1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 bool has_target_index(void) 77 { 78 return !!cpufreq_driver->target_index; 79 } 80 81 /* internal prototypes */ 82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 83 static int cpufreq_init_governor(struct cpufreq_policy *policy); 84 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 85 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 86 static int cpufreq_set_policy(struct cpufreq_policy *policy, 87 struct cpufreq_governor *new_gov, 88 unsigned int new_pol); 89 static bool cpufreq_boost_supported(void); 90 91 /* 92 * Two notifier lists: the "policy" list is involved in the 93 * validation process for a new CPU frequency policy; the 94 * "transition" list for kernel code that needs to handle 95 * changes to devices when the CPU clock speed changes. 96 * The mutex locks both lists. 97 */ 98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 100 101 static int off __read_mostly; 102 static int cpufreq_disabled(void) 103 { 104 return off; 105 } 106 void disable_cpufreq(void) 107 { 108 off = 1; 109 } 110 static DEFINE_MUTEX(cpufreq_governor_mutex); 111 112 bool have_governor_per_policy(void) 113 { 114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 115 } 116 EXPORT_SYMBOL_GPL(have_governor_per_policy); 117 118 static struct kobject *cpufreq_global_kobject; 119 120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 121 { 122 if (have_governor_per_policy()) 123 return &policy->kobj; 124 else 125 return cpufreq_global_kobject; 126 } 127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 128 129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 130 { 131 struct kernel_cpustat kcpustat; 132 u64 cur_wall_time; 133 u64 idle_time; 134 u64 busy_time; 135 136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 137 138 kcpustat_cpu_fetch(&kcpustat, cpu); 139 140 busy_time = kcpustat.cpustat[CPUTIME_USER]; 141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 142 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 144 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 145 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 146 147 idle_time = cur_wall_time - busy_time; 148 if (wall) 149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 150 151 return div_u64(idle_time, NSEC_PER_USEC); 152 } 153 154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 155 { 156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 157 158 if (idle_time == -1ULL) 159 return get_cpu_idle_time_jiffy(cpu, wall); 160 else if (!io_busy) 161 idle_time += get_cpu_iowait_time_us(cpu, wall); 162 163 return idle_time; 164 } 165 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 166 167 /* 168 * This is a generic cpufreq init() routine which can be used by cpufreq 169 * drivers of SMP systems. It will do following: 170 * - validate & show freq table passed 171 * - set policies transition latency 172 * - policy->cpus with all possible CPUs 173 */ 174 void cpufreq_generic_init(struct cpufreq_policy *policy, 175 struct cpufreq_frequency_table *table, 176 unsigned int transition_latency) 177 { 178 policy->freq_table = table; 179 policy->cpuinfo.transition_latency = transition_latency; 180 181 /* 182 * The driver only supports the SMP configuration where all processors 183 * share the clock and voltage and clock. 184 */ 185 cpumask_setall(policy->cpus); 186 } 187 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 188 189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 190 { 191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 192 193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 194 } 195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 196 197 unsigned int cpufreq_generic_get(unsigned int cpu) 198 { 199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 200 201 if (!policy || IS_ERR(policy->clk)) { 202 pr_err("%s: No %s associated to cpu: %d\n", 203 __func__, policy ? "clk" : "policy", cpu); 204 return 0; 205 } 206 207 return clk_get_rate(policy->clk) / 1000; 208 } 209 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 210 211 /** 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 213 * @cpu: CPU to find the policy for. 214 * 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 216 * the kobject reference counter of that policy. Return a valid policy on 217 * success or NULL on failure. 218 * 219 * The policy returned by this function has to be released with the help of 220 * cpufreq_cpu_put() to balance its kobject reference counter properly. 221 */ 222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 223 { 224 struct cpufreq_policy *policy = NULL; 225 unsigned long flags; 226 227 if (WARN_ON(cpu >= nr_cpu_ids)) 228 return NULL; 229 230 /* get the cpufreq driver */ 231 read_lock_irqsave(&cpufreq_driver_lock, flags); 232 233 if (cpufreq_driver) { 234 /* get the CPU */ 235 policy = cpufreq_cpu_get_raw(cpu); 236 if (policy) 237 kobject_get(&policy->kobj); 238 } 239 240 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 241 242 return policy; 243 } 244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 245 246 /** 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 248 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 249 */ 250 void cpufreq_cpu_put(struct cpufreq_policy *policy) 251 { 252 kobject_put(&policy->kobj); 253 } 254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 255 256 /** 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 259 */ 260 void cpufreq_cpu_release(struct cpufreq_policy *policy) 261 { 262 if (WARN_ON(!policy)) 263 return; 264 265 lockdep_assert_held(&policy->rwsem); 266 267 up_write(&policy->rwsem); 268 269 cpufreq_cpu_put(policy); 270 } 271 272 /** 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 274 * @cpu: CPU to find the policy for. 275 * 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 277 * if the policy returned by it is not NULL, acquire its rwsem for writing. 278 * Return the policy if it is active or release it and return NULL otherwise. 279 * 280 * The policy returned by this function has to be released with the help of 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 282 * counter properly. 283 */ 284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 285 { 286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 287 288 if (!policy) 289 return NULL; 290 291 down_write(&policy->rwsem); 292 293 if (policy_is_inactive(policy)) { 294 cpufreq_cpu_release(policy); 295 return NULL; 296 } 297 298 return policy; 299 } 300 301 /********************************************************************* 302 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 303 *********************************************************************/ 304 305 /** 306 * adjust_jiffies - Adjust the system "loops_per_jiffy". 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 308 * @ci: Frequency change information. 309 * 310 * This function alters the system "loops_per_jiffy" for the clock 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP 312 * systems as each CPU might be scaled differently. So, use the arch 313 * per-CPU loops_per_jiffy value wherever possible. 314 */ 315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 316 { 317 #ifndef CONFIG_SMP 318 static unsigned long l_p_j_ref; 319 static unsigned int l_p_j_ref_freq; 320 321 if (ci->flags & CPUFREQ_CONST_LOOPS) 322 return; 323 324 if (!l_p_j_ref_freq) { 325 l_p_j_ref = loops_per_jiffy; 326 l_p_j_ref_freq = ci->old; 327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 328 l_p_j_ref, l_p_j_ref_freq); 329 } 330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 332 ci->new); 333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 334 loops_per_jiffy, ci->new); 335 } 336 #endif 337 } 338 339 /** 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 341 * @policy: cpufreq policy to enable fast frequency switching for. 342 * @freqs: contain details of the frequency update. 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 344 * 345 * This function calls the transition notifiers and adjust_jiffies(). 346 * 347 * It is called twice on all CPU frequency changes that have external effects. 348 */ 349 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 350 struct cpufreq_freqs *freqs, 351 unsigned int state) 352 { 353 int cpu; 354 355 BUG_ON(irqs_disabled()); 356 357 if (cpufreq_disabled()) 358 return; 359 360 freqs->policy = policy; 361 freqs->flags = cpufreq_driver->flags; 362 pr_debug("notification %u of frequency transition to %u kHz\n", 363 state, freqs->new); 364 365 switch (state) { 366 case CPUFREQ_PRECHANGE: 367 /* 368 * Detect if the driver reported a value as "old frequency" 369 * which is not equal to what the cpufreq core thinks is 370 * "old frequency". 371 */ 372 if (policy->cur && policy->cur != freqs->old) { 373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 374 freqs->old, policy->cur); 375 freqs->old = policy->cur; 376 } 377 378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 379 CPUFREQ_PRECHANGE, freqs); 380 381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 382 break; 383 384 case CPUFREQ_POSTCHANGE: 385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 387 cpumask_pr_args(policy->cpus)); 388 389 for_each_cpu(cpu, policy->cpus) 390 trace_cpu_frequency(freqs->new, cpu); 391 392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 393 CPUFREQ_POSTCHANGE, freqs); 394 395 cpufreq_stats_record_transition(policy, freqs->new); 396 policy->cur = freqs->new; 397 } 398 } 399 400 /* Do post notifications when there are chances that transition has failed */ 401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 402 struct cpufreq_freqs *freqs, int transition_failed) 403 { 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 if (!transition_failed) 406 return; 407 408 swap(freqs->old, freqs->new); 409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 411 } 412 413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 414 struct cpufreq_freqs *freqs) 415 { 416 417 /* 418 * Catch double invocations of _begin() which lead to self-deadlock. 419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 420 * doesn't invoke _begin() on their behalf, and hence the chances of 421 * double invocations are very low. Moreover, there are scenarios 422 * where these checks can emit false-positive warnings in these 423 * drivers; so we avoid that by skipping them altogether. 424 */ 425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 426 && current == policy->transition_task); 427 428 wait: 429 wait_event(policy->transition_wait, !policy->transition_ongoing); 430 431 spin_lock(&policy->transition_lock); 432 433 if (unlikely(policy->transition_ongoing)) { 434 spin_unlock(&policy->transition_lock); 435 goto wait; 436 } 437 438 policy->transition_ongoing = true; 439 policy->transition_task = current; 440 441 spin_unlock(&policy->transition_lock); 442 443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 444 } 445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 446 447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 448 struct cpufreq_freqs *freqs, int transition_failed) 449 { 450 if (WARN_ON(!policy->transition_ongoing)) 451 return; 452 453 cpufreq_notify_post_transition(policy, freqs, transition_failed); 454 455 arch_set_freq_scale(policy->related_cpus, 456 policy->cur, 457 policy->cpuinfo.max_freq); 458 459 spin_lock(&policy->transition_lock); 460 policy->transition_ongoing = false; 461 policy->transition_task = NULL; 462 spin_unlock(&policy->transition_lock); 463 464 wake_up(&policy->transition_wait); 465 } 466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 467 468 /* 469 * Fast frequency switching status count. Positive means "enabled", negative 470 * means "disabled" and 0 means "not decided yet". 471 */ 472 static int cpufreq_fast_switch_count; 473 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 474 475 static void cpufreq_list_transition_notifiers(void) 476 { 477 struct notifier_block *nb; 478 479 pr_info("Registered transition notifiers:\n"); 480 481 mutex_lock(&cpufreq_transition_notifier_list.mutex); 482 483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 484 pr_info("%pS\n", nb->notifier_call); 485 486 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 487 } 488 489 /** 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 491 * @policy: cpufreq policy to enable fast frequency switching for. 492 * 493 * Try to enable fast frequency switching for @policy. 494 * 495 * The attempt will fail if there is at least one transition notifier registered 496 * at this point, as fast frequency switching is quite fundamentally at odds 497 * with transition notifiers. Thus if successful, it will make registration of 498 * transition notifiers fail going forward. 499 */ 500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 501 { 502 lockdep_assert_held(&policy->rwsem); 503 504 if (!policy->fast_switch_possible) 505 return; 506 507 mutex_lock(&cpufreq_fast_switch_lock); 508 if (cpufreq_fast_switch_count >= 0) { 509 cpufreq_fast_switch_count++; 510 policy->fast_switch_enabled = true; 511 } else { 512 pr_warn("CPU%u: Fast frequency switching not enabled\n", 513 policy->cpu); 514 cpufreq_list_transition_notifiers(); 515 } 516 mutex_unlock(&cpufreq_fast_switch_lock); 517 } 518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 519 520 /** 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 522 * @policy: cpufreq policy to disable fast frequency switching for. 523 */ 524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 525 { 526 mutex_lock(&cpufreq_fast_switch_lock); 527 if (policy->fast_switch_enabled) { 528 policy->fast_switch_enabled = false; 529 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 530 cpufreq_fast_switch_count--; 531 } 532 mutex_unlock(&cpufreq_fast_switch_lock); 533 } 534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 535 536 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 537 unsigned int target_freq, unsigned int relation) 538 { 539 unsigned int idx; 540 541 target_freq = clamp_val(target_freq, policy->min, policy->max); 542 543 if (!policy->freq_table) 544 return target_freq; 545 546 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 547 policy->cached_resolved_idx = idx; 548 policy->cached_target_freq = target_freq; 549 return policy->freq_table[idx].frequency; 550 } 551 552 /** 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 554 * one. 555 * @policy: associated policy to interrogate 556 * @target_freq: target frequency to resolve. 557 * 558 * The target to driver frequency mapping is cached in the policy. 559 * 560 * Return: Lowest driver-supported frequency greater than or equal to the 561 * given target_freq, subject to policy (min/max) and driver limitations. 562 */ 563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 564 unsigned int target_freq) 565 { 566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 567 } 568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 569 570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 571 { 572 unsigned int latency; 573 574 if (policy->transition_delay_us) 575 return policy->transition_delay_us; 576 577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 578 if (latency) { 579 /* 580 * For platforms that can change the frequency very fast (< 10 581 * us), the above formula gives a decent transition delay. But 582 * for platforms where transition_latency is in milliseconds, it 583 * ends up giving unrealistic values. 584 * 585 * Cap the default transition delay to 10 ms, which seems to be 586 * a reasonable amount of time after which we should reevaluate 587 * the frequency. 588 */ 589 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 590 } 591 592 return LATENCY_MULTIPLIER; 593 } 594 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 595 596 /********************************************************************* 597 * SYSFS INTERFACE * 598 *********************************************************************/ 599 static ssize_t show_boost(struct kobject *kobj, 600 struct kobj_attribute *attr, char *buf) 601 { 602 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 603 } 604 605 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 606 const char *buf, size_t count) 607 { 608 int ret, enable; 609 610 ret = sscanf(buf, "%d", &enable); 611 if (ret != 1 || enable < 0 || enable > 1) 612 return -EINVAL; 613 614 if (cpufreq_boost_trigger_state(enable)) { 615 pr_err("%s: Cannot %s BOOST!\n", 616 __func__, enable ? "enable" : "disable"); 617 return -EINVAL; 618 } 619 620 pr_debug("%s: cpufreq BOOST %s\n", 621 __func__, enable ? "enabled" : "disabled"); 622 623 return count; 624 } 625 define_one_global_rw(boost); 626 627 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf) 628 { 629 return sysfs_emit(buf, "%d\n", policy->boost_enabled); 630 } 631 632 static ssize_t store_local_boost(struct cpufreq_policy *policy, 633 const char *buf, size_t count) 634 { 635 int ret, enable; 636 637 ret = kstrtoint(buf, 10, &enable); 638 if (ret || enable < 0 || enable > 1) 639 return -EINVAL; 640 641 if (!cpufreq_driver->boost_enabled) 642 return -EINVAL; 643 644 if (policy->boost_enabled == enable) 645 return count; 646 647 cpus_read_lock(); 648 ret = cpufreq_driver->set_boost(policy, enable); 649 cpus_read_unlock(); 650 651 if (ret) 652 return ret; 653 654 policy->boost_enabled = enable; 655 656 return count; 657 } 658 659 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost); 660 661 static struct cpufreq_governor *find_governor(const char *str_governor) 662 { 663 struct cpufreq_governor *t; 664 665 for_each_governor(t) 666 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 667 return t; 668 669 return NULL; 670 } 671 672 static struct cpufreq_governor *get_governor(const char *str_governor) 673 { 674 struct cpufreq_governor *t; 675 676 mutex_lock(&cpufreq_governor_mutex); 677 t = find_governor(str_governor); 678 if (!t) 679 goto unlock; 680 681 if (!try_module_get(t->owner)) 682 t = NULL; 683 684 unlock: 685 mutex_unlock(&cpufreq_governor_mutex); 686 687 return t; 688 } 689 690 static unsigned int cpufreq_parse_policy(char *str_governor) 691 { 692 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 693 return CPUFREQ_POLICY_PERFORMANCE; 694 695 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 696 return CPUFREQ_POLICY_POWERSAVE; 697 698 return CPUFREQ_POLICY_UNKNOWN; 699 } 700 701 /** 702 * cpufreq_parse_governor - parse a governor string only for has_target() 703 * @str_governor: Governor name. 704 */ 705 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 706 { 707 struct cpufreq_governor *t; 708 709 t = get_governor(str_governor); 710 if (t) 711 return t; 712 713 if (request_module("cpufreq_%s", str_governor)) 714 return NULL; 715 716 return get_governor(str_governor); 717 } 718 719 /* 720 * cpufreq_per_cpu_attr_read() / show_##file_name() - 721 * print out cpufreq information 722 * 723 * Write out information from cpufreq_driver->policy[cpu]; object must be 724 * "unsigned int". 725 */ 726 727 #define show_one(file_name, object) \ 728 static ssize_t show_##file_name \ 729 (struct cpufreq_policy *policy, char *buf) \ 730 { \ 731 return sprintf(buf, "%u\n", policy->object); \ 732 } 733 734 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 735 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 736 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 737 show_one(scaling_min_freq, min); 738 show_one(scaling_max_freq, max); 739 740 __weak unsigned int arch_freq_get_on_cpu(int cpu) 741 { 742 return 0; 743 } 744 745 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 746 { 747 ssize_t ret; 748 unsigned int freq; 749 750 freq = arch_freq_get_on_cpu(policy->cpu); 751 if (freq) 752 ret = sprintf(buf, "%u\n", freq); 753 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 754 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 755 else 756 ret = sprintf(buf, "%u\n", policy->cur); 757 return ret; 758 } 759 760 /* 761 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 762 */ 763 #define store_one(file_name, object) \ 764 static ssize_t store_##file_name \ 765 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 766 { \ 767 unsigned long val; \ 768 int ret; \ 769 \ 770 ret = kstrtoul(buf, 0, &val); \ 771 if (ret) \ 772 return ret; \ 773 \ 774 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 775 return ret >= 0 ? count : ret; \ 776 } 777 778 store_one(scaling_min_freq, min); 779 store_one(scaling_max_freq, max); 780 781 /* 782 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 783 */ 784 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 785 char *buf) 786 { 787 unsigned int cur_freq = __cpufreq_get(policy); 788 789 if (cur_freq) 790 return sprintf(buf, "%u\n", cur_freq); 791 792 return sprintf(buf, "<unknown>\n"); 793 } 794 795 /* 796 * show_scaling_governor - show the current policy for the specified CPU 797 */ 798 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 799 { 800 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 801 return sprintf(buf, "powersave\n"); 802 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 803 return sprintf(buf, "performance\n"); 804 else if (policy->governor) 805 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 806 policy->governor->name); 807 return -EINVAL; 808 } 809 810 /* 811 * store_scaling_governor - store policy for the specified CPU 812 */ 813 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 814 const char *buf, size_t count) 815 { 816 char str_governor[16]; 817 int ret; 818 819 ret = sscanf(buf, "%15s", str_governor); 820 if (ret != 1) 821 return -EINVAL; 822 823 if (cpufreq_driver->setpolicy) { 824 unsigned int new_pol; 825 826 new_pol = cpufreq_parse_policy(str_governor); 827 if (!new_pol) 828 return -EINVAL; 829 830 ret = cpufreq_set_policy(policy, NULL, new_pol); 831 } else { 832 struct cpufreq_governor *new_gov; 833 834 new_gov = cpufreq_parse_governor(str_governor); 835 if (!new_gov) 836 return -EINVAL; 837 838 ret = cpufreq_set_policy(policy, new_gov, 839 CPUFREQ_POLICY_UNKNOWN); 840 841 module_put(new_gov->owner); 842 } 843 844 return ret ? ret : count; 845 } 846 847 /* 848 * show_scaling_driver - show the cpufreq driver currently loaded 849 */ 850 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 851 { 852 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 853 } 854 855 /* 856 * show_scaling_available_governors - show the available CPUfreq governors 857 */ 858 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 859 char *buf) 860 { 861 ssize_t i = 0; 862 struct cpufreq_governor *t; 863 864 if (!has_target()) { 865 i += sprintf(buf, "performance powersave"); 866 goto out; 867 } 868 869 mutex_lock(&cpufreq_governor_mutex); 870 for_each_governor(t) { 871 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 872 - (CPUFREQ_NAME_LEN + 2))) 873 break; 874 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 875 } 876 mutex_unlock(&cpufreq_governor_mutex); 877 out: 878 i += sprintf(&buf[i], "\n"); 879 return i; 880 } 881 882 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 883 { 884 ssize_t i = 0; 885 unsigned int cpu; 886 887 for_each_cpu(cpu, mask) { 888 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu); 889 if (i >= (PAGE_SIZE - 5)) 890 break; 891 } 892 893 /* Remove the extra space at the end */ 894 i--; 895 896 i += sprintf(&buf[i], "\n"); 897 return i; 898 } 899 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 900 901 /* 902 * show_related_cpus - show the CPUs affected by each transition even if 903 * hw coordination is in use 904 */ 905 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 906 { 907 return cpufreq_show_cpus(policy->related_cpus, buf); 908 } 909 910 /* 911 * show_affected_cpus - show the CPUs affected by each transition 912 */ 913 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 914 { 915 return cpufreq_show_cpus(policy->cpus, buf); 916 } 917 918 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 919 const char *buf, size_t count) 920 { 921 unsigned int freq = 0; 922 unsigned int ret; 923 924 if (!policy->governor || !policy->governor->store_setspeed) 925 return -EINVAL; 926 927 ret = sscanf(buf, "%u", &freq); 928 if (ret != 1) 929 return -EINVAL; 930 931 policy->governor->store_setspeed(policy, freq); 932 933 return count; 934 } 935 936 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 937 { 938 if (!policy->governor || !policy->governor->show_setspeed) 939 return sprintf(buf, "<unsupported>\n"); 940 941 return policy->governor->show_setspeed(policy, buf); 942 } 943 944 /* 945 * show_bios_limit - show the current cpufreq HW/BIOS limitation 946 */ 947 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 948 { 949 unsigned int limit; 950 int ret; 951 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 952 if (!ret) 953 return sprintf(buf, "%u\n", limit); 954 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 955 } 956 957 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 958 cpufreq_freq_attr_ro(cpuinfo_min_freq); 959 cpufreq_freq_attr_ro(cpuinfo_max_freq); 960 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 961 cpufreq_freq_attr_ro(scaling_available_governors); 962 cpufreq_freq_attr_ro(scaling_driver); 963 cpufreq_freq_attr_ro(scaling_cur_freq); 964 cpufreq_freq_attr_ro(bios_limit); 965 cpufreq_freq_attr_ro(related_cpus); 966 cpufreq_freq_attr_ro(affected_cpus); 967 cpufreq_freq_attr_rw(scaling_min_freq); 968 cpufreq_freq_attr_rw(scaling_max_freq); 969 cpufreq_freq_attr_rw(scaling_governor); 970 cpufreq_freq_attr_rw(scaling_setspeed); 971 972 static struct attribute *cpufreq_attrs[] = { 973 &cpuinfo_min_freq.attr, 974 &cpuinfo_max_freq.attr, 975 &cpuinfo_transition_latency.attr, 976 &scaling_min_freq.attr, 977 &scaling_max_freq.attr, 978 &affected_cpus.attr, 979 &related_cpus.attr, 980 &scaling_governor.attr, 981 &scaling_driver.attr, 982 &scaling_available_governors.attr, 983 &scaling_setspeed.attr, 984 NULL 985 }; 986 ATTRIBUTE_GROUPS(cpufreq); 987 988 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 989 #define to_attr(a) container_of(a, struct freq_attr, attr) 990 991 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 992 { 993 struct cpufreq_policy *policy = to_policy(kobj); 994 struct freq_attr *fattr = to_attr(attr); 995 ssize_t ret = -EBUSY; 996 997 if (!fattr->show) 998 return -EIO; 999 1000 down_read(&policy->rwsem); 1001 if (likely(!policy_is_inactive(policy))) 1002 ret = fattr->show(policy, buf); 1003 up_read(&policy->rwsem); 1004 1005 return ret; 1006 } 1007 1008 static ssize_t store(struct kobject *kobj, struct attribute *attr, 1009 const char *buf, size_t count) 1010 { 1011 struct cpufreq_policy *policy = to_policy(kobj); 1012 struct freq_attr *fattr = to_attr(attr); 1013 ssize_t ret = -EBUSY; 1014 1015 if (!fattr->store) 1016 return -EIO; 1017 1018 down_write(&policy->rwsem); 1019 if (likely(!policy_is_inactive(policy))) 1020 ret = fattr->store(policy, buf, count); 1021 up_write(&policy->rwsem); 1022 1023 return ret; 1024 } 1025 1026 static void cpufreq_sysfs_release(struct kobject *kobj) 1027 { 1028 struct cpufreq_policy *policy = to_policy(kobj); 1029 pr_debug("last reference is dropped\n"); 1030 complete(&policy->kobj_unregister); 1031 } 1032 1033 static const struct sysfs_ops sysfs_ops = { 1034 .show = show, 1035 .store = store, 1036 }; 1037 1038 static const struct kobj_type ktype_cpufreq = { 1039 .sysfs_ops = &sysfs_ops, 1040 .default_groups = cpufreq_groups, 1041 .release = cpufreq_sysfs_release, 1042 }; 1043 1044 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1045 struct device *dev) 1046 { 1047 if (unlikely(!dev)) 1048 return; 1049 1050 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1051 return; 1052 1053 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1054 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1055 dev_err(dev, "cpufreq symlink creation failed\n"); 1056 } 1057 1058 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1059 struct device *dev) 1060 { 1061 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1062 sysfs_remove_link(&dev->kobj, "cpufreq"); 1063 cpumask_clear_cpu(cpu, policy->real_cpus); 1064 } 1065 1066 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1067 { 1068 struct freq_attr **drv_attr; 1069 int ret = 0; 1070 1071 /* set up files for this cpu device */ 1072 drv_attr = cpufreq_driver->attr; 1073 while (drv_attr && *drv_attr) { 1074 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1075 if (ret) 1076 return ret; 1077 drv_attr++; 1078 } 1079 if (cpufreq_driver->get) { 1080 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1081 if (ret) 1082 return ret; 1083 } 1084 1085 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1086 if (ret) 1087 return ret; 1088 1089 if (cpufreq_driver->bios_limit) { 1090 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1091 if (ret) 1092 return ret; 1093 } 1094 1095 if (cpufreq_boost_supported()) { 1096 ret = sysfs_create_file(&policy->kobj, &local_boost.attr); 1097 if (ret) 1098 return ret; 1099 } 1100 1101 return 0; 1102 } 1103 1104 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1105 { 1106 struct cpufreq_governor *gov = NULL; 1107 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1108 int ret; 1109 1110 if (has_target()) { 1111 /* Update policy governor to the one used before hotplug. */ 1112 gov = get_governor(policy->last_governor); 1113 if (gov) { 1114 pr_debug("Restoring governor %s for cpu %d\n", 1115 gov->name, policy->cpu); 1116 } else { 1117 gov = get_governor(default_governor); 1118 } 1119 1120 if (!gov) { 1121 gov = cpufreq_default_governor(); 1122 __module_get(gov->owner); 1123 } 1124 1125 } else { 1126 1127 /* Use the default policy if there is no last_policy. */ 1128 if (policy->last_policy) { 1129 pol = policy->last_policy; 1130 } else { 1131 pol = cpufreq_parse_policy(default_governor); 1132 /* 1133 * In case the default governor is neither "performance" 1134 * nor "powersave", fall back to the initial policy 1135 * value set by the driver. 1136 */ 1137 if (pol == CPUFREQ_POLICY_UNKNOWN) 1138 pol = policy->policy; 1139 } 1140 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1141 pol != CPUFREQ_POLICY_POWERSAVE) 1142 return -ENODATA; 1143 } 1144 1145 ret = cpufreq_set_policy(policy, gov, pol); 1146 if (gov) 1147 module_put(gov->owner); 1148 1149 return ret; 1150 } 1151 1152 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1153 { 1154 int ret = 0; 1155 1156 /* Has this CPU been taken care of already? */ 1157 if (cpumask_test_cpu(cpu, policy->cpus)) 1158 return 0; 1159 1160 down_write(&policy->rwsem); 1161 if (has_target()) 1162 cpufreq_stop_governor(policy); 1163 1164 cpumask_set_cpu(cpu, policy->cpus); 1165 1166 if (has_target()) { 1167 ret = cpufreq_start_governor(policy); 1168 if (ret) 1169 pr_err("%s: Failed to start governor\n", __func__); 1170 } 1171 up_write(&policy->rwsem); 1172 return ret; 1173 } 1174 1175 void refresh_frequency_limits(struct cpufreq_policy *policy) 1176 { 1177 if (!policy_is_inactive(policy)) { 1178 pr_debug("updating policy for CPU %u\n", policy->cpu); 1179 1180 cpufreq_set_policy(policy, policy->governor, policy->policy); 1181 } 1182 } 1183 EXPORT_SYMBOL(refresh_frequency_limits); 1184 1185 static void handle_update(struct work_struct *work) 1186 { 1187 struct cpufreq_policy *policy = 1188 container_of(work, struct cpufreq_policy, update); 1189 1190 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1191 down_write(&policy->rwsem); 1192 refresh_frequency_limits(policy); 1193 up_write(&policy->rwsem); 1194 } 1195 1196 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1197 void *data) 1198 { 1199 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1200 1201 schedule_work(&policy->update); 1202 return 0; 1203 } 1204 1205 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1206 void *data) 1207 { 1208 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1209 1210 schedule_work(&policy->update); 1211 return 0; 1212 } 1213 1214 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1215 { 1216 struct kobject *kobj; 1217 struct completion *cmp; 1218 1219 down_write(&policy->rwsem); 1220 cpufreq_stats_free_table(policy); 1221 kobj = &policy->kobj; 1222 cmp = &policy->kobj_unregister; 1223 up_write(&policy->rwsem); 1224 kobject_put(kobj); 1225 1226 /* 1227 * We need to make sure that the underlying kobj is 1228 * actually not referenced anymore by anybody before we 1229 * proceed with unloading. 1230 */ 1231 pr_debug("waiting for dropping of refcount\n"); 1232 wait_for_completion(cmp); 1233 pr_debug("wait complete\n"); 1234 } 1235 1236 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1237 { 1238 struct cpufreq_policy *policy; 1239 struct device *dev = get_cpu_device(cpu); 1240 int ret; 1241 1242 if (!dev) 1243 return NULL; 1244 1245 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1246 if (!policy) 1247 return NULL; 1248 1249 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1250 goto err_free_policy; 1251 1252 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1253 goto err_free_cpumask; 1254 1255 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1256 goto err_free_rcpumask; 1257 1258 init_completion(&policy->kobj_unregister); 1259 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1260 cpufreq_global_kobject, "policy%u", cpu); 1261 if (ret) { 1262 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1263 /* 1264 * The entire policy object will be freed below, but the extra 1265 * memory allocated for the kobject name needs to be freed by 1266 * releasing the kobject. 1267 */ 1268 kobject_put(&policy->kobj); 1269 goto err_free_real_cpus; 1270 } 1271 1272 freq_constraints_init(&policy->constraints); 1273 1274 policy->nb_min.notifier_call = cpufreq_notifier_min; 1275 policy->nb_max.notifier_call = cpufreq_notifier_max; 1276 1277 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1278 &policy->nb_min); 1279 if (ret) { 1280 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n", 1281 ret, cpu); 1282 goto err_kobj_remove; 1283 } 1284 1285 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1286 &policy->nb_max); 1287 if (ret) { 1288 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n", 1289 ret, cpu); 1290 goto err_min_qos_notifier; 1291 } 1292 1293 INIT_LIST_HEAD(&policy->policy_list); 1294 init_rwsem(&policy->rwsem); 1295 spin_lock_init(&policy->transition_lock); 1296 init_waitqueue_head(&policy->transition_wait); 1297 INIT_WORK(&policy->update, handle_update); 1298 1299 policy->cpu = cpu; 1300 return policy; 1301 1302 err_min_qos_notifier: 1303 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1304 &policy->nb_min); 1305 err_kobj_remove: 1306 cpufreq_policy_put_kobj(policy); 1307 err_free_real_cpus: 1308 free_cpumask_var(policy->real_cpus); 1309 err_free_rcpumask: 1310 free_cpumask_var(policy->related_cpus); 1311 err_free_cpumask: 1312 free_cpumask_var(policy->cpus); 1313 err_free_policy: 1314 kfree(policy); 1315 1316 return NULL; 1317 } 1318 1319 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1320 { 1321 unsigned long flags; 1322 int cpu; 1323 1324 /* 1325 * The callers must ensure the policy is inactive by now, to avoid any 1326 * races with show()/store() callbacks. 1327 */ 1328 if (unlikely(!policy_is_inactive(policy))) 1329 pr_warn("%s: Freeing active policy\n", __func__); 1330 1331 /* Remove policy from list */ 1332 write_lock_irqsave(&cpufreq_driver_lock, flags); 1333 list_del(&policy->policy_list); 1334 1335 for_each_cpu(cpu, policy->related_cpus) 1336 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1337 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1338 1339 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1340 &policy->nb_max); 1341 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1342 &policy->nb_min); 1343 1344 /* Cancel any pending policy->update work before freeing the policy. */ 1345 cancel_work_sync(&policy->update); 1346 1347 if (policy->max_freq_req) { 1348 /* 1349 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1350 * notification, since CPUFREQ_CREATE_POLICY notification was 1351 * sent after adding max_freq_req earlier. 1352 */ 1353 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1354 CPUFREQ_REMOVE_POLICY, policy); 1355 freq_qos_remove_request(policy->max_freq_req); 1356 } 1357 1358 freq_qos_remove_request(policy->min_freq_req); 1359 kfree(policy->min_freq_req); 1360 1361 cpufreq_policy_put_kobj(policy); 1362 free_cpumask_var(policy->real_cpus); 1363 free_cpumask_var(policy->related_cpus); 1364 free_cpumask_var(policy->cpus); 1365 kfree(policy); 1366 } 1367 1368 static int cpufreq_online(unsigned int cpu) 1369 { 1370 struct cpufreq_policy *policy; 1371 bool new_policy; 1372 unsigned long flags; 1373 unsigned int j; 1374 int ret; 1375 1376 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1377 1378 /* Check if this CPU already has a policy to manage it */ 1379 policy = per_cpu(cpufreq_cpu_data, cpu); 1380 if (policy) { 1381 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1382 if (!policy_is_inactive(policy)) 1383 return cpufreq_add_policy_cpu(policy, cpu); 1384 1385 /* This is the only online CPU for the policy. Start over. */ 1386 new_policy = false; 1387 down_write(&policy->rwsem); 1388 policy->cpu = cpu; 1389 policy->governor = NULL; 1390 } else { 1391 new_policy = true; 1392 policy = cpufreq_policy_alloc(cpu); 1393 if (!policy) 1394 return -ENOMEM; 1395 down_write(&policy->rwsem); 1396 } 1397 1398 if (!new_policy && cpufreq_driver->online) { 1399 /* Recover policy->cpus using related_cpus */ 1400 cpumask_copy(policy->cpus, policy->related_cpus); 1401 1402 ret = cpufreq_driver->online(policy); 1403 if (ret) { 1404 pr_debug("%s: %d: initialization failed\n", __func__, 1405 __LINE__); 1406 goto out_exit_policy; 1407 } 1408 } else { 1409 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1410 1411 /* 1412 * Call driver. From then on the cpufreq must be able 1413 * to accept all calls to ->verify and ->setpolicy for this CPU. 1414 */ 1415 ret = cpufreq_driver->init(policy); 1416 if (ret) { 1417 pr_debug("%s: %d: initialization failed\n", __func__, 1418 __LINE__); 1419 goto out_free_policy; 1420 } 1421 1422 /* 1423 * The initialization has succeeded and the policy is online. 1424 * If there is a problem with its frequency table, take it 1425 * offline and drop it. 1426 */ 1427 ret = cpufreq_table_validate_and_sort(policy); 1428 if (ret) 1429 goto out_offline_policy; 1430 1431 /* related_cpus should at least include policy->cpus. */ 1432 cpumask_copy(policy->related_cpus, policy->cpus); 1433 } 1434 1435 /* 1436 * affected cpus must always be the one, which are online. We aren't 1437 * managing offline cpus here. 1438 */ 1439 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1440 1441 if (new_policy) { 1442 for_each_cpu(j, policy->related_cpus) { 1443 per_cpu(cpufreq_cpu_data, j) = policy; 1444 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1445 } 1446 1447 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1448 GFP_KERNEL); 1449 if (!policy->min_freq_req) { 1450 ret = -ENOMEM; 1451 goto out_destroy_policy; 1452 } 1453 1454 ret = freq_qos_add_request(&policy->constraints, 1455 policy->min_freq_req, FREQ_QOS_MIN, 1456 FREQ_QOS_MIN_DEFAULT_VALUE); 1457 if (ret < 0) { 1458 /* 1459 * So we don't call freq_qos_remove_request() for an 1460 * uninitialized request. 1461 */ 1462 kfree(policy->min_freq_req); 1463 policy->min_freq_req = NULL; 1464 goto out_destroy_policy; 1465 } 1466 1467 /* 1468 * This must be initialized right here to avoid calling 1469 * freq_qos_remove_request() on uninitialized request in case 1470 * of errors. 1471 */ 1472 policy->max_freq_req = policy->min_freq_req + 1; 1473 1474 ret = freq_qos_add_request(&policy->constraints, 1475 policy->max_freq_req, FREQ_QOS_MAX, 1476 FREQ_QOS_MAX_DEFAULT_VALUE); 1477 if (ret < 0) { 1478 policy->max_freq_req = NULL; 1479 goto out_destroy_policy; 1480 } 1481 1482 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1483 CPUFREQ_CREATE_POLICY, policy); 1484 } 1485 1486 if (cpufreq_driver->get && has_target()) { 1487 policy->cur = cpufreq_driver->get(policy->cpu); 1488 if (!policy->cur) { 1489 ret = -EIO; 1490 pr_err("%s: ->get() failed\n", __func__); 1491 goto out_destroy_policy; 1492 } 1493 } 1494 1495 /* 1496 * Sometimes boot loaders set CPU frequency to a value outside of 1497 * frequency table present with cpufreq core. In such cases CPU might be 1498 * unstable if it has to run on that frequency for long duration of time 1499 * and so its better to set it to a frequency which is specified in 1500 * freq-table. This also makes cpufreq stats inconsistent as 1501 * cpufreq-stats would fail to register because current frequency of CPU 1502 * isn't found in freq-table. 1503 * 1504 * Because we don't want this change to effect boot process badly, we go 1505 * for the next freq which is >= policy->cur ('cur' must be set by now, 1506 * otherwise we will end up setting freq to lowest of the table as 'cur' 1507 * is initialized to zero). 1508 * 1509 * We are passing target-freq as "policy->cur - 1" otherwise 1510 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1511 * equal to target-freq. 1512 */ 1513 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1514 && has_target()) { 1515 unsigned int old_freq = policy->cur; 1516 1517 /* Are we running at unknown frequency ? */ 1518 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1519 if (ret == -EINVAL) { 1520 ret = __cpufreq_driver_target(policy, old_freq - 1, 1521 CPUFREQ_RELATION_L); 1522 1523 /* 1524 * Reaching here after boot in a few seconds may not 1525 * mean that system will remain stable at "unknown" 1526 * frequency for longer duration. Hence, a BUG_ON(). 1527 */ 1528 BUG_ON(ret); 1529 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1530 __func__, policy->cpu, old_freq, policy->cur); 1531 } 1532 } 1533 1534 if (new_policy) { 1535 ret = cpufreq_add_dev_interface(policy); 1536 if (ret) 1537 goto out_destroy_policy; 1538 1539 cpufreq_stats_create_table(policy); 1540 1541 write_lock_irqsave(&cpufreq_driver_lock, flags); 1542 list_add(&policy->policy_list, &cpufreq_policy_list); 1543 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1544 1545 /* 1546 * Register with the energy model before 1547 * sched_cpufreq_governor_change() is called, which will result 1548 * in rebuilding of the sched domains, which should only be done 1549 * once the energy model is properly initialized for the policy 1550 * first. 1551 * 1552 * Also, this should be called before the policy is registered 1553 * with cooling framework. 1554 */ 1555 if (cpufreq_driver->register_em) 1556 cpufreq_driver->register_em(policy); 1557 } 1558 1559 ret = cpufreq_init_policy(policy); 1560 if (ret) { 1561 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1562 __func__, cpu, ret); 1563 goto out_destroy_policy; 1564 } 1565 1566 up_write(&policy->rwsem); 1567 1568 kobject_uevent(&policy->kobj, KOBJ_ADD); 1569 1570 /* Callback for handling stuff after policy is ready */ 1571 if (cpufreq_driver->ready) 1572 cpufreq_driver->ready(policy); 1573 1574 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1575 policy->cdev = of_cpufreq_cooling_register(policy); 1576 1577 pr_debug("initialization complete\n"); 1578 1579 return 0; 1580 1581 out_destroy_policy: 1582 for_each_cpu(j, policy->real_cpus) 1583 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1584 1585 out_offline_policy: 1586 if (cpufreq_driver->offline) 1587 cpufreq_driver->offline(policy); 1588 1589 out_exit_policy: 1590 if (cpufreq_driver->exit) 1591 cpufreq_driver->exit(policy); 1592 1593 out_free_policy: 1594 cpumask_clear(policy->cpus); 1595 up_write(&policy->rwsem); 1596 1597 cpufreq_policy_free(policy); 1598 return ret; 1599 } 1600 1601 /** 1602 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1603 * @dev: CPU device. 1604 * @sif: Subsystem interface structure pointer (not used) 1605 */ 1606 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1607 { 1608 struct cpufreq_policy *policy; 1609 unsigned cpu = dev->id; 1610 int ret; 1611 1612 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1613 1614 if (cpu_online(cpu)) { 1615 ret = cpufreq_online(cpu); 1616 if (ret) 1617 return ret; 1618 } 1619 1620 /* Create sysfs link on CPU registration */ 1621 policy = per_cpu(cpufreq_cpu_data, cpu); 1622 if (policy) 1623 add_cpu_dev_symlink(policy, cpu, dev); 1624 1625 return 0; 1626 } 1627 1628 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1629 { 1630 int ret; 1631 1632 if (has_target()) 1633 cpufreq_stop_governor(policy); 1634 1635 cpumask_clear_cpu(cpu, policy->cpus); 1636 1637 if (!policy_is_inactive(policy)) { 1638 /* Nominate a new CPU if necessary. */ 1639 if (cpu == policy->cpu) 1640 policy->cpu = cpumask_any(policy->cpus); 1641 1642 /* Start the governor again for the active policy. */ 1643 if (has_target()) { 1644 ret = cpufreq_start_governor(policy); 1645 if (ret) 1646 pr_err("%s: Failed to start governor\n", __func__); 1647 } 1648 1649 return; 1650 } 1651 1652 if (has_target()) 1653 strncpy(policy->last_governor, policy->governor->name, 1654 CPUFREQ_NAME_LEN); 1655 else 1656 policy->last_policy = policy->policy; 1657 1658 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1659 cpufreq_cooling_unregister(policy->cdev); 1660 policy->cdev = NULL; 1661 } 1662 1663 if (has_target()) 1664 cpufreq_exit_governor(policy); 1665 1666 /* 1667 * Perform the ->offline() during light-weight tear-down, as 1668 * that allows fast recovery when the CPU comes back. 1669 */ 1670 if (cpufreq_driver->offline) { 1671 cpufreq_driver->offline(policy); 1672 } else if (cpufreq_driver->exit) { 1673 cpufreq_driver->exit(policy); 1674 policy->freq_table = NULL; 1675 } 1676 } 1677 1678 static int cpufreq_offline(unsigned int cpu) 1679 { 1680 struct cpufreq_policy *policy; 1681 1682 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1683 1684 policy = cpufreq_cpu_get_raw(cpu); 1685 if (!policy) { 1686 pr_debug("%s: No cpu_data found\n", __func__); 1687 return 0; 1688 } 1689 1690 down_write(&policy->rwsem); 1691 1692 __cpufreq_offline(cpu, policy); 1693 1694 up_write(&policy->rwsem); 1695 return 0; 1696 } 1697 1698 /* 1699 * cpufreq_remove_dev - remove a CPU device 1700 * 1701 * Removes the cpufreq interface for a CPU device. 1702 */ 1703 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1704 { 1705 unsigned int cpu = dev->id; 1706 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1707 1708 if (!policy) 1709 return; 1710 1711 down_write(&policy->rwsem); 1712 1713 if (cpu_online(cpu)) 1714 __cpufreq_offline(cpu, policy); 1715 1716 remove_cpu_dev_symlink(policy, cpu, dev); 1717 1718 if (!cpumask_empty(policy->real_cpus)) { 1719 up_write(&policy->rwsem); 1720 return; 1721 } 1722 1723 /* We did light-weight exit earlier, do full tear down now */ 1724 if (cpufreq_driver->offline) 1725 cpufreq_driver->exit(policy); 1726 1727 up_write(&policy->rwsem); 1728 1729 cpufreq_policy_free(policy); 1730 } 1731 1732 /** 1733 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1734 * @policy: Policy managing CPUs. 1735 * @new_freq: New CPU frequency. 1736 * 1737 * Adjust to the current frequency first and clean up later by either calling 1738 * cpufreq_update_policy(), or scheduling handle_update(). 1739 */ 1740 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1741 unsigned int new_freq) 1742 { 1743 struct cpufreq_freqs freqs; 1744 1745 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1746 policy->cur, new_freq); 1747 1748 freqs.old = policy->cur; 1749 freqs.new = new_freq; 1750 1751 cpufreq_freq_transition_begin(policy, &freqs); 1752 cpufreq_freq_transition_end(policy, &freqs, 0); 1753 } 1754 1755 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1756 { 1757 unsigned int new_freq; 1758 1759 new_freq = cpufreq_driver->get(policy->cpu); 1760 if (!new_freq) 1761 return 0; 1762 1763 /* 1764 * If fast frequency switching is used with the given policy, the check 1765 * against policy->cur is pointless, so skip it in that case. 1766 */ 1767 if (policy->fast_switch_enabled || !has_target()) 1768 return new_freq; 1769 1770 if (policy->cur != new_freq) { 1771 /* 1772 * For some platforms, the frequency returned by hardware may be 1773 * slightly different from what is provided in the frequency 1774 * table, for example hardware may return 499 MHz instead of 500 1775 * MHz. In such cases it is better to avoid getting into 1776 * unnecessary frequency updates. 1777 */ 1778 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1779 return policy->cur; 1780 1781 cpufreq_out_of_sync(policy, new_freq); 1782 if (update) 1783 schedule_work(&policy->update); 1784 } 1785 1786 return new_freq; 1787 } 1788 1789 /** 1790 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1791 * @cpu: CPU number 1792 * 1793 * This is the last known freq, without actually getting it from the driver. 1794 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1795 */ 1796 unsigned int cpufreq_quick_get(unsigned int cpu) 1797 { 1798 struct cpufreq_policy *policy; 1799 unsigned int ret_freq = 0; 1800 unsigned long flags; 1801 1802 read_lock_irqsave(&cpufreq_driver_lock, flags); 1803 1804 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1805 ret_freq = cpufreq_driver->get(cpu); 1806 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1807 return ret_freq; 1808 } 1809 1810 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1811 1812 policy = cpufreq_cpu_get(cpu); 1813 if (policy) { 1814 ret_freq = policy->cur; 1815 cpufreq_cpu_put(policy); 1816 } 1817 1818 return ret_freq; 1819 } 1820 EXPORT_SYMBOL(cpufreq_quick_get); 1821 1822 /** 1823 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1824 * @cpu: CPU number 1825 * 1826 * Just return the max possible frequency for a given CPU. 1827 */ 1828 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1829 { 1830 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1831 unsigned int ret_freq = 0; 1832 1833 if (policy) { 1834 ret_freq = policy->max; 1835 cpufreq_cpu_put(policy); 1836 } 1837 1838 return ret_freq; 1839 } 1840 EXPORT_SYMBOL(cpufreq_quick_get_max); 1841 1842 /** 1843 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1844 * @cpu: CPU number 1845 * 1846 * The default return value is the max_freq field of cpuinfo. 1847 */ 1848 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1849 { 1850 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1851 unsigned int ret_freq = 0; 1852 1853 if (policy) { 1854 ret_freq = policy->cpuinfo.max_freq; 1855 cpufreq_cpu_put(policy); 1856 } 1857 1858 return ret_freq; 1859 } 1860 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1861 1862 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1863 { 1864 if (unlikely(policy_is_inactive(policy))) 1865 return 0; 1866 1867 return cpufreq_verify_current_freq(policy, true); 1868 } 1869 1870 /** 1871 * cpufreq_get - get the current CPU frequency (in kHz) 1872 * @cpu: CPU number 1873 * 1874 * Get the CPU current (static) CPU frequency 1875 */ 1876 unsigned int cpufreq_get(unsigned int cpu) 1877 { 1878 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1879 unsigned int ret_freq = 0; 1880 1881 if (policy) { 1882 down_read(&policy->rwsem); 1883 if (cpufreq_driver->get) 1884 ret_freq = __cpufreq_get(policy); 1885 up_read(&policy->rwsem); 1886 1887 cpufreq_cpu_put(policy); 1888 } 1889 1890 return ret_freq; 1891 } 1892 EXPORT_SYMBOL(cpufreq_get); 1893 1894 static struct subsys_interface cpufreq_interface = { 1895 .name = "cpufreq", 1896 .subsys = &cpu_subsys, 1897 .add_dev = cpufreq_add_dev, 1898 .remove_dev = cpufreq_remove_dev, 1899 }; 1900 1901 /* 1902 * In case platform wants some specific frequency to be configured 1903 * during suspend.. 1904 */ 1905 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1906 { 1907 int ret; 1908 1909 if (!policy->suspend_freq) { 1910 pr_debug("%s: suspend_freq not defined\n", __func__); 1911 return 0; 1912 } 1913 1914 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1915 policy->suspend_freq); 1916 1917 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1918 CPUFREQ_RELATION_H); 1919 if (ret) 1920 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1921 __func__, policy->suspend_freq, ret); 1922 1923 return ret; 1924 } 1925 EXPORT_SYMBOL(cpufreq_generic_suspend); 1926 1927 /** 1928 * cpufreq_suspend() - Suspend CPUFreq governors. 1929 * 1930 * Called during system wide Suspend/Hibernate cycles for suspending governors 1931 * as some platforms can't change frequency after this point in suspend cycle. 1932 * Because some of the devices (like: i2c, regulators, etc) they use for 1933 * changing frequency are suspended quickly after this point. 1934 */ 1935 void cpufreq_suspend(void) 1936 { 1937 struct cpufreq_policy *policy; 1938 1939 if (!cpufreq_driver) 1940 return; 1941 1942 if (!has_target() && !cpufreq_driver->suspend) 1943 goto suspend; 1944 1945 pr_debug("%s: Suspending Governors\n", __func__); 1946 1947 for_each_active_policy(policy) { 1948 if (has_target()) { 1949 down_write(&policy->rwsem); 1950 cpufreq_stop_governor(policy); 1951 up_write(&policy->rwsem); 1952 } 1953 1954 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1955 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1956 cpufreq_driver->name); 1957 } 1958 1959 suspend: 1960 cpufreq_suspended = true; 1961 } 1962 1963 /** 1964 * cpufreq_resume() - Resume CPUFreq governors. 1965 * 1966 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1967 * are suspended with cpufreq_suspend(). 1968 */ 1969 void cpufreq_resume(void) 1970 { 1971 struct cpufreq_policy *policy; 1972 int ret; 1973 1974 if (!cpufreq_driver) 1975 return; 1976 1977 if (unlikely(!cpufreq_suspended)) 1978 return; 1979 1980 cpufreq_suspended = false; 1981 1982 if (!has_target() && !cpufreq_driver->resume) 1983 return; 1984 1985 pr_debug("%s: Resuming Governors\n", __func__); 1986 1987 for_each_active_policy(policy) { 1988 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1989 pr_err("%s: Failed to resume driver: %s\n", __func__, 1990 cpufreq_driver->name); 1991 } else if (has_target()) { 1992 down_write(&policy->rwsem); 1993 ret = cpufreq_start_governor(policy); 1994 up_write(&policy->rwsem); 1995 1996 if (ret) 1997 pr_err("%s: Failed to start governor for CPU%u's policy\n", 1998 __func__, policy->cpu); 1999 } 2000 } 2001 } 2002 2003 /** 2004 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 2005 * @flags: Flags to test against the current cpufreq driver's flags. 2006 * 2007 * Assumes that the driver is there, so callers must ensure that this is the 2008 * case. 2009 */ 2010 bool cpufreq_driver_test_flags(u16 flags) 2011 { 2012 return !!(cpufreq_driver->flags & flags); 2013 } 2014 2015 /** 2016 * cpufreq_get_current_driver - Return the current driver's name. 2017 * 2018 * Return the name string of the currently registered cpufreq driver or NULL if 2019 * none. 2020 */ 2021 const char *cpufreq_get_current_driver(void) 2022 { 2023 if (cpufreq_driver) 2024 return cpufreq_driver->name; 2025 2026 return NULL; 2027 } 2028 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 2029 2030 /** 2031 * cpufreq_get_driver_data - Return current driver data. 2032 * 2033 * Return the private data of the currently registered cpufreq driver, or NULL 2034 * if no cpufreq driver has been registered. 2035 */ 2036 void *cpufreq_get_driver_data(void) 2037 { 2038 if (cpufreq_driver) 2039 return cpufreq_driver->driver_data; 2040 2041 return NULL; 2042 } 2043 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2044 2045 /********************************************************************* 2046 * NOTIFIER LISTS INTERFACE * 2047 *********************************************************************/ 2048 2049 /** 2050 * cpufreq_register_notifier - Register a notifier with cpufreq. 2051 * @nb: notifier function to register. 2052 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2053 * 2054 * Add a notifier to one of two lists: either a list of notifiers that run on 2055 * clock rate changes (once before and once after every transition), or a list 2056 * of notifiers that ron on cpufreq policy changes. 2057 * 2058 * This function may sleep and it has the same return values as 2059 * blocking_notifier_chain_register(). 2060 */ 2061 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2062 { 2063 int ret; 2064 2065 if (cpufreq_disabled()) 2066 return -EINVAL; 2067 2068 switch (list) { 2069 case CPUFREQ_TRANSITION_NOTIFIER: 2070 mutex_lock(&cpufreq_fast_switch_lock); 2071 2072 if (cpufreq_fast_switch_count > 0) { 2073 mutex_unlock(&cpufreq_fast_switch_lock); 2074 return -EBUSY; 2075 } 2076 ret = srcu_notifier_chain_register( 2077 &cpufreq_transition_notifier_list, nb); 2078 if (!ret) 2079 cpufreq_fast_switch_count--; 2080 2081 mutex_unlock(&cpufreq_fast_switch_lock); 2082 break; 2083 case CPUFREQ_POLICY_NOTIFIER: 2084 ret = blocking_notifier_chain_register( 2085 &cpufreq_policy_notifier_list, nb); 2086 break; 2087 default: 2088 ret = -EINVAL; 2089 } 2090 2091 return ret; 2092 } 2093 EXPORT_SYMBOL(cpufreq_register_notifier); 2094 2095 /** 2096 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2097 * @nb: notifier block to be unregistered. 2098 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2099 * 2100 * Remove a notifier from one of the cpufreq notifier lists. 2101 * 2102 * This function may sleep and it has the same return values as 2103 * blocking_notifier_chain_unregister(). 2104 */ 2105 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2106 { 2107 int ret; 2108 2109 if (cpufreq_disabled()) 2110 return -EINVAL; 2111 2112 switch (list) { 2113 case CPUFREQ_TRANSITION_NOTIFIER: 2114 mutex_lock(&cpufreq_fast_switch_lock); 2115 2116 ret = srcu_notifier_chain_unregister( 2117 &cpufreq_transition_notifier_list, nb); 2118 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2119 cpufreq_fast_switch_count++; 2120 2121 mutex_unlock(&cpufreq_fast_switch_lock); 2122 break; 2123 case CPUFREQ_POLICY_NOTIFIER: 2124 ret = blocking_notifier_chain_unregister( 2125 &cpufreq_policy_notifier_list, nb); 2126 break; 2127 default: 2128 ret = -EINVAL; 2129 } 2130 2131 return ret; 2132 } 2133 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2134 2135 2136 /********************************************************************* 2137 * GOVERNORS * 2138 *********************************************************************/ 2139 2140 /** 2141 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2142 * @policy: cpufreq policy to switch the frequency for. 2143 * @target_freq: New frequency to set (may be approximate). 2144 * 2145 * Carry out a fast frequency switch without sleeping. 2146 * 2147 * The driver's ->fast_switch() callback invoked by this function must be 2148 * suitable for being called from within RCU-sched read-side critical sections 2149 * and it is expected to select the minimum available frequency greater than or 2150 * equal to @target_freq (CPUFREQ_RELATION_L). 2151 * 2152 * This function must not be called if policy->fast_switch_enabled is unset. 2153 * 2154 * Governors calling this function must guarantee that it will never be invoked 2155 * twice in parallel for the same policy and that it will never be called in 2156 * parallel with either ->target() or ->target_index() for the same policy. 2157 * 2158 * Returns the actual frequency set for the CPU. 2159 * 2160 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2161 * error condition, the hardware configuration must be preserved. 2162 */ 2163 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2164 unsigned int target_freq) 2165 { 2166 unsigned int freq; 2167 int cpu; 2168 2169 target_freq = clamp_val(target_freq, policy->min, policy->max); 2170 freq = cpufreq_driver->fast_switch(policy, target_freq); 2171 2172 if (!freq) 2173 return 0; 2174 2175 policy->cur = freq; 2176 arch_set_freq_scale(policy->related_cpus, freq, 2177 policy->cpuinfo.max_freq); 2178 cpufreq_stats_record_transition(policy, freq); 2179 2180 if (trace_cpu_frequency_enabled()) { 2181 for_each_cpu(cpu, policy->cpus) 2182 trace_cpu_frequency(freq, cpu); 2183 } 2184 2185 return freq; 2186 } 2187 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2188 2189 /** 2190 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2191 * @cpu: Target CPU. 2192 * @min_perf: Minimum (required) performance level (units of @capacity). 2193 * @target_perf: Target (desired) performance level (units of @capacity). 2194 * @capacity: Capacity of the target CPU. 2195 * 2196 * Carry out a fast performance level switch of @cpu without sleeping. 2197 * 2198 * The driver's ->adjust_perf() callback invoked by this function must be 2199 * suitable for being called from within RCU-sched read-side critical sections 2200 * and it is expected to select a suitable performance level equal to or above 2201 * @min_perf and preferably equal to or below @target_perf. 2202 * 2203 * This function must not be called if policy->fast_switch_enabled is unset. 2204 * 2205 * Governors calling this function must guarantee that it will never be invoked 2206 * twice in parallel for the same CPU and that it will never be called in 2207 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2208 * the same CPU. 2209 */ 2210 void cpufreq_driver_adjust_perf(unsigned int cpu, 2211 unsigned long min_perf, 2212 unsigned long target_perf, 2213 unsigned long capacity) 2214 { 2215 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2216 } 2217 2218 /** 2219 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2220 * 2221 * Return 'true' if the ->adjust_perf callback is present for the 2222 * current driver or 'false' otherwise. 2223 */ 2224 bool cpufreq_driver_has_adjust_perf(void) 2225 { 2226 return !!cpufreq_driver->adjust_perf; 2227 } 2228 2229 /* Must set freqs->new to intermediate frequency */ 2230 static int __target_intermediate(struct cpufreq_policy *policy, 2231 struct cpufreq_freqs *freqs, int index) 2232 { 2233 int ret; 2234 2235 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2236 2237 /* We don't need to switch to intermediate freq */ 2238 if (!freqs->new) 2239 return 0; 2240 2241 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2242 __func__, policy->cpu, freqs->old, freqs->new); 2243 2244 cpufreq_freq_transition_begin(policy, freqs); 2245 ret = cpufreq_driver->target_intermediate(policy, index); 2246 cpufreq_freq_transition_end(policy, freqs, ret); 2247 2248 if (ret) 2249 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2250 __func__, ret); 2251 2252 return ret; 2253 } 2254 2255 static int __target_index(struct cpufreq_policy *policy, int index) 2256 { 2257 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2258 unsigned int restore_freq, intermediate_freq = 0; 2259 unsigned int newfreq = policy->freq_table[index].frequency; 2260 int retval = -EINVAL; 2261 bool notify; 2262 2263 if (newfreq == policy->cur) 2264 return 0; 2265 2266 /* Save last value to restore later on errors */ 2267 restore_freq = policy->cur; 2268 2269 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2270 if (notify) { 2271 /* Handle switching to intermediate frequency */ 2272 if (cpufreq_driver->get_intermediate) { 2273 retval = __target_intermediate(policy, &freqs, index); 2274 if (retval) 2275 return retval; 2276 2277 intermediate_freq = freqs.new; 2278 /* Set old freq to intermediate */ 2279 if (intermediate_freq) 2280 freqs.old = freqs.new; 2281 } 2282 2283 freqs.new = newfreq; 2284 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2285 __func__, policy->cpu, freqs.old, freqs.new); 2286 2287 cpufreq_freq_transition_begin(policy, &freqs); 2288 } 2289 2290 retval = cpufreq_driver->target_index(policy, index); 2291 if (retval) 2292 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2293 retval); 2294 2295 if (notify) { 2296 cpufreq_freq_transition_end(policy, &freqs, retval); 2297 2298 /* 2299 * Failed after setting to intermediate freq? Driver should have 2300 * reverted back to initial frequency and so should we. Check 2301 * here for intermediate_freq instead of get_intermediate, in 2302 * case we haven't switched to intermediate freq at all. 2303 */ 2304 if (unlikely(retval && intermediate_freq)) { 2305 freqs.old = intermediate_freq; 2306 freqs.new = restore_freq; 2307 cpufreq_freq_transition_begin(policy, &freqs); 2308 cpufreq_freq_transition_end(policy, &freqs, 0); 2309 } 2310 } 2311 2312 return retval; 2313 } 2314 2315 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2316 unsigned int target_freq, 2317 unsigned int relation) 2318 { 2319 unsigned int old_target_freq = target_freq; 2320 2321 if (cpufreq_disabled()) 2322 return -ENODEV; 2323 2324 target_freq = __resolve_freq(policy, target_freq, relation); 2325 2326 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2327 policy->cpu, target_freq, relation, old_target_freq); 2328 2329 /* 2330 * This might look like a redundant call as we are checking it again 2331 * after finding index. But it is left intentionally for cases where 2332 * exactly same freq is called again and so we can save on few function 2333 * calls. 2334 */ 2335 if (target_freq == policy->cur && 2336 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2337 return 0; 2338 2339 if (cpufreq_driver->target) { 2340 /* 2341 * If the driver hasn't setup a single inefficient frequency, 2342 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2343 */ 2344 if (!policy->efficiencies_available) 2345 relation &= ~CPUFREQ_RELATION_E; 2346 2347 return cpufreq_driver->target(policy, target_freq, relation); 2348 } 2349 2350 if (!cpufreq_driver->target_index) 2351 return -EINVAL; 2352 2353 return __target_index(policy, policy->cached_resolved_idx); 2354 } 2355 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2356 2357 int cpufreq_driver_target(struct cpufreq_policy *policy, 2358 unsigned int target_freq, 2359 unsigned int relation) 2360 { 2361 int ret; 2362 2363 down_write(&policy->rwsem); 2364 2365 ret = __cpufreq_driver_target(policy, target_freq, relation); 2366 2367 up_write(&policy->rwsem); 2368 2369 return ret; 2370 } 2371 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2372 2373 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2374 { 2375 return NULL; 2376 } 2377 2378 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2379 { 2380 int ret; 2381 2382 /* Don't start any governor operations if we are entering suspend */ 2383 if (cpufreq_suspended) 2384 return 0; 2385 /* 2386 * Governor might not be initiated here if ACPI _PPC changed 2387 * notification happened, so check it. 2388 */ 2389 if (!policy->governor) 2390 return -EINVAL; 2391 2392 /* Platform doesn't want dynamic frequency switching ? */ 2393 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2394 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2395 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2396 2397 if (gov) { 2398 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2399 policy->governor->name, gov->name); 2400 policy->governor = gov; 2401 } else { 2402 return -EINVAL; 2403 } 2404 } 2405 2406 if (!try_module_get(policy->governor->owner)) 2407 return -EINVAL; 2408 2409 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2410 2411 if (policy->governor->init) { 2412 ret = policy->governor->init(policy); 2413 if (ret) { 2414 module_put(policy->governor->owner); 2415 return ret; 2416 } 2417 } 2418 2419 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2420 2421 return 0; 2422 } 2423 2424 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2425 { 2426 if (cpufreq_suspended || !policy->governor) 2427 return; 2428 2429 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2430 2431 if (policy->governor->exit) 2432 policy->governor->exit(policy); 2433 2434 module_put(policy->governor->owner); 2435 } 2436 2437 int cpufreq_start_governor(struct cpufreq_policy *policy) 2438 { 2439 int ret; 2440 2441 if (cpufreq_suspended) 2442 return 0; 2443 2444 if (!policy->governor) 2445 return -EINVAL; 2446 2447 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2448 2449 if (cpufreq_driver->get) 2450 cpufreq_verify_current_freq(policy, false); 2451 2452 if (policy->governor->start) { 2453 ret = policy->governor->start(policy); 2454 if (ret) 2455 return ret; 2456 } 2457 2458 if (policy->governor->limits) 2459 policy->governor->limits(policy); 2460 2461 return 0; 2462 } 2463 2464 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2465 { 2466 if (cpufreq_suspended || !policy->governor) 2467 return; 2468 2469 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2470 2471 if (policy->governor->stop) 2472 policy->governor->stop(policy); 2473 } 2474 2475 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2476 { 2477 if (cpufreq_suspended || !policy->governor) 2478 return; 2479 2480 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2481 2482 if (policy->governor->limits) 2483 policy->governor->limits(policy); 2484 } 2485 2486 int cpufreq_register_governor(struct cpufreq_governor *governor) 2487 { 2488 int err; 2489 2490 if (!governor) 2491 return -EINVAL; 2492 2493 if (cpufreq_disabled()) 2494 return -ENODEV; 2495 2496 mutex_lock(&cpufreq_governor_mutex); 2497 2498 err = -EBUSY; 2499 if (!find_governor(governor->name)) { 2500 err = 0; 2501 list_add(&governor->governor_list, &cpufreq_governor_list); 2502 } 2503 2504 mutex_unlock(&cpufreq_governor_mutex); 2505 return err; 2506 } 2507 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2508 2509 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2510 { 2511 struct cpufreq_policy *policy; 2512 unsigned long flags; 2513 2514 if (!governor) 2515 return; 2516 2517 if (cpufreq_disabled()) 2518 return; 2519 2520 /* clear last_governor for all inactive policies */ 2521 read_lock_irqsave(&cpufreq_driver_lock, flags); 2522 for_each_inactive_policy(policy) { 2523 if (!strcmp(policy->last_governor, governor->name)) { 2524 policy->governor = NULL; 2525 strcpy(policy->last_governor, "\0"); 2526 } 2527 } 2528 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2529 2530 mutex_lock(&cpufreq_governor_mutex); 2531 list_del(&governor->governor_list); 2532 mutex_unlock(&cpufreq_governor_mutex); 2533 } 2534 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2535 2536 2537 /********************************************************************* 2538 * POLICY INTERFACE * 2539 *********************************************************************/ 2540 2541 /** 2542 * cpufreq_get_policy - get the current cpufreq_policy 2543 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2544 * is written 2545 * @cpu: CPU to find the policy for 2546 * 2547 * Reads the current cpufreq policy. 2548 */ 2549 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2550 { 2551 struct cpufreq_policy *cpu_policy; 2552 if (!policy) 2553 return -EINVAL; 2554 2555 cpu_policy = cpufreq_cpu_get(cpu); 2556 if (!cpu_policy) 2557 return -EINVAL; 2558 2559 memcpy(policy, cpu_policy, sizeof(*policy)); 2560 2561 cpufreq_cpu_put(cpu_policy); 2562 return 0; 2563 } 2564 EXPORT_SYMBOL(cpufreq_get_policy); 2565 2566 /** 2567 * cpufreq_set_policy - Modify cpufreq policy parameters. 2568 * @policy: Policy object to modify. 2569 * @new_gov: Policy governor pointer. 2570 * @new_pol: Policy value (for drivers with built-in governors). 2571 * 2572 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2573 * limits to be set for the policy, update @policy with the verified limits 2574 * values and either invoke the driver's ->setpolicy() callback (if present) or 2575 * carry out a governor update for @policy. That is, run the current governor's 2576 * ->limits() callback (if @new_gov points to the same object as the one in 2577 * @policy) or replace the governor for @policy with @new_gov. 2578 * 2579 * The cpuinfo part of @policy is not updated by this function. 2580 */ 2581 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2582 struct cpufreq_governor *new_gov, 2583 unsigned int new_pol) 2584 { 2585 struct cpufreq_policy_data new_data; 2586 struct cpufreq_governor *old_gov; 2587 int ret; 2588 2589 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2590 new_data.freq_table = policy->freq_table; 2591 new_data.cpu = policy->cpu; 2592 /* 2593 * PM QoS framework collects all the requests from users and provide us 2594 * the final aggregated value here. 2595 */ 2596 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2597 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2598 2599 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2600 new_data.cpu, new_data.min, new_data.max); 2601 2602 /* 2603 * Verify that the CPU speed can be set within these limits and make sure 2604 * that min <= max. 2605 */ 2606 ret = cpufreq_driver->verify(&new_data); 2607 if (ret) 2608 return ret; 2609 2610 /* 2611 * Resolve policy min/max to available frequencies. It ensures 2612 * no frequency resolution will neither overshoot the requested maximum 2613 * nor undershoot the requested minimum. 2614 */ 2615 policy->min = new_data.min; 2616 policy->max = new_data.max; 2617 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2618 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2619 trace_cpu_frequency_limits(policy); 2620 2621 policy->cached_target_freq = UINT_MAX; 2622 2623 pr_debug("new min and max freqs are %u - %u kHz\n", 2624 policy->min, policy->max); 2625 2626 if (cpufreq_driver->setpolicy) { 2627 policy->policy = new_pol; 2628 pr_debug("setting range\n"); 2629 return cpufreq_driver->setpolicy(policy); 2630 } 2631 2632 if (new_gov == policy->governor) { 2633 pr_debug("governor limits update\n"); 2634 cpufreq_governor_limits(policy); 2635 return 0; 2636 } 2637 2638 pr_debug("governor switch\n"); 2639 2640 /* save old, working values */ 2641 old_gov = policy->governor; 2642 /* end old governor */ 2643 if (old_gov) { 2644 cpufreq_stop_governor(policy); 2645 cpufreq_exit_governor(policy); 2646 } 2647 2648 /* start new governor */ 2649 policy->governor = new_gov; 2650 ret = cpufreq_init_governor(policy); 2651 if (!ret) { 2652 ret = cpufreq_start_governor(policy); 2653 if (!ret) { 2654 pr_debug("governor change\n"); 2655 sched_cpufreq_governor_change(policy, old_gov); 2656 return 0; 2657 } 2658 cpufreq_exit_governor(policy); 2659 } 2660 2661 /* new governor failed, so re-start old one */ 2662 pr_debug("starting governor %s failed\n", policy->governor->name); 2663 if (old_gov) { 2664 policy->governor = old_gov; 2665 if (cpufreq_init_governor(policy)) 2666 policy->governor = NULL; 2667 else 2668 cpufreq_start_governor(policy); 2669 } 2670 2671 return ret; 2672 } 2673 2674 /** 2675 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2676 * @cpu: CPU to re-evaluate the policy for. 2677 * 2678 * Update the current frequency for the cpufreq policy of @cpu and use 2679 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2680 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2681 * for the policy in question, among other things. 2682 */ 2683 void cpufreq_update_policy(unsigned int cpu) 2684 { 2685 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2686 2687 if (!policy) 2688 return; 2689 2690 /* 2691 * BIOS might change freq behind our back 2692 * -> ask driver for current freq and notify governors about a change 2693 */ 2694 if (cpufreq_driver->get && has_target() && 2695 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2696 goto unlock; 2697 2698 refresh_frequency_limits(policy); 2699 2700 unlock: 2701 cpufreq_cpu_release(policy); 2702 } 2703 EXPORT_SYMBOL(cpufreq_update_policy); 2704 2705 /** 2706 * cpufreq_update_limits - Update policy limits for a given CPU. 2707 * @cpu: CPU to update the policy limits for. 2708 * 2709 * Invoke the driver's ->update_limits callback if present or call 2710 * cpufreq_update_policy() for @cpu. 2711 */ 2712 void cpufreq_update_limits(unsigned int cpu) 2713 { 2714 if (cpufreq_driver->update_limits) 2715 cpufreq_driver->update_limits(cpu); 2716 else 2717 cpufreq_update_policy(cpu); 2718 } 2719 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2720 2721 /********************************************************************* 2722 * BOOST * 2723 *********************************************************************/ 2724 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2725 { 2726 int ret; 2727 2728 if (!policy->freq_table) 2729 return -ENXIO; 2730 2731 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2732 if (ret) { 2733 pr_err("%s: Policy frequency update failed\n", __func__); 2734 return ret; 2735 } 2736 2737 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2738 if (ret < 0) 2739 return ret; 2740 2741 return 0; 2742 } 2743 2744 int cpufreq_boost_trigger_state(int state) 2745 { 2746 struct cpufreq_policy *policy; 2747 unsigned long flags; 2748 int ret = 0; 2749 2750 if (cpufreq_driver->boost_enabled == state) 2751 return 0; 2752 2753 write_lock_irqsave(&cpufreq_driver_lock, flags); 2754 cpufreq_driver->boost_enabled = state; 2755 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2756 2757 cpus_read_lock(); 2758 for_each_active_policy(policy) { 2759 ret = cpufreq_driver->set_boost(policy, state); 2760 if (ret) 2761 goto err_reset_state; 2762 2763 policy->boost_enabled = state; 2764 } 2765 cpus_read_unlock(); 2766 2767 return 0; 2768 2769 err_reset_state: 2770 cpus_read_unlock(); 2771 2772 write_lock_irqsave(&cpufreq_driver_lock, flags); 2773 cpufreq_driver->boost_enabled = !state; 2774 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2775 2776 pr_err("%s: Cannot %s BOOST\n", 2777 __func__, state ? "enable" : "disable"); 2778 2779 return ret; 2780 } 2781 2782 static bool cpufreq_boost_supported(void) 2783 { 2784 return cpufreq_driver->set_boost; 2785 } 2786 2787 static int create_boost_sysfs_file(void) 2788 { 2789 int ret; 2790 2791 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2792 if (ret) 2793 pr_err("%s: cannot register global BOOST sysfs file\n", 2794 __func__); 2795 2796 return ret; 2797 } 2798 2799 static void remove_boost_sysfs_file(void) 2800 { 2801 if (cpufreq_boost_supported()) 2802 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2803 } 2804 2805 int cpufreq_enable_boost_support(void) 2806 { 2807 if (!cpufreq_driver) 2808 return -EINVAL; 2809 2810 if (cpufreq_boost_supported()) 2811 return 0; 2812 2813 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2814 2815 /* This will get removed on driver unregister */ 2816 return create_boost_sysfs_file(); 2817 } 2818 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2819 2820 int cpufreq_boost_enabled(void) 2821 { 2822 return cpufreq_driver->boost_enabled; 2823 } 2824 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2825 2826 /********************************************************************* 2827 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2828 *********************************************************************/ 2829 static enum cpuhp_state hp_online; 2830 2831 static int cpuhp_cpufreq_online(unsigned int cpu) 2832 { 2833 cpufreq_online(cpu); 2834 2835 return 0; 2836 } 2837 2838 static int cpuhp_cpufreq_offline(unsigned int cpu) 2839 { 2840 cpufreq_offline(cpu); 2841 2842 return 0; 2843 } 2844 2845 /** 2846 * cpufreq_register_driver - register a CPU Frequency driver 2847 * @driver_data: A struct cpufreq_driver containing the values# 2848 * submitted by the CPU Frequency driver. 2849 * 2850 * Registers a CPU Frequency driver to this core code. This code 2851 * returns zero on success, -EEXIST when another driver got here first 2852 * (and isn't unregistered in the meantime). 2853 * 2854 */ 2855 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2856 { 2857 unsigned long flags; 2858 int ret; 2859 2860 if (cpufreq_disabled()) 2861 return -ENODEV; 2862 2863 /* 2864 * The cpufreq core depends heavily on the availability of device 2865 * structure, make sure they are available before proceeding further. 2866 */ 2867 if (!get_cpu_device(0)) 2868 return -EPROBE_DEFER; 2869 2870 if (!driver_data || !driver_data->verify || !driver_data->init || 2871 !(driver_data->setpolicy || driver_data->target_index || 2872 driver_data->target) || 2873 (driver_data->setpolicy && (driver_data->target_index || 2874 driver_data->target)) || 2875 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2876 (!driver_data->online != !driver_data->offline) || 2877 (driver_data->adjust_perf && !driver_data->fast_switch)) 2878 return -EINVAL; 2879 2880 pr_debug("trying to register driver %s\n", driver_data->name); 2881 2882 /* Protect against concurrent CPU online/offline. */ 2883 cpus_read_lock(); 2884 2885 write_lock_irqsave(&cpufreq_driver_lock, flags); 2886 if (cpufreq_driver) { 2887 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2888 ret = -EEXIST; 2889 goto out; 2890 } 2891 cpufreq_driver = driver_data; 2892 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2893 2894 /* 2895 * Mark support for the scheduler's frequency invariance engine for 2896 * drivers that implement target(), target_index() or fast_switch(). 2897 */ 2898 if (!cpufreq_driver->setpolicy) { 2899 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2900 pr_debug("supports frequency invariance"); 2901 } 2902 2903 if (driver_data->setpolicy) 2904 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2905 2906 if (cpufreq_boost_supported()) { 2907 ret = create_boost_sysfs_file(); 2908 if (ret) 2909 goto err_null_driver; 2910 } 2911 2912 ret = subsys_interface_register(&cpufreq_interface); 2913 if (ret) 2914 goto err_boost_unreg; 2915 2916 if (unlikely(list_empty(&cpufreq_policy_list))) { 2917 /* if all ->init() calls failed, unregister */ 2918 ret = -ENODEV; 2919 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2920 driver_data->name); 2921 goto err_if_unreg; 2922 } 2923 2924 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2925 "cpufreq:online", 2926 cpuhp_cpufreq_online, 2927 cpuhp_cpufreq_offline); 2928 if (ret < 0) 2929 goto err_if_unreg; 2930 hp_online = ret; 2931 ret = 0; 2932 2933 pr_debug("driver %s up and running\n", driver_data->name); 2934 goto out; 2935 2936 err_if_unreg: 2937 subsys_interface_unregister(&cpufreq_interface); 2938 err_boost_unreg: 2939 remove_boost_sysfs_file(); 2940 err_null_driver: 2941 write_lock_irqsave(&cpufreq_driver_lock, flags); 2942 cpufreq_driver = NULL; 2943 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2944 out: 2945 cpus_read_unlock(); 2946 return ret; 2947 } 2948 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2949 2950 /* 2951 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2952 * 2953 * Unregister the current CPUFreq driver. Only call this if you have 2954 * the right to do so, i.e. if you have succeeded in initialising before! 2955 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2956 * currently not initialised. 2957 */ 2958 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 2959 { 2960 unsigned long flags; 2961 2962 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 2963 return; 2964 2965 pr_debug("unregistering driver %s\n", driver->name); 2966 2967 /* Protect against concurrent cpu hotplug */ 2968 cpus_read_lock(); 2969 subsys_interface_unregister(&cpufreq_interface); 2970 remove_boost_sysfs_file(); 2971 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2972 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2973 2974 write_lock_irqsave(&cpufreq_driver_lock, flags); 2975 2976 cpufreq_driver = NULL; 2977 2978 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2979 cpus_read_unlock(); 2980 } 2981 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2982 2983 static int __init cpufreq_core_init(void) 2984 { 2985 struct cpufreq_governor *gov = cpufreq_default_governor(); 2986 struct device *dev_root; 2987 2988 if (cpufreq_disabled()) 2989 return -ENODEV; 2990 2991 dev_root = bus_get_dev_root(&cpu_subsys); 2992 if (dev_root) { 2993 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 2994 put_device(dev_root); 2995 } 2996 BUG_ON(!cpufreq_global_kobject); 2997 2998 if (!strlen(default_governor)) 2999 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 3000 3001 return 0; 3002 } 3003 module_param(off, int, 0444); 3004 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 3005 core_initcall(cpufreq_core_init); 3006