1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 static bool suitable_policy(struct cpufreq_policy *policy, bool active) 42 { 43 return active == !policy_is_inactive(policy); 44 } 45 46 /* Finds Next Acive/Inactive policy */ 47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy, 48 bool active) 49 { 50 do { 51 policy = list_next_entry(policy, policy_list); 52 53 /* No more policies in the list */ 54 if (&policy->policy_list == &cpufreq_policy_list) 55 return NULL; 56 } while (!suitable_policy(policy, active)); 57 58 return policy; 59 } 60 61 static struct cpufreq_policy *first_policy(bool active) 62 { 63 struct cpufreq_policy *policy; 64 65 /* No policies in the list */ 66 if (list_empty(&cpufreq_policy_list)) 67 return NULL; 68 69 policy = list_first_entry(&cpufreq_policy_list, typeof(*policy), 70 policy_list); 71 72 if (!suitable_policy(policy, active)) 73 policy = next_policy(policy, active); 74 75 return policy; 76 } 77 78 /* Macros to iterate over CPU policies */ 79 #define for_each_suitable_policy(__policy, __active) \ 80 for (__policy = first_policy(__active); \ 81 __policy; \ 82 __policy = next_policy(__policy, __active)) 83 84 #define for_each_active_policy(__policy) \ 85 for_each_suitable_policy(__policy, true) 86 #define for_each_inactive_policy(__policy) \ 87 for_each_suitable_policy(__policy, false) 88 89 #define for_each_policy(__policy) \ 90 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 91 92 /* Iterate over governors */ 93 static LIST_HEAD(cpufreq_governor_list); 94 #define for_each_governor(__governor) \ 95 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 96 97 /** 98 * The "cpufreq driver" - the arch- or hardware-dependent low 99 * level driver of CPUFreq support, and its spinlock. This lock 100 * also protects the cpufreq_cpu_data array. 101 */ 102 static struct cpufreq_driver *cpufreq_driver; 103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 104 static DEFINE_RWLOCK(cpufreq_driver_lock); 105 DEFINE_MUTEX(cpufreq_governor_lock); 106 107 /* Flag to suspend/resume CPUFreq governors */ 108 static bool cpufreq_suspended; 109 110 static inline bool has_target(void) 111 { 112 return cpufreq_driver->target_index || cpufreq_driver->target; 113 } 114 115 /* internal prototypes */ 116 static int __cpufreq_governor(struct cpufreq_policy *policy, 117 unsigned int event); 118 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 119 static void handle_update(struct work_struct *work); 120 121 /** 122 * Two notifier lists: the "policy" list is involved in the 123 * validation process for a new CPU frequency policy; the 124 * "transition" list for kernel code that needs to handle 125 * changes to devices when the CPU clock speed changes. 126 * The mutex locks both lists. 127 */ 128 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 129 static struct srcu_notifier_head cpufreq_transition_notifier_list; 130 131 static bool init_cpufreq_transition_notifier_list_called; 132 static int __init init_cpufreq_transition_notifier_list(void) 133 { 134 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 135 init_cpufreq_transition_notifier_list_called = true; 136 return 0; 137 } 138 pure_initcall(init_cpufreq_transition_notifier_list); 139 140 static int off __read_mostly; 141 static int cpufreq_disabled(void) 142 { 143 return off; 144 } 145 void disable_cpufreq(void) 146 { 147 off = 1; 148 } 149 static DEFINE_MUTEX(cpufreq_governor_mutex); 150 151 bool have_governor_per_policy(void) 152 { 153 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 154 } 155 EXPORT_SYMBOL_GPL(have_governor_per_policy); 156 157 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 158 { 159 if (have_governor_per_policy()) 160 return &policy->kobj; 161 else 162 return cpufreq_global_kobject; 163 } 164 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 165 166 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu) 167 { 168 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 169 170 return policy && !policy_is_inactive(policy) ? 171 policy->freq_table : NULL; 172 } 173 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table); 174 175 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 176 { 177 u64 idle_time; 178 u64 cur_wall_time; 179 u64 busy_time; 180 181 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 182 183 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 184 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 185 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 186 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 187 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 188 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 189 190 idle_time = cur_wall_time - busy_time; 191 if (wall) 192 *wall = cputime_to_usecs(cur_wall_time); 193 194 return cputime_to_usecs(idle_time); 195 } 196 197 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 198 { 199 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 200 201 if (idle_time == -1ULL) 202 return get_cpu_idle_time_jiffy(cpu, wall); 203 else if (!io_busy) 204 idle_time += get_cpu_iowait_time_us(cpu, wall); 205 206 return idle_time; 207 } 208 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 209 210 /* 211 * This is a generic cpufreq init() routine which can be used by cpufreq 212 * drivers of SMP systems. It will do following: 213 * - validate & show freq table passed 214 * - set policies transition latency 215 * - policy->cpus with all possible CPUs 216 */ 217 int cpufreq_generic_init(struct cpufreq_policy *policy, 218 struct cpufreq_frequency_table *table, 219 unsigned int transition_latency) 220 { 221 int ret; 222 223 ret = cpufreq_table_validate_and_show(policy, table); 224 if (ret) { 225 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 226 return ret; 227 } 228 229 policy->cpuinfo.transition_latency = transition_latency; 230 231 /* 232 * The driver only supports the SMP configuration where all processors 233 * share the clock and voltage and clock. 234 */ 235 cpumask_setall(policy->cpus); 236 237 return 0; 238 } 239 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 240 241 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 242 { 243 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 244 245 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 246 } 247 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 248 249 unsigned int cpufreq_generic_get(unsigned int cpu) 250 { 251 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 252 253 if (!policy || IS_ERR(policy->clk)) { 254 pr_err("%s: No %s associated to cpu: %d\n", 255 __func__, policy ? "clk" : "policy", cpu); 256 return 0; 257 } 258 259 return clk_get_rate(policy->clk) / 1000; 260 } 261 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 262 263 /** 264 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 265 * 266 * @cpu: cpu to find policy for. 267 * 268 * This returns policy for 'cpu', returns NULL if it doesn't exist. 269 * It also increments the kobject reference count to mark it busy and so would 270 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 271 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 272 * freed as that depends on the kobj count. 273 * 274 * Return: A valid policy on success, otherwise NULL on failure. 275 */ 276 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 277 { 278 struct cpufreq_policy *policy = NULL; 279 unsigned long flags; 280 281 if (WARN_ON(cpu >= nr_cpu_ids)) 282 return NULL; 283 284 /* get the cpufreq driver */ 285 read_lock_irqsave(&cpufreq_driver_lock, flags); 286 287 if (cpufreq_driver) { 288 /* get the CPU */ 289 policy = cpufreq_cpu_get_raw(cpu); 290 if (policy) 291 kobject_get(&policy->kobj); 292 } 293 294 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 295 296 return policy; 297 } 298 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 299 300 /** 301 * cpufreq_cpu_put: Decrements the usage count of a policy 302 * 303 * @policy: policy earlier returned by cpufreq_cpu_get(). 304 * 305 * This decrements the kobject reference count incremented earlier by calling 306 * cpufreq_cpu_get(). 307 */ 308 void cpufreq_cpu_put(struct cpufreq_policy *policy) 309 { 310 kobject_put(&policy->kobj); 311 } 312 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 313 314 /********************************************************************* 315 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 316 *********************************************************************/ 317 318 /** 319 * adjust_jiffies - adjust the system "loops_per_jiffy" 320 * 321 * This function alters the system "loops_per_jiffy" for the clock 322 * speed change. Note that loops_per_jiffy cannot be updated on SMP 323 * systems as each CPU might be scaled differently. So, use the arch 324 * per-CPU loops_per_jiffy value wherever possible. 325 */ 326 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 327 { 328 #ifndef CONFIG_SMP 329 static unsigned long l_p_j_ref; 330 static unsigned int l_p_j_ref_freq; 331 332 if (ci->flags & CPUFREQ_CONST_LOOPS) 333 return; 334 335 if (!l_p_j_ref_freq) { 336 l_p_j_ref = loops_per_jiffy; 337 l_p_j_ref_freq = ci->old; 338 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 339 l_p_j_ref, l_p_j_ref_freq); 340 } 341 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 342 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 343 ci->new); 344 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 345 loops_per_jiffy, ci->new); 346 } 347 #endif 348 } 349 350 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 351 struct cpufreq_freqs *freqs, unsigned int state) 352 { 353 BUG_ON(irqs_disabled()); 354 355 if (cpufreq_disabled()) 356 return; 357 358 freqs->flags = cpufreq_driver->flags; 359 pr_debug("notification %u of frequency transition to %u kHz\n", 360 state, freqs->new); 361 362 switch (state) { 363 364 case CPUFREQ_PRECHANGE: 365 /* detect if the driver reported a value as "old frequency" 366 * which is not equal to what the cpufreq core thinks is 367 * "old frequency". 368 */ 369 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 370 if ((policy) && (policy->cpu == freqs->cpu) && 371 (policy->cur) && (policy->cur != freqs->old)) { 372 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 373 freqs->old, policy->cur); 374 freqs->old = policy->cur; 375 } 376 } 377 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 378 CPUFREQ_PRECHANGE, freqs); 379 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 380 break; 381 382 case CPUFREQ_POSTCHANGE: 383 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 384 pr_debug("FREQ: %lu - CPU: %lu\n", 385 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 386 trace_cpu_frequency(freqs->new, freqs->cpu); 387 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 388 CPUFREQ_POSTCHANGE, freqs); 389 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 390 policy->cur = freqs->new; 391 break; 392 } 393 } 394 395 /** 396 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 397 * on frequency transition. 398 * 399 * This function calls the transition notifiers and the "adjust_jiffies" 400 * function. It is called twice on all CPU frequency changes that have 401 * external effects. 402 */ 403 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 404 struct cpufreq_freqs *freqs, unsigned int state) 405 { 406 for_each_cpu(freqs->cpu, policy->cpus) 407 __cpufreq_notify_transition(policy, freqs, state); 408 } 409 410 /* Do post notifications when there are chances that transition has failed */ 411 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 412 struct cpufreq_freqs *freqs, int transition_failed) 413 { 414 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 415 if (!transition_failed) 416 return; 417 418 swap(freqs->old, freqs->new); 419 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 420 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 421 } 422 423 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 424 struct cpufreq_freqs *freqs) 425 { 426 427 /* 428 * Catch double invocations of _begin() which lead to self-deadlock. 429 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 430 * doesn't invoke _begin() on their behalf, and hence the chances of 431 * double invocations are very low. Moreover, there are scenarios 432 * where these checks can emit false-positive warnings in these 433 * drivers; so we avoid that by skipping them altogether. 434 */ 435 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 436 && current == policy->transition_task); 437 438 wait: 439 wait_event(policy->transition_wait, !policy->transition_ongoing); 440 441 spin_lock(&policy->transition_lock); 442 443 if (unlikely(policy->transition_ongoing)) { 444 spin_unlock(&policy->transition_lock); 445 goto wait; 446 } 447 448 policy->transition_ongoing = true; 449 policy->transition_task = current; 450 451 spin_unlock(&policy->transition_lock); 452 453 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 454 } 455 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 456 457 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 458 struct cpufreq_freqs *freqs, int transition_failed) 459 { 460 if (unlikely(WARN_ON(!policy->transition_ongoing))) 461 return; 462 463 cpufreq_notify_post_transition(policy, freqs, transition_failed); 464 465 policy->transition_ongoing = false; 466 policy->transition_task = NULL; 467 468 wake_up(&policy->transition_wait); 469 } 470 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 471 472 473 /********************************************************************* 474 * SYSFS INTERFACE * 475 *********************************************************************/ 476 static ssize_t show_boost(struct kobject *kobj, 477 struct attribute *attr, char *buf) 478 { 479 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 480 } 481 482 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 483 const char *buf, size_t count) 484 { 485 int ret, enable; 486 487 ret = sscanf(buf, "%d", &enable); 488 if (ret != 1 || enable < 0 || enable > 1) 489 return -EINVAL; 490 491 if (cpufreq_boost_trigger_state(enable)) { 492 pr_err("%s: Cannot %s BOOST!\n", 493 __func__, enable ? "enable" : "disable"); 494 return -EINVAL; 495 } 496 497 pr_debug("%s: cpufreq BOOST %s\n", 498 __func__, enable ? "enabled" : "disabled"); 499 500 return count; 501 } 502 define_one_global_rw(boost); 503 504 static struct cpufreq_governor *find_governor(const char *str_governor) 505 { 506 struct cpufreq_governor *t; 507 508 for_each_governor(t) 509 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 510 return t; 511 512 return NULL; 513 } 514 515 /** 516 * cpufreq_parse_governor - parse a governor string 517 */ 518 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 519 struct cpufreq_governor **governor) 520 { 521 int err = -EINVAL; 522 523 if (cpufreq_driver->setpolicy) { 524 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 525 *policy = CPUFREQ_POLICY_PERFORMANCE; 526 err = 0; 527 } else if (!strncasecmp(str_governor, "powersave", 528 CPUFREQ_NAME_LEN)) { 529 *policy = CPUFREQ_POLICY_POWERSAVE; 530 err = 0; 531 } 532 } else { 533 struct cpufreq_governor *t; 534 535 mutex_lock(&cpufreq_governor_mutex); 536 537 t = find_governor(str_governor); 538 539 if (t == NULL) { 540 int ret; 541 542 mutex_unlock(&cpufreq_governor_mutex); 543 ret = request_module("cpufreq_%s", str_governor); 544 mutex_lock(&cpufreq_governor_mutex); 545 546 if (ret == 0) 547 t = find_governor(str_governor); 548 } 549 550 if (t != NULL) { 551 *governor = t; 552 err = 0; 553 } 554 555 mutex_unlock(&cpufreq_governor_mutex); 556 } 557 return err; 558 } 559 560 /** 561 * cpufreq_per_cpu_attr_read() / show_##file_name() - 562 * print out cpufreq information 563 * 564 * Write out information from cpufreq_driver->policy[cpu]; object must be 565 * "unsigned int". 566 */ 567 568 #define show_one(file_name, object) \ 569 static ssize_t show_##file_name \ 570 (struct cpufreq_policy *policy, char *buf) \ 571 { \ 572 return sprintf(buf, "%u\n", policy->object); \ 573 } 574 575 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 576 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 577 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 578 show_one(scaling_min_freq, min); 579 show_one(scaling_max_freq, max); 580 581 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 582 { 583 ssize_t ret; 584 585 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 586 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 587 else 588 ret = sprintf(buf, "%u\n", policy->cur); 589 return ret; 590 } 591 592 static int cpufreq_set_policy(struct cpufreq_policy *policy, 593 struct cpufreq_policy *new_policy); 594 595 /** 596 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 597 */ 598 #define store_one(file_name, object) \ 599 static ssize_t store_##file_name \ 600 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 601 { \ 602 int ret, temp; \ 603 struct cpufreq_policy new_policy; \ 604 \ 605 memcpy(&new_policy, policy, sizeof(*policy)); \ 606 \ 607 ret = sscanf(buf, "%u", &new_policy.object); \ 608 if (ret != 1) \ 609 return -EINVAL; \ 610 \ 611 temp = new_policy.object; \ 612 ret = cpufreq_set_policy(policy, &new_policy); \ 613 if (!ret) \ 614 policy->user_policy.object = temp; \ 615 \ 616 return ret ? ret : count; \ 617 } 618 619 store_one(scaling_min_freq, min); 620 store_one(scaling_max_freq, max); 621 622 /** 623 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 624 */ 625 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 626 char *buf) 627 { 628 unsigned int cur_freq = __cpufreq_get(policy); 629 if (!cur_freq) 630 return sprintf(buf, "<unknown>"); 631 return sprintf(buf, "%u\n", cur_freq); 632 } 633 634 /** 635 * show_scaling_governor - show the current policy for the specified CPU 636 */ 637 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 638 { 639 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 640 return sprintf(buf, "powersave\n"); 641 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 642 return sprintf(buf, "performance\n"); 643 else if (policy->governor) 644 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 645 policy->governor->name); 646 return -EINVAL; 647 } 648 649 /** 650 * store_scaling_governor - store policy for the specified CPU 651 */ 652 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 653 const char *buf, size_t count) 654 { 655 int ret; 656 char str_governor[16]; 657 struct cpufreq_policy new_policy; 658 659 memcpy(&new_policy, policy, sizeof(*policy)); 660 661 ret = sscanf(buf, "%15s", str_governor); 662 if (ret != 1) 663 return -EINVAL; 664 665 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 666 &new_policy.governor)) 667 return -EINVAL; 668 669 ret = cpufreq_set_policy(policy, &new_policy); 670 return ret ? ret : count; 671 } 672 673 /** 674 * show_scaling_driver - show the cpufreq driver currently loaded 675 */ 676 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 677 { 678 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 679 } 680 681 /** 682 * show_scaling_available_governors - show the available CPUfreq governors 683 */ 684 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 685 char *buf) 686 { 687 ssize_t i = 0; 688 struct cpufreq_governor *t; 689 690 if (!has_target()) { 691 i += sprintf(buf, "performance powersave"); 692 goto out; 693 } 694 695 for_each_governor(t) { 696 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 697 - (CPUFREQ_NAME_LEN + 2))) 698 goto out; 699 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 700 } 701 out: 702 i += sprintf(&buf[i], "\n"); 703 return i; 704 } 705 706 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 707 { 708 ssize_t i = 0; 709 unsigned int cpu; 710 711 for_each_cpu(cpu, mask) { 712 if (i) 713 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 714 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 715 if (i >= (PAGE_SIZE - 5)) 716 break; 717 } 718 i += sprintf(&buf[i], "\n"); 719 return i; 720 } 721 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 722 723 /** 724 * show_related_cpus - show the CPUs affected by each transition even if 725 * hw coordination is in use 726 */ 727 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 728 { 729 return cpufreq_show_cpus(policy->related_cpus, buf); 730 } 731 732 /** 733 * show_affected_cpus - show the CPUs affected by each transition 734 */ 735 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 736 { 737 return cpufreq_show_cpus(policy->cpus, buf); 738 } 739 740 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 741 const char *buf, size_t count) 742 { 743 unsigned int freq = 0; 744 unsigned int ret; 745 746 if (!policy->governor || !policy->governor->store_setspeed) 747 return -EINVAL; 748 749 ret = sscanf(buf, "%u", &freq); 750 if (ret != 1) 751 return -EINVAL; 752 753 policy->governor->store_setspeed(policy, freq); 754 755 return count; 756 } 757 758 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 759 { 760 if (!policy->governor || !policy->governor->show_setspeed) 761 return sprintf(buf, "<unsupported>\n"); 762 763 return policy->governor->show_setspeed(policy, buf); 764 } 765 766 /** 767 * show_bios_limit - show the current cpufreq HW/BIOS limitation 768 */ 769 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 770 { 771 unsigned int limit; 772 int ret; 773 if (cpufreq_driver->bios_limit) { 774 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 775 if (!ret) 776 return sprintf(buf, "%u\n", limit); 777 } 778 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 779 } 780 781 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 782 cpufreq_freq_attr_ro(cpuinfo_min_freq); 783 cpufreq_freq_attr_ro(cpuinfo_max_freq); 784 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 785 cpufreq_freq_attr_ro(scaling_available_governors); 786 cpufreq_freq_attr_ro(scaling_driver); 787 cpufreq_freq_attr_ro(scaling_cur_freq); 788 cpufreq_freq_attr_ro(bios_limit); 789 cpufreq_freq_attr_ro(related_cpus); 790 cpufreq_freq_attr_ro(affected_cpus); 791 cpufreq_freq_attr_rw(scaling_min_freq); 792 cpufreq_freq_attr_rw(scaling_max_freq); 793 cpufreq_freq_attr_rw(scaling_governor); 794 cpufreq_freq_attr_rw(scaling_setspeed); 795 796 static struct attribute *default_attrs[] = { 797 &cpuinfo_min_freq.attr, 798 &cpuinfo_max_freq.attr, 799 &cpuinfo_transition_latency.attr, 800 &scaling_min_freq.attr, 801 &scaling_max_freq.attr, 802 &affected_cpus.attr, 803 &related_cpus.attr, 804 &scaling_governor.attr, 805 &scaling_driver.attr, 806 &scaling_available_governors.attr, 807 &scaling_setspeed.attr, 808 NULL 809 }; 810 811 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 812 #define to_attr(a) container_of(a, struct freq_attr, attr) 813 814 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 815 { 816 struct cpufreq_policy *policy = to_policy(kobj); 817 struct freq_attr *fattr = to_attr(attr); 818 ssize_t ret; 819 820 down_read(&policy->rwsem); 821 822 if (fattr->show) 823 ret = fattr->show(policy, buf); 824 else 825 ret = -EIO; 826 827 up_read(&policy->rwsem); 828 829 return ret; 830 } 831 832 static ssize_t store(struct kobject *kobj, struct attribute *attr, 833 const char *buf, size_t count) 834 { 835 struct cpufreq_policy *policy = to_policy(kobj); 836 struct freq_attr *fattr = to_attr(attr); 837 ssize_t ret = -EINVAL; 838 839 get_online_cpus(); 840 841 if (!cpu_online(policy->cpu)) 842 goto unlock; 843 844 down_write(&policy->rwsem); 845 846 if (fattr->store) 847 ret = fattr->store(policy, buf, count); 848 else 849 ret = -EIO; 850 851 up_write(&policy->rwsem); 852 unlock: 853 put_online_cpus(); 854 855 return ret; 856 } 857 858 static void cpufreq_sysfs_release(struct kobject *kobj) 859 { 860 struct cpufreq_policy *policy = to_policy(kobj); 861 pr_debug("last reference is dropped\n"); 862 complete(&policy->kobj_unregister); 863 } 864 865 static const struct sysfs_ops sysfs_ops = { 866 .show = show, 867 .store = store, 868 }; 869 870 static struct kobj_type ktype_cpufreq = { 871 .sysfs_ops = &sysfs_ops, 872 .default_attrs = default_attrs, 873 .release = cpufreq_sysfs_release, 874 }; 875 876 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 877 { 878 struct device *cpu_dev; 879 880 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu); 881 882 if (!policy) 883 return 0; 884 885 cpu_dev = get_cpu_device(cpu); 886 if (WARN_ON(!cpu_dev)) 887 return 0; 888 889 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq"); 890 } 891 892 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 893 { 894 struct device *cpu_dev; 895 896 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu); 897 898 cpu_dev = get_cpu_device(cpu); 899 if (WARN_ON(!cpu_dev)) 900 return; 901 902 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 903 } 904 905 /* Add/remove symlinks for all related CPUs */ 906 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 907 { 908 unsigned int j; 909 int ret = 0; 910 911 /* Some related CPUs might not be present (physically hotplugged) */ 912 for_each_cpu(j, policy->real_cpus) { 913 ret = add_cpu_dev_symlink(policy, j); 914 if (ret) 915 break; 916 } 917 918 return ret; 919 } 920 921 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy) 922 { 923 unsigned int j; 924 925 /* Some related CPUs might not be present (physically hotplugged) */ 926 for_each_cpu(j, policy->real_cpus) 927 remove_cpu_dev_symlink(policy, j); 928 } 929 930 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 931 { 932 struct freq_attr **drv_attr; 933 int ret = 0; 934 935 /* set up files for this cpu device */ 936 drv_attr = cpufreq_driver->attr; 937 while (drv_attr && *drv_attr) { 938 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 939 if (ret) 940 return ret; 941 drv_attr++; 942 } 943 if (cpufreq_driver->get) { 944 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 945 if (ret) 946 return ret; 947 } 948 949 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 950 if (ret) 951 return ret; 952 953 if (cpufreq_driver->bios_limit) { 954 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 955 if (ret) 956 return ret; 957 } 958 959 return cpufreq_add_dev_symlink(policy); 960 } 961 962 static int cpufreq_init_policy(struct cpufreq_policy *policy) 963 { 964 struct cpufreq_governor *gov = NULL; 965 struct cpufreq_policy new_policy; 966 967 memcpy(&new_policy, policy, sizeof(*policy)); 968 969 /* Update governor of new_policy to the governor used before hotplug */ 970 gov = find_governor(policy->last_governor); 971 if (gov) 972 pr_debug("Restoring governor %s for cpu %d\n", 973 policy->governor->name, policy->cpu); 974 else 975 gov = CPUFREQ_DEFAULT_GOVERNOR; 976 977 new_policy.governor = gov; 978 979 /* Use the default policy if its valid. */ 980 if (cpufreq_driver->setpolicy) 981 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL); 982 983 /* set default policy */ 984 return cpufreq_set_policy(policy, &new_policy); 985 } 986 987 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 988 { 989 int ret = 0; 990 991 /* Has this CPU been taken care of already? */ 992 if (cpumask_test_cpu(cpu, policy->cpus)) 993 return 0; 994 995 if (has_target()) { 996 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 997 if (ret) { 998 pr_err("%s: Failed to stop governor\n", __func__); 999 return ret; 1000 } 1001 } 1002 1003 down_write(&policy->rwsem); 1004 cpumask_set_cpu(cpu, policy->cpus); 1005 up_write(&policy->rwsem); 1006 1007 if (has_target()) { 1008 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1009 if (!ret) 1010 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1011 1012 if (ret) { 1013 pr_err("%s: Failed to start governor\n", __func__); 1014 return ret; 1015 } 1016 } 1017 1018 return 0; 1019 } 1020 1021 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1022 { 1023 struct device *dev = get_cpu_device(cpu); 1024 struct cpufreq_policy *policy; 1025 1026 if (WARN_ON(!dev)) 1027 return NULL; 1028 1029 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1030 if (!policy) 1031 return NULL; 1032 1033 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1034 goto err_free_policy; 1035 1036 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1037 goto err_free_cpumask; 1038 1039 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1040 goto err_free_rcpumask; 1041 1042 kobject_init(&policy->kobj, &ktype_cpufreq); 1043 INIT_LIST_HEAD(&policy->policy_list); 1044 init_rwsem(&policy->rwsem); 1045 spin_lock_init(&policy->transition_lock); 1046 init_waitqueue_head(&policy->transition_wait); 1047 init_completion(&policy->kobj_unregister); 1048 INIT_WORK(&policy->update, handle_update); 1049 1050 policy->cpu = cpu; 1051 return policy; 1052 1053 err_free_rcpumask: 1054 free_cpumask_var(policy->related_cpus); 1055 err_free_cpumask: 1056 free_cpumask_var(policy->cpus); 1057 err_free_policy: 1058 kfree(policy); 1059 1060 return NULL; 1061 } 1062 1063 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify) 1064 { 1065 struct kobject *kobj; 1066 struct completion *cmp; 1067 1068 if (notify) 1069 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1070 CPUFREQ_REMOVE_POLICY, policy); 1071 1072 down_write(&policy->rwsem); 1073 cpufreq_remove_dev_symlink(policy); 1074 kobj = &policy->kobj; 1075 cmp = &policy->kobj_unregister; 1076 up_write(&policy->rwsem); 1077 kobject_put(kobj); 1078 1079 /* 1080 * We need to make sure that the underlying kobj is 1081 * actually not referenced anymore by anybody before we 1082 * proceed with unloading. 1083 */ 1084 pr_debug("waiting for dropping of refcount\n"); 1085 wait_for_completion(cmp); 1086 pr_debug("wait complete\n"); 1087 } 1088 1089 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify) 1090 { 1091 unsigned long flags; 1092 int cpu; 1093 1094 /* Remove policy from list */ 1095 write_lock_irqsave(&cpufreq_driver_lock, flags); 1096 list_del(&policy->policy_list); 1097 1098 for_each_cpu(cpu, policy->related_cpus) 1099 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1100 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1101 1102 cpufreq_policy_put_kobj(policy, notify); 1103 free_cpumask_var(policy->real_cpus); 1104 free_cpumask_var(policy->related_cpus); 1105 free_cpumask_var(policy->cpus); 1106 kfree(policy); 1107 } 1108 1109 static int cpufreq_online(unsigned int cpu) 1110 { 1111 struct cpufreq_policy *policy; 1112 bool new_policy; 1113 unsigned long flags; 1114 unsigned int j; 1115 int ret; 1116 1117 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1118 1119 /* Check if this CPU already has a policy to manage it */ 1120 policy = per_cpu(cpufreq_cpu_data, cpu); 1121 if (policy) { 1122 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1123 if (!policy_is_inactive(policy)) 1124 return cpufreq_add_policy_cpu(policy, cpu); 1125 1126 /* This is the only online CPU for the policy. Start over. */ 1127 new_policy = false; 1128 down_write(&policy->rwsem); 1129 policy->cpu = cpu; 1130 policy->governor = NULL; 1131 up_write(&policy->rwsem); 1132 } else { 1133 new_policy = true; 1134 policy = cpufreq_policy_alloc(cpu); 1135 if (!policy) 1136 return -ENOMEM; 1137 } 1138 1139 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1140 1141 /* call driver. From then on the cpufreq must be able 1142 * to accept all calls to ->verify and ->setpolicy for this CPU 1143 */ 1144 ret = cpufreq_driver->init(policy); 1145 if (ret) { 1146 pr_debug("initialization failed\n"); 1147 goto out_free_policy; 1148 } 1149 1150 down_write(&policy->rwsem); 1151 1152 if (new_policy) { 1153 /* related_cpus should at least include policy->cpus. */ 1154 cpumask_copy(policy->related_cpus, policy->cpus); 1155 /* Remember CPUs present at the policy creation time. */ 1156 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask); 1157 1158 /* Name and add the kobject */ 1159 ret = kobject_add(&policy->kobj, cpufreq_global_kobject, 1160 "policy%u", 1161 cpumask_first(policy->related_cpus)); 1162 if (ret) { 1163 pr_err("%s: failed to add policy->kobj: %d\n", __func__, 1164 ret); 1165 goto out_exit_policy; 1166 } 1167 } 1168 1169 /* 1170 * affected cpus must always be the one, which are online. We aren't 1171 * managing offline cpus here. 1172 */ 1173 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1174 1175 if (new_policy) { 1176 policy->user_policy.min = policy->min; 1177 policy->user_policy.max = policy->max; 1178 1179 write_lock_irqsave(&cpufreq_driver_lock, flags); 1180 for_each_cpu(j, policy->related_cpus) 1181 per_cpu(cpufreq_cpu_data, j) = policy; 1182 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1183 } 1184 1185 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1186 policy->cur = cpufreq_driver->get(policy->cpu); 1187 if (!policy->cur) { 1188 pr_err("%s: ->get() failed\n", __func__); 1189 goto out_exit_policy; 1190 } 1191 } 1192 1193 /* 1194 * Sometimes boot loaders set CPU frequency to a value outside of 1195 * frequency table present with cpufreq core. In such cases CPU might be 1196 * unstable if it has to run on that frequency for long duration of time 1197 * and so its better to set it to a frequency which is specified in 1198 * freq-table. This also makes cpufreq stats inconsistent as 1199 * cpufreq-stats would fail to register because current frequency of CPU 1200 * isn't found in freq-table. 1201 * 1202 * Because we don't want this change to effect boot process badly, we go 1203 * for the next freq which is >= policy->cur ('cur' must be set by now, 1204 * otherwise we will end up setting freq to lowest of the table as 'cur' 1205 * is initialized to zero). 1206 * 1207 * We are passing target-freq as "policy->cur - 1" otherwise 1208 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1209 * equal to target-freq. 1210 */ 1211 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1212 && has_target()) { 1213 /* Are we running at unknown frequency ? */ 1214 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1215 if (ret == -EINVAL) { 1216 /* Warn user and fix it */ 1217 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1218 __func__, policy->cpu, policy->cur); 1219 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1220 CPUFREQ_RELATION_L); 1221 1222 /* 1223 * Reaching here after boot in a few seconds may not 1224 * mean that system will remain stable at "unknown" 1225 * frequency for longer duration. Hence, a BUG_ON(). 1226 */ 1227 BUG_ON(ret); 1228 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1229 __func__, policy->cpu, policy->cur); 1230 } 1231 } 1232 1233 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1234 CPUFREQ_START, policy); 1235 1236 if (new_policy) { 1237 ret = cpufreq_add_dev_interface(policy); 1238 if (ret) 1239 goto out_exit_policy; 1240 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1241 CPUFREQ_CREATE_POLICY, policy); 1242 1243 write_lock_irqsave(&cpufreq_driver_lock, flags); 1244 list_add(&policy->policy_list, &cpufreq_policy_list); 1245 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1246 } 1247 1248 ret = cpufreq_init_policy(policy); 1249 if (ret) { 1250 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1251 __func__, cpu, ret); 1252 /* cpufreq_policy_free() will notify based on this */ 1253 new_policy = false; 1254 goto out_exit_policy; 1255 } 1256 1257 up_write(&policy->rwsem); 1258 1259 kobject_uevent(&policy->kobj, KOBJ_ADD); 1260 1261 /* Callback for handling stuff after policy is ready */ 1262 if (cpufreq_driver->ready) 1263 cpufreq_driver->ready(policy); 1264 1265 pr_debug("initialization complete\n"); 1266 1267 return 0; 1268 1269 out_exit_policy: 1270 up_write(&policy->rwsem); 1271 1272 if (cpufreq_driver->exit) 1273 cpufreq_driver->exit(policy); 1274 out_free_policy: 1275 cpufreq_policy_free(policy, !new_policy); 1276 return ret; 1277 } 1278 1279 /** 1280 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1281 * @dev: CPU device. 1282 * @sif: Subsystem interface structure pointer (not used) 1283 */ 1284 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1285 { 1286 unsigned cpu = dev->id; 1287 int ret; 1288 1289 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1290 1291 if (cpu_online(cpu)) { 1292 ret = cpufreq_online(cpu); 1293 } else { 1294 /* 1295 * A hotplug notifier will follow and we will handle it as CPU 1296 * online then. For now, just create the sysfs link, unless 1297 * there is no policy or the link is already present. 1298 */ 1299 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1300 1301 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus) 1302 ? add_cpu_dev_symlink(policy, cpu) : 0; 1303 } 1304 1305 return ret; 1306 } 1307 1308 static void cpufreq_offline_prepare(unsigned int cpu) 1309 { 1310 struct cpufreq_policy *policy; 1311 1312 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1313 1314 policy = cpufreq_cpu_get_raw(cpu); 1315 if (!policy) { 1316 pr_debug("%s: No cpu_data found\n", __func__); 1317 return; 1318 } 1319 1320 if (has_target()) { 1321 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1322 if (ret) 1323 pr_err("%s: Failed to stop governor\n", __func__); 1324 } 1325 1326 down_write(&policy->rwsem); 1327 cpumask_clear_cpu(cpu, policy->cpus); 1328 1329 if (policy_is_inactive(policy)) { 1330 if (has_target()) 1331 strncpy(policy->last_governor, policy->governor->name, 1332 CPUFREQ_NAME_LEN); 1333 } else if (cpu == policy->cpu) { 1334 /* Nominate new CPU */ 1335 policy->cpu = cpumask_any(policy->cpus); 1336 } 1337 up_write(&policy->rwsem); 1338 1339 /* Start governor again for active policy */ 1340 if (!policy_is_inactive(policy)) { 1341 if (has_target()) { 1342 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1343 if (!ret) 1344 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1345 1346 if (ret) 1347 pr_err("%s: Failed to start governor\n", __func__); 1348 } 1349 } else if (cpufreq_driver->stop_cpu) { 1350 cpufreq_driver->stop_cpu(policy); 1351 } 1352 } 1353 1354 static void cpufreq_offline_finish(unsigned int cpu) 1355 { 1356 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1357 1358 if (!policy) { 1359 pr_debug("%s: No cpu_data found\n", __func__); 1360 return; 1361 } 1362 1363 /* Only proceed for inactive policies */ 1364 if (!policy_is_inactive(policy)) 1365 return; 1366 1367 /* If cpu is last user of policy, free policy */ 1368 if (has_target()) { 1369 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 1370 if (ret) 1371 pr_err("%s: Failed to exit governor\n", __func__); 1372 } 1373 1374 /* 1375 * Perform the ->exit() even during light-weight tear-down, 1376 * since this is a core component, and is essential for the 1377 * subsequent light-weight ->init() to succeed. 1378 */ 1379 if (cpufreq_driver->exit) { 1380 cpufreq_driver->exit(policy); 1381 policy->freq_table = NULL; 1382 } 1383 } 1384 1385 /** 1386 * cpufreq_remove_dev - remove a CPU device 1387 * 1388 * Removes the cpufreq interface for a CPU device. 1389 */ 1390 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1391 { 1392 unsigned int cpu = dev->id; 1393 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1394 1395 if (!policy) 1396 return; 1397 1398 if (cpu_online(cpu)) { 1399 cpufreq_offline_prepare(cpu); 1400 cpufreq_offline_finish(cpu); 1401 } 1402 1403 cpumask_clear_cpu(cpu, policy->real_cpus); 1404 1405 if (cpumask_empty(policy->real_cpus)) { 1406 cpufreq_policy_free(policy, true); 1407 return; 1408 } 1409 1410 remove_cpu_dev_symlink(policy, cpu); 1411 } 1412 1413 static void handle_update(struct work_struct *work) 1414 { 1415 struct cpufreq_policy *policy = 1416 container_of(work, struct cpufreq_policy, update); 1417 unsigned int cpu = policy->cpu; 1418 pr_debug("handle_update for cpu %u called\n", cpu); 1419 cpufreq_update_policy(cpu); 1420 } 1421 1422 /** 1423 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1424 * in deep trouble. 1425 * @policy: policy managing CPUs 1426 * @new_freq: CPU frequency the CPU actually runs at 1427 * 1428 * We adjust to current frequency first, and need to clean up later. 1429 * So either call to cpufreq_update_policy() or schedule handle_update()). 1430 */ 1431 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1432 unsigned int new_freq) 1433 { 1434 struct cpufreq_freqs freqs; 1435 1436 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1437 policy->cur, new_freq); 1438 1439 freqs.old = policy->cur; 1440 freqs.new = new_freq; 1441 1442 cpufreq_freq_transition_begin(policy, &freqs); 1443 cpufreq_freq_transition_end(policy, &freqs, 0); 1444 } 1445 1446 /** 1447 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1448 * @cpu: CPU number 1449 * 1450 * This is the last known freq, without actually getting it from the driver. 1451 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1452 */ 1453 unsigned int cpufreq_quick_get(unsigned int cpu) 1454 { 1455 struct cpufreq_policy *policy; 1456 unsigned int ret_freq = 0; 1457 1458 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1459 return cpufreq_driver->get(cpu); 1460 1461 policy = cpufreq_cpu_get(cpu); 1462 if (policy) { 1463 ret_freq = policy->cur; 1464 cpufreq_cpu_put(policy); 1465 } 1466 1467 return ret_freq; 1468 } 1469 EXPORT_SYMBOL(cpufreq_quick_get); 1470 1471 /** 1472 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1473 * @cpu: CPU number 1474 * 1475 * Just return the max possible frequency for a given CPU. 1476 */ 1477 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1478 { 1479 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1480 unsigned int ret_freq = 0; 1481 1482 if (policy) { 1483 ret_freq = policy->max; 1484 cpufreq_cpu_put(policy); 1485 } 1486 1487 return ret_freq; 1488 } 1489 EXPORT_SYMBOL(cpufreq_quick_get_max); 1490 1491 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1492 { 1493 unsigned int ret_freq = 0; 1494 1495 if (!cpufreq_driver->get) 1496 return ret_freq; 1497 1498 ret_freq = cpufreq_driver->get(policy->cpu); 1499 1500 /* Updating inactive policies is invalid, so avoid doing that. */ 1501 if (unlikely(policy_is_inactive(policy))) 1502 return ret_freq; 1503 1504 if (ret_freq && policy->cur && 1505 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1506 /* verify no discrepancy between actual and 1507 saved value exists */ 1508 if (unlikely(ret_freq != policy->cur)) { 1509 cpufreq_out_of_sync(policy, ret_freq); 1510 schedule_work(&policy->update); 1511 } 1512 } 1513 1514 return ret_freq; 1515 } 1516 1517 /** 1518 * cpufreq_get - get the current CPU frequency (in kHz) 1519 * @cpu: CPU number 1520 * 1521 * Get the CPU current (static) CPU frequency 1522 */ 1523 unsigned int cpufreq_get(unsigned int cpu) 1524 { 1525 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1526 unsigned int ret_freq = 0; 1527 1528 if (policy) { 1529 down_read(&policy->rwsem); 1530 ret_freq = __cpufreq_get(policy); 1531 up_read(&policy->rwsem); 1532 1533 cpufreq_cpu_put(policy); 1534 } 1535 1536 return ret_freq; 1537 } 1538 EXPORT_SYMBOL(cpufreq_get); 1539 1540 static struct subsys_interface cpufreq_interface = { 1541 .name = "cpufreq", 1542 .subsys = &cpu_subsys, 1543 .add_dev = cpufreq_add_dev, 1544 .remove_dev = cpufreq_remove_dev, 1545 }; 1546 1547 /* 1548 * In case platform wants some specific frequency to be configured 1549 * during suspend.. 1550 */ 1551 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1552 { 1553 int ret; 1554 1555 if (!policy->suspend_freq) { 1556 pr_debug("%s: suspend_freq not defined\n", __func__); 1557 return 0; 1558 } 1559 1560 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1561 policy->suspend_freq); 1562 1563 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1564 CPUFREQ_RELATION_H); 1565 if (ret) 1566 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1567 __func__, policy->suspend_freq, ret); 1568 1569 return ret; 1570 } 1571 EXPORT_SYMBOL(cpufreq_generic_suspend); 1572 1573 /** 1574 * cpufreq_suspend() - Suspend CPUFreq governors 1575 * 1576 * Called during system wide Suspend/Hibernate cycles for suspending governors 1577 * as some platforms can't change frequency after this point in suspend cycle. 1578 * Because some of the devices (like: i2c, regulators, etc) they use for 1579 * changing frequency are suspended quickly after this point. 1580 */ 1581 void cpufreq_suspend(void) 1582 { 1583 struct cpufreq_policy *policy; 1584 1585 if (!cpufreq_driver) 1586 return; 1587 1588 if (!has_target()) 1589 goto suspend; 1590 1591 pr_debug("%s: Suspending Governors\n", __func__); 1592 1593 for_each_active_policy(policy) { 1594 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1595 pr_err("%s: Failed to stop governor for policy: %p\n", 1596 __func__, policy); 1597 else if (cpufreq_driver->suspend 1598 && cpufreq_driver->suspend(policy)) 1599 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1600 policy); 1601 } 1602 1603 suspend: 1604 cpufreq_suspended = true; 1605 } 1606 1607 /** 1608 * cpufreq_resume() - Resume CPUFreq governors 1609 * 1610 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1611 * are suspended with cpufreq_suspend(). 1612 */ 1613 void cpufreq_resume(void) 1614 { 1615 struct cpufreq_policy *policy; 1616 1617 if (!cpufreq_driver) 1618 return; 1619 1620 cpufreq_suspended = false; 1621 1622 if (!has_target()) 1623 return; 1624 1625 pr_debug("%s: Resuming Governors\n", __func__); 1626 1627 for_each_active_policy(policy) { 1628 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1629 pr_err("%s: Failed to resume driver: %p\n", __func__, 1630 policy); 1631 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1632 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1633 pr_err("%s: Failed to start governor for policy: %p\n", 1634 __func__, policy); 1635 } 1636 1637 /* 1638 * schedule call cpufreq_update_policy() for first-online CPU, as that 1639 * wouldn't be hotplugged-out on suspend. It will verify that the 1640 * current freq is in sync with what we believe it to be. 1641 */ 1642 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask)); 1643 if (WARN_ON(!policy)) 1644 return; 1645 1646 schedule_work(&policy->update); 1647 } 1648 1649 /** 1650 * cpufreq_get_current_driver - return current driver's name 1651 * 1652 * Return the name string of the currently loaded cpufreq driver 1653 * or NULL, if none. 1654 */ 1655 const char *cpufreq_get_current_driver(void) 1656 { 1657 if (cpufreq_driver) 1658 return cpufreq_driver->name; 1659 1660 return NULL; 1661 } 1662 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1663 1664 /** 1665 * cpufreq_get_driver_data - return current driver data 1666 * 1667 * Return the private data of the currently loaded cpufreq 1668 * driver, or NULL if no cpufreq driver is loaded. 1669 */ 1670 void *cpufreq_get_driver_data(void) 1671 { 1672 if (cpufreq_driver) 1673 return cpufreq_driver->driver_data; 1674 1675 return NULL; 1676 } 1677 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1678 1679 /********************************************************************* 1680 * NOTIFIER LISTS INTERFACE * 1681 *********************************************************************/ 1682 1683 /** 1684 * cpufreq_register_notifier - register a driver with cpufreq 1685 * @nb: notifier function to register 1686 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1687 * 1688 * Add a driver to one of two lists: either a list of drivers that 1689 * are notified about clock rate changes (once before and once after 1690 * the transition), or a list of drivers that are notified about 1691 * changes in cpufreq policy. 1692 * 1693 * This function may sleep, and has the same return conditions as 1694 * blocking_notifier_chain_register. 1695 */ 1696 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1697 { 1698 int ret; 1699 1700 if (cpufreq_disabled()) 1701 return -EINVAL; 1702 1703 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1704 1705 switch (list) { 1706 case CPUFREQ_TRANSITION_NOTIFIER: 1707 ret = srcu_notifier_chain_register( 1708 &cpufreq_transition_notifier_list, nb); 1709 break; 1710 case CPUFREQ_POLICY_NOTIFIER: 1711 ret = blocking_notifier_chain_register( 1712 &cpufreq_policy_notifier_list, nb); 1713 break; 1714 default: 1715 ret = -EINVAL; 1716 } 1717 1718 return ret; 1719 } 1720 EXPORT_SYMBOL(cpufreq_register_notifier); 1721 1722 /** 1723 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1724 * @nb: notifier block to be unregistered 1725 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1726 * 1727 * Remove a driver from the CPU frequency notifier list. 1728 * 1729 * This function may sleep, and has the same return conditions as 1730 * blocking_notifier_chain_unregister. 1731 */ 1732 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1733 { 1734 int ret; 1735 1736 if (cpufreq_disabled()) 1737 return -EINVAL; 1738 1739 switch (list) { 1740 case CPUFREQ_TRANSITION_NOTIFIER: 1741 ret = srcu_notifier_chain_unregister( 1742 &cpufreq_transition_notifier_list, nb); 1743 break; 1744 case CPUFREQ_POLICY_NOTIFIER: 1745 ret = blocking_notifier_chain_unregister( 1746 &cpufreq_policy_notifier_list, nb); 1747 break; 1748 default: 1749 ret = -EINVAL; 1750 } 1751 1752 return ret; 1753 } 1754 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1755 1756 1757 /********************************************************************* 1758 * GOVERNORS * 1759 *********************************************************************/ 1760 1761 /* Must set freqs->new to intermediate frequency */ 1762 static int __target_intermediate(struct cpufreq_policy *policy, 1763 struct cpufreq_freqs *freqs, int index) 1764 { 1765 int ret; 1766 1767 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1768 1769 /* We don't need to switch to intermediate freq */ 1770 if (!freqs->new) 1771 return 0; 1772 1773 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1774 __func__, policy->cpu, freqs->old, freqs->new); 1775 1776 cpufreq_freq_transition_begin(policy, freqs); 1777 ret = cpufreq_driver->target_intermediate(policy, index); 1778 cpufreq_freq_transition_end(policy, freqs, ret); 1779 1780 if (ret) 1781 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1782 __func__, ret); 1783 1784 return ret; 1785 } 1786 1787 static int __target_index(struct cpufreq_policy *policy, 1788 struct cpufreq_frequency_table *freq_table, int index) 1789 { 1790 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1791 unsigned int intermediate_freq = 0; 1792 int retval = -EINVAL; 1793 bool notify; 1794 1795 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1796 if (notify) { 1797 /* Handle switching to intermediate frequency */ 1798 if (cpufreq_driver->get_intermediate) { 1799 retval = __target_intermediate(policy, &freqs, index); 1800 if (retval) 1801 return retval; 1802 1803 intermediate_freq = freqs.new; 1804 /* Set old freq to intermediate */ 1805 if (intermediate_freq) 1806 freqs.old = freqs.new; 1807 } 1808 1809 freqs.new = freq_table[index].frequency; 1810 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1811 __func__, policy->cpu, freqs.old, freqs.new); 1812 1813 cpufreq_freq_transition_begin(policy, &freqs); 1814 } 1815 1816 retval = cpufreq_driver->target_index(policy, index); 1817 if (retval) 1818 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1819 retval); 1820 1821 if (notify) { 1822 cpufreq_freq_transition_end(policy, &freqs, retval); 1823 1824 /* 1825 * Failed after setting to intermediate freq? Driver should have 1826 * reverted back to initial frequency and so should we. Check 1827 * here for intermediate_freq instead of get_intermediate, in 1828 * case we haven't switched to intermediate freq at all. 1829 */ 1830 if (unlikely(retval && intermediate_freq)) { 1831 freqs.old = intermediate_freq; 1832 freqs.new = policy->restore_freq; 1833 cpufreq_freq_transition_begin(policy, &freqs); 1834 cpufreq_freq_transition_end(policy, &freqs, 0); 1835 } 1836 } 1837 1838 return retval; 1839 } 1840 1841 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1842 unsigned int target_freq, 1843 unsigned int relation) 1844 { 1845 unsigned int old_target_freq = target_freq; 1846 int retval = -EINVAL; 1847 1848 if (cpufreq_disabled()) 1849 return -ENODEV; 1850 1851 /* Make sure that target_freq is within supported range */ 1852 if (target_freq > policy->max) 1853 target_freq = policy->max; 1854 if (target_freq < policy->min) 1855 target_freq = policy->min; 1856 1857 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1858 policy->cpu, target_freq, relation, old_target_freq); 1859 1860 /* 1861 * This might look like a redundant call as we are checking it again 1862 * after finding index. But it is left intentionally for cases where 1863 * exactly same freq is called again and so we can save on few function 1864 * calls. 1865 */ 1866 if (target_freq == policy->cur) 1867 return 0; 1868 1869 /* Save last value to restore later on errors */ 1870 policy->restore_freq = policy->cur; 1871 1872 if (cpufreq_driver->target) 1873 retval = cpufreq_driver->target(policy, target_freq, relation); 1874 else if (cpufreq_driver->target_index) { 1875 struct cpufreq_frequency_table *freq_table; 1876 int index; 1877 1878 freq_table = cpufreq_frequency_get_table(policy->cpu); 1879 if (unlikely(!freq_table)) { 1880 pr_err("%s: Unable to find freq_table\n", __func__); 1881 goto out; 1882 } 1883 1884 retval = cpufreq_frequency_table_target(policy, freq_table, 1885 target_freq, relation, &index); 1886 if (unlikely(retval)) { 1887 pr_err("%s: Unable to find matching freq\n", __func__); 1888 goto out; 1889 } 1890 1891 if (freq_table[index].frequency == policy->cur) { 1892 retval = 0; 1893 goto out; 1894 } 1895 1896 retval = __target_index(policy, freq_table, index); 1897 } 1898 1899 out: 1900 return retval; 1901 } 1902 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1903 1904 int cpufreq_driver_target(struct cpufreq_policy *policy, 1905 unsigned int target_freq, 1906 unsigned int relation) 1907 { 1908 int ret = -EINVAL; 1909 1910 down_write(&policy->rwsem); 1911 1912 ret = __cpufreq_driver_target(policy, target_freq, relation); 1913 1914 up_write(&policy->rwsem); 1915 1916 return ret; 1917 } 1918 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1919 1920 static int __cpufreq_governor(struct cpufreq_policy *policy, 1921 unsigned int event) 1922 { 1923 int ret; 1924 1925 /* Only must be defined when default governor is known to have latency 1926 restrictions, like e.g. conservative or ondemand. 1927 That this is the case is already ensured in Kconfig 1928 */ 1929 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1930 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1931 #else 1932 struct cpufreq_governor *gov = NULL; 1933 #endif 1934 1935 /* Don't start any governor operations if we are entering suspend */ 1936 if (cpufreq_suspended) 1937 return 0; 1938 /* 1939 * Governor might not be initiated here if ACPI _PPC changed 1940 * notification happened, so check it. 1941 */ 1942 if (!policy->governor) 1943 return -EINVAL; 1944 1945 if (policy->governor->max_transition_latency && 1946 policy->cpuinfo.transition_latency > 1947 policy->governor->max_transition_latency) { 1948 if (!gov) 1949 return -EINVAL; 1950 else { 1951 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 1952 policy->governor->name, gov->name); 1953 policy->governor = gov; 1954 } 1955 } 1956 1957 if (event == CPUFREQ_GOV_POLICY_INIT) 1958 if (!try_module_get(policy->governor->owner)) 1959 return -EINVAL; 1960 1961 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event); 1962 1963 mutex_lock(&cpufreq_governor_lock); 1964 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 1965 || (!policy->governor_enabled 1966 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 1967 mutex_unlock(&cpufreq_governor_lock); 1968 return -EBUSY; 1969 } 1970 1971 if (event == CPUFREQ_GOV_STOP) 1972 policy->governor_enabled = false; 1973 else if (event == CPUFREQ_GOV_START) 1974 policy->governor_enabled = true; 1975 1976 mutex_unlock(&cpufreq_governor_lock); 1977 1978 ret = policy->governor->governor(policy, event); 1979 1980 if (!ret) { 1981 if (event == CPUFREQ_GOV_POLICY_INIT) 1982 policy->governor->initialized++; 1983 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1984 policy->governor->initialized--; 1985 } else { 1986 /* Restore original values */ 1987 mutex_lock(&cpufreq_governor_lock); 1988 if (event == CPUFREQ_GOV_STOP) 1989 policy->governor_enabled = true; 1990 else if (event == CPUFREQ_GOV_START) 1991 policy->governor_enabled = false; 1992 mutex_unlock(&cpufreq_governor_lock); 1993 } 1994 1995 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 1996 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 1997 module_put(policy->governor->owner); 1998 1999 return ret; 2000 } 2001 2002 int cpufreq_register_governor(struct cpufreq_governor *governor) 2003 { 2004 int err; 2005 2006 if (!governor) 2007 return -EINVAL; 2008 2009 if (cpufreq_disabled()) 2010 return -ENODEV; 2011 2012 mutex_lock(&cpufreq_governor_mutex); 2013 2014 governor->initialized = 0; 2015 err = -EBUSY; 2016 if (!find_governor(governor->name)) { 2017 err = 0; 2018 list_add(&governor->governor_list, &cpufreq_governor_list); 2019 } 2020 2021 mutex_unlock(&cpufreq_governor_mutex); 2022 return err; 2023 } 2024 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2025 2026 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2027 { 2028 struct cpufreq_policy *policy; 2029 unsigned long flags; 2030 2031 if (!governor) 2032 return; 2033 2034 if (cpufreq_disabled()) 2035 return; 2036 2037 /* clear last_governor for all inactive policies */ 2038 read_lock_irqsave(&cpufreq_driver_lock, flags); 2039 for_each_inactive_policy(policy) { 2040 if (!strcmp(policy->last_governor, governor->name)) { 2041 policy->governor = NULL; 2042 strcpy(policy->last_governor, "\0"); 2043 } 2044 } 2045 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2046 2047 mutex_lock(&cpufreq_governor_mutex); 2048 list_del(&governor->governor_list); 2049 mutex_unlock(&cpufreq_governor_mutex); 2050 return; 2051 } 2052 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2053 2054 2055 /********************************************************************* 2056 * POLICY INTERFACE * 2057 *********************************************************************/ 2058 2059 /** 2060 * cpufreq_get_policy - get the current cpufreq_policy 2061 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2062 * is written 2063 * 2064 * Reads the current cpufreq policy. 2065 */ 2066 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2067 { 2068 struct cpufreq_policy *cpu_policy; 2069 if (!policy) 2070 return -EINVAL; 2071 2072 cpu_policy = cpufreq_cpu_get(cpu); 2073 if (!cpu_policy) 2074 return -EINVAL; 2075 2076 memcpy(policy, cpu_policy, sizeof(*policy)); 2077 2078 cpufreq_cpu_put(cpu_policy); 2079 return 0; 2080 } 2081 EXPORT_SYMBOL(cpufreq_get_policy); 2082 2083 /* 2084 * policy : current policy. 2085 * new_policy: policy to be set. 2086 */ 2087 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2088 struct cpufreq_policy *new_policy) 2089 { 2090 struct cpufreq_governor *old_gov; 2091 int ret; 2092 2093 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2094 new_policy->cpu, new_policy->min, new_policy->max); 2095 2096 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2097 2098 /* 2099 * This check works well when we store new min/max freq attributes, 2100 * because new_policy is a copy of policy with one field updated. 2101 */ 2102 if (new_policy->min > new_policy->max) 2103 return -EINVAL; 2104 2105 /* verify the cpu speed can be set within this limit */ 2106 ret = cpufreq_driver->verify(new_policy); 2107 if (ret) 2108 return ret; 2109 2110 /* adjust if necessary - all reasons */ 2111 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2112 CPUFREQ_ADJUST, new_policy); 2113 2114 /* 2115 * verify the cpu speed can be set within this limit, which might be 2116 * different to the first one 2117 */ 2118 ret = cpufreq_driver->verify(new_policy); 2119 if (ret) 2120 return ret; 2121 2122 /* notification of the new policy */ 2123 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2124 CPUFREQ_NOTIFY, new_policy); 2125 2126 policy->min = new_policy->min; 2127 policy->max = new_policy->max; 2128 2129 pr_debug("new min and max freqs are %u - %u kHz\n", 2130 policy->min, policy->max); 2131 2132 if (cpufreq_driver->setpolicy) { 2133 policy->policy = new_policy->policy; 2134 pr_debug("setting range\n"); 2135 return cpufreq_driver->setpolicy(new_policy); 2136 } 2137 2138 if (new_policy->governor == policy->governor) 2139 goto out; 2140 2141 pr_debug("governor switch\n"); 2142 2143 /* save old, working values */ 2144 old_gov = policy->governor; 2145 /* end old governor */ 2146 if (old_gov) { 2147 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2148 if (ret) { 2149 /* This can happen due to race with other operations */ 2150 pr_debug("%s: Failed to Stop Governor: %s (%d)\n", 2151 __func__, old_gov->name, ret); 2152 return ret; 2153 } 2154 2155 up_write(&policy->rwsem); 2156 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2157 down_write(&policy->rwsem); 2158 2159 if (ret) { 2160 pr_err("%s: Failed to Exit Governor: %s (%d)\n", 2161 __func__, old_gov->name, ret); 2162 return ret; 2163 } 2164 } 2165 2166 /* start new governor */ 2167 policy->governor = new_policy->governor; 2168 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2169 if (!ret) { 2170 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 2171 if (!ret) 2172 goto out; 2173 2174 up_write(&policy->rwsem); 2175 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2176 down_write(&policy->rwsem); 2177 } 2178 2179 /* new governor failed, so re-start old one */ 2180 pr_debug("starting governor %s failed\n", policy->governor->name); 2181 if (old_gov) { 2182 policy->governor = old_gov; 2183 if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) 2184 policy->governor = NULL; 2185 else 2186 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2187 } 2188 2189 return ret; 2190 2191 out: 2192 pr_debug("governor: change or update limits\n"); 2193 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2194 } 2195 2196 /** 2197 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2198 * @cpu: CPU which shall be re-evaluated 2199 * 2200 * Useful for policy notifiers which have different necessities 2201 * at different times. 2202 */ 2203 int cpufreq_update_policy(unsigned int cpu) 2204 { 2205 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2206 struct cpufreq_policy new_policy; 2207 int ret; 2208 2209 if (!policy) 2210 return -ENODEV; 2211 2212 down_write(&policy->rwsem); 2213 2214 pr_debug("updating policy for CPU %u\n", cpu); 2215 memcpy(&new_policy, policy, sizeof(*policy)); 2216 new_policy.min = policy->user_policy.min; 2217 new_policy.max = policy->user_policy.max; 2218 2219 /* 2220 * BIOS might change freq behind our back 2221 * -> ask driver for current freq and notify governors about a change 2222 */ 2223 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2224 new_policy.cur = cpufreq_driver->get(cpu); 2225 if (WARN_ON(!new_policy.cur)) { 2226 ret = -EIO; 2227 goto unlock; 2228 } 2229 2230 if (!policy->cur) { 2231 pr_debug("Driver did not initialize current freq\n"); 2232 policy->cur = new_policy.cur; 2233 } else { 2234 if (policy->cur != new_policy.cur && has_target()) 2235 cpufreq_out_of_sync(policy, new_policy.cur); 2236 } 2237 } 2238 2239 ret = cpufreq_set_policy(policy, &new_policy); 2240 2241 unlock: 2242 up_write(&policy->rwsem); 2243 2244 cpufreq_cpu_put(policy); 2245 return ret; 2246 } 2247 EXPORT_SYMBOL(cpufreq_update_policy); 2248 2249 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2250 unsigned long action, void *hcpu) 2251 { 2252 unsigned int cpu = (unsigned long)hcpu; 2253 2254 switch (action & ~CPU_TASKS_FROZEN) { 2255 case CPU_ONLINE: 2256 cpufreq_online(cpu); 2257 break; 2258 2259 case CPU_DOWN_PREPARE: 2260 cpufreq_offline_prepare(cpu); 2261 break; 2262 2263 case CPU_POST_DEAD: 2264 cpufreq_offline_finish(cpu); 2265 break; 2266 2267 case CPU_DOWN_FAILED: 2268 cpufreq_online(cpu); 2269 break; 2270 } 2271 return NOTIFY_OK; 2272 } 2273 2274 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2275 .notifier_call = cpufreq_cpu_callback, 2276 }; 2277 2278 /********************************************************************* 2279 * BOOST * 2280 *********************************************************************/ 2281 static int cpufreq_boost_set_sw(int state) 2282 { 2283 struct cpufreq_frequency_table *freq_table; 2284 struct cpufreq_policy *policy; 2285 int ret = -EINVAL; 2286 2287 for_each_active_policy(policy) { 2288 freq_table = cpufreq_frequency_get_table(policy->cpu); 2289 if (freq_table) { 2290 ret = cpufreq_frequency_table_cpuinfo(policy, 2291 freq_table); 2292 if (ret) { 2293 pr_err("%s: Policy frequency update failed\n", 2294 __func__); 2295 break; 2296 } 2297 policy->user_policy.max = policy->max; 2298 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2299 } 2300 } 2301 2302 return ret; 2303 } 2304 2305 int cpufreq_boost_trigger_state(int state) 2306 { 2307 unsigned long flags; 2308 int ret = 0; 2309 2310 if (cpufreq_driver->boost_enabled == state) 2311 return 0; 2312 2313 write_lock_irqsave(&cpufreq_driver_lock, flags); 2314 cpufreq_driver->boost_enabled = state; 2315 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2316 2317 ret = cpufreq_driver->set_boost(state); 2318 if (ret) { 2319 write_lock_irqsave(&cpufreq_driver_lock, flags); 2320 cpufreq_driver->boost_enabled = !state; 2321 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2322 2323 pr_err("%s: Cannot %s BOOST\n", 2324 __func__, state ? "enable" : "disable"); 2325 } 2326 2327 return ret; 2328 } 2329 2330 int cpufreq_boost_supported(void) 2331 { 2332 if (likely(cpufreq_driver)) 2333 return cpufreq_driver->boost_supported; 2334 2335 return 0; 2336 } 2337 EXPORT_SYMBOL_GPL(cpufreq_boost_supported); 2338 2339 static int create_boost_sysfs_file(void) 2340 { 2341 int ret; 2342 2343 if (!cpufreq_boost_supported()) 2344 return 0; 2345 2346 /* 2347 * Check if driver provides function to enable boost - 2348 * if not, use cpufreq_boost_set_sw as default 2349 */ 2350 if (!cpufreq_driver->set_boost) 2351 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2352 2353 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2354 if (ret) 2355 pr_err("%s: cannot register global BOOST sysfs file\n", 2356 __func__); 2357 2358 return ret; 2359 } 2360 2361 static void remove_boost_sysfs_file(void) 2362 { 2363 if (cpufreq_boost_supported()) 2364 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2365 } 2366 2367 int cpufreq_enable_boost_support(void) 2368 { 2369 if (!cpufreq_driver) 2370 return -EINVAL; 2371 2372 if (cpufreq_boost_supported()) 2373 return 0; 2374 2375 cpufreq_driver->boost_supported = true; 2376 2377 /* This will get removed on driver unregister */ 2378 return create_boost_sysfs_file(); 2379 } 2380 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2381 2382 int cpufreq_boost_enabled(void) 2383 { 2384 return cpufreq_driver->boost_enabled; 2385 } 2386 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2387 2388 /********************************************************************* 2389 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2390 *********************************************************************/ 2391 2392 /** 2393 * cpufreq_register_driver - register a CPU Frequency driver 2394 * @driver_data: A struct cpufreq_driver containing the values# 2395 * submitted by the CPU Frequency driver. 2396 * 2397 * Registers a CPU Frequency driver to this core code. This code 2398 * returns zero on success, -EBUSY when another driver got here first 2399 * (and isn't unregistered in the meantime). 2400 * 2401 */ 2402 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2403 { 2404 unsigned long flags; 2405 int ret; 2406 2407 if (cpufreq_disabled()) 2408 return -ENODEV; 2409 2410 if (!driver_data || !driver_data->verify || !driver_data->init || 2411 !(driver_data->setpolicy || driver_data->target_index || 2412 driver_data->target) || 2413 (driver_data->setpolicy && (driver_data->target_index || 2414 driver_data->target)) || 2415 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2416 return -EINVAL; 2417 2418 pr_debug("trying to register driver %s\n", driver_data->name); 2419 2420 /* Protect against concurrent CPU online/offline. */ 2421 get_online_cpus(); 2422 2423 write_lock_irqsave(&cpufreq_driver_lock, flags); 2424 if (cpufreq_driver) { 2425 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2426 ret = -EEXIST; 2427 goto out; 2428 } 2429 cpufreq_driver = driver_data; 2430 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2431 2432 if (driver_data->setpolicy) 2433 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2434 2435 ret = create_boost_sysfs_file(); 2436 if (ret) 2437 goto err_null_driver; 2438 2439 ret = subsys_interface_register(&cpufreq_interface); 2440 if (ret) 2441 goto err_boost_unreg; 2442 2443 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2444 list_empty(&cpufreq_policy_list)) { 2445 /* if all ->init() calls failed, unregister */ 2446 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2447 driver_data->name); 2448 goto err_if_unreg; 2449 } 2450 2451 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2452 pr_debug("driver %s up and running\n", driver_data->name); 2453 2454 out: 2455 put_online_cpus(); 2456 return ret; 2457 2458 err_if_unreg: 2459 subsys_interface_unregister(&cpufreq_interface); 2460 err_boost_unreg: 2461 remove_boost_sysfs_file(); 2462 err_null_driver: 2463 write_lock_irqsave(&cpufreq_driver_lock, flags); 2464 cpufreq_driver = NULL; 2465 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2466 goto out; 2467 } 2468 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2469 2470 /** 2471 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2472 * 2473 * Unregister the current CPUFreq driver. Only call this if you have 2474 * the right to do so, i.e. if you have succeeded in initialising before! 2475 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2476 * currently not initialised. 2477 */ 2478 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2479 { 2480 unsigned long flags; 2481 2482 if (!cpufreq_driver || (driver != cpufreq_driver)) 2483 return -EINVAL; 2484 2485 pr_debug("unregistering driver %s\n", driver->name); 2486 2487 /* Protect against concurrent cpu hotplug */ 2488 get_online_cpus(); 2489 subsys_interface_unregister(&cpufreq_interface); 2490 remove_boost_sysfs_file(); 2491 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2492 2493 write_lock_irqsave(&cpufreq_driver_lock, flags); 2494 2495 cpufreq_driver = NULL; 2496 2497 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2498 put_online_cpus(); 2499 2500 return 0; 2501 } 2502 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2503 2504 /* 2505 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2506 * or mutexes when secondary CPUs are halted. 2507 */ 2508 static struct syscore_ops cpufreq_syscore_ops = { 2509 .shutdown = cpufreq_suspend, 2510 }; 2511 2512 struct kobject *cpufreq_global_kobject; 2513 EXPORT_SYMBOL(cpufreq_global_kobject); 2514 2515 static int __init cpufreq_core_init(void) 2516 { 2517 if (cpufreq_disabled()) 2518 return -ENODEV; 2519 2520 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2521 BUG_ON(!cpufreq_global_kobject); 2522 2523 register_syscore_ops(&cpufreq_syscore_ops); 2524 2525 return 0; 2526 } 2527 core_initcall(cpufreq_core_init); 2528