xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 9da8320b)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 static bool suitable_policy(struct cpufreq_policy *policy, bool active)
42 {
43 	return active == !policy_is_inactive(policy);
44 }
45 
46 /* Finds Next Acive/Inactive policy */
47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy,
48 					  bool active)
49 {
50 	do {
51 		policy = list_next_entry(policy, policy_list);
52 
53 		/* No more policies in the list */
54 		if (&policy->policy_list == &cpufreq_policy_list)
55 			return NULL;
56 	} while (!suitable_policy(policy, active));
57 
58 	return policy;
59 }
60 
61 static struct cpufreq_policy *first_policy(bool active)
62 {
63 	struct cpufreq_policy *policy;
64 
65 	/* No policies in the list */
66 	if (list_empty(&cpufreq_policy_list))
67 		return NULL;
68 
69 	policy = list_first_entry(&cpufreq_policy_list, typeof(*policy),
70 				  policy_list);
71 
72 	if (!suitable_policy(policy, active))
73 		policy = next_policy(policy, active);
74 
75 	return policy;
76 }
77 
78 /* Macros to iterate over CPU policies */
79 #define for_each_suitable_policy(__policy, __active)	\
80 	for (__policy = first_policy(__active);		\
81 	     __policy;					\
82 	     __policy = next_policy(__policy, __active))
83 
84 #define for_each_active_policy(__policy)		\
85 	for_each_suitable_policy(__policy, true)
86 #define for_each_inactive_policy(__policy)		\
87 	for_each_suitable_policy(__policy, false)
88 
89 #define for_each_policy(__policy)			\
90 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
91 
92 /* Iterate over governors */
93 static LIST_HEAD(cpufreq_governor_list);
94 #define for_each_governor(__governor)				\
95 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
96 
97 /**
98  * The "cpufreq driver" - the arch- or hardware-dependent low
99  * level driver of CPUFreq support, and its spinlock. This lock
100  * also protects the cpufreq_cpu_data array.
101  */
102 static struct cpufreq_driver *cpufreq_driver;
103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
104 static DEFINE_RWLOCK(cpufreq_driver_lock);
105 DEFINE_MUTEX(cpufreq_governor_lock);
106 
107 /* Flag to suspend/resume CPUFreq governors */
108 static bool cpufreq_suspended;
109 
110 static inline bool has_target(void)
111 {
112 	return cpufreq_driver->target_index || cpufreq_driver->target;
113 }
114 
115 /* internal prototypes */
116 static int __cpufreq_governor(struct cpufreq_policy *policy,
117 		unsigned int event);
118 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
119 static void handle_update(struct work_struct *work);
120 
121 /**
122  * Two notifier lists: the "policy" list is involved in the
123  * validation process for a new CPU frequency policy; the
124  * "transition" list for kernel code that needs to handle
125  * changes to devices when the CPU clock speed changes.
126  * The mutex locks both lists.
127  */
128 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
129 static struct srcu_notifier_head cpufreq_transition_notifier_list;
130 
131 static bool init_cpufreq_transition_notifier_list_called;
132 static int __init init_cpufreq_transition_notifier_list(void)
133 {
134 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
135 	init_cpufreq_transition_notifier_list_called = true;
136 	return 0;
137 }
138 pure_initcall(init_cpufreq_transition_notifier_list);
139 
140 static int off __read_mostly;
141 static int cpufreq_disabled(void)
142 {
143 	return off;
144 }
145 void disable_cpufreq(void)
146 {
147 	off = 1;
148 }
149 static DEFINE_MUTEX(cpufreq_governor_mutex);
150 
151 bool have_governor_per_policy(void)
152 {
153 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
154 }
155 EXPORT_SYMBOL_GPL(have_governor_per_policy);
156 
157 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
158 {
159 	if (have_governor_per_policy())
160 		return &policy->kobj;
161 	else
162 		return cpufreq_global_kobject;
163 }
164 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
165 
166 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
167 {
168 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
169 
170 	return policy && !policy_is_inactive(policy) ?
171 		policy->freq_table : NULL;
172 }
173 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
174 
175 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
176 {
177 	u64 idle_time;
178 	u64 cur_wall_time;
179 	u64 busy_time;
180 
181 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
182 
183 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
184 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
185 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
186 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
187 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
188 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
189 
190 	idle_time = cur_wall_time - busy_time;
191 	if (wall)
192 		*wall = cputime_to_usecs(cur_wall_time);
193 
194 	return cputime_to_usecs(idle_time);
195 }
196 
197 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
198 {
199 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
200 
201 	if (idle_time == -1ULL)
202 		return get_cpu_idle_time_jiffy(cpu, wall);
203 	else if (!io_busy)
204 		idle_time += get_cpu_iowait_time_us(cpu, wall);
205 
206 	return idle_time;
207 }
208 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
209 
210 /*
211  * This is a generic cpufreq init() routine which can be used by cpufreq
212  * drivers of SMP systems. It will do following:
213  * - validate & show freq table passed
214  * - set policies transition latency
215  * - policy->cpus with all possible CPUs
216  */
217 int cpufreq_generic_init(struct cpufreq_policy *policy,
218 		struct cpufreq_frequency_table *table,
219 		unsigned int transition_latency)
220 {
221 	int ret;
222 
223 	ret = cpufreq_table_validate_and_show(policy, table);
224 	if (ret) {
225 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
226 		return ret;
227 	}
228 
229 	policy->cpuinfo.transition_latency = transition_latency;
230 
231 	/*
232 	 * The driver only supports the SMP configuration where all processors
233 	 * share the clock and voltage and clock.
234 	 */
235 	cpumask_setall(policy->cpus);
236 
237 	return 0;
238 }
239 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
240 
241 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
242 {
243 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
244 
245 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
248 
249 unsigned int cpufreq_generic_get(unsigned int cpu)
250 {
251 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
252 
253 	if (!policy || IS_ERR(policy->clk)) {
254 		pr_err("%s: No %s associated to cpu: %d\n",
255 		       __func__, policy ? "clk" : "policy", cpu);
256 		return 0;
257 	}
258 
259 	return clk_get_rate(policy->clk) / 1000;
260 }
261 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
262 
263 /**
264  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
265  *
266  * @cpu: cpu to find policy for.
267  *
268  * This returns policy for 'cpu', returns NULL if it doesn't exist.
269  * It also increments the kobject reference count to mark it busy and so would
270  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
271  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
272  * freed as that depends on the kobj count.
273  *
274  * Return: A valid policy on success, otherwise NULL on failure.
275  */
276 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
277 {
278 	struct cpufreq_policy *policy = NULL;
279 	unsigned long flags;
280 
281 	if (WARN_ON(cpu >= nr_cpu_ids))
282 		return NULL;
283 
284 	/* get the cpufreq driver */
285 	read_lock_irqsave(&cpufreq_driver_lock, flags);
286 
287 	if (cpufreq_driver) {
288 		/* get the CPU */
289 		policy = cpufreq_cpu_get_raw(cpu);
290 		if (policy)
291 			kobject_get(&policy->kobj);
292 	}
293 
294 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
295 
296 	return policy;
297 }
298 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
299 
300 /**
301  * cpufreq_cpu_put: Decrements the usage count of a policy
302  *
303  * @policy: policy earlier returned by cpufreq_cpu_get().
304  *
305  * This decrements the kobject reference count incremented earlier by calling
306  * cpufreq_cpu_get().
307  */
308 void cpufreq_cpu_put(struct cpufreq_policy *policy)
309 {
310 	kobject_put(&policy->kobj);
311 }
312 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
313 
314 /*********************************************************************
315  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
316  *********************************************************************/
317 
318 /**
319  * adjust_jiffies - adjust the system "loops_per_jiffy"
320  *
321  * This function alters the system "loops_per_jiffy" for the clock
322  * speed change. Note that loops_per_jiffy cannot be updated on SMP
323  * systems as each CPU might be scaled differently. So, use the arch
324  * per-CPU loops_per_jiffy value wherever possible.
325  */
326 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
327 {
328 #ifndef CONFIG_SMP
329 	static unsigned long l_p_j_ref;
330 	static unsigned int l_p_j_ref_freq;
331 
332 	if (ci->flags & CPUFREQ_CONST_LOOPS)
333 		return;
334 
335 	if (!l_p_j_ref_freq) {
336 		l_p_j_ref = loops_per_jiffy;
337 		l_p_j_ref_freq = ci->old;
338 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
339 			 l_p_j_ref, l_p_j_ref_freq);
340 	}
341 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
342 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
343 								ci->new);
344 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
345 			 loops_per_jiffy, ci->new);
346 	}
347 #endif
348 }
349 
350 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
351 		struct cpufreq_freqs *freqs, unsigned int state)
352 {
353 	BUG_ON(irqs_disabled());
354 
355 	if (cpufreq_disabled())
356 		return;
357 
358 	freqs->flags = cpufreq_driver->flags;
359 	pr_debug("notification %u of frequency transition to %u kHz\n",
360 		 state, freqs->new);
361 
362 	switch (state) {
363 
364 	case CPUFREQ_PRECHANGE:
365 		/* detect if the driver reported a value as "old frequency"
366 		 * which is not equal to what the cpufreq core thinks is
367 		 * "old frequency".
368 		 */
369 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
370 			if ((policy) && (policy->cpu == freqs->cpu) &&
371 			    (policy->cur) && (policy->cur != freqs->old)) {
372 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
373 					 freqs->old, policy->cur);
374 				freqs->old = policy->cur;
375 			}
376 		}
377 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
378 				CPUFREQ_PRECHANGE, freqs);
379 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
380 		break;
381 
382 	case CPUFREQ_POSTCHANGE:
383 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
384 		pr_debug("FREQ: %lu - CPU: %lu\n",
385 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
386 		trace_cpu_frequency(freqs->new, freqs->cpu);
387 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
388 				CPUFREQ_POSTCHANGE, freqs);
389 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
390 			policy->cur = freqs->new;
391 		break;
392 	}
393 }
394 
395 /**
396  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
397  * on frequency transition.
398  *
399  * This function calls the transition notifiers and the "adjust_jiffies"
400  * function. It is called twice on all CPU frequency changes that have
401  * external effects.
402  */
403 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
404 		struct cpufreq_freqs *freqs, unsigned int state)
405 {
406 	for_each_cpu(freqs->cpu, policy->cpus)
407 		__cpufreq_notify_transition(policy, freqs, state);
408 }
409 
410 /* Do post notifications when there are chances that transition has failed */
411 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
412 		struct cpufreq_freqs *freqs, int transition_failed)
413 {
414 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
415 	if (!transition_failed)
416 		return;
417 
418 	swap(freqs->old, freqs->new);
419 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
420 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
421 }
422 
423 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
424 		struct cpufreq_freqs *freqs)
425 {
426 
427 	/*
428 	 * Catch double invocations of _begin() which lead to self-deadlock.
429 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
430 	 * doesn't invoke _begin() on their behalf, and hence the chances of
431 	 * double invocations are very low. Moreover, there are scenarios
432 	 * where these checks can emit false-positive warnings in these
433 	 * drivers; so we avoid that by skipping them altogether.
434 	 */
435 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
436 				&& current == policy->transition_task);
437 
438 wait:
439 	wait_event(policy->transition_wait, !policy->transition_ongoing);
440 
441 	spin_lock(&policy->transition_lock);
442 
443 	if (unlikely(policy->transition_ongoing)) {
444 		spin_unlock(&policy->transition_lock);
445 		goto wait;
446 	}
447 
448 	policy->transition_ongoing = true;
449 	policy->transition_task = current;
450 
451 	spin_unlock(&policy->transition_lock);
452 
453 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
454 }
455 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
456 
457 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
458 		struct cpufreq_freqs *freqs, int transition_failed)
459 {
460 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
461 		return;
462 
463 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
464 
465 	policy->transition_ongoing = false;
466 	policy->transition_task = NULL;
467 
468 	wake_up(&policy->transition_wait);
469 }
470 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
471 
472 
473 /*********************************************************************
474  *                          SYSFS INTERFACE                          *
475  *********************************************************************/
476 static ssize_t show_boost(struct kobject *kobj,
477 				 struct attribute *attr, char *buf)
478 {
479 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
480 }
481 
482 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
483 				  const char *buf, size_t count)
484 {
485 	int ret, enable;
486 
487 	ret = sscanf(buf, "%d", &enable);
488 	if (ret != 1 || enable < 0 || enable > 1)
489 		return -EINVAL;
490 
491 	if (cpufreq_boost_trigger_state(enable)) {
492 		pr_err("%s: Cannot %s BOOST!\n",
493 		       __func__, enable ? "enable" : "disable");
494 		return -EINVAL;
495 	}
496 
497 	pr_debug("%s: cpufreq BOOST %s\n",
498 		 __func__, enable ? "enabled" : "disabled");
499 
500 	return count;
501 }
502 define_one_global_rw(boost);
503 
504 static struct cpufreq_governor *find_governor(const char *str_governor)
505 {
506 	struct cpufreq_governor *t;
507 
508 	for_each_governor(t)
509 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
510 			return t;
511 
512 	return NULL;
513 }
514 
515 /**
516  * cpufreq_parse_governor - parse a governor string
517  */
518 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
519 				struct cpufreq_governor **governor)
520 {
521 	int err = -EINVAL;
522 
523 	if (cpufreq_driver->setpolicy) {
524 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
525 			*policy = CPUFREQ_POLICY_PERFORMANCE;
526 			err = 0;
527 		} else if (!strncasecmp(str_governor, "powersave",
528 						CPUFREQ_NAME_LEN)) {
529 			*policy = CPUFREQ_POLICY_POWERSAVE;
530 			err = 0;
531 		}
532 	} else {
533 		struct cpufreq_governor *t;
534 
535 		mutex_lock(&cpufreq_governor_mutex);
536 
537 		t = find_governor(str_governor);
538 
539 		if (t == NULL) {
540 			int ret;
541 
542 			mutex_unlock(&cpufreq_governor_mutex);
543 			ret = request_module("cpufreq_%s", str_governor);
544 			mutex_lock(&cpufreq_governor_mutex);
545 
546 			if (ret == 0)
547 				t = find_governor(str_governor);
548 		}
549 
550 		if (t != NULL) {
551 			*governor = t;
552 			err = 0;
553 		}
554 
555 		mutex_unlock(&cpufreq_governor_mutex);
556 	}
557 	return err;
558 }
559 
560 /**
561  * cpufreq_per_cpu_attr_read() / show_##file_name() -
562  * print out cpufreq information
563  *
564  * Write out information from cpufreq_driver->policy[cpu]; object must be
565  * "unsigned int".
566  */
567 
568 #define show_one(file_name, object)			\
569 static ssize_t show_##file_name				\
570 (struct cpufreq_policy *policy, char *buf)		\
571 {							\
572 	return sprintf(buf, "%u\n", policy->object);	\
573 }
574 
575 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
576 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
577 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
578 show_one(scaling_min_freq, min);
579 show_one(scaling_max_freq, max);
580 
581 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
582 {
583 	ssize_t ret;
584 
585 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
586 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
587 	else
588 		ret = sprintf(buf, "%u\n", policy->cur);
589 	return ret;
590 }
591 
592 static int cpufreq_set_policy(struct cpufreq_policy *policy,
593 				struct cpufreq_policy *new_policy);
594 
595 /**
596  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
597  */
598 #define store_one(file_name, object)			\
599 static ssize_t store_##file_name					\
600 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
601 {									\
602 	int ret, temp;							\
603 	struct cpufreq_policy new_policy;				\
604 									\
605 	memcpy(&new_policy, policy, sizeof(*policy));			\
606 									\
607 	ret = sscanf(buf, "%u", &new_policy.object);			\
608 	if (ret != 1)							\
609 		return -EINVAL;						\
610 									\
611 	temp = new_policy.object;					\
612 	ret = cpufreq_set_policy(policy, &new_policy);		\
613 	if (!ret)							\
614 		policy->user_policy.object = temp;			\
615 									\
616 	return ret ? ret : count;					\
617 }
618 
619 store_one(scaling_min_freq, min);
620 store_one(scaling_max_freq, max);
621 
622 /**
623  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
624  */
625 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
626 					char *buf)
627 {
628 	unsigned int cur_freq = __cpufreq_get(policy);
629 	if (!cur_freq)
630 		return sprintf(buf, "<unknown>");
631 	return sprintf(buf, "%u\n", cur_freq);
632 }
633 
634 /**
635  * show_scaling_governor - show the current policy for the specified CPU
636  */
637 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
638 {
639 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
640 		return sprintf(buf, "powersave\n");
641 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
642 		return sprintf(buf, "performance\n");
643 	else if (policy->governor)
644 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
645 				policy->governor->name);
646 	return -EINVAL;
647 }
648 
649 /**
650  * store_scaling_governor - store policy for the specified CPU
651  */
652 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
653 					const char *buf, size_t count)
654 {
655 	int ret;
656 	char	str_governor[16];
657 	struct cpufreq_policy new_policy;
658 
659 	memcpy(&new_policy, policy, sizeof(*policy));
660 
661 	ret = sscanf(buf, "%15s", str_governor);
662 	if (ret != 1)
663 		return -EINVAL;
664 
665 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
666 						&new_policy.governor))
667 		return -EINVAL;
668 
669 	ret = cpufreq_set_policy(policy, &new_policy);
670 	return ret ? ret : count;
671 }
672 
673 /**
674  * show_scaling_driver - show the cpufreq driver currently loaded
675  */
676 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
677 {
678 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
679 }
680 
681 /**
682  * show_scaling_available_governors - show the available CPUfreq governors
683  */
684 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
685 						char *buf)
686 {
687 	ssize_t i = 0;
688 	struct cpufreq_governor *t;
689 
690 	if (!has_target()) {
691 		i += sprintf(buf, "performance powersave");
692 		goto out;
693 	}
694 
695 	for_each_governor(t) {
696 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
697 		    - (CPUFREQ_NAME_LEN + 2)))
698 			goto out;
699 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
700 	}
701 out:
702 	i += sprintf(&buf[i], "\n");
703 	return i;
704 }
705 
706 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
707 {
708 	ssize_t i = 0;
709 	unsigned int cpu;
710 
711 	for_each_cpu(cpu, mask) {
712 		if (i)
713 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
714 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
715 		if (i >= (PAGE_SIZE - 5))
716 			break;
717 	}
718 	i += sprintf(&buf[i], "\n");
719 	return i;
720 }
721 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
722 
723 /**
724  * show_related_cpus - show the CPUs affected by each transition even if
725  * hw coordination is in use
726  */
727 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
728 {
729 	return cpufreq_show_cpus(policy->related_cpus, buf);
730 }
731 
732 /**
733  * show_affected_cpus - show the CPUs affected by each transition
734  */
735 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
736 {
737 	return cpufreq_show_cpus(policy->cpus, buf);
738 }
739 
740 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
741 					const char *buf, size_t count)
742 {
743 	unsigned int freq = 0;
744 	unsigned int ret;
745 
746 	if (!policy->governor || !policy->governor->store_setspeed)
747 		return -EINVAL;
748 
749 	ret = sscanf(buf, "%u", &freq);
750 	if (ret != 1)
751 		return -EINVAL;
752 
753 	policy->governor->store_setspeed(policy, freq);
754 
755 	return count;
756 }
757 
758 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
759 {
760 	if (!policy->governor || !policy->governor->show_setspeed)
761 		return sprintf(buf, "<unsupported>\n");
762 
763 	return policy->governor->show_setspeed(policy, buf);
764 }
765 
766 /**
767  * show_bios_limit - show the current cpufreq HW/BIOS limitation
768  */
769 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
770 {
771 	unsigned int limit;
772 	int ret;
773 	if (cpufreq_driver->bios_limit) {
774 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
775 		if (!ret)
776 			return sprintf(buf, "%u\n", limit);
777 	}
778 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
779 }
780 
781 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
782 cpufreq_freq_attr_ro(cpuinfo_min_freq);
783 cpufreq_freq_attr_ro(cpuinfo_max_freq);
784 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
785 cpufreq_freq_attr_ro(scaling_available_governors);
786 cpufreq_freq_attr_ro(scaling_driver);
787 cpufreq_freq_attr_ro(scaling_cur_freq);
788 cpufreq_freq_attr_ro(bios_limit);
789 cpufreq_freq_attr_ro(related_cpus);
790 cpufreq_freq_attr_ro(affected_cpus);
791 cpufreq_freq_attr_rw(scaling_min_freq);
792 cpufreq_freq_attr_rw(scaling_max_freq);
793 cpufreq_freq_attr_rw(scaling_governor);
794 cpufreq_freq_attr_rw(scaling_setspeed);
795 
796 static struct attribute *default_attrs[] = {
797 	&cpuinfo_min_freq.attr,
798 	&cpuinfo_max_freq.attr,
799 	&cpuinfo_transition_latency.attr,
800 	&scaling_min_freq.attr,
801 	&scaling_max_freq.attr,
802 	&affected_cpus.attr,
803 	&related_cpus.attr,
804 	&scaling_governor.attr,
805 	&scaling_driver.attr,
806 	&scaling_available_governors.attr,
807 	&scaling_setspeed.attr,
808 	NULL
809 };
810 
811 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
812 #define to_attr(a) container_of(a, struct freq_attr, attr)
813 
814 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
815 {
816 	struct cpufreq_policy *policy = to_policy(kobj);
817 	struct freq_attr *fattr = to_attr(attr);
818 	ssize_t ret;
819 
820 	down_read(&policy->rwsem);
821 
822 	if (fattr->show)
823 		ret = fattr->show(policy, buf);
824 	else
825 		ret = -EIO;
826 
827 	up_read(&policy->rwsem);
828 
829 	return ret;
830 }
831 
832 static ssize_t store(struct kobject *kobj, struct attribute *attr,
833 		     const char *buf, size_t count)
834 {
835 	struct cpufreq_policy *policy = to_policy(kobj);
836 	struct freq_attr *fattr = to_attr(attr);
837 	ssize_t ret = -EINVAL;
838 
839 	get_online_cpus();
840 
841 	if (!cpu_online(policy->cpu))
842 		goto unlock;
843 
844 	down_write(&policy->rwsem);
845 
846 	if (fattr->store)
847 		ret = fattr->store(policy, buf, count);
848 	else
849 		ret = -EIO;
850 
851 	up_write(&policy->rwsem);
852 unlock:
853 	put_online_cpus();
854 
855 	return ret;
856 }
857 
858 static void cpufreq_sysfs_release(struct kobject *kobj)
859 {
860 	struct cpufreq_policy *policy = to_policy(kobj);
861 	pr_debug("last reference is dropped\n");
862 	complete(&policy->kobj_unregister);
863 }
864 
865 static const struct sysfs_ops sysfs_ops = {
866 	.show	= show,
867 	.store	= store,
868 };
869 
870 static struct kobj_type ktype_cpufreq = {
871 	.sysfs_ops	= &sysfs_ops,
872 	.default_attrs	= default_attrs,
873 	.release	= cpufreq_sysfs_release,
874 };
875 
876 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
877 {
878 	struct device *cpu_dev;
879 
880 	pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
881 
882 	if (!policy)
883 		return 0;
884 
885 	cpu_dev = get_cpu_device(cpu);
886 	if (WARN_ON(!cpu_dev))
887 		return 0;
888 
889 	return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
890 }
891 
892 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
893 {
894 	struct device *cpu_dev;
895 
896 	pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
897 
898 	cpu_dev = get_cpu_device(cpu);
899 	if (WARN_ON(!cpu_dev))
900 		return;
901 
902 	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
903 }
904 
905 /* Add/remove symlinks for all related CPUs */
906 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
907 {
908 	unsigned int j;
909 	int ret = 0;
910 
911 	/* Some related CPUs might not be present (physically hotplugged) */
912 	for_each_cpu(j, policy->real_cpus) {
913 		ret = add_cpu_dev_symlink(policy, j);
914 		if (ret)
915 			break;
916 	}
917 
918 	return ret;
919 }
920 
921 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
922 {
923 	unsigned int j;
924 
925 	/* Some related CPUs might not be present (physically hotplugged) */
926 	for_each_cpu(j, policy->real_cpus)
927 		remove_cpu_dev_symlink(policy, j);
928 }
929 
930 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
931 {
932 	struct freq_attr **drv_attr;
933 	int ret = 0;
934 
935 	/* set up files for this cpu device */
936 	drv_attr = cpufreq_driver->attr;
937 	while (drv_attr && *drv_attr) {
938 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
939 		if (ret)
940 			return ret;
941 		drv_attr++;
942 	}
943 	if (cpufreq_driver->get) {
944 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
945 		if (ret)
946 			return ret;
947 	}
948 
949 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
950 	if (ret)
951 		return ret;
952 
953 	if (cpufreq_driver->bios_limit) {
954 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
955 		if (ret)
956 			return ret;
957 	}
958 
959 	return cpufreq_add_dev_symlink(policy);
960 }
961 
962 static int cpufreq_init_policy(struct cpufreq_policy *policy)
963 {
964 	struct cpufreq_governor *gov = NULL;
965 	struct cpufreq_policy new_policy;
966 
967 	memcpy(&new_policy, policy, sizeof(*policy));
968 
969 	/* Update governor of new_policy to the governor used before hotplug */
970 	gov = find_governor(policy->last_governor);
971 	if (gov)
972 		pr_debug("Restoring governor %s for cpu %d\n",
973 				policy->governor->name, policy->cpu);
974 	else
975 		gov = CPUFREQ_DEFAULT_GOVERNOR;
976 
977 	new_policy.governor = gov;
978 
979 	/* Use the default policy if there is no last_policy. */
980 	if (cpufreq_driver->setpolicy) {
981 		if (policy->last_policy)
982 			new_policy.policy = policy->last_policy;
983 		else
984 			cpufreq_parse_governor(gov->name, &new_policy.policy,
985 					       NULL);
986 	}
987 	/* set default policy */
988 	return cpufreq_set_policy(policy, &new_policy);
989 }
990 
991 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
992 {
993 	int ret = 0;
994 
995 	/* Has this CPU been taken care of already? */
996 	if (cpumask_test_cpu(cpu, policy->cpus))
997 		return 0;
998 
999 	if (has_target()) {
1000 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1001 		if (ret) {
1002 			pr_err("%s: Failed to stop governor\n", __func__);
1003 			return ret;
1004 		}
1005 	}
1006 
1007 	down_write(&policy->rwsem);
1008 	cpumask_set_cpu(cpu, policy->cpus);
1009 	up_write(&policy->rwsem);
1010 
1011 	if (has_target()) {
1012 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1013 		if (!ret)
1014 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1015 
1016 		if (ret) {
1017 			pr_err("%s: Failed to start governor\n", __func__);
1018 			return ret;
1019 		}
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1026 {
1027 	struct device *dev = get_cpu_device(cpu);
1028 	struct cpufreq_policy *policy;
1029 
1030 	if (WARN_ON(!dev))
1031 		return NULL;
1032 
1033 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1034 	if (!policy)
1035 		return NULL;
1036 
1037 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1038 		goto err_free_policy;
1039 
1040 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1041 		goto err_free_cpumask;
1042 
1043 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1044 		goto err_free_rcpumask;
1045 
1046 	kobject_init(&policy->kobj, &ktype_cpufreq);
1047 	INIT_LIST_HEAD(&policy->policy_list);
1048 	init_rwsem(&policy->rwsem);
1049 	spin_lock_init(&policy->transition_lock);
1050 	init_waitqueue_head(&policy->transition_wait);
1051 	init_completion(&policy->kobj_unregister);
1052 	INIT_WORK(&policy->update, handle_update);
1053 
1054 	policy->cpu = cpu;
1055 	return policy;
1056 
1057 err_free_rcpumask:
1058 	free_cpumask_var(policy->related_cpus);
1059 err_free_cpumask:
1060 	free_cpumask_var(policy->cpus);
1061 err_free_policy:
1062 	kfree(policy);
1063 
1064 	return NULL;
1065 }
1066 
1067 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1068 {
1069 	struct kobject *kobj;
1070 	struct completion *cmp;
1071 
1072 	if (notify)
1073 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1074 					     CPUFREQ_REMOVE_POLICY, policy);
1075 
1076 	down_write(&policy->rwsem);
1077 	cpufreq_remove_dev_symlink(policy);
1078 	kobj = &policy->kobj;
1079 	cmp = &policy->kobj_unregister;
1080 	up_write(&policy->rwsem);
1081 	kobject_put(kobj);
1082 
1083 	/*
1084 	 * We need to make sure that the underlying kobj is
1085 	 * actually not referenced anymore by anybody before we
1086 	 * proceed with unloading.
1087 	 */
1088 	pr_debug("waiting for dropping of refcount\n");
1089 	wait_for_completion(cmp);
1090 	pr_debug("wait complete\n");
1091 }
1092 
1093 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1094 {
1095 	unsigned long flags;
1096 	int cpu;
1097 
1098 	/* Remove policy from list */
1099 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1100 	list_del(&policy->policy_list);
1101 
1102 	for_each_cpu(cpu, policy->related_cpus)
1103 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1104 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1105 
1106 	cpufreq_policy_put_kobj(policy, notify);
1107 	free_cpumask_var(policy->real_cpus);
1108 	free_cpumask_var(policy->related_cpus);
1109 	free_cpumask_var(policy->cpus);
1110 	kfree(policy);
1111 }
1112 
1113 static int cpufreq_online(unsigned int cpu)
1114 {
1115 	struct cpufreq_policy *policy;
1116 	bool new_policy;
1117 	unsigned long flags;
1118 	unsigned int j;
1119 	int ret;
1120 
1121 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1122 
1123 	/* Check if this CPU already has a policy to manage it */
1124 	policy = per_cpu(cpufreq_cpu_data, cpu);
1125 	if (policy) {
1126 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1127 		if (!policy_is_inactive(policy))
1128 			return cpufreq_add_policy_cpu(policy, cpu);
1129 
1130 		/* This is the only online CPU for the policy.  Start over. */
1131 		new_policy = false;
1132 		down_write(&policy->rwsem);
1133 		policy->cpu = cpu;
1134 		policy->governor = NULL;
1135 		up_write(&policy->rwsem);
1136 	} else {
1137 		new_policy = true;
1138 		policy = cpufreq_policy_alloc(cpu);
1139 		if (!policy)
1140 			return -ENOMEM;
1141 	}
1142 
1143 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1144 
1145 	/* call driver. From then on the cpufreq must be able
1146 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1147 	 */
1148 	ret = cpufreq_driver->init(policy);
1149 	if (ret) {
1150 		pr_debug("initialization failed\n");
1151 		goto out_free_policy;
1152 	}
1153 
1154 	down_write(&policy->rwsem);
1155 
1156 	if (new_policy) {
1157 		/* related_cpus should at least include policy->cpus. */
1158 		cpumask_copy(policy->related_cpus, policy->cpus);
1159 		/* Remember CPUs present at the policy creation time. */
1160 		cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1161 
1162 		/* Name and add the kobject */
1163 		ret = kobject_add(&policy->kobj, cpufreq_global_kobject,
1164 				  "policy%u",
1165 				  cpumask_first(policy->related_cpus));
1166 		if (ret) {
1167 			pr_err("%s: failed to add policy->kobj: %d\n", __func__,
1168 			       ret);
1169 			goto out_exit_policy;
1170 		}
1171 	}
1172 
1173 	/*
1174 	 * affected cpus must always be the one, which are online. We aren't
1175 	 * managing offline cpus here.
1176 	 */
1177 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1178 
1179 	if (new_policy) {
1180 		policy->user_policy.min = policy->min;
1181 		policy->user_policy.max = policy->max;
1182 
1183 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1184 		for_each_cpu(j, policy->related_cpus)
1185 			per_cpu(cpufreq_cpu_data, j) = policy;
1186 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1187 	}
1188 
1189 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1190 		policy->cur = cpufreq_driver->get(policy->cpu);
1191 		if (!policy->cur) {
1192 			pr_err("%s: ->get() failed\n", __func__);
1193 			goto out_exit_policy;
1194 		}
1195 	}
1196 
1197 	/*
1198 	 * Sometimes boot loaders set CPU frequency to a value outside of
1199 	 * frequency table present with cpufreq core. In such cases CPU might be
1200 	 * unstable if it has to run on that frequency for long duration of time
1201 	 * and so its better to set it to a frequency which is specified in
1202 	 * freq-table. This also makes cpufreq stats inconsistent as
1203 	 * cpufreq-stats would fail to register because current frequency of CPU
1204 	 * isn't found in freq-table.
1205 	 *
1206 	 * Because we don't want this change to effect boot process badly, we go
1207 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1208 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1209 	 * is initialized to zero).
1210 	 *
1211 	 * We are passing target-freq as "policy->cur - 1" otherwise
1212 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1213 	 * equal to target-freq.
1214 	 */
1215 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1216 	    && has_target()) {
1217 		/* Are we running at unknown frequency ? */
1218 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1219 		if (ret == -EINVAL) {
1220 			/* Warn user and fix it */
1221 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1222 				__func__, policy->cpu, policy->cur);
1223 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1224 				CPUFREQ_RELATION_L);
1225 
1226 			/*
1227 			 * Reaching here after boot in a few seconds may not
1228 			 * mean that system will remain stable at "unknown"
1229 			 * frequency for longer duration. Hence, a BUG_ON().
1230 			 */
1231 			BUG_ON(ret);
1232 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1233 				__func__, policy->cpu, policy->cur);
1234 		}
1235 	}
1236 
1237 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1238 				     CPUFREQ_START, policy);
1239 
1240 	if (new_policy) {
1241 		ret = cpufreq_add_dev_interface(policy);
1242 		if (ret)
1243 			goto out_exit_policy;
1244 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1245 				CPUFREQ_CREATE_POLICY, policy);
1246 
1247 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1248 		list_add(&policy->policy_list, &cpufreq_policy_list);
1249 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1250 	}
1251 
1252 	ret = cpufreq_init_policy(policy);
1253 	if (ret) {
1254 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1255 		       __func__, cpu, ret);
1256 		/* cpufreq_policy_free() will notify based on this */
1257 		new_policy = false;
1258 		goto out_exit_policy;
1259 	}
1260 
1261 	up_write(&policy->rwsem);
1262 
1263 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1264 
1265 	/* Callback for handling stuff after policy is ready */
1266 	if (cpufreq_driver->ready)
1267 		cpufreq_driver->ready(policy);
1268 
1269 	pr_debug("initialization complete\n");
1270 
1271 	return 0;
1272 
1273 out_exit_policy:
1274 	up_write(&policy->rwsem);
1275 
1276 	if (cpufreq_driver->exit)
1277 		cpufreq_driver->exit(policy);
1278 out_free_policy:
1279 	cpufreq_policy_free(policy, !new_policy);
1280 	return ret;
1281 }
1282 
1283 /**
1284  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1285  * @dev: CPU device.
1286  * @sif: Subsystem interface structure pointer (not used)
1287  */
1288 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1289 {
1290 	unsigned cpu = dev->id;
1291 	int ret;
1292 
1293 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1294 
1295 	if (cpu_online(cpu)) {
1296 		ret = cpufreq_online(cpu);
1297 	} else {
1298 		/*
1299 		 * A hotplug notifier will follow and we will handle it as CPU
1300 		 * online then.  For now, just create the sysfs link, unless
1301 		 * there is no policy or the link is already present.
1302 		 */
1303 		struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1304 
1305 		ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1306 			? add_cpu_dev_symlink(policy, cpu) : 0;
1307 	}
1308 
1309 	return ret;
1310 }
1311 
1312 static void cpufreq_offline_prepare(unsigned int cpu)
1313 {
1314 	struct cpufreq_policy *policy;
1315 
1316 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1317 
1318 	policy = cpufreq_cpu_get_raw(cpu);
1319 	if (!policy) {
1320 		pr_debug("%s: No cpu_data found\n", __func__);
1321 		return;
1322 	}
1323 
1324 	if (has_target()) {
1325 		int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1326 		if (ret)
1327 			pr_err("%s: Failed to stop governor\n", __func__);
1328 	}
1329 
1330 	down_write(&policy->rwsem);
1331 	cpumask_clear_cpu(cpu, policy->cpus);
1332 
1333 	if (policy_is_inactive(policy)) {
1334 		if (has_target())
1335 			strncpy(policy->last_governor, policy->governor->name,
1336 				CPUFREQ_NAME_LEN);
1337 		else
1338 			policy->last_policy = policy->policy;
1339 	} else if (cpu == policy->cpu) {
1340 		/* Nominate new CPU */
1341 		policy->cpu = cpumask_any(policy->cpus);
1342 	}
1343 	up_write(&policy->rwsem);
1344 
1345 	/* Start governor again for active policy */
1346 	if (!policy_is_inactive(policy)) {
1347 		if (has_target()) {
1348 			int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1349 			if (!ret)
1350 				ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1351 
1352 			if (ret)
1353 				pr_err("%s: Failed to start governor\n", __func__);
1354 		}
1355 	} else if (cpufreq_driver->stop_cpu) {
1356 		cpufreq_driver->stop_cpu(policy);
1357 	}
1358 }
1359 
1360 static void cpufreq_offline_finish(unsigned int cpu)
1361 {
1362 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1363 
1364 	if (!policy) {
1365 		pr_debug("%s: No cpu_data found\n", __func__);
1366 		return;
1367 	}
1368 
1369 	/* Only proceed for inactive policies */
1370 	if (!policy_is_inactive(policy))
1371 		return;
1372 
1373 	/* If cpu is last user of policy, free policy */
1374 	if (has_target()) {
1375 		int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1376 		if (ret)
1377 			pr_err("%s: Failed to exit governor\n", __func__);
1378 	}
1379 
1380 	/*
1381 	 * Perform the ->exit() even during light-weight tear-down,
1382 	 * since this is a core component, and is essential for the
1383 	 * subsequent light-weight ->init() to succeed.
1384 	 */
1385 	if (cpufreq_driver->exit) {
1386 		cpufreq_driver->exit(policy);
1387 		policy->freq_table = NULL;
1388 	}
1389 }
1390 
1391 /**
1392  * cpufreq_remove_dev - remove a CPU device
1393  *
1394  * Removes the cpufreq interface for a CPU device.
1395  */
1396 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1397 {
1398 	unsigned int cpu = dev->id;
1399 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1400 
1401 	if (!policy)
1402 		return;
1403 
1404 	if (cpu_online(cpu)) {
1405 		cpufreq_offline_prepare(cpu);
1406 		cpufreq_offline_finish(cpu);
1407 	}
1408 
1409 	cpumask_clear_cpu(cpu, policy->real_cpus);
1410 	remove_cpu_dev_symlink(policy, cpu);
1411 
1412 	if (cpumask_empty(policy->real_cpus))
1413 		cpufreq_policy_free(policy, true);
1414 }
1415 
1416 static void handle_update(struct work_struct *work)
1417 {
1418 	struct cpufreq_policy *policy =
1419 		container_of(work, struct cpufreq_policy, update);
1420 	unsigned int cpu = policy->cpu;
1421 	pr_debug("handle_update for cpu %u called\n", cpu);
1422 	cpufreq_update_policy(cpu);
1423 }
1424 
1425 /**
1426  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1427  *	in deep trouble.
1428  *	@policy: policy managing CPUs
1429  *	@new_freq: CPU frequency the CPU actually runs at
1430  *
1431  *	We adjust to current frequency first, and need to clean up later.
1432  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1433  */
1434 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1435 				unsigned int new_freq)
1436 {
1437 	struct cpufreq_freqs freqs;
1438 
1439 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1440 		 policy->cur, new_freq);
1441 
1442 	freqs.old = policy->cur;
1443 	freqs.new = new_freq;
1444 
1445 	cpufreq_freq_transition_begin(policy, &freqs);
1446 	cpufreq_freq_transition_end(policy, &freqs, 0);
1447 }
1448 
1449 /**
1450  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1451  * @cpu: CPU number
1452  *
1453  * This is the last known freq, without actually getting it from the driver.
1454  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1455  */
1456 unsigned int cpufreq_quick_get(unsigned int cpu)
1457 {
1458 	struct cpufreq_policy *policy;
1459 	unsigned int ret_freq = 0;
1460 
1461 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1462 		return cpufreq_driver->get(cpu);
1463 
1464 	policy = cpufreq_cpu_get(cpu);
1465 	if (policy) {
1466 		ret_freq = policy->cur;
1467 		cpufreq_cpu_put(policy);
1468 	}
1469 
1470 	return ret_freq;
1471 }
1472 EXPORT_SYMBOL(cpufreq_quick_get);
1473 
1474 /**
1475  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1476  * @cpu: CPU number
1477  *
1478  * Just return the max possible frequency for a given CPU.
1479  */
1480 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1481 {
1482 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1483 	unsigned int ret_freq = 0;
1484 
1485 	if (policy) {
1486 		ret_freq = policy->max;
1487 		cpufreq_cpu_put(policy);
1488 	}
1489 
1490 	return ret_freq;
1491 }
1492 EXPORT_SYMBOL(cpufreq_quick_get_max);
1493 
1494 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1495 {
1496 	unsigned int ret_freq = 0;
1497 
1498 	if (!cpufreq_driver->get)
1499 		return ret_freq;
1500 
1501 	ret_freq = cpufreq_driver->get(policy->cpu);
1502 
1503 	/* Updating inactive policies is invalid, so avoid doing that. */
1504 	if (unlikely(policy_is_inactive(policy)))
1505 		return ret_freq;
1506 
1507 	if (ret_freq && policy->cur &&
1508 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1509 		/* verify no discrepancy between actual and
1510 					saved value exists */
1511 		if (unlikely(ret_freq != policy->cur)) {
1512 			cpufreq_out_of_sync(policy, ret_freq);
1513 			schedule_work(&policy->update);
1514 		}
1515 	}
1516 
1517 	return ret_freq;
1518 }
1519 
1520 /**
1521  * cpufreq_get - get the current CPU frequency (in kHz)
1522  * @cpu: CPU number
1523  *
1524  * Get the CPU current (static) CPU frequency
1525  */
1526 unsigned int cpufreq_get(unsigned int cpu)
1527 {
1528 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1529 	unsigned int ret_freq = 0;
1530 
1531 	if (policy) {
1532 		down_read(&policy->rwsem);
1533 		ret_freq = __cpufreq_get(policy);
1534 		up_read(&policy->rwsem);
1535 
1536 		cpufreq_cpu_put(policy);
1537 	}
1538 
1539 	return ret_freq;
1540 }
1541 EXPORT_SYMBOL(cpufreq_get);
1542 
1543 static struct subsys_interface cpufreq_interface = {
1544 	.name		= "cpufreq",
1545 	.subsys		= &cpu_subsys,
1546 	.add_dev	= cpufreq_add_dev,
1547 	.remove_dev	= cpufreq_remove_dev,
1548 };
1549 
1550 /*
1551  * In case platform wants some specific frequency to be configured
1552  * during suspend..
1553  */
1554 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1555 {
1556 	int ret;
1557 
1558 	if (!policy->suspend_freq) {
1559 		pr_debug("%s: suspend_freq not defined\n", __func__);
1560 		return 0;
1561 	}
1562 
1563 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1564 			policy->suspend_freq);
1565 
1566 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1567 			CPUFREQ_RELATION_H);
1568 	if (ret)
1569 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1570 				__func__, policy->suspend_freq, ret);
1571 
1572 	return ret;
1573 }
1574 EXPORT_SYMBOL(cpufreq_generic_suspend);
1575 
1576 /**
1577  * cpufreq_suspend() - Suspend CPUFreq governors
1578  *
1579  * Called during system wide Suspend/Hibernate cycles for suspending governors
1580  * as some platforms can't change frequency after this point in suspend cycle.
1581  * Because some of the devices (like: i2c, regulators, etc) they use for
1582  * changing frequency are suspended quickly after this point.
1583  */
1584 void cpufreq_suspend(void)
1585 {
1586 	struct cpufreq_policy *policy;
1587 
1588 	if (!cpufreq_driver)
1589 		return;
1590 
1591 	if (!has_target())
1592 		goto suspend;
1593 
1594 	pr_debug("%s: Suspending Governors\n", __func__);
1595 
1596 	for_each_active_policy(policy) {
1597 		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1598 			pr_err("%s: Failed to stop governor for policy: %p\n",
1599 				__func__, policy);
1600 		else if (cpufreq_driver->suspend
1601 		    && cpufreq_driver->suspend(policy))
1602 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1603 				policy);
1604 	}
1605 
1606 suspend:
1607 	cpufreq_suspended = true;
1608 }
1609 
1610 /**
1611  * cpufreq_resume() - Resume CPUFreq governors
1612  *
1613  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1614  * are suspended with cpufreq_suspend().
1615  */
1616 void cpufreq_resume(void)
1617 {
1618 	struct cpufreq_policy *policy;
1619 
1620 	if (!cpufreq_driver)
1621 		return;
1622 
1623 	cpufreq_suspended = false;
1624 
1625 	if (!has_target())
1626 		return;
1627 
1628 	pr_debug("%s: Resuming Governors\n", __func__);
1629 
1630 	for_each_active_policy(policy) {
1631 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1632 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1633 				policy);
1634 		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1635 		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1636 			pr_err("%s: Failed to start governor for policy: %p\n",
1637 				__func__, policy);
1638 	}
1639 
1640 	/*
1641 	 * schedule call cpufreq_update_policy() for first-online CPU, as that
1642 	 * wouldn't be hotplugged-out on suspend. It will verify that the
1643 	 * current freq is in sync with what we believe it to be.
1644 	 */
1645 	policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask));
1646 	if (WARN_ON(!policy))
1647 		return;
1648 
1649 	schedule_work(&policy->update);
1650 }
1651 
1652 /**
1653  *	cpufreq_get_current_driver - return current driver's name
1654  *
1655  *	Return the name string of the currently loaded cpufreq driver
1656  *	or NULL, if none.
1657  */
1658 const char *cpufreq_get_current_driver(void)
1659 {
1660 	if (cpufreq_driver)
1661 		return cpufreq_driver->name;
1662 
1663 	return NULL;
1664 }
1665 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1666 
1667 /**
1668  *	cpufreq_get_driver_data - return current driver data
1669  *
1670  *	Return the private data of the currently loaded cpufreq
1671  *	driver, or NULL if no cpufreq driver is loaded.
1672  */
1673 void *cpufreq_get_driver_data(void)
1674 {
1675 	if (cpufreq_driver)
1676 		return cpufreq_driver->driver_data;
1677 
1678 	return NULL;
1679 }
1680 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1681 
1682 /*********************************************************************
1683  *                     NOTIFIER LISTS INTERFACE                      *
1684  *********************************************************************/
1685 
1686 /**
1687  *	cpufreq_register_notifier - register a driver with cpufreq
1688  *	@nb: notifier function to register
1689  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1690  *
1691  *	Add a driver to one of two lists: either a list of drivers that
1692  *      are notified about clock rate changes (once before and once after
1693  *      the transition), or a list of drivers that are notified about
1694  *      changes in cpufreq policy.
1695  *
1696  *	This function may sleep, and has the same return conditions as
1697  *	blocking_notifier_chain_register.
1698  */
1699 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1700 {
1701 	int ret;
1702 
1703 	if (cpufreq_disabled())
1704 		return -EINVAL;
1705 
1706 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1707 
1708 	switch (list) {
1709 	case CPUFREQ_TRANSITION_NOTIFIER:
1710 		ret = srcu_notifier_chain_register(
1711 				&cpufreq_transition_notifier_list, nb);
1712 		break;
1713 	case CPUFREQ_POLICY_NOTIFIER:
1714 		ret = blocking_notifier_chain_register(
1715 				&cpufreq_policy_notifier_list, nb);
1716 		break;
1717 	default:
1718 		ret = -EINVAL;
1719 	}
1720 
1721 	return ret;
1722 }
1723 EXPORT_SYMBOL(cpufreq_register_notifier);
1724 
1725 /**
1726  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1727  *	@nb: notifier block to be unregistered
1728  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1729  *
1730  *	Remove a driver from the CPU frequency notifier list.
1731  *
1732  *	This function may sleep, and has the same return conditions as
1733  *	blocking_notifier_chain_unregister.
1734  */
1735 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1736 {
1737 	int ret;
1738 
1739 	if (cpufreq_disabled())
1740 		return -EINVAL;
1741 
1742 	switch (list) {
1743 	case CPUFREQ_TRANSITION_NOTIFIER:
1744 		ret = srcu_notifier_chain_unregister(
1745 				&cpufreq_transition_notifier_list, nb);
1746 		break;
1747 	case CPUFREQ_POLICY_NOTIFIER:
1748 		ret = blocking_notifier_chain_unregister(
1749 				&cpufreq_policy_notifier_list, nb);
1750 		break;
1751 	default:
1752 		ret = -EINVAL;
1753 	}
1754 
1755 	return ret;
1756 }
1757 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1758 
1759 
1760 /*********************************************************************
1761  *                              GOVERNORS                            *
1762  *********************************************************************/
1763 
1764 /* Must set freqs->new to intermediate frequency */
1765 static int __target_intermediate(struct cpufreq_policy *policy,
1766 				 struct cpufreq_freqs *freqs, int index)
1767 {
1768 	int ret;
1769 
1770 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1771 
1772 	/* We don't need to switch to intermediate freq */
1773 	if (!freqs->new)
1774 		return 0;
1775 
1776 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1777 		 __func__, policy->cpu, freqs->old, freqs->new);
1778 
1779 	cpufreq_freq_transition_begin(policy, freqs);
1780 	ret = cpufreq_driver->target_intermediate(policy, index);
1781 	cpufreq_freq_transition_end(policy, freqs, ret);
1782 
1783 	if (ret)
1784 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1785 		       __func__, ret);
1786 
1787 	return ret;
1788 }
1789 
1790 static int __target_index(struct cpufreq_policy *policy,
1791 			  struct cpufreq_frequency_table *freq_table, int index)
1792 {
1793 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1794 	unsigned int intermediate_freq = 0;
1795 	int retval = -EINVAL;
1796 	bool notify;
1797 
1798 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1799 	if (notify) {
1800 		/* Handle switching to intermediate frequency */
1801 		if (cpufreq_driver->get_intermediate) {
1802 			retval = __target_intermediate(policy, &freqs, index);
1803 			if (retval)
1804 				return retval;
1805 
1806 			intermediate_freq = freqs.new;
1807 			/* Set old freq to intermediate */
1808 			if (intermediate_freq)
1809 				freqs.old = freqs.new;
1810 		}
1811 
1812 		freqs.new = freq_table[index].frequency;
1813 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1814 			 __func__, policy->cpu, freqs.old, freqs.new);
1815 
1816 		cpufreq_freq_transition_begin(policy, &freqs);
1817 	}
1818 
1819 	retval = cpufreq_driver->target_index(policy, index);
1820 	if (retval)
1821 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1822 		       retval);
1823 
1824 	if (notify) {
1825 		cpufreq_freq_transition_end(policy, &freqs, retval);
1826 
1827 		/*
1828 		 * Failed after setting to intermediate freq? Driver should have
1829 		 * reverted back to initial frequency and so should we. Check
1830 		 * here for intermediate_freq instead of get_intermediate, in
1831 		 * case we haven't switched to intermediate freq at all.
1832 		 */
1833 		if (unlikely(retval && intermediate_freq)) {
1834 			freqs.old = intermediate_freq;
1835 			freqs.new = policy->restore_freq;
1836 			cpufreq_freq_transition_begin(policy, &freqs);
1837 			cpufreq_freq_transition_end(policy, &freqs, 0);
1838 		}
1839 	}
1840 
1841 	return retval;
1842 }
1843 
1844 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1845 			    unsigned int target_freq,
1846 			    unsigned int relation)
1847 {
1848 	unsigned int old_target_freq = target_freq;
1849 	int retval = -EINVAL;
1850 
1851 	if (cpufreq_disabled())
1852 		return -ENODEV;
1853 
1854 	/* Make sure that target_freq is within supported range */
1855 	if (target_freq > policy->max)
1856 		target_freq = policy->max;
1857 	if (target_freq < policy->min)
1858 		target_freq = policy->min;
1859 
1860 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1861 		 policy->cpu, target_freq, relation, old_target_freq);
1862 
1863 	/*
1864 	 * This might look like a redundant call as we are checking it again
1865 	 * after finding index. But it is left intentionally for cases where
1866 	 * exactly same freq is called again and so we can save on few function
1867 	 * calls.
1868 	 */
1869 	if (target_freq == policy->cur)
1870 		return 0;
1871 
1872 	/* Save last value to restore later on errors */
1873 	policy->restore_freq = policy->cur;
1874 
1875 	if (cpufreq_driver->target)
1876 		retval = cpufreq_driver->target(policy, target_freq, relation);
1877 	else if (cpufreq_driver->target_index) {
1878 		struct cpufreq_frequency_table *freq_table;
1879 		int index;
1880 
1881 		freq_table = cpufreq_frequency_get_table(policy->cpu);
1882 		if (unlikely(!freq_table)) {
1883 			pr_err("%s: Unable to find freq_table\n", __func__);
1884 			goto out;
1885 		}
1886 
1887 		retval = cpufreq_frequency_table_target(policy, freq_table,
1888 				target_freq, relation, &index);
1889 		if (unlikely(retval)) {
1890 			pr_err("%s: Unable to find matching freq\n", __func__);
1891 			goto out;
1892 		}
1893 
1894 		if (freq_table[index].frequency == policy->cur) {
1895 			retval = 0;
1896 			goto out;
1897 		}
1898 
1899 		retval = __target_index(policy, freq_table, index);
1900 	}
1901 
1902 out:
1903 	return retval;
1904 }
1905 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1906 
1907 int cpufreq_driver_target(struct cpufreq_policy *policy,
1908 			  unsigned int target_freq,
1909 			  unsigned int relation)
1910 {
1911 	int ret = -EINVAL;
1912 
1913 	down_write(&policy->rwsem);
1914 
1915 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1916 
1917 	up_write(&policy->rwsem);
1918 
1919 	return ret;
1920 }
1921 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1922 
1923 static int __cpufreq_governor(struct cpufreq_policy *policy,
1924 					unsigned int event)
1925 {
1926 	int ret;
1927 
1928 	/* Only must be defined when default governor is known to have latency
1929 	   restrictions, like e.g. conservative or ondemand.
1930 	   That this is the case is already ensured in Kconfig
1931 	*/
1932 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1933 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1934 #else
1935 	struct cpufreq_governor *gov = NULL;
1936 #endif
1937 
1938 	/* Don't start any governor operations if we are entering suspend */
1939 	if (cpufreq_suspended)
1940 		return 0;
1941 	/*
1942 	 * Governor might not be initiated here if ACPI _PPC changed
1943 	 * notification happened, so check it.
1944 	 */
1945 	if (!policy->governor)
1946 		return -EINVAL;
1947 
1948 	if (policy->governor->max_transition_latency &&
1949 	    policy->cpuinfo.transition_latency >
1950 	    policy->governor->max_transition_latency) {
1951 		if (!gov)
1952 			return -EINVAL;
1953 		else {
1954 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1955 				policy->governor->name, gov->name);
1956 			policy->governor = gov;
1957 		}
1958 	}
1959 
1960 	if (event == CPUFREQ_GOV_POLICY_INIT)
1961 		if (!try_module_get(policy->governor->owner))
1962 			return -EINVAL;
1963 
1964 	pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
1965 
1966 	mutex_lock(&cpufreq_governor_lock);
1967 	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1968 	    || (!policy->governor_enabled
1969 	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1970 		mutex_unlock(&cpufreq_governor_lock);
1971 		return -EBUSY;
1972 	}
1973 
1974 	if (event == CPUFREQ_GOV_STOP)
1975 		policy->governor_enabled = false;
1976 	else if (event == CPUFREQ_GOV_START)
1977 		policy->governor_enabled = true;
1978 
1979 	mutex_unlock(&cpufreq_governor_lock);
1980 
1981 	ret = policy->governor->governor(policy, event);
1982 
1983 	if (!ret) {
1984 		if (event == CPUFREQ_GOV_POLICY_INIT)
1985 			policy->governor->initialized++;
1986 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1987 			policy->governor->initialized--;
1988 	} else {
1989 		/* Restore original values */
1990 		mutex_lock(&cpufreq_governor_lock);
1991 		if (event == CPUFREQ_GOV_STOP)
1992 			policy->governor_enabled = true;
1993 		else if (event == CPUFREQ_GOV_START)
1994 			policy->governor_enabled = false;
1995 		mutex_unlock(&cpufreq_governor_lock);
1996 	}
1997 
1998 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1999 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2000 		module_put(policy->governor->owner);
2001 
2002 	return ret;
2003 }
2004 
2005 int cpufreq_register_governor(struct cpufreq_governor *governor)
2006 {
2007 	int err;
2008 
2009 	if (!governor)
2010 		return -EINVAL;
2011 
2012 	if (cpufreq_disabled())
2013 		return -ENODEV;
2014 
2015 	mutex_lock(&cpufreq_governor_mutex);
2016 
2017 	governor->initialized = 0;
2018 	err = -EBUSY;
2019 	if (!find_governor(governor->name)) {
2020 		err = 0;
2021 		list_add(&governor->governor_list, &cpufreq_governor_list);
2022 	}
2023 
2024 	mutex_unlock(&cpufreq_governor_mutex);
2025 	return err;
2026 }
2027 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2028 
2029 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2030 {
2031 	struct cpufreq_policy *policy;
2032 	unsigned long flags;
2033 
2034 	if (!governor)
2035 		return;
2036 
2037 	if (cpufreq_disabled())
2038 		return;
2039 
2040 	/* clear last_governor for all inactive policies */
2041 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2042 	for_each_inactive_policy(policy) {
2043 		if (!strcmp(policy->last_governor, governor->name)) {
2044 			policy->governor = NULL;
2045 			strcpy(policy->last_governor, "\0");
2046 		}
2047 	}
2048 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2049 
2050 	mutex_lock(&cpufreq_governor_mutex);
2051 	list_del(&governor->governor_list);
2052 	mutex_unlock(&cpufreq_governor_mutex);
2053 	return;
2054 }
2055 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2056 
2057 
2058 /*********************************************************************
2059  *                          POLICY INTERFACE                         *
2060  *********************************************************************/
2061 
2062 /**
2063  * cpufreq_get_policy - get the current cpufreq_policy
2064  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2065  *	is written
2066  *
2067  * Reads the current cpufreq policy.
2068  */
2069 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2070 {
2071 	struct cpufreq_policy *cpu_policy;
2072 	if (!policy)
2073 		return -EINVAL;
2074 
2075 	cpu_policy = cpufreq_cpu_get(cpu);
2076 	if (!cpu_policy)
2077 		return -EINVAL;
2078 
2079 	memcpy(policy, cpu_policy, sizeof(*policy));
2080 
2081 	cpufreq_cpu_put(cpu_policy);
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL(cpufreq_get_policy);
2085 
2086 /*
2087  * policy : current policy.
2088  * new_policy: policy to be set.
2089  */
2090 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2091 				struct cpufreq_policy *new_policy)
2092 {
2093 	struct cpufreq_governor *old_gov;
2094 	int ret;
2095 
2096 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2097 		 new_policy->cpu, new_policy->min, new_policy->max);
2098 
2099 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2100 
2101 	/*
2102 	* This check works well when we store new min/max freq attributes,
2103 	* because new_policy is a copy of policy with one field updated.
2104 	*/
2105 	if (new_policy->min > new_policy->max)
2106 		return -EINVAL;
2107 
2108 	/* verify the cpu speed can be set within this limit */
2109 	ret = cpufreq_driver->verify(new_policy);
2110 	if (ret)
2111 		return ret;
2112 
2113 	/* adjust if necessary - all reasons */
2114 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2115 			CPUFREQ_ADJUST, new_policy);
2116 
2117 	/*
2118 	 * verify the cpu speed can be set within this limit, which might be
2119 	 * different to the first one
2120 	 */
2121 	ret = cpufreq_driver->verify(new_policy);
2122 	if (ret)
2123 		return ret;
2124 
2125 	/* notification of the new policy */
2126 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2127 			CPUFREQ_NOTIFY, new_policy);
2128 
2129 	policy->min = new_policy->min;
2130 	policy->max = new_policy->max;
2131 
2132 	pr_debug("new min and max freqs are %u - %u kHz\n",
2133 		 policy->min, policy->max);
2134 
2135 	if (cpufreq_driver->setpolicy) {
2136 		policy->policy = new_policy->policy;
2137 		pr_debug("setting range\n");
2138 		return cpufreq_driver->setpolicy(new_policy);
2139 	}
2140 
2141 	if (new_policy->governor == policy->governor)
2142 		goto out;
2143 
2144 	pr_debug("governor switch\n");
2145 
2146 	/* save old, working values */
2147 	old_gov = policy->governor;
2148 	/* end old governor */
2149 	if (old_gov) {
2150 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2151 		if (ret) {
2152 			/* This can happen due to race with other operations */
2153 			pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2154 				 __func__, old_gov->name, ret);
2155 			return ret;
2156 		}
2157 
2158 		up_write(&policy->rwsem);
2159 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2160 		down_write(&policy->rwsem);
2161 
2162 		if (ret) {
2163 			pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2164 			       __func__, old_gov->name, ret);
2165 			return ret;
2166 		}
2167 	}
2168 
2169 	/* start new governor */
2170 	policy->governor = new_policy->governor;
2171 	ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2172 	if (!ret) {
2173 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
2174 		if (!ret)
2175 			goto out;
2176 
2177 		up_write(&policy->rwsem);
2178 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2179 		down_write(&policy->rwsem);
2180 	}
2181 
2182 	/* new governor failed, so re-start old one */
2183 	pr_debug("starting governor %s failed\n", policy->governor->name);
2184 	if (old_gov) {
2185 		policy->governor = old_gov;
2186 		if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2187 			policy->governor = NULL;
2188 		else
2189 			__cpufreq_governor(policy, CPUFREQ_GOV_START);
2190 	}
2191 
2192 	return ret;
2193 
2194  out:
2195 	pr_debug("governor: change or update limits\n");
2196 	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2197 }
2198 
2199 /**
2200  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2201  *	@cpu: CPU which shall be re-evaluated
2202  *
2203  *	Useful for policy notifiers which have different necessities
2204  *	at different times.
2205  */
2206 int cpufreq_update_policy(unsigned int cpu)
2207 {
2208 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2209 	struct cpufreq_policy new_policy;
2210 	int ret;
2211 
2212 	if (!policy)
2213 		return -ENODEV;
2214 
2215 	down_write(&policy->rwsem);
2216 
2217 	pr_debug("updating policy for CPU %u\n", cpu);
2218 	memcpy(&new_policy, policy, sizeof(*policy));
2219 	new_policy.min = policy->user_policy.min;
2220 	new_policy.max = policy->user_policy.max;
2221 
2222 	/*
2223 	 * BIOS might change freq behind our back
2224 	 * -> ask driver for current freq and notify governors about a change
2225 	 */
2226 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2227 		new_policy.cur = cpufreq_driver->get(cpu);
2228 		if (WARN_ON(!new_policy.cur)) {
2229 			ret = -EIO;
2230 			goto unlock;
2231 		}
2232 
2233 		if (!policy->cur) {
2234 			pr_debug("Driver did not initialize current freq\n");
2235 			policy->cur = new_policy.cur;
2236 		} else {
2237 			if (policy->cur != new_policy.cur && has_target())
2238 				cpufreq_out_of_sync(policy, new_policy.cur);
2239 		}
2240 	}
2241 
2242 	ret = cpufreq_set_policy(policy, &new_policy);
2243 
2244 unlock:
2245 	up_write(&policy->rwsem);
2246 
2247 	cpufreq_cpu_put(policy);
2248 	return ret;
2249 }
2250 EXPORT_SYMBOL(cpufreq_update_policy);
2251 
2252 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2253 					unsigned long action, void *hcpu)
2254 {
2255 	unsigned int cpu = (unsigned long)hcpu;
2256 
2257 	switch (action & ~CPU_TASKS_FROZEN) {
2258 	case CPU_ONLINE:
2259 		cpufreq_online(cpu);
2260 		break;
2261 
2262 	case CPU_DOWN_PREPARE:
2263 		cpufreq_offline_prepare(cpu);
2264 		break;
2265 
2266 	case CPU_POST_DEAD:
2267 		cpufreq_offline_finish(cpu);
2268 		break;
2269 
2270 	case CPU_DOWN_FAILED:
2271 		cpufreq_online(cpu);
2272 		break;
2273 	}
2274 	return NOTIFY_OK;
2275 }
2276 
2277 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2278 	.notifier_call = cpufreq_cpu_callback,
2279 };
2280 
2281 /*********************************************************************
2282  *               BOOST						     *
2283  *********************************************************************/
2284 static int cpufreq_boost_set_sw(int state)
2285 {
2286 	struct cpufreq_frequency_table *freq_table;
2287 	struct cpufreq_policy *policy;
2288 	int ret = -EINVAL;
2289 
2290 	for_each_active_policy(policy) {
2291 		freq_table = cpufreq_frequency_get_table(policy->cpu);
2292 		if (freq_table) {
2293 			ret = cpufreq_frequency_table_cpuinfo(policy,
2294 							freq_table);
2295 			if (ret) {
2296 				pr_err("%s: Policy frequency update failed\n",
2297 				       __func__);
2298 				break;
2299 			}
2300 			policy->user_policy.max = policy->max;
2301 			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2302 		}
2303 	}
2304 
2305 	return ret;
2306 }
2307 
2308 int cpufreq_boost_trigger_state(int state)
2309 {
2310 	unsigned long flags;
2311 	int ret = 0;
2312 
2313 	if (cpufreq_driver->boost_enabled == state)
2314 		return 0;
2315 
2316 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2317 	cpufreq_driver->boost_enabled = state;
2318 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2319 
2320 	ret = cpufreq_driver->set_boost(state);
2321 	if (ret) {
2322 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2323 		cpufreq_driver->boost_enabled = !state;
2324 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2325 
2326 		pr_err("%s: Cannot %s BOOST\n",
2327 		       __func__, state ? "enable" : "disable");
2328 	}
2329 
2330 	return ret;
2331 }
2332 
2333 int cpufreq_boost_supported(void)
2334 {
2335 	if (likely(cpufreq_driver))
2336 		return cpufreq_driver->boost_supported;
2337 
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2341 
2342 static int create_boost_sysfs_file(void)
2343 {
2344 	int ret;
2345 
2346 	if (!cpufreq_boost_supported())
2347 		return 0;
2348 
2349 	/*
2350 	 * Check if driver provides function to enable boost -
2351 	 * if not, use cpufreq_boost_set_sw as default
2352 	 */
2353 	if (!cpufreq_driver->set_boost)
2354 		cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2355 
2356 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2357 	if (ret)
2358 		pr_err("%s: cannot register global BOOST sysfs file\n",
2359 		       __func__);
2360 
2361 	return ret;
2362 }
2363 
2364 static void remove_boost_sysfs_file(void)
2365 {
2366 	if (cpufreq_boost_supported())
2367 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2368 }
2369 
2370 int cpufreq_enable_boost_support(void)
2371 {
2372 	if (!cpufreq_driver)
2373 		return -EINVAL;
2374 
2375 	if (cpufreq_boost_supported())
2376 		return 0;
2377 
2378 	cpufreq_driver->boost_supported = true;
2379 
2380 	/* This will get removed on driver unregister */
2381 	return create_boost_sysfs_file();
2382 }
2383 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2384 
2385 int cpufreq_boost_enabled(void)
2386 {
2387 	return cpufreq_driver->boost_enabled;
2388 }
2389 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2390 
2391 /*********************************************************************
2392  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2393  *********************************************************************/
2394 
2395 /**
2396  * cpufreq_register_driver - register a CPU Frequency driver
2397  * @driver_data: A struct cpufreq_driver containing the values#
2398  * submitted by the CPU Frequency driver.
2399  *
2400  * Registers a CPU Frequency driver to this core code. This code
2401  * returns zero on success, -EBUSY when another driver got here first
2402  * (and isn't unregistered in the meantime).
2403  *
2404  */
2405 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2406 {
2407 	unsigned long flags;
2408 	int ret;
2409 
2410 	if (cpufreq_disabled())
2411 		return -ENODEV;
2412 
2413 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2414 	    !(driver_data->setpolicy || driver_data->target_index ||
2415 		    driver_data->target) ||
2416 	     (driver_data->setpolicy && (driver_data->target_index ||
2417 		    driver_data->target)) ||
2418 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2419 		return -EINVAL;
2420 
2421 	pr_debug("trying to register driver %s\n", driver_data->name);
2422 
2423 	/* Protect against concurrent CPU online/offline. */
2424 	get_online_cpus();
2425 
2426 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2427 	if (cpufreq_driver) {
2428 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2429 		ret = -EEXIST;
2430 		goto out;
2431 	}
2432 	cpufreq_driver = driver_data;
2433 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2434 
2435 	if (driver_data->setpolicy)
2436 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2437 
2438 	ret = create_boost_sysfs_file();
2439 	if (ret)
2440 		goto err_null_driver;
2441 
2442 	ret = subsys_interface_register(&cpufreq_interface);
2443 	if (ret)
2444 		goto err_boost_unreg;
2445 
2446 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2447 	    list_empty(&cpufreq_policy_list)) {
2448 		/* if all ->init() calls failed, unregister */
2449 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2450 			 driver_data->name);
2451 		goto err_if_unreg;
2452 	}
2453 
2454 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2455 	pr_debug("driver %s up and running\n", driver_data->name);
2456 
2457 out:
2458 	put_online_cpus();
2459 	return ret;
2460 
2461 err_if_unreg:
2462 	subsys_interface_unregister(&cpufreq_interface);
2463 err_boost_unreg:
2464 	remove_boost_sysfs_file();
2465 err_null_driver:
2466 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2467 	cpufreq_driver = NULL;
2468 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2469 	goto out;
2470 }
2471 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2472 
2473 /**
2474  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2475  *
2476  * Unregister the current CPUFreq driver. Only call this if you have
2477  * the right to do so, i.e. if you have succeeded in initialising before!
2478  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2479  * currently not initialised.
2480  */
2481 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2482 {
2483 	unsigned long flags;
2484 
2485 	if (!cpufreq_driver || (driver != cpufreq_driver))
2486 		return -EINVAL;
2487 
2488 	pr_debug("unregistering driver %s\n", driver->name);
2489 
2490 	/* Protect against concurrent cpu hotplug */
2491 	get_online_cpus();
2492 	subsys_interface_unregister(&cpufreq_interface);
2493 	remove_boost_sysfs_file();
2494 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2495 
2496 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2497 
2498 	cpufreq_driver = NULL;
2499 
2500 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2501 	put_online_cpus();
2502 
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2506 
2507 /*
2508  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2509  * or mutexes when secondary CPUs are halted.
2510  */
2511 static struct syscore_ops cpufreq_syscore_ops = {
2512 	.shutdown = cpufreq_suspend,
2513 };
2514 
2515 struct kobject *cpufreq_global_kobject;
2516 EXPORT_SYMBOL(cpufreq_global_kobject);
2517 
2518 static int __init cpufreq_core_init(void)
2519 {
2520 	if (cpufreq_disabled())
2521 		return -ENODEV;
2522 
2523 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2524 	BUG_ON(!cpufreq_global_kobject);
2525 
2526 	register_syscore_ops(&cpufreq_syscore_ops);
2527 
2528 	return 0;
2529 }
2530 core_initcall(cpufreq_core_init);
2531