xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 9cfc5c90)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 static bool suitable_policy(struct cpufreq_policy *policy, bool active)
42 {
43 	return active == !policy_is_inactive(policy);
44 }
45 
46 /* Finds Next Acive/Inactive policy */
47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy,
48 					  bool active)
49 {
50 	do {
51 		policy = list_next_entry(policy, policy_list);
52 
53 		/* No more policies in the list */
54 		if (&policy->policy_list == &cpufreq_policy_list)
55 			return NULL;
56 	} while (!suitable_policy(policy, active));
57 
58 	return policy;
59 }
60 
61 static struct cpufreq_policy *first_policy(bool active)
62 {
63 	struct cpufreq_policy *policy;
64 
65 	/* No policies in the list */
66 	if (list_empty(&cpufreq_policy_list))
67 		return NULL;
68 
69 	policy = list_first_entry(&cpufreq_policy_list, typeof(*policy),
70 				  policy_list);
71 
72 	if (!suitable_policy(policy, active))
73 		policy = next_policy(policy, active);
74 
75 	return policy;
76 }
77 
78 /* Macros to iterate over CPU policies */
79 #define for_each_suitable_policy(__policy, __active)	\
80 	for (__policy = first_policy(__active);		\
81 	     __policy;					\
82 	     __policy = next_policy(__policy, __active))
83 
84 #define for_each_active_policy(__policy)		\
85 	for_each_suitable_policy(__policy, true)
86 #define for_each_inactive_policy(__policy)		\
87 	for_each_suitable_policy(__policy, false)
88 
89 #define for_each_policy(__policy)			\
90 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
91 
92 /* Iterate over governors */
93 static LIST_HEAD(cpufreq_governor_list);
94 #define for_each_governor(__governor)				\
95 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
96 
97 /**
98  * The "cpufreq driver" - the arch- or hardware-dependent low
99  * level driver of CPUFreq support, and its spinlock. This lock
100  * also protects the cpufreq_cpu_data array.
101  */
102 static struct cpufreq_driver *cpufreq_driver;
103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
104 static DEFINE_RWLOCK(cpufreq_driver_lock);
105 DEFINE_MUTEX(cpufreq_governor_lock);
106 
107 /* Flag to suspend/resume CPUFreq governors */
108 static bool cpufreq_suspended;
109 
110 static inline bool has_target(void)
111 {
112 	return cpufreq_driver->target_index || cpufreq_driver->target;
113 }
114 
115 /* internal prototypes */
116 static int __cpufreq_governor(struct cpufreq_policy *policy,
117 		unsigned int event);
118 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
119 static void handle_update(struct work_struct *work);
120 
121 /**
122  * Two notifier lists: the "policy" list is involved in the
123  * validation process for a new CPU frequency policy; the
124  * "transition" list for kernel code that needs to handle
125  * changes to devices when the CPU clock speed changes.
126  * The mutex locks both lists.
127  */
128 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
129 static struct srcu_notifier_head cpufreq_transition_notifier_list;
130 
131 static bool init_cpufreq_transition_notifier_list_called;
132 static int __init init_cpufreq_transition_notifier_list(void)
133 {
134 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
135 	init_cpufreq_transition_notifier_list_called = true;
136 	return 0;
137 }
138 pure_initcall(init_cpufreq_transition_notifier_list);
139 
140 static int off __read_mostly;
141 static int cpufreq_disabled(void)
142 {
143 	return off;
144 }
145 void disable_cpufreq(void)
146 {
147 	off = 1;
148 }
149 static DEFINE_MUTEX(cpufreq_governor_mutex);
150 
151 bool have_governor_per_policy(void)
152 {
153 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
154 }
155 EXPORT_SYMBOL_GPL(have_governor_per_policy);
156 
157 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
158 {
159 	if (have_governor_per_policy())
160 		return &policy->kobj;
161 	else
162 		return cpufreq_global_kobject;
163 }
164 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
165 
166 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
167 {
168 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
169 
170 	return policy && !policy_is_inactive(policy) ?
171 		policy->freq_table : NULL;
172 }
173 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
174 
175 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
176 {
177 	u64 idle_time;
178 	u64 cur_wall_time;
179 	u64 busy_time;
180 
181 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
182 
183 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
184 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
185 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
186 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
187 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
188 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
189 
190 	idle_time = cur_wall_time - busy_time;
191 	if (wall)
192 		*wall = cputime_to_usecs(cur_wall_time);
193 
194 	return cputime_to_usecs(idle_time);
195 }
196 
197 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
198 {
199 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
200 
201 	if (idle_time == -1ULL)
202 		return get_cpu_idle_time_jiffy(cpu, wall);
203 	else if (!io_busy)
204 		idle_time += get_cpu_iowait_time_us(cpu, wall);
205 
206 	return idle_time;
207 }
208 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
209 
210 /*
211  * This is a generic cpufreq init() routine which can be used by cpufreq
212  * drivers of SMP systems. It will do following:
213  * - validate & show freq table passed
214  * - set policies transition latency
215  * - policy->cpus with all possible CPUs
216  */
217 int cpufreq_generic_init(struct cpufreq_policy *policy,
218 		struct cpufreq_frequency_table *table,
219 		unsigned int transition_latency)
220 {
221 	int ret;
222 
223 	ret = cpufreq_table_validate_and_show(policy, table);
224 	if (ret) {
225 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
226 		return ret;
227 	}
228 
229 	policy->cpuinfo.transition_latency = transition_latency;
230 
231 	/*
232 	 * The driver only supports the SMP configuration where all processors
233 	 * share the clock and voltage and clock.
234 	 */
235 	cpumask_setall(policy->cpus);
236 
237 	return 0;
238 }
239 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
240 
241 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
242 {
243 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
244 
245 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
248 
249 unsigned int cpufreq_generic_get(unsigned int cpu)
250 {
251 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
252 
253 	if (!policy || IS_ERR(policy->clk)) {
254 		pr_err("%s: No %s associated to cpu: %d\n",
255 		       __func__, policy ? "clk" : "policy", cpu);
256 		return 0;
257 	}
258 
259 	return clk_get_rate(policy->clk) / 1000;
260 }
261 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
262 
263 /**
264  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
265  *
266  * @cpu: cpu to find policy for.
267  *
268  * This returns policy for 'cpu', returns NULL if it doesn't exist.
269  * It also increments the kobject reference count to mark it busy and so would
270  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
271  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
272  * freed as that depends on the kobj count.
273  *
274  * Return: A valid policy on success, otherwise NULL on failure.
275  */
276 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
277 {
278 	struct cpufreq_policy *policy = NULL;
279 	unsigned long flags;
280 
281 	if (WARN_ON(cpu >= nr_cpu_ids))
282 		return NULL;
283 
284 	/* get the cpufreq driver */
285 	read_lock_irqsave(&cpufreq_driver_lock, flags);
286 
287 	if (cpufreq_driver) {
288 		/* get the CPU */
289 		policy = cpufreq_cpu_get_raw(cpu);
290 		if (policy)
291 			kobject_get(&policy->kobj);
292 	}
293 
294 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
295 
296 	return policy;
297 }
298 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
299 
300 /**
301  * cpufreq_cpu_put: Decrements the usage count of a policy
302  *
303  * @policy: policy earlier returned by cpufreq_cpu_get().
304  *
305  * This decrements the kobject reference count incremented earlier by calling
306  * cpufreq_cpu_get().
307  */
308 void cpufreq_cpu_put(struct cpufreq_policy *policy)
309 {
310 	kobject_put(&policy->kobj);
311 }
312 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
313 
314 /*********************************************************************
315  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
316  *********************************************************************/
317 
318 /**
319  * adjust_jiffies - adjust the system "loops_per_jiffy"
320  *
321  * This function alters the system "loops_per_jiffy" for the clock
322  * speed change. Note that loops_per_jiffy cannot be updated on SMP
323  * systems as each CPU might be scaled differently. So, use the arch
324  * per-CPU loops_per_jiffy value wherever possible.
325  */
326 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
327 {
328 #ifndef CONFIG_SMP
329 	static unsigned long l_p_j_ref;
330 	static unsigned int l_p_j_ref_freq;
331 
332 	if (ci->flags & CPUFREQ_CONST_LOOPS)
333 		return;
334 
335 	if (!l_p_j_ref_freq) {
336 		l_p_j_ref = loops_per_jiffy;
337 		l_p_j_ref_freq = ci->old;
338 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
339 			 l_p_j_ref, l_p_j_ref_freq);
340 	}
341 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
342 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
343 								ci->new);
344 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
345 			 loops_per_jiffy, ci->new);
346 	}
347 #endif
348 }
349 
350 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
351 		struct cpufreq_freqs *freqs, unsigned int state)
352 {
353 	BUG_ON(irqs_disabled());
354 
355 	if (cpufreq_disabled())
356 		return;
357 
358 	freqs->flags = cpufreq_driver->flags;
359 	pr_debug("notification %u of frequency transition to %u kHz\n",
360 		 state, freqs->new);
361 
362 	switch (state) {
363 
364 	case CPUFREQ_PRECHANGE:
365 		/* detect if the driver reported a value as "old frequency"
366 		 * which is not equal to what the cpufreq core thinks is
367 		 * "old frequency".
368 		 */
369 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
370 			if ((policy) && (policy->cpu == freqs->cpu) &&
371 			    (policy->cur) && (policy->cur != freqs->old)) {
372 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
373 					 freqs->old, policy->cur);
374 				freqs->old = policy->cur;
375 			}
376 		}
377 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
378 				CPUFREQ_PRECHANGE, freqs);
379 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
380 		break;
381 
382 	case CPUFREQ_POSTCHANGE:
383 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
384 		pr_debug("FREQ: %lu - CPU: %lu\n",
385 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
386 		trace_cpu_frequency(freqs->new, freqs->cpu);
387 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
388 				CPUFREQ_POSTCHANGE, freqs);
389 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
390 			policy->cur = freqs->new;
391 		break;
392 	}
393 }
394 
395 /**
396  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
397  * on frequency transition.
398  *
399  * This function calls the transition notifiers and the "adjust_jiffies"
400  * function. It is called twice on all CPU frequency changes that have
401  * external effects.
402  */
403 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
404 		struct cpufreq_freqs *freqs, unsigned int state)
405 {
406 	for_each_cpu(freqs->cpu, policy->cpus)
407 		__cpufreq_notify_transition(policy, freqs, state);
408 }
409 
410 /* Do post notifications when there are chances that transition has failed */
411 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
412 		struct cpufreq_freqs *freqs, int transition_failed)
413 {
414 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
415 	if (!transition_failed)
416 		return;
417 
418 	swap(freqs->old, freqs->new);
419 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
420 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
421 }
422 
423 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
424 		struct cpufreq_freqs *freqs)
425 {
426 
427 	/*
428 	 * Catch double invocations of _begin() which lead to self-deadlock.
429 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
430 	 * doesn't invoke _begin() on their behalf, and hence the chances of
431 	 * double invocations are very low. Moreover, there are scenarios
432 	 * where these checks can emit false-positive warnings in these
433 	 * drivers; so we avoid that by skipping them altogether.
434 	 */
435 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
436 				&& current == policy->transition_task);
437 
438 wait:
439 	wait_event(policy->transition_wait, !policy->transition_ongoing);
440 
441 	spin_lock(&policy->transition_lock);
442 
443 	if (unlikely(policy->transition_ongoing)) {
444 		spin_unlock(&policy->transition_lock);
445 		goto wait;
446 	}
447 
448 	policy->transition_ongoing = true;
449 	policy->transition_task = current;
450 
451 	spin_unlock(&policy->transition_lock);
452 
453 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
454 }
455 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
456 
457 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
458 		struct cpufreq_freqs *freqs, int transition_failed)
459 {
460 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
461 		return;
462 
463 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
464 
465 	policy->transition_ongoing = false;
466 	policy->transition_task = NULL;
467 
468 	wake_up(&policy->transition_wait);
469 }
470 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
471 
472 
473 /*********************************************************************
474  *                          SYSFS INTERFACE                          *
475  *********************************************************************/
476 static ssize_t show_boost(struct kobject *kobj,
477 				 struct attribute *attr, char *buf)
478 {
479 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
480 }
481 
482 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
483 				  const char *buf, size_t count)
484 {
485 	int ret, enable;
486 
487 	ret = sscanf(buf, "%d", &enable);
488 	if (ret != 1 || enable < 0 || enable > 1)
489 		return -EINVAL;
490 
491 	if (cpufreq_boost_trigger_state(enable)) {
492 		pr_err("%s: Cannot %s BOOST!\n",
493 		       __func__, enable ? "enable" : "disable");
494 		return -EINVAL;
495 	}
496 
497 	pr_debug("%s: cpufreq BOOST %s\n",
498 		 __func__, enable ? "enabled" : "disabled");
499 
500 	return count;
501 }
502 define_one_global_rw(boost);
503 
504 static struct cpufreq_governor *find_governor(const char *str_governor)
505 {
506 	struct cpufreq_governor *t;
507 
508 	for_each_governor(t)
509 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
510 			return t;
511 
512 	return NULL;
513 }
514 
515 /**
516  * cpufreq_parse_governor - parse a governor string
517  */
518 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
519 				struct cpufreq_governor **governor)
520 {
521 	int err = -EINVAL;
522 
523 	if (cpufreq_driver->setpolicy) {
524 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
525 			*policy = CPUFREQ_POLICY_PERFORMANCE;
526 			err = 0;
527 		} else if (!strncasecmp(str_governor, "powersave",
528 						CPUFREQ_NAME_LEN)) {
529 			*policy = CPUFREQ_POLICY_POWERSAVE;
530 			err = 0;
531 		}
532 	} else {
533 		struct cpufreq_governor *t;
534 
535 		mutex_lock(&cpufreq_governor_mutex);
536 
537 		t = find_governor(str_governor);
538 
539 		if (t == NULL) {
540 			int ret;
541 
542 			mutex_unlock(&cpufreq_governor_mutex);
543 			ret = request_module("cpufreq_%s", str_governor);
544 			mutex_lock(&cpufreq_governor_mutex);
545 
546 			if (ret == 0)
547 				t = find_governor(str_governor);
548 		}
549 
550 		if (t != NULL) {
551 			*governor = t;
552 			err = 0;
553 		}
554 
555 		mutex_unlock(&cpufreq_governor_mutex);
556 	}
557 	return err;
558 }
559 
560 /**
561  * cpufreq_per_cpu_attr_read() / show_##file_name() -
562  * print out cpufreq information
563  *
564  * Write out information from cpufreq_driver->policy[cpu]; object must be
565  * "unsigned int".
566  */
567 
568 #define show_one(file_name, object)			\
569 static ssize_t show_##file_name				\
570 (struct cpufreq_policy *policy, char *buf)		\
571 {							\
572 	return sprintf(buf, "%u\n", policy->object);	\
573 }
574 
575 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
576 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
577 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
578 show_one(scaling_min_freq, min);
579 show_one(scaling_max_freq, max);
580 
581 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
582 {
583 	ssize_t ret;
584 
585 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
586 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
587 	else
588 		ret = sprintf(buf, "%u\n", policy->cur);
589 	return ret;
590 }
591 
592 static int cpufreq_set_policy(struct cpufreq_policy *policy,
593 				struct cpufreq_policy *new_policy);
594 
595 /**
596  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
597  */
598 #define store_one(file_name, object)			\
599 static ssize_t store_##file_name					\
600 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
601 {									\
602 	int ret, temp;							\
603 	struct cpufreq_policy new_policy;				\
604 									\
605 	memcpy(&new_policy, policy, sizeof(*policy));			\
606 									\
607 	ret = sscanf(buf, "%u", &new_policy.object);			\
608 	if (ret != 1)							\
609 		return -EINVAL;						\
610 									\
611 	temp = new_policy.object;					\
612 	ret = cpufreq_set_policy(policy, &new_policy);		\
613 	if (!ret)							\
614 		policy->user_policy.object = temp;			\
615 									\
616 	return ret ? ret : count;					\
617 }
618 
619 store_one(scaling_min_freq, min);
620 store_one(scaling_max_freq, max);
621 
622 /**
623  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
624  */
625 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
626 					char *buf)
627 {
628 	unsigned int cur_freq = __cpufreq_get(policy);
629 	if (!cur_freq)
630 		return sprintf(buf, "<unknown>");
631 	return sprintf(buf, "%u\n", cur_freq);
632 }
633 
634 /**
635  * show_scaling_governor - show the current policy for the specified CPU
636  */
637 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
638 {
639 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
640 		return sprintf(buf, "powersave\n");
641 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
642 		return sprintf(buf, "performance\n");
643 	else if (policy->governor)
644 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
645 				policy->governor->name);
646 	return -EINVAL;
647 }
648 
649 /**
650  * store_scaling_governor - store policy for the specified CPU
651  */
652 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
653 					const char *buf, size_t count)
654 {
655 	int ret;
656 	char	str_governor[16];
657 	struct cpufreq_policy new_policy;
658 
659 	memcpy(&new_policy, policy, sizeof(*policy));
660 
661 	ret = sscanf(buf, "%15s", str_governor);
662 	if (ret != 1)
663 		return -EINVAL;
664 
665 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
666 						&new_policy.governor))
667 		return -EINVAL;
668 
669 	ret = cpufreq_set_policy(policy, &new_policy);
670 	return ret ? ret : count;
671 }
672 
673 /**
674  * show_scaling_driver - show the cpufreq driver currently loaded
675  */
676 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
677 {
678 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
679 }
680 
681 /**
682  * show_scaling_available_governors - show the available CPUfreq governors
683  */
684 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
685 						char *buf)
686 {
687 	ssize_t i = 0;
688 	struct cpufreq_governor *t;
689 
690 	if (!has_target()) {
691 		i += sprintf(buf, "performance powersave");
692 		goto out;
693 	}
694 
695 	for_each_governor(t) {
696 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
697 		    - (CPUFREQ_NAME_LEN + 2)))
698 			goto out;
699 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
700 	}
701 out:
702 	i += sprintf(&buf[i], "\n");
703 	return i;
704 }
705 
706 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
707 {
708 	ssize_t i = 0;
709 	unsigned int cpu;
710 
711 	for_each_cpu(cpu, mask) {
712 		if (i)
713 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
714 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
715 		if (i >= (PAGE_SIZE - 5))
716 			break;
717 	}
718 	i += sprintf(&buf[i], "\n");
719 	return i;
720 }
721 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
722 
723 /**
724  * show_related_cpus - show the CPUs affected by each transition even if
725  * hw coordination is in use
726  */
727 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
728 {
729 	return cpufreq_show_cpus(policy->related_cpus, buf);
730 }
731 
732 /**
733  * show_affected_cpus - show the CPUs affected by each transition
734  */
735 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
736 {
737 	return cpufreq_show_cpus(policy->cpus, buf);
738 }
739 
740 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
741 					const char *buf, size_t count)
742 {
743 	unsigned int freq = 0;
744 	unsigned int ret;
745 
746 	if (!policy->governor || !policy->governor->store_setspeed)
747 		return -EINVAL;
748 
749 	ret = sscanf(buf, "%u", &freq);
750 	if (ret != 1)
751 		return -EINVAL;
752 
753 	policy->governor->store_setspeed(policy, freq);
754 
755 	return count;
756 }
757 
758 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
759 {
760 	if (!policy->governor || !policy->governor->show_setspeed)
761 		return sprintf(buf, "<unsupported>\n");
762 
763 	return policy->governor->show_setspeed(policy, buf);
764 }
765 
766 /**
767  * show_bios_limit - show the current cpufreq HW/BIOS limitation
768  */
769 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
770 {
771 	unsigned int limit;
772 	int ret;
773 	if (cpufreq_driver->bios_limit) {
774 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
775 		if (!ret)
776 			return sprintf(buf, "%u\n", limit);
777 	}
778 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
779 }
780 
781 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
782 cpufreq_freq_attr_ro(cpuinfo_min_freq);
783 cpufreq_freq_attr_ro(cpuinfo_max_freq);
784 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
785 cpufreq_freq_attr_ro(scaling_available_governors);
786 cpufreq_freq_attr_ro(scaling_driver);
787 cpufreq_freq_attr_ro(scaling_cur_freq);
788 cpufreq_freq_attr_ro(bios_limit);
789 cpufreq_freq_attr_ro(related_cpus);
790 cpufreq_freq_attr_ro(affected_cpus);
791 cpufreq_freq_attr_rw(scaling_min_freq);
792 cpufreq_freq_attr_rw(scaling_max_freq);
793 cpufreq_freq_attr_rw(scaling_governor);
794 cpufreq_freq_attr_rw(scaling_setspeed);
795 
796 static struct attribute *default_attrs[] = {
797 	&cpuinfo_min_freq.attr,
798 	&cpuinfo_max_freq.attr,
799 	&cpuinfo_transition_latency.attr,
800 	&scaling_min_freq.attr,
801 	&scaling_max_freq.attr,
802 	&affected_cpus.attr,
803 	&related_cpus.attr,
804 	&scaling_governor.attr,
805 	&scaling_driver.attr,
806 	&scaling_available_governors.attr,
807 	&scaling_setspeed.attr,
808 	NULL
809 };
810 
811 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
812 #define to_attr(a) container_of(a, struct freq_attr, attr)
813 
814 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
815 {
816 	struct cpufreq_policy *policy = to_policy(kobj);
817 	struct freq_attr *fattr = to_attr(attr);
818 	ssize_t ret;
819 
820 	down_read(&policy->rwsem);
821 
822 	if (fattr->show)
823 		ret = fattr->show(policy, buf);
824 	else
825 		ret = -EIO;
826 
827 	up_read(&policy->rwsem);
828 
829 	return ret;
830 }
831 
832 static ssize_t store(struct kobject *kobj, struct attribute *attr,
833 		     const char *buf, size_t count)
834 {
835 	struct cpufreq_policy *policy = to_policy(kobj);
836 	struct freq_attr *fattr = to_attr(attr);
837 	ssize_t ret = -EINVAL;
838 
839 	get_online_cpus();
840 
841 	if (!cpu_online(policy->cpu))
842 		goto unlock;
843 
844 	down_write(&policy->rwsem);
845 
846 	if (fattr->store)
847 		ret = fattr->store(policy, buf, count);
848 	else
849 		ret = -EIO;
850 
851 	up_write(&policy->rwsem);
852 unlock:
853 	put_online_cpus();
854 
855 	return ret;
856 }
857 
858 static void cpufreq_sysfs_release(struct kobject *kobj)
859 {
860 	struct cpufreq_policy *policy = to_policy(kobj);
861 	pr_debug("last reference is dropped\n");
862 	complete(&policy->kobj_unregister);
863 }
864 
865 static const struct sysfs_ops sysfs_ops = {
866 	.show	= show,
867 	.store	= store,
868 };
869 
870 static struct kobj_type ktype_cpufreq = {
871 	.sysfs_ops	= &sysfs_ops,
872 	.default_attrs	= default_attrs,
873 	.release	= cpufreq_sysfs_release,
874 };
875 
876 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
877 {
878 	struct device *cpu_dev;
879 
880 	pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
881 
882 	if (!policy)
883 		return 0;
884 
885 	cpu_dev = get_cpu_device(cpu);
886 	if (WARN_ON(!cpu_dev))
887 		return 0;
888 
889 	return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
890 }
891 
892 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
893 {
894 	struct device *cpu_dev;
895 
896 	pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
897 
898 	cpu_dev = get_cpu_device(cpu);
899 	if (WARN_ON(!cpu_dev))
900 		return;
901 
902 	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
903 }
904 
905 /* Add/remove symlinks for all related CPUs */
906 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
907 {
908 	unsigned int j;
909 	int ret = 0;
910 
911 	/* Some related CPUs might not be present (physically hotplugged) */
912 	for_each_cpu(j, policy->real_cpus) {
913 		ret = add_cpu_dev_symlink(policy, j);
914 		if (ret)
915 			break;
916 	}
917 
918 	return ret;
919 }
920 
921 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
922 {
923 	unsigned int j;
924 
925 	/* Some related CPUs might not be present (physically hotplugged) */
926 	for_each_cpu(j, policy->real_cpus)
927 		remove_cpu_dev_symlink(policy, j);
928 }
929 
930 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
931 {
932 	struct freq_attr **drv_attr;
933 	int ret = 0;
934 
935 	/* set up files for this cpu device */
936 	drv_attr = cpufreq_driver->attr;
937 	while (drv_attr && *drv_attr) {
938 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
939 		if (ret)
940 			return ret;
941 		drv_attr++;
942 	}
943 	if (cpufreq_driver->get) {
944 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
945 		if (ret)
946 			return ret;
947 	}
948 
949 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
950 	if (ret)
951 		return ret;
952 
953 	if (cpufreq_driver->bios_limit) {
954 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
955 		if (ret)
956 			return ret;
957 	}
958 
959 	return cpufreq_add_dev_symlink(policy);
960 }
961 
962 static int cpufreq_init_policy(struct cpufreq_policy *policy)
963 {
964 	struct cpufreq_governor *gov = NULL;
965 	struct cpufreq_policy new_policy;
966 
967 	memcpy(&new_policy, policy, sizeof(*policy));
968 
969 	/* Update governor of new_policy to the governor used before hotplug */
970 	gov = find_governor(policy->last_governor);
971 	if (gov)
972 		pr_debug("Restoring governor %s for cpu %d\n",
973 				policy->governor->name, policy->cpu);
974 	else
975 		gov = CPUFREQ_DEFAULT_GOVERNOR;
976 
977 	new_policy.governor = gov;
978 
979 	/* Use the default policy if its valid. */
980 	if (cpufreq_driver->setpolicy)
981 		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
982 
983 	/* set default policy */
984 	return cpufreq_set_policy(policy, &new_policy);
985 }
986 
987 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
988 {
989 	int ret = 0;
990 
991 	/* Has this CPU been taken care of already? */
992 	if (cpumask_test_cpu(cpu, policy->cpus))
993 		return 0;
994 
995 	if (has_target()) {
996 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
997 		if (ret) {
998 			pr_err("%s: Failed to stop governor\n", __func__);
999 			return ret;
1000 		}
1001 	}
1002 
1003 	down_write(&policy->rwsem);
1004 	cpumask_set_cpu(cpu, policy->cpus);
1005 	up_write(&policy->rwsem);
1006 
1007 	if (has_target()) {
1008 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1009 		if (!ret)
1010 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1011 
1012 		if (ret) {
1013 			pr_err("%s: Failed to start governor\n", __func__);
1014 			return ret;
1015 		}
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1022 {
1023 	struct device *dev = get_cpu_device(cpu);
1024 	struct cpufreq_policy *policy;
1025 
1026 	if (WARN_ON(!dev))
1027 		return NULL;
1028 
1029 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1030 	if (!policy)
1031 		return NULL;
1032 
1033 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1034 		goto err_free_policy;
1035 
1036 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1037 		goto err_free_cpumask;
1038 
1039 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1040 		goto err_free_rcpumask;
1041 
1042 	kobject_init(&policy->kobj, &ktype_cpufreq);
1043 	INIT_LIST_HEAD(&policy->policy_list);
1044 	init_rwsem(&policy->rwsem);
1045 	spin_lock_init(&policy->transition_lock);
1046 	init_waitqueue_head(&policy->transition_wait);
1047 	init_completion(&policy->kobj_unregister);
1048 	INIT_WORK(&policy->update, handle_update);
1049 
1050 	policy->cpu = cpu;
1051 	return policy;
1052 
1053 err_free_rcpumask:
1054 	free_cpumask_var(policy->related_cpus);
1055 err_free_cpumask:
1056 	free_cpumask_var(policy->cpus);
1057 err_free_policy:
1058 	kfree(policy);
1059 
1060 	return NULL;
1061 }
1062 
1063 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1064 {
1065 	struct kobject *kobj;
1066 	struct completion *cmp;
1067 
1068 	if (notify)
1069 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1070 					     CPUFREQ_REMOVE_POLICY, policy);
1071 
1072 	down_write(&policy->rwsem);
1073 	cpufreq_remove_dev_symlink(policy);
1074 	kobj = &policy->kobj;
1075 	cmp = &policy->kobj_unregister;
1076 	up_write(&policy->rwsem);
1077 	kobject_put(kobj);
1078 
1079 	/*
1080 	 * We need to make sure that the underlying kobj is
1081 	 * actually not referenced anymore by anybody before we
1082 	 * proceed with unloading.
1083 	 */
1084 	pr_debug("waiting for dropping of refcount\n");
1085 	wait_for_completion(cmp);
1086 	pr_debug("wait complete\n");
1087 }
1088 
1089 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1090 {
1091 	unsigned long flags;
1092 	int cpu;
1093 
1094 	/* Remove policy from list */
1095 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1096 	list_del(&policy->policy_list);
1097 
1098 	for_each_cpu(cpu, policy->related_cpus)
1099 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1100 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1101 
1102 	cpufreq_policy_put_kobj(policy, notify);
1103 	free_cpumask_var(policy->real_cpus);
1104 	free_cpumask_var(policy->related_cpus);
1105 	free_cpumask_var(policy->cpus);
1106 	kfree(policy);
1107 }
1108 
1109 static int cpufreq_online(unsigned int cpu)
1110 {
1111 	struct cpufreq_policy *policy;
1112 	bool new_policy;
1113 	unsigned long flags;
1114 	unsigned int j;
1115 	int ret;
1116 
1117 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1118 
1119 	/* Check if this CPU already has a policy to manage it */
1120 	policy = per_cpu(cpufreq_cpu_data, cpu);
1121 	if (policy) {
1122 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1123 		if (!policy_is_inactive(policy))
1124 			return cpufreq_add_policy_cpu(policy, cpu);
1125 
1126 		/* This is the only online CPU for the policy.  Start over. */
1127 		new_policy = false;
1128 		down_write(&policy->rwsem);
1129 		policy->cpu = cpu;
1130 		policy->governor = NULL;
1131 		up_write(&policy->rwsem);
1132 	} else {
1133 		new_policy = true;
1134 		policy = cpufreq_policy_alloc(cpu);
1135 		if (!policy)
1136 			return -ENOMEM;
1137 	}
1138 
1139 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1140 
1141 	/* call driver. From then on the cpufreq must be able
1142 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1143 	 */
1144 	ret = cpufreq_driver->init(policy);
1145 	if (ret) {
1146 		pr_debug("initialization failed\n");
1147 		goto out_free_policy;
1148 	}
1149 
1150 	down_write(&policy->rwsem);
1151 
1152 	if (new_policy) {
1153 		/* related_cpus should at least include policy->cpus. */
1154 		cpumask_copy(policy->related_cpus, policy->cpus);
1155 		/* Remember CPUs present at the policy creation time. */
1156 		cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1157 
1158 		/* Name and add the kobject */
1159 		ret = kobject_add(&policy->kobj, cpufreq_global_kobject,
1160 				  "policy%u",
1161 				  cpumask_first(policy->related_cpus));
1162 		if (ret) {
1163 			pr_err("%s: failed to add policy->kobj: %d\n", __func__,
1164 			       ret);
1165 			goto out_exit_policy;
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * affected cpus must always be the one, which are online. We aren't
1171 	 * managing offline cpus here.
1172 	 */
1173 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1174 
1175 	if (new_policy) {
1176 		policy->user_policy.min = policy->min;
1177 		policy->user_policy.max = policy->max;
1178 
1179 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1180 		for_each_cpu(j, policy->related_cpus)
1181 			per_cpu(cpufreq_cpu_data, j) = policy;
1182 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1183 	}
1184 
1185 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1186 		policy->cur = cpufreq_driver->get(policy->cpu);
1187 		if (!policy->cur) {
1188 			pr_err("%s: ->get() failed\n", __func__);
1189 			goto out_exit_policy;
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * Sometimes boot loaders set CPU frequency to a value outside of
1195 	 * frequency table present with cpufreq core. In such cases CPU might be
1196 	 * unstable if it has to run on that frequency for long duration of time
1197 	 * and so its better to set it to a frequency which is specified in
1198 	 * freq-table. This also makes cpufreq stats inconsistent as
1199 	 * cpufreq-stats would fail to register because current frequency of CPU
1200 	 * isn't found in freq-table.
1201 	 *
1202 	 * Because we don't want this change to effect boot process badly, we go
1203 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1204 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1205 	 * is initialized to zero).
1206 	 *
1207 	 * We are passing target-freq as "policy->cur - 1" otherwise
1208 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1209 	 * equal to target-freq.
1210 	 */
1211 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1212 	    && has_target()) {
1213 		/* Are we running at unknown frequency ? */
1214 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1215 		if (ret == -EINVAL) {
1216 			/* Warn user and fix it */
1217 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1218 				__func__, policy->cpu, policy->cur);
1219 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1220 				CPUFREQ_RELATION_L);
1221 
1222 			/*
1223 			 * Reaching here after boot in a few seconds may not
1224 			 * mean that system will remain stable at "unknown"
1225 			 * frequency for longer duration. Hence, a BUG_ON().
1226 			 */
1227 			BUG_ON(ret);
1228 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1229 				__func__, policy->cpu, policy->cur);
1230 		}
1231 	}
1232 
1233 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1234 				     CPUFREQ_START, policy);
1235 
1236 	if (new_policy) {
1237 		ret = cpufreq_add_dev_interface(policy);
1238 		if (ret)
1239 			goto out_exit_policy;
1240 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1241 				CPUFREQ_CREATE_POLICY, policy);
1242 
1243 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1244 		list_add(&policy->policy_list, &cpufreq_policy_list);
1245 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1246 	}
1247 
1248 	ret = cpufreq_init_policy(policy);
1249 	if (ret) {
1250 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1251 		       __func__, cpu, ret);
1252 		/* cpufreq_policy_free() will notify based on this */
1253 		new_policy = false;
1254 		goto out_exit_policy;
1255 	}
1256 
1257 	up_write(&policy->rwsem);
1258 
1259 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1260 
1261 	/* Callback for handling stuff after policy is ready */
1262 	if (cpufreq_driver->ready)
1263 		cpufreq_driver->ready(policy);
1264 
1265 	pr_debug("initialization complete\n");
1266 
1267 	return 0;
1268 
1269 out_exit_policy:
1270 	up_write(&policy->rwsem);
1271 
1272 	if (cpufreq_driver->exit)
1273 		cpufreq_driver->exit(policy);
1274 out_free_policy:
1275 	cpufreq_policy_free(policy, !new_policy);
1276 	return ret;
1277 }
1278 
1279 /**
1280  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1281  * @dev: CPU device.
1282  * @sif: Subsystem interface structure pointer (not used)
1283  */
1284 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1285 {
1286 	unsigned cpu = dev->id;
1287 	int ret;
1288 
1289 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1290 
1291 	if (cpu_online(cpu)) {
1292 		ret = cpufreq_online(cpu);
1293 	} else {
1294 		/*
1295 		 * A hotplug notifier will follow and we will handle it as CPU
1296 		 * online then.  For now, just create the sysfs link, unless
1297 		 * there is no policy or the link is already present.
1298 		 */
1299 		struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1300 
1301 		ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1302 			? add_cpu_dev_symlink(policy, cpu) : 0;
1303 	}
1304 
1305 	return ret;
1306 }
1307 
1308 static void cpufreq_offline_prepare(unsigned int cpu)
1309 {
1310 	struct cpufreq_policy *policy;
1311 
1312 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1313 
1314 	policy = cpufreq_cpu_get_raw(cpu);
1315 	if (!policy) {
1316 		pr_debug("%s: No cpu_data found\n", __func__);
1317 		return;
1318 	}
1319 
1320 	if (has_target()) {
1321 		int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1322 		if (ret)
1323 			pr_err("%s: Failed to stop governor\n", __func__);
1324 	}
1325 
1326 	down_write(&policy->rwsem);
1327 	cpumask_clear_cpu(cpu, policy->cpus);
1328 
1329 	if (policy_is_inactive(policy)) {
1330 		if (has_target())
1331 			strncpy(policy->last_governor, policy->governor->name,
1332 				CPUFREQ_NAME_LEN);
1333 	} else if (cpu == policy->cpu) {
1334 		/* Nominate new CPU */
1335 		policy->cpu = cpumask_any(policy->cpus);
1336 	}
1337 	up_write(&policy->rwsem);
1338 
1339 	/* Start governor again for active policy */
1340 	if (!policy_is_inactive(policy)) {
1341 		if (has_target()) {
1342 			int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1343 			if (!ret)
1344 				ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1345 
1346 			if (ret)
1347 				pr_err("%s: Failed to start governor\n", __func__);
1348 		}
1349 	} else if (cpufreq_driver->stop_cpu) {
1350 		cpufreq_driver->stop_cpu(policy);
1351 	}
1352 }
1353 
1354 static void cpufreq_offline_finish(unsigned int cpu)
1355 {
1356 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1357 
1358 	if (!policy) {
1359 		pr_debug("%s: No cpu_data found\n", __func__);
1360 		return;
1361 	}
1362 
1363 	/* Only proceed for inactive policies */
1364 	if (!policy_is_inactive(policy))
1365 		return;
1366 
1367 	/* If cpu is last user of policy, free policy */
1368 	if (has_target()) {
1369 		int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1370 		if (ret)
1371 			pr_err("%s: Failed to exit governor\n", __func__);
1372 	}
1373 
1374 	/*
1375 	 * Perform the ->exit() even during light-weight tear-down,
1376 	 * since this is a core component, and is essential for the
1377 	 * subsequent light-weight ->init() to succeed.
1378 	 */
1379 	if (cpufreq_driver->exit) {
1380 		cpufreq_driver->exit(policy);
1381 		policy->freq_table = NULL;
1382 	}
1383 }
1384 
1385 /**
1386  * cpufreq_remove_dev - remove a CPU device
1387  *
1388  * Removes the cpufreq interface for a CPU device.
1389  */
1390 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1391 {
1392 	unsigned int cpu = dev->id;
1393 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1394 
1395 	if (!policy)
1396 		return;
1397 
1398 	if (cpu_online(cpu)) {
1399 		cpufreq_offline_prepare(cpu);
1400 		cpufreq_offline_finish(cpu);
1401 	}
1402 
1403 	cpumask_clear_cpu(cpu, policy->real_cpus);
1404 
1405 	if (cpumask_empty(policy->real_cpus)) {
1406 		cpufreq_policy_free(policy, true);
1407 		return;
1408 	}
1409 
1410 	remove_cpu_dev_symlink(policy, cpu);
1411 }
1412 
1413 static void handle_update(struct work_struct *work)
1414 {
1415 	struct cpufreq_policy *policy =
1416 		container_of(work, struct cpufreq_policy, update);
1417 	unsigned int cpu = policy->cpu;
1418 	pr_debug("handle_update for cpu %u called\n", cpu);
1419 	cpufreq_update_policy(cpu);
1420 }
1421 
1422 /**
1423  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1424  *	in deep trouble.
1425  *	@policy: policy managing CPUs
1426  *	@new_freq: CPU frequency the CPU actually runs at
1427  *
1428  *	We adjust to current frequency first, and need to clean up later.
1429  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1430  */
1431 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1432 				unsigned int new_freq)
1433 {
1434 	struct cpufreq_freqs freqs;
1435 
1436 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1437 		 policy->cur, new_freq);
1438 
1439 	freqs.old = policy->cur;
1440 	freqs.new = new_freq;
1441 
1442 	cpufreq_freq_transition_begin(policy, &freqs);
1443 	cpufreq_freq_transition_end(policy, &freqs, 0);
1444 }
1445 
1446 /**
1447  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1448  * @cpu: CPU number
1449  *
1450  * This is the last known freq, without actually getting it from the driver.
1451  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1452  */
1453 unsigned int cpufreq_quick_get(unsigned int cpu)
1454 {
1455 	struct cpufreq_policy *policy;
1456 	unsigned int ret_freq = 0;
1457 
1458 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1459 		return cpufreq_driver->get(cpu);
1460 
1461 	policy = cpufreq_cpu_get(cpu);
1462 	if (policy) {
1463 		ret_freq = policy->cur;
1464 		cpufreq_cpu_put(policy);
1465 	}
1466 
1467 	return ret_freq;
1468 }
1469 EXPORT_SYMBOL(cpufreq_quick_get);
1470 
1471 /**
1472  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1473  * @cpu: CPU number
1474  *
1475  * Just return the max possible frequency for a given CPU.
1476  */
1477 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1478 {
1479 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1480 	unsigned int ret_freq = 0;
1481 
1482 	if (policy) {
1483 		ret_freq = policy->max;
1484 		cpufreq_cpu_put(policy);
1485 	}
1486 
1487 	return ret_freq;
1488 }
1489 EXPORT_SYMBOL(cpufreq_quick_get_max);
1490 
1491 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1492 {
1493 	unsigned int ret_freq = 0;
1494 
1495 	if (!cpufreq_driver->get)
1496 		return ret_freq;
1497 
1498 	ret_freq = cpufreq_driver->get(policy->cpu);
1499 
1500 	/* Updating inactive policies is invalid, so avoid doing that. */
1501 	if (unlikely(policy_is_inactive(policy)))
1502 		return ret_freq;
1503 
1504 	if (ret_freq && policy->cur &&
1505 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1506 		/* verify no discrepancy between actual and
1507 					saved value exists */
1508 		if (unlikely(ret_freq != policy->cur)) {
1509 			cpufreq_out_of_sync(policy, ret_freq);
1510 			schedule_work(&policy->update);
1511 		}
1512 	}
1513 
1514 	return ret_freq;
1515 }
1516 
1517 /**
1518  * cpufreq_get - get the current CPU frequency (in kHz)
1519  * @cpu: CPU number
1520  *
1521  * Get the CPU current (static) CPU frequency
1522  */
1523 unsigned int cpufreq_get(unsigned int cpu)
1524 {
1525 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1526 	unsigned int ret_freq = 0;
1527 
1528 	if (policy) {
1529 		down_read(&policy->rwsem);
1530 		ret_freq = __cpufreq_get(policy);
1531 		up_read(&policy->rwsem);
1532 
1533 		cpufreq_cpu_put(policy);
1534 	}
1535 
1536 	return ret_freq;
1537 }
1538 EXPORT_SYMBOL(cpufreq_get);
1539 
1540 static struct subsys_interface cpufreq_interface = {
1541 	.name		= "cpufreq",
1542 	.subsys		= &cpu_subsys,
1543 	.add_dev	= cpufreq_add_dev,
1544 	.remove_dev	= cpufreq_remove_dev,
1545 };
1546 
1547 /*
1548  * In case platform wants some specific frequency to be configured
1549  * during suspend..
1550  */
1551 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1552 {
1553 	int ret;
1554 
1555 	if (!policy->suspend_freq) {
1556 		pr_debug("%s: suspend_freq not defined\n", __func__);
1557 		return 0;
1558 	}
1559 
1560 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1561 			policy->suspend_freq);
1562 
1563 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1564 			CPUFREQ_RELATION_H);
1565 	if (ret)
1566 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1567 				__func__, policy->suspend_freq, ret);
1568 
1569 	return ret;
1570 }
1571 EXPORT_SYMBOL(cpufreq_generic_suspend);
1572 
1573 /**
1574  * cpufreq_suspend() - Suspend CPUFreq governors
1575  *
1576  * Called during system wide Suspend/Hibernate cycles for suspending governors
1577  * as some platforms can't change frequency after this point in suspend cycle.
1578  * Because some of the devices (like: i2c, regulators, etc) they use for
1579  * changing frequency are suspended quickly after this point.
1580  */
1581 void cpufreq_suspend(void)
1582 {
1583 	struct cpufreq_policy *policy;
1584 
1585 	if (!cpufreq_driver)
1586 		return;
1587 
1588 	if (!has_target())
1589 		goto suspend;
1590 
1591 	pr_debug("%s: Suspending Governors\n", __func__);
1592 
1593 	for_each_active_policy(policy) {
1594 		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1595 			pr_err("%s: Failed to stop governor for policy: %p\n",
1596 				__func__, policy);
1597 		else if (cpufreq_driver->suspend
1598 		    && cpufreq_driver->suspend(policy))
1599 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1600 				policy);
1601 	}
1602 
1603 suspend:
1604 	cpufreq_suspended = true;
1605 }
1606 
1607 /**
1608  * cpufreq_resume() - Resume CPUFreq governors
1609  *
1610  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1611  * are suspended with cpufreq_suspend().
1612  */
1613 void cpufreq_resume(void)
1614 {
1615 	struct cpufreq_policy *policy;
1616 
1617 	if (!cpufreq_driver)
1618 		return;
1619 
1620 	cpufreq_suspended = false;
1621 
1622 	if (!has_target())
1623 		return;
1624 
1625 	pr_debug("%s: Resuming Governors\n", __func__);
1626 
1627 	for_each_active_policy(policy) {
1628 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1629 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1630 				policy);
1631 		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1632 		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1633 			pr_err("%s: Failed to start governor for policy: %p\n",
1634 				__func__, policy);
1635 	}
1636 
1637 	/*
1638 	 * schedule call cpufreq_update_policy() for first-online CPU, as that
1639 	 * wouldn't be hotplugged-out on suspend. It will verify that the
1640 	 * current freq is in sync with what we believe it to be.
1641 	 */
1642 	policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask));
1643 	if (WARN_ON(!policy))
1644 		return;
1645 
1646 	schedule_work(&policy->update);
1647 }
1648 
1649 /**
1650  *	cpufreq_get_current_driver - return current driver's name
1651  *
1652  *	Return the name string of the currently loaded cpufreq driver
1653  *	or NULL, if none.
1654  */
1655 const char *cpufreq_get_current_driver(void)
1656 {
1657 	if (cpufreq_driver)
1658 		return cpufreq_driver->name;
1659 
1660 	return NULL;
1661 }
1662 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1663 
1664 /**
1665  *	cpufreq_get_driver_data - return current driver data
1666  *
1667  *	Return the private data of the currently loaded cpufreq
1668  *	driver, or NULL if no cpufreq driver is loaded.
1669  */
1670 void *cpufreq_get_driver_data(void)
1671 {
1672 	if (cpufreq_driver)
1673 		return cpufreq_driver->driver_data;
1674 
1675 	return NULL;
1676 }
1677 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1678 
1679 /*********************************************************************
1680  *                     NOTIFIER LISTS INTERFACE                      *
1681  *********************************************************************/
1682 
1683 /**
1684  *	cpufreq_register_notifier - register a driver with cpufreq
1685  *	@nb: notifier function to register
1686  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1687  *
1688  *	Add a driver to one of two lists: either a list of drivers that
1689  *      are notified about clock rate changes (once before and once after
1690  *      the transition), or a list of drivers that are notified about
1691  *      changes in cpufreq policy.
1692  *
1693  *	This function may sleep, and has the same return conditions as
1694  *	blocking_notifier_chain_register.
1695  */
1696 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1697 {
1698 	int ret;
1699 
1700 	if (cpufreq_disabled())
1701 		return -EINVAL;
1702 
1703 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1704 
1705 	switch (list) {
1706 	case CPUFREQ_TRANSITION_NOTIFIER:
1707 		ret = srcu_notifier_chain_register(
1708 				&cpufreq_transition_notifier_list, nb);
1709 		break;
1710 	case CPUFREQ_POLICY_NOTIFIER:
1711 		ret = blocking_notifier_chain_register(
1712 				&cpufreq_policy_notifier_list, nb);
1713 		break;
1714 	default:
1715 		ret = -EINVAL;
1716 	}
1717 
1718 	return ret;
1719 }
1720 EXPORT_SYMBOL(cpufreq_register_notifier);
1721 
1722 /**
1723  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1724  *	@nb: notifier block to be unregistered
1725  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1726  *
1727  *	Remove a driver from the CPU frequency notifier list.
1728  *
1729  *	This function may sleep, and has the same return conditions as
1730  *	blocking_notifier_chain_unregister.
1731  */
1732 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1733 {
1734 	int ret;
1735 
1736 	if (cpufreq_disabled())
1737 		return -EINVAL;
1738 
1739 	switch (list) {
1740 	case CPUFREQ_TRANSITION_NOTIFIER:
1741 		ret = srcu_notifier_chain_unregister(
1742 				&cpufreq_transition_notifier_list, nb);
1743 		break;
1744 	case CPUFREQ_POLICY_NOTIFIER:
1745 		ret = blocking_notifier_chain_unregister(
1746 				&cpufreq_policy_notifier_list, nb);
1747 		break;
1748 	default:
1749 		ret = -EINVAL;
1750 	}
1751 
1752 	return ret;
1753 }
1754 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1755 
1756 
1757 /*********************************************************************
1758  *                              GOVERNORS                            *
1759  *********************************************************************/
1760 
1761 /* Must set freqs->new to intermediate frequency */
1762 static int __target_intermediate(struct cpufreq_policy *policy,
1763 				 struct cpufreq_freqs *freqs, int index)
1764 {
1765 	int ret;
1766 
1767 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1768 
1769 	/* We don't need to switch to intermediate freq */
1770 	if (!freqs->new)
1771 		return 0;
1772 
1773 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1774 		 __func__, policy->cpu, freqs->old, freqs->new);
1775 
1776 	cpufreq_freq_transition_begin(policy, freqs);
1777 	ret = cpufreq_driver->target_intermediate(policy, index);
1778 	cpufreq_freq_transition_end(policy, freqs, ret);
1779 
1780 	if (ret)
1781 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1782 		       __func__, ret);
1783 
1784 	return ret;
1785 }
1786 
1787 static int __target_index(struct cpufreq_policy *policy,
1788 			  struct cpufreq_frequency_table *freq_table, int index)
1789 {
1790 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1791 	unsigned int intermediate_freq = 0;
1792 	int retval = -EINVAL;
1793 	bool notify;
1794 
1795 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1796 	if (notify) {
1797 		/* Handle switching to intermediate frequency */
1798 		if (cpufreq_driver->get_intermediate) {
1799 			retval = __target_intermediate(policy, &freqs, index);
1800 			if (retval)
1801 				return retval;
1802 
1803 			intermediate_freq = freqs.new;
1804 			/* Set old freq to intermediate */
1805 			if (intermediate_freq)
1806 				freqs.old = freqs.new;
1807 		}
1808 
1809 		freqs.new = freq_table[index].frequency;
1810 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1811 			 __func__, policy->cpu, freqs.old, freqs.new);
1812 
1813 		cpufreq_freq_transition_begin(policy, &freqs);
1814 	}
1815 
1816 	retval = cpufreq_driver->target_index(policy, index);
1817 	if (retval)
1818 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1819 		       retval);
1820 
1821 	if (notify) {
1822 		cpufreq_freq_transition_end(policy, &freqs, retval);
1823 
1824 		/*
1825 		 * Failed after setting to intermediate freq? Driver should have
1826 		 * reverted back to initial frequency and so should we. Check
1827 		 * here for intermediate_freq instead of get_intermediate, in
1828 		 * case we haven't switched to intermediate freq at all.
1829 		 */
1830 		if (unlikely(retval && intermediate_freq)) {
1831 			freqs.old = intermediate_freq;
1832 			freqs.new = policy->restore_freq;
1833 			cpufreq_freq_transition_begin(policy, &freqs);
1834 			cpufreq_freq_transition_end(policy, &freqs, 0);
1835 		}
1836 	}
1837 
1838 	return retval;
1839 }
1840 
1841 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1842 			    unsigned int target_freq,
1843 			    unsigned int relation)
1844 {
1845 	unsigned int old_target_freq = target_freq;
1846 	int retval = -EINVAL;
1847 
1848 	if (cpufreq_disabled())
1849 		return -ENODEV;
1850 
1851 	/* Make sure that target_freq is within supported range */
1852 	if (target_freq > policy->max)
1853 		target_freq = policy->max;
1854 	if (target_freq < policy->min)
1855 		target_freq = policy->min;
1856 
1857 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1858 		 policy->cpu, target_freq, relation, old_target_freq);
1859 
1860 	/*
1861 	 * This might look like a redundant call as we are checking it again
1862 	 * after finding index. But it is left intentionally for cases where
1863 	 * exactly same freq is called again and so we can save on few function
1864 	 * calls.
1865 	 */
1866 	if (target_freq == policy->cur)
1867 		return 0;
1868 
1869 	/* Save last value to restore later on errors */
1870 	policy->restore_freq = policy->cur;
1871 
1872 	if (cpufreq_driver->target)
1873 		retval = cpufreq_driver->target(policy, target_freq, relation);
1874 	else if (cpufreq_driver->target_index) {
1875 		struct cpufreq_frequency_table *freq_table;
1876 		int index;
1877 
1878 		freq_table = cpufreq_frequency_get_table(policy->cpu);
1879 		if (unlikely(!freq_table)) {
1880 			pr_err("%s: Unable to find freq_table\n", __func__);
1881 			goto out;
1882 		}
1883 
1884 		retval = cpufreq_frequency_table_target(policy, freq_table,
1885 				target_freq, relation, &index);
1886 		if (unlikely(retval)) {
1887 			pr_err("%s: Unable to find matching freq\n", __func__);
1888 			goto out;
1889 		}
1890 
1891 		if (freq_table[index].frequency == policy->cur) {
1892 			retval = 0;
1893 			goto out;
1894 		}
1895 
1896 		retval = __target_index(policy, freq_table, index);
1897 	}
1898 
1899 out:
1900 	return retval;
1901 }
1902 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1903 
1904 int cpufreq_driver_target(struct cpufreq_policy *policy,
1905 			  unsigned int target_freq,
1906 			  unsigned int relation)
1907 {
1908 	int ret = -EINVAL;
1909 
1910 	down_write(&policy->rwsem);
1911 
1912 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1913 
1914 	up_write(&policy->rwsem);
1915 
1916 	return ret;
1917 }
1918 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1919 
1920 static int __cpufreq_governor(struct cpufreq_policy *policy,
1921 					unsigned int event)
1922 {
1923 	int ret;
1924 
1925 	/* Only must be defined when default governor is known to have latency
1926 	   restrictions, like e.g. conservative or ondemand.
1927 	   That this is the case is already ensured in Kconfig
1928 	*/
1929 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1930 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1931 #else
1932 	struct cpufreq_governor *gov = NULL;
1933 #endif
1934 
1935 	/* Don't start any governor operations if we are entering suspend */
1936 	if (cpufreq_suspended)
1937 		return 0;
1938 	/*
1939 	 * Governor might not be initiated here if ACPI _PPC changed
1940 	 * notification happened, so check it.
1941 	 */
1942 	if (!policy->governor)
1943 		return -EINVAL;
1944 
1945 	if (policy->governor->max_transition_latency &&
1946 	    policy->cpuinfo.transition_latency >
1947 	    policy->governor->max_transition_latency) {
1948 		if (!gov)
1949 			return -EINVAL;
1950 		else {
1951 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1952 				policy->governor->name, gov->name);
1953 			policy->governor = gov;
1954 		}
1955 	}
1956 
1957 	if (event == CPUFREQ_GOV_POLICY_INIT)
1958 		if (!try_module_get(policy->governor->owner))
1959 			return -EINVAL;
1960 
1961 	pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
1962 
1963 	mutex_lock(&cpufreq_governor_lock);
1964 	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1965 	    || (!policy->governor_enabled
1966 	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1967 		mutex_unlock(&cpufreq_governor_lock);
1968 		return -EBUSY;
1969 	}
1970 
1971 	if (event == CPUFREQ_GOV_STOP)
1972 		policy->governor_enabled = false;
1973 	else if (event == CPUFREQ_GOV_START)
1974 		policy->governor_enabled = true;
1975 
1976 	mutex_unlock(&cpufreq_governor_lock);
1977 
1978 	ret = policy->governor->governor(policy, event);
1979 
1980 	if (!ret) {
1981 		if (event == CPUFREQ_GOV_POLICY_INIT)
1982 			policy->governor->initialized++;
1983 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1984 			policy->governor->initialized--;
1985 	} else {
1986 		/* Restore original values */
1987 		mutex_lock(&cpufreq_governor_lock);
1988 		if (event == CPUFREQ_GOV_STOP)
1989 			policy->governor_enabled = true;
1990 		else if (event == CPUFREQ_GOV_START)
1991 			policy->governor_enabled = false;
1992 		mutex_unlock(&cpufreq_governor_lock);
1993 	}
1994 
1995 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1996 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1997 		module_put(policy->governor->owner);
1998 
1999 	return ret;
2000 }
2001 
2002 int cpufreq_register_governor(struct cpufreq_governor *governor)
2003 {
2004 	int err;
2005 
2006 	if (!governor)
2007 		return -EINVAL;
2008 
2009 	if (cpufreq_disabled())
2010 		return -ENODEV;
2011 
2012 	mutex_lock(&cpufreq_governor_mutex);
2013 
2014 	governor->initialized = 0;
2015 	err = -EBUSY;
2016 	if (!find_governor(governor->name)) {
2017 		err = 0;
2018 		list_add(&governor->governor_list, &cpufreq_governor_list);
2019 	}
2020 
2021 	mutex_unlock(&cpufreq_governor_mutex);
2022 	return err;
2023 }
2024 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2025 
2026 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2027 {
2028 	struct cpufreq_policy *policy;
2029 	unsigned long flags;
2030 
2031 	if (!governor)
2032 		return;
2033 
2034 	if (cpufreq_disabled())
2035 		return;
2036 
2037 	/* clear last_governor for all inactive policies */
2038 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2039 	for_each_inactive_policy(policy) {
2040 		if (!strcmp(policy->last_governor, governor->name)) {
2041 			policy->governor = NULL;
2042 			strcpy(policy->last_governor, "\0");
2043 		}
2044 	}
2045 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2046 
2047 	mutex_lock(&cpufreq_governor_mutex);
2048 	list_del(&governor->governor_list);
2049 	mutex_unlock(&cpufreq_governor_mutex);
2050 	return;
2051 }
2052 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2053 
2054 
2055 /*********************************************************************
2056  *                          POLICY INTERFACE                         *
2057  *********************************************************************/
2058 
2059 /**
2060  * cpufreq_get_policy - get the current cpufreq_policy
2061  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2062  *	is written
2063  *
2064  * Reads the current cpufreq policy.
2065  */
2066 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2067 {
2068 	struct cpufreq_policy *cpu_policy;
2069 	if (!policy)
2070 		return -EINVAL;
2071 
2072 	cpu_policy = cpufreq_cpu_get(cpu);
2073 	if (!cpu_policy)
2074 		return -EINVAL;
2075 
2076 	memcpy(policy, cpu_policy, sizeof(*policy));
2077 
2078 	cpufreq_cpu_put(cpu_policy);
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(cpufreq_get_policy);
2082 
2083 /*
2084  * policy : current policy.
2085  * new_policy: policy to be set.
2086  */
2087 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2088 				struct cpufreq_policy *new_policy)
2089 {
2090 	struct cpufreq_governor *old_gov;
2091 	int ret;
2092 
2093 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2094 		 new_policy->cpu, new_policy->min, new_policy->max);
2095 
2096 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2097 
2098 	/*
2099 	* This check works well when we store new min/max freq attributes,
2100 	* because new_policy is a copy of policy with one field updated.
2101 	*/
2102 	if (new_policy->min > new_policy->max)
2103 		return -EINVAL;
2104 
2105 	/* verify the cpu speed can be set within this limit */
2106 	ret = cpufreq_driver->verify(new_policy);
2107 	if (ret)
2108 		return ret;
2109 
2110 	/* adjust if necessary - all reasons */
2111 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2112 			CPUFREQ_ADJUST, new_policy);
2113 
2114 	/*
2115 	 * verify the cpu speed can be set within this limit, which might be
2116 	 * different to the first one
2117 	 */
2118 	ret = cpufreq_driver->verify(new_policy);
2119 	if (ret)
2120 		return ret;
2121 
2122 	/* notification of the new policy */
2123 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2124 			CPUFREQ_NOTIFY, new_policy);
2125 
2126 	policy->min = new_policy->min;
2127 	policy->max = new_policy->max;
2128 
2129 	pr_debug("new min and max freqs are %u - %u kHz\n",
2130 		 policy->min, policy->max);
2131 
2132 	if (cpufreq_driver->setpolicy) {
2133 		policy->policy = new_policy->policy;
2134 		pr_debug("setting range\n");
2135 		return cpufreq_driver->setpolicy(new_policy);
2136 	}
2137 
2138 	if (new_policy->governor == policy->governor)
2139 		goto out;
2140 
2141 	pr_debug("governor switch\n");
2142 
2143 	/* save old, working values */
2144 	old_gov = policy->governor;
2145 	/* end old governor */
2146 	if (old_gov) {
2147 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2148 		if (ret) {
2149 			/* This can happen due to race with other operations */
2150 			pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2151 				 __func__, old_gov->name, ret);
2152 			return ret;
2153 		}
2154 
2155 		up_write(&policy->rwsem);
2156 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2157 		down_write(&policy->rwsem);
2158 
2159 		if (ret) {
2160 			pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2161 			       __func__, old_gov->name, ret);
2162 			return ret;
2163 		}
2164 	}
2165 
2166 	/* start new governor */
2167 	policy->governor = new_policy->governor;
2168 	ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2169 	if (!ret) {
2170 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
2171 		if (!ret)
2172 			goto out;
2173 
2174 		up_write(&policy->rwsem);
2175 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2176 		down_write(&policy->rwsem);
2177 	}
2178 
2179 	/* new governor failed, so re-start old one */
2180 	pr_debug("starting governor %s failed\n", policy->governor->name);
2181 	if (old_gov) {
2182 		policy->governor = old_gov;
2183 		if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2184 			policy->governor = NULL;
2185 		else
2186 			__cpufreq_governor(policy, CPUFREQ_GOV_START);
2187 	}
2188 
2189 	return ret;
2190 
2191  out:
2192 	pr_debug("governor: change or update limits\n");
2193 	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2194 }
2195 
2196 /**
2197  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2198  *	@cpu: CPU which shall be re-evaluated
2199  *
2200  *	Useful for policy notifiers which have different necessities
2201  *	at different times.
2202  */
2203 int cpufreq_update_policy(unsigned int cpu)
2204 {
2205 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2206 	struct cpufreq_policy new_policy;
2207 	int ret;
2208 
2209 	if (!policy)
2210 		return -ENODEV;
2211 
2212 	down_write(&policy->rwsem);
2213 
2214 	pr_debug("updating policy for CPU %u\n", cpu);
2215 	memcpy(&new_policy, policy, sizeof(*policy));
2216 	new_policy.min = policy->user_policy.min;
2217 	new_policy.max = policy->user_policy.max;
2218 
2219 	/*
2220 	 * BIOS might change freq behind our back
2221 	 * -> ask driver for current freq and notify governors about a change
2222 	 */
2223 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2224 		new_policy.cur = cpufreq_driver->get(cpu);
2225 		if (WARN_ON(!new_policy.cur)) {
2226 			ret = -EIO;
2227 			goto unlock;
2228 		}
2229 
2230 		if (!policy->cur) {
2231 			pr_debug("Driver did not initialize current freq\n");
2232 			policy->cur = new_policy.cur;
2233 		} else {
2234 			if (policy->cur != new_policy.cur && has_target())
2235 				cpufreq_out_of_sync(policy, new_policy.cur);
2236 		}
2237 	}
2238 
2239 	ret = cpufreq_set_policy(policy, &new_policy);
2240 
2241 unlock:
2242 	up_write(&policy->rwsem);
2243 
2244 	cpufreq_cpu_put(policy);
2245 	return ret;
2246 }
2247 EXPORT_SYMBOL(cpufreq_update_policy);
2248 
2249 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2250 					unsigned long action, void *hcpu)
2251 {
2252 	unsigned int cpu = (unsigned long)hcpu;
2253 
2254 	switch (action & ~CPU_TASKS_FROZEN) {
2255 	case CPU_ONLINE:
2256 		cpufreq_online(cpu);
2257 		break;
2258 
2259 	case CPU_DOWN_PREPARE:
2260 		cpufreq_offline_prepare(cpu);
2261 		break;
2262 
2263 	case CPU_POST_DEAD:
2264 		cpufreq_offline_finish(cpu);
2265 		break;
2266 
2267 	case CPU_DOWN_FAILED:
2268 		cpufreq_online(cpu);
2269 		break;
2270 	}
2271 	return NOTIFY_OK;
2272 }
2273 
2274 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2275 	.notifier_call = cpufreq_cpu_callback,
2276 };
2277 
2278 /*********************************************************************
2279  *               BOOST						     *
2280  *********************************************************************/
2281 static int cpufreq_boost_set_sw(int state)
2282 {
2283 	struct cpufreq_frequency_table *freq_table;
2284 	struct cpufreq_policy *policy;
2285 	int ret = -EINVAL;
2286 
2287 	for_each_active_policy(policy) {
2288 		freq_table = cpufreq_frequency_get_table(policy->cpu);
2289 		if (freq_table) {
2290 			ret = cpufreq_frequency_table_cpuinfo(policy,
2291 							freq_table);
2292 			if (ret) {
2293 				pr_err("%s: Policy frequency update failed\n",
2294 				       __func__);
2295 				break;
2296 			}
2297 			policy->user_policy.max = policy->max;
2298 			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2299 		}
2300 	}
2301 
2302 	return ret;
2303 }
2304 
2305 int cpufreq_boost_trigger_state(int state)
2306 {
2307 	unsigned long flags;
2308 	int ret = 0;
2309 
2310 	if (cpufreq_driver->boost_enabled == state)
2311 		return 0;
2312 
2313 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2314 	cpufreq_driver->boost_enabled = state;
2315 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2316 
2317 	ret = cpufreq_driver->set_boost(state);
2318 	if (ret) {
2319 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2320 		cpufreq_driver->boost_enabled = !state;
2321 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2322 
2323 		pr_err("%s: Cannot %s BOOST\n",
2324 		       __func__, state ? "enable" : "disable");
2325 	}
2326 
2327 	return ret;
2328 }
2329 
2330 int cpufreq_boost_supported(void)
2331 {
2332 	if (likely(cpufreq_driver))
2333 		return cpufreq_driver->boost_supported;
2334 
2335 	return 0;
2336 }
2337 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2338 
2339 static int create_boost_sysfs_file(void)
2340 {
2341 	int ret;
2342 
2343 	if (!cpufreq_boost_supported())
2344 		return 0;
2345 
2346 	/*
2347 	 * Check if driver provides function to enable boost -
2348 	 * if not, use cpufreq_boost_set_sw as default
2349 	 */
2350 	if (!cpufreq_driver->set_boost)
2351 		cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2352 
2353 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2354 	if (ret)
2355 		pr_err("%s: cannot register global BOOST sysfs file\n",
2356 		       __func__);
2357 
2358 	return ret;
2359 }
2360 
2361 static void remove_boost_sysfs_file(void)
2362 {
2363 	if (cpufreq_boost_supported())
2364 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2365 }
2366 
2367 int cpufreq_enable_boost_support(void)
2368 {
2369 	if (!cpufreq_driver)
2370 		return -EINVAL;
2371 
2372 	if (cpufreq_boost_supported())
2373 		return 0;
2374 
2375 	cpufreq_driver->boost_supported = true;
2376 
2377 	/* This will get removed on driver unregister */
2378 	return create_boost_sysfs_file();
2379 }
2380 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2381 
2382 int cpufreq_boost_enabled(void)
2383 {
2384 	return cpufreq_driver->boost_enabled;
2385 }
2386 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2387 
2388 /*********************************************************************
2389  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2390  *********************************************************************/
2391 
2392 /**
2393  * cpufreq_register_driver - register a CPU Frequency driver
2394  * @driver_data: A struct cpufreq_driver containing the values#
2395  * submitted by the CPU Frequency driver.
2396  *
2397  * Registers a CPU Frequency driver to this core code. This code
2398  * returns zero on success, -EBUSY when another driver got here first
2399  * (and isn't unregistered in the meantime).
2400  *
2401  */
2402 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2403 {
2404 	unsigned long flags;
2405 	int ret;
2406 
2407 	if (cpufreq_disabled())
2408 		return -ENODEV;
2409 
2410 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2411 	    !(driver_data->setpolicy || driver_data->target_index ||
2412 		    driver_data->target) ||
2413 	     (driver_data->setpolicy && (driver_data->target_index ||
2414 		    driver_data->target)) ||
2415 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2416 		return -EINVAL;
2417 
2418 	pr_debug("trying to register driver %s\n", driver_data->name);
2419 
2420 	/* Protect against concurrent CPU online/offline. */
2421 	get_online_cpus();
2422 
2423 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2424 	if (cpufreq_driver) {
2425 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2426 		ret = -EEXIST;
2427 		goto out;
2428 	}
2429 	cpufreq_driver = driver_data;
2430 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2431 
2432 	if (driver_data->setpolicy)
2433 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2434 
2435 	ret = create_boost_sysfs_file();
2436 	if (ret)
2437 		goto err_null_driver;
2438 
2439 	ret = subsys_interface_register(&cpufreq_interface);
2440 	if (ret)
2441 		goto err_boost_unreg;
2442 
2443 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2444 	    list_empty(&cpufreq_policy_list)) {
2445 		/* if all ->init() calls failed, unregister */
2446 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2447 			 driver_data->name);
2448 		goto err_if_unreg;
2449 	}
2450 
2451 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2452 	pr_debug("driver %s up and running\n", driver_data->name);
2453 
2454 out:
2455 	put_online_cpus();
2456 	return ret;
2457 
2458 err_if_unreg:
2459 	subsys_interface_unregister(&cpufreq_interface);
2460 err_boost_unreg:
2461 	remove_boost_sysfs_file();
2462 err_null_driver:
2463 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2464 	cpufreq_driver = NULL;
2465 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2466 	goto out;
2467 }
2468 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2469 
2470 /**
2471  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2472  *
2473  * Unregister the current CPUFreq driver. Only call this if you have
2474  * the right to do so, i.e. if you have succeeded in initialising before!
2475  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2476  * currently not initialised.
2477  */
2478 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2479 {
2480 	unsigned long flags;
2481 
2482 	if (!cpufreq_driver || (driver != cpufreq_driver))
2483 		return -EINVAL;
2484 
2485 	pr_debug("unregistering driver %s\n", driver->name);
2486 
2487 	/* Protect against concurrent cpu hotplug */
2488 	get_online_cpus();
2489 	subsys_interface_unregister(&cpufreq_interface);
2490 	remove_boost_sysfs_file();
2491 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2492 
2493 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2494 
2495 	cpufreq_driver = NULL;
2496 
2497 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2498 	put_online_cpus();
2499 
2500 	return 0;
2501 }
2502 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2503 
2504 /*
2505  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2506  * or mutexes when secondary CPUs are halted.
2507  */
2508 static struct syscore_ops cpufreq_syscore_ops = {
2509 	.shutdown = cpufreq_suspend,
2510 };
2511 
2512 struct kobject *cpufreq_global_kobject;
2513 EXPORT_SYMBOL(cpufreq_global_kobject);
2514 
2515 static int __init cpufreq_core_init(void)
2516 {
2517 	if (cpufreq_disabled())
2518 		return -ENODEV;
2519 
2520 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2521 	BUG_ON(!cpufreq_global_kobject);
2522 
2523 	register_syscore_ops(&cpufreq_syscore_ops);
2524 
2525 	return 0;
2526 }
2527 core_initcall(cpufreq_core_init);
2528