get_cpu_device(0)) 2772 return -EPROBE_DEFER; 2773 2774 if (!driver_data || !driver_data->verify || !driver_data->init || 2775 !(driver_data->setpolicy || driver_data->target_index || 2776 driver_data->target) || 2777 (driver_data->setpolicy && (driver_data->target_index || 2778 driver_data->target)) || 2779 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2780 (!driver_data->online != !driver_data->offline)) 2781 return -EINVAL; 2782 2783 pr_debug("trying to register driver %s\n", driver_data->name); 2784 2785 /* Protect against concurrent CPU online/offline. */ 2786 cpus_read_lock(); 2787 2788 write_lock_irqsave(&cpufreq_driver_lock, flags); 2789 if (cpufreq_driver) { 2790 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2791 ret = -EEXIST; 2792 goto out; 2793 } 2794 cpufreq_driver = driver_data; 2795 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2796 2797 /* 2798 * Mark support for the scheduler's frequency invariance engine for 2799 * drivers that implement target(), target_index() or fast_switch(). 2800 */ 2801 if (!cpufreq_driver->setpolicy) { 2802 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2803 pr_debug("supports frequency invariance"); 2804 } 2805 2806 if (driver_data->setpolicy) 2807 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2808 2809 if (cpufreq_boost_supported()) { 2810 ret = create_boost_sysfs_file(); 2811 if (ret) 2812 goto err_null_driver; 2813 } 2814 2815 ret = subsys_interface_register(&cpufreq_interface); 2816 if (ret) 2817 goto err_boost_unreg; 2818 2819 if (unlikely(list_empty(&cpufreq_policy_list))) { 2820 /* if all ->init() calls failed, unregister */ 2821 ret = -ENODEV; 2822 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2823 driver_data->name); 2824 goto err_if_unreg; 2825 } 2826 2827 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2828 "cpufreq:online", 2829 cpuhp_cpufreq_online, 2830 cpuhp_cpufreq_offline); 2831 if (ret < 0) 2832 goto err_if_unreg; 2833 hp_online = ret; 2834 ret = 0; 2835 2836 pr_debug("driver %s up and running\n", driver_data->name); 2837 goto out; 2838 2839 err_if_unreg: 2840 subsys_interface_unregister(&cpufreq_interface); 2841 err_boost_unreg: 2842 remove_boost_sysfs_file(); 2843 err_null_driver: 2844 write_lock_irqsave(&cpufreq_driver_lock, flags); 2845 cpufreq_driver = NULL; 2846 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2847 out: 2848 cpus_read_unlock(); 2849 return ret; 2850 } 2851 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2852 2853 /* 2854 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2855 * 2856 * Unregister the current CPUFreq driver. Only call this if you have 2857 * the right to do so, i.e. if you have succeeded in initialising before! 2858 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2859 * currently not initialised. 2860 */ 2861 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2862 { 2863 unsigned long flags; 2864 2865 if (!cpufreq_driver || (driver != cpufreq_driver)) 2866 return -EINVAL; 2867 2868 pr_debug("unregistering driver %s\n", driver->name); 2869 2870 /* Protect against concurrent cpu hotplug */ 2871 cpus_read_lock(); 2872 subsys_interface_unregister(&cpufreq_interface); 2873 remove_boost_sysfs_file(); 2874 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2875 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2876 2877 write_lock_irqsave(&cpufreq_driver_lock, flags); 2878 2879 cpufreq_driver = NULL; 2880 2881 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2882 cpus_read_unlock(); 2883 2884 return 0; 2885 } 2886 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2887 2888 static int __init cpufreq_core_init(void) 2889 { 2890 struct cpufreq_governor *gov = cpufreq_default_governor(); 2891 2892 if (cpufreq_disabled()) 2893 return -ENODEV; 2894 2895 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2896 BUG_ON(!cpufreq_global_kobject); 2897 2898 if (!strlen(default_governor)) 2899 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2900 2901 return 0; 2902 } 2903 module_param(off, int, 0444); 2904 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2905 core_initcall(cpufreq_core_init); 2906