1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 /* Macros to iterate over CPU policies */ 42 #define for_each_suitable_policy(__policy, __active) \ 43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 44 if ((__active) == !policy_is_inactive(__policy)) 45 46 #define for_each_active_policy(__policy) \ 47 for_each_suitable_policy(__policy, true) 48 #define for_each_inactive_policy(__policy) \ 49 for_each_suitable_policy(__policy, false) 50 51 #define for_each_policy(__policy) \ 52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 53 54 /* Iterate over governors */ 55 static LIST_HEAD(cpufreq_governor_list); 56 #define for_each_governor(__governor) \ 57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 58 59 /** 60 * The "cpufreq driver" - the arch- or hardware-dependent low 61 * level driver of CPUFreq support, and its spinlock. This lock 62 * also protects the cpufreq_cpu_data array. 63 */ 64 static struct cpufreq_driver *cpufreq_driver; 65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 66 static DEFINE_RWLOCK(cpufreq_driver_lock); 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 78 static int cpufreq_init_governor(struct cpufreq_policy *policy); 79 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 80 static int cpufreq_start_governor(struct cpufreq_policy *policy); 81 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 82 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 83 84 /** 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 93 94 static int off __read_mostly; 95 static int cpufreq_disabled(void) 96 { 97 return off; 98 } 99 void disable_cpufreq(void) 100 { 101 off = 1; 102 } 103 static DEFINE_MUTEX(cpufreq_governor_mutex); 104 105 bool have_governor_per_policy(void) 106 { 107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 108 } 109 EXPORT_SYMBOL_GPL(have_governor_per_policy); 110 111 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 112 { 113 if (have_governor_per_policy()) 114 return &policy->kobj; 115 else 116 return cpufreq_global_kobject; 117 } 118 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 119 120 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 121 { 122 u64 idle_time; 123 u64 cur_wall_time; 124 u64 busy_time; 125 126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 127 128 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 129 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 130 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 134 135 idle_time = cur_wall_time - busy_time; 136 if (wall) 137 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 138 139 return div_u64(idle_time, NSEC_PER_USEC); 140 } 141 142 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 143 { 144 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 145 146 if (idle_time == -1ULL) 147 return get_cpu_idle_time_jiffy(cpu, wall); 148 else if (!io_busy) 149 idle_time += get_cpu_iowait_time_us(cpu, wall); 150 151 return idle_time; 152 } 153 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 154 155 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 156 unsigned long max_freq) 157 { 158 } 159 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 160 161 /* 162 * This is a generic cpufreq init() routine which can be used by cpufreq 163 * drivers of SMP systems. It will do following: 164 * - validate & show freq table passed 165 * - set policies transition latency 166 * - policy->cpus with all possible CPUs 167 */ 168 int cpufreq_generic_init(struct cpufreq_policy *policy, 169 struct cpufreq_frequency_table *table, 170 unsigned int transition_latency) 171 { 172 policy->freq_table = table; 173 policy->cpuinfo.transition_latency = transition_latency; 174 175 /* 176 * The driver only supports the SMP configuration where all processors 177 * share the clock and voltage and clock. 178 */ 179 cpumask_setall(policy->cpus); 180 181 return 0; 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 184 185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 188 189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 190 } 191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 192 193 unsigned int cpufreq_generic_get(unsigned int cpu) 194 { 195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 196 197 if (!policy || IS_ERR(policy->clk)) { 198 pr_err("%s: No %s associated to cpu: %d\n", 199 __func__, policy ? "clk" : "policy", cpu); 200 return 0; 201 } 202 203 return clk_get_rate(policy->clk) / 1000; 204 } 205 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 206 207 /** 208 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 209 * 210 * @cpu: cpu to find policy for. 211 * 212 * This returns policy for 'cpu', returns NULL if it doesn't exist. 213 * It also increments the kobject reference count to mark it busy and so would 214 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 215 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 216 * freed as that depends on the kobj count. 217 * 218 * Return: A valid policy on success, otherwise NULL on failure. 219 */ 220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 221 { 222 struct cpufreq_policy *policy = NULL; 223 unsigned long flags; 224 225 if (WARN_ON(cpu >= nr_cpu_ids)) 226 return NULL; 227 228 /* get the cpufreq driver */ 229 read_lock_irqsave(&cpufreq_driver_lock, flags); 230 231 if (cpufreq_driver) { 232 /* get the CPU */ 233 policy = cpufreq_cpu_get_raw(cpu); 234 if (policy) 235 kobject_get(&policy->kobj); 236 } 237 238 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 239 240 return policy; 241 } 242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 243 244 /** 245 * cpufreq_cpu_put: Decrements the usage count of a policy 246 * 247 * @policy: policy earlier returned by cpufreq_cpu_get(). 248 * 249 * This decrements the kobject reference count incremented earlier by calling 250 * cpufreq_cpu_get(). 251 */ 252 void cpufreq_cpu_put(struct cpufreq_policy *policy) 253 { 254 kobject_put(&policy->kobj); 255 } 256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 257 258 /********************************************************************* 259 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 260 *********************************************************************/ 261 262 /** 263 * adjust_jiffies - adjust the system "loops_per_jiffy" 264 * 265 * This function alters the system "loops_per_jiffy" for the clock 266 * speed change. Note that loops_per_jiffy cannot be updated on SMP 267 * systems as each CPU might be scaled differently. So, use the arch 268 * per-CPU loops_per_jiffy value wherever possible. 269 */ 270 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 271 { 272 #ifndef CONFIG_SMP 273 static unsigned long l_p_j_ref; 274 static unsigned int l_p_j_ref_freq; 275 276 if (ci->flags & CPUFREQ_CONST_LOOPS) 277 return; 278 279 if (!l_p_j_ref_freq) { 280 l_p_j_ref = loops_per_jiffy; 281 l_p_j_ref_freq = ci->old; 282 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 283 l_p_j_ref, l_p_j_ref_freq); 284 } 285 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 286 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 287 ci->new); 288 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 289 loops_per_jiffy, ci->new); 290 } 291 #endif 292 } 293 294 /** 295 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 296 * @policy: cpufreq policy to enable fast frequency switching for. 297 * @freqs: contain details of the frequency update. 298 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 299 * 300 * This function calls the transition notifiers and the "adjust_jiffies" 301 * function. It is called twice on all CPU frequency changes that have 302 * external effects. 303 */ 304 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 305 struct cpufreq_freqs *freqs, 306 unsigned int state) 307 { 308 BUG_ON(irqs_disabled()); 309 310 if (cpufreq_disabled()) 311 return; 312 313 freqs->flags = cpufreq_driver->flags; 314 pr_debug("notification %u of frequency transition to %u kHz\n", 315 state, freqs->new); 316 317 switch (state) { 318 case CPUFREQ_PRECHANGE: 319 /* 320 * Detect if the driver reported a value as "old frequency" 321 * which is not equal to what the cpufreq core thinks is 322 * "old frequency". 323 */ 324 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 325 if (policy->cur && (policy->cur != freqs->old)) { 326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 327 freqs->old, policy->cur); 328 freqs->old = policy->cur; 329 } 330 } 331 332 for_each_cpu(freqs->cpu, policy->cpus) { 333 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 334 CPUFREQ_PRECHANGE, freqs); 335 } 336 337 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 338 break; 339 340 case CPUFREQ_POSTCHANGE: 341 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 342 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 343 cpumask_pr_args(policy->cpus)); 344 345 for_each_cpu(freqs->cpu, policy->cpus) { 346 trace_cpu_frequency(freqs->new, freqs->cpu); 347 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 348 CPUFREQ_POSTCHANGE, freqs); 349 } 350 351 cpufreq_stats_record_transition(policy, freqs->new); 352 policy->cur = freqs->new; 353 } 354 } 355 356 /* Do post notifications when there are chances that transition has failed */ 357 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 358 struct cpufreq_freqs *freqs, int transition_failed) 359 { 360 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 361 if (!transition_failed) 362 return; 363 364 swap(freqs->old, freqs->new); 365 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 366 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 367 } 368 369 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 370 struct cpufreq_freqs *freqs) 371 { 372 373 /* 374 * Catch double invocations of _begin() which lead to self-deadlock. 375 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 376 * doesn't invoke _begin() on their behalf, and hence the chances of 377 * double invocations are very low. Moreover, there are scenarios 378 * where these checks can emit false-positive warnings in these 379 * drivers; so we avoid that by skipping them altogether. 380 */ 381 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 382 && current == policy->transition_task); 383 384 wait: 385 wait_event(policy->transition_wait, !policy->transition_ongoing); 386 387 spin_lock(&policy->transition_lock); 388 389 if (unlikely(policy->transition_ongoing)) { 390 spin_unlock(&policy->transition_lock); 391 goto wait; 392 } 393 394 policy->transition_ongoing = true; 395 policy->transition_task = current; 396 397 spin_unlock(&policy->transition_lock); 398 399 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 400 } 401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 402 403 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 404 struct cpufreq_freqs *freqs, int transition_failed) 405 { 406 if (unlikely(WARN_ON(!policy->transition_ongoing))) 407 return; 408 409 cpufreq_notify_post_transition(policy, freqs, transition_failed); 410 411 policy->transition_ongoing = false; 412 policy->transition_task = NULL; 413 414 wake_up(&policy->transition_wait); 415 } 416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 417 418 /* 419 * Fast frequency switching status count. Positive means "enabled", negative 420 * means "disabled" and 0 means "not decided yet". 421 */ 422 static int cpufreq_fast_switch_count; 423 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 424 425 static void cpufreq_list_transition_notifiers(void) 426 { 427 struct notifier_block *nb; 428 429 pr_info("Registered transition notifiers:\n"); 430 431 mutex_lock(&cpufreq_transition_notifier_list.mutex); 432 433 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 434 pr_info("%pF\n", nb->notifier_call); 435 436 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 437 } 438 439 /** 440 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 441 * @policy: cpufreq policy to enable fast frequency switching for. 442 * 443 * Try to enable fast frequency switching for @policy. 444 * 445 * The attempt will fail if there is at least one transition notifier registered 446 * at this point, as fast frequency switching is quite fundamentally at odds 447 * with transition notifiers. Thus if successful, it will make registration of 448 * transition notifiers fail going forward. 449 */ 450 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 451 { 452 lockdep_assert_held(&policy->rwsem); 453 454 if (!policy->fast_switch_possible) 455 return; 456 457 mutex_lock(&cpufreq_fast_switch_lock); 458 if (cpufreq_fast_switch_count >= 0) { 459 cpufreq_fast_switch_count++; 460 policy->fast_switch_enabled = true; 461 } else { 462 pr_warn("CPU%u: Fast frequency switching not enabled\n", 463 policy->cpu); 464 cpufreq_list_transition_notifiers(); 465 } 466 mutex_unlock(&cpufreq_fast_switch_lock); 467 } 468 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 469 470 /** 471 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 472 * @policy: cpufreq policy to disable fast frequency switching for. 473 */ 474 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 475 { 476 mutex_lock(&cpufreq_fast_switch_lock); 477 if (policy->fast_switch_enabled) { 478 policy->fast_switch_enabled = false; 479 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 480 cpufreq_fast_switch_count--; 481 } 482 mutex_unlock(&cpufreq_fast_switch_lock); 483 } 484 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 485 486 /** 487 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 488 * one. 489 * @target_freq: target frequency to resolve. 490 * 491 * The target to driver frequency mapping is cached in the policy. 492 * 493 * Return: Lowest driver-supported frequency greater than or equal to the 494 * given target_freq, subject to policy (min/max) and driver limitations. 495 */ 496 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 497 unsigned int target_freq) 498 { 499 target_freq = clamp_val(target_freq, policy->min, policy->max); 500 policy->cached_target_freq = target_freq; 501 502 if (cpufreq_driver->target_index) { 503 int idx; 504 505 idx = cpufreq_frequency_table_target(policy, target_freq, 506 CPUFREQ_RELATION_L); 507 policy->cached_resolved_idx = idx; 508 return policy->freq_table[idx].frequency; 509 } 510 511 if (cpufreq_driver->resolve_freq) 512 return cpufreq_driver->resolve_freq(policy, target_freq); 513 514 return target_freq; 515 } 516 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 517 518 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 519 { 520 unsigned int latency; 521 522 if (policy->transition_delay_us) 523 return policy->transition_delay_us; 524 525 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 526 if (latency) { 527 /* 528 * For platforms that can change the frequency very fast (< 10 529 * us), the above formula gives a decent transition delay. But 530 * for platforms where transition_latency is in milliseconds, it 531 * ends up giving unrealistic values. 532 * 533 * Cap the default transition delay to 10 ms, which seems to be 534 * a reasonable amount of time after which we should reevaluate 535 * the frequency. 536 */ 537 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 538 } 539 540 return LATENCY_MULTIPLIER; 541 } 542 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 543 544 /********************************************************************* 545 * SYSFS INTERFACE * 546 *********************************************************************/ 547 static ssize_t show_boost(struct kobject *kobj, 548 struct attribute *attr, char *buf) 549 { 550 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 551 } 552 553 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 554 const char *buf, size_t count) 555 { 556 int ret, enable; 557 558 ret = sscanf(buf, "%d", &enable); 559 if (ret != 1 || enable < 0 || enable > 1) 560 return -EINVAL; 561 562 if (cpufreq_boost_trigger_state(enable)) { 563 pr_err("%s: Cannot %s BOOST!\n", 564 __func__, enable ? "enable" : "disable"); 565 return -EINVAL; 566 } 567 568 pr_debug("%s: cpufreq BOOST %s\n", 569 __func__, enable ? "enabled" : "disabled"); 570 571 return count; 572 } 573 define_one_global_rw(boost); 574 575 static struct cpufreq_governor *find_governor(const char *str_governor) 576 { 577 struct cpufreq_governor *t; 578 579 for_each_governor(t) 580 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 581 return t; 582 583 return NULL; 584 } 585 586 /** 587 * cpufreq_parse_governor - parse a governor string 588 */ 589 static int cpufreq_parse_governor(char *str_governor, 590 struct cpufreq_policy *policy) 591 { 592 if (cpufreq_driver->setpolicy) { 593 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 594 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 595 return 0; 596 } 597 598 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 599 policy->policy = CPUFREQ_POLICY_POWERSAVE; 600 return 0; 601 } 602 } else { 603 struct cpufreq_governor *t; 604 605 mutex_lock(&cpufreq_governor_mutex); 606 607 t = find_governor(str_governor); 608 if (!t) { 609 int ret; 610 611 mutex_unlock(&cpufreq_governor_mutex); 612 613 ret = request_module("cpufreq_%s", str_governor); 614 if (ret) 615 return -EINVAL; 616 617 mutex_lock(&cpufreq_governor_mutex); 618 619 t = find_governor(str_governor); 620 } 621 if (t && !try_module_get(t->owner)) 622 t = NULL; 623 624 mutex_unlock(&cpufreq_governor_mutex); 625 626 if (t) { 627 policy->governor = t; 628 return 0; 629 } 630 } 631 632 return -EINVAL; 633 } 634 635 /** 636 * cpufreq_per_cpu_attr_read() / show_##file_name() - 637 * print out cpufreq information 638 * 639 * Write out information from cpufreq_driver->policy[cpu]; object must be 640 * "unsigned int". 641 */ 642 643 #define show_one(file_name, object) \ 644 static ssize_t show_##file_name \ 645 (struct cpufreq_policy *policy, char *buf) \ 646 { \ 647 return sprintf(buf, "%u\n", policy->object); \ 648 } 649 650 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 651 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 652 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 653 show_one(scaling_min_freq, min); 654 show_one(scaling_max_freq, max); 655 656 __weak unsigned int arch_freq_get_on_cpu(int cpu) 657 { 658 return 0; 659 } 660 661 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 662 { 663 ssize_t ret; 664 unsigned int freq; 665 666 freq = arch_freq_get_on_cpu(policy->cpu); 667 if (freq) 668 ret = sprintf(buf, "%u\n", freq); 669 else if (cpufreq_driver && cpufreq_driver->setpolicy && 670 cpufreq_driver->get) 671 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 672 else 673 ret = sprintf(buf, "%u\n", policy->cur); 674 return ret; 675 } 676 677 static int cpufreq_set_policy(struct cpufreq_policy *policy, 678 struct cpufreq_policy *new_policy); 679 680 /** 681 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 682 */ 683 #define store_one(file_name, object) \ 684 static ssize_t store_##file_name \ 685 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 686 { \ 687 int ret, temp; \ 688 struct cpufreq_policy new_policy; \ 689 \ 690 memcpy(&new_policy, policy, sizeof(*policy)); \ 691 new_policy.min = policy->user_policy.min; \ 692 new_policy.max = policy->user_policy.max; \ 693 \ 694 ret = sscanf(buf, "%u", &new_policy.object); \ 695 if (ret != 1) \ 696 return -EINVAL; \ 697 \ 698 temp = new_policy.object; \ 699 ret = cpufreq_set_policy(policy, &new_policy); \ 700 if (!ret) \ 701 policy->user_policy.object = temp; \ 702 \ 703 return ret ? ret : count; \ 704 } 705 706 store_one(scaling_min_freq, min); 707 store_one(scaling_max_freq, max); 708 709 /** 710 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 711 */ 712 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 713 char *buf) 714 { 715 unsigned int cur_freq = __cpufreq_get(policy); 716 717 if (cur_freq) 718 return sprintf(buf, "%u\n", cur_freq); 719 720 return sprintf(buf, "<unknown>\n"); 721 } 722 723 /** 724 * show_scaling_governor - show the current policy for the specified CPU 725 */ 726 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 727 { 728 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 729 return sprintf(buf, "powersave\n"); 730 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 731 return sprintf(buf, "performance\n"); 732 else if (policy->governor) 733 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 734 policy->governor->name); 735 return -EINVAL; 736 } 737 738 /** 739 * store_scaling_governor - store policy for the specified CPU 740 */ 741 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 742 const char *buf, size_t count) 743 { 744 int ret; 745 char str_governor[16]; 746 struct cpufreq_policy new_policy; 747 748 memcpy(&new_policy, policy, sizeof(*policy)); 749 750 ret = sscanf(buf, "%15s", str_governor); 751 if (ret != 1) 752 return -EINVAL; 753 754 if (cpufreq_parse_governor(str_governor, &new_policy)) 755 return -EINVAL; 756 757 ret = cpufreq_set_policy(policy, &new_policy); 758 759 if (new_policy.governor) 760 module_put(new_policy.governor->owner); 761 762 return ret ? ret : count; 763 } 764 765 /** 766 * show_scaling_driver - show the cpufreq driver currently loaded 767 */ 768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 769 { 770 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 771 } 772 773 /** 774 * show_scaling_available_governors - show the available CPUfreq governors 775 */ 776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 777 char *buf) 778 { 779 ssize_t i = 0; 780 struct cpufreq_governor *t; 781 782 if (!has_target()) { 783 i += sprintf(buf, "performance powersave"); 784 goto out; 785 } 786 787 for_each_governor(t) { 788 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 789 - (CPUFREQ_NAME_LEN + 2))) 790 goto out; 791 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 792 } 793 out: 794 i += sprintf(&buf[i], "\n"); 795 return i; 796 } 797 798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 799 { 800 ssize_t i = 0; 801 unsigned int cpu; 802 803 for_each_cpu(cpu, mask) { 804 if (i) 805 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 806 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 807 if (i >= (PAGE_SIZE - 5)) 808 break; 809 } 810 i += sprintf(&buf[i], "\n"); 811 return i; 812 } 813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 814 815 /** 816 * show_related_cpus - show the CPUs affected by each transition even if 817 * hw coordination is in use 818 */ 819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 820 { 821 return cpufreq_show_cpus(policy->related_cpus, buf); 822 } 823 824 /** 825 * show_affected_cpus - show the CPUs affected by each transition 826 */ 827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 828 { 829 return cpufreq_show_cpus(policy->cpus, buf); 830 } 831 832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 833 const char *buf, size_t count) 834 { 835 unsigned int freq = 0; 836 unsigned int ret; 837 838 if (!policy->governor || !policy->governor->store_setspeed) 839 return -EINVAL; 840 841 ret = sscanf(buf, "%u", &freq); 842 if (ret != 1) 843 return -EINVAL; 844 845 policy->governor->store_setspeed(policy, freq); 846 847 return count; 848 } 849 850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 851 { 852 if (!policy->governor || !policy->governor->show_setspeed) 853 return sprintf(buf, "<unsupported>\n"); 854 855 return policy->governor->show_setspeed(policy, buf); 856 } 857 858 /** 859 * show_bios_limit - show the current cpufreq HW/BIOS limitation 860 */ 861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 862 { 863 unsigned int limit; 864 int ret; 865 if (cpufreq_driver->bios_limit) { 866 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 867 if (!ret) 868 return sprintf(buf, "%u\n", limit); 869 } 870 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 871 } 872 873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 874 cpufreq_freq_attr_ro(cpuinfo_min_freq); 875 cpufreq_freq_attr_ro(cpuinfo_max_freq); 876 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 877 cpufreq_freq_attr_ro(scaling_available_governors); 878 cpufreq_freq_attr_ro(scaling_driver); 879 cpufreq_freq_attr_ro(scaling_cur_freq); 880 cpufreq_freq_attr_ro(bios_limit); 881 cpufreq_freq_attr_ro(related_cpus); 882 cpufreq_freq_attr_ro(affected_cpus); 883 cpufreq_freq_attr_rw(scaling_min_freq); 884 cpufreq_freq_attr_rw(scaling_max_freq); 885 cpufreq_freq_attr_rw(scaling_governor); 886 cpufreq_freq_attr_rw(scaling_setspeed); 887 888 static struct attribute *default_attrs[] = { 889 &cpuinfo_min_freq.attr, 890 &cpuinfo_max_freq.attr, 891 &cpuinfo_transition_latency.attr, 892 &scaling_min_freq.attr, 893 &scaling_max_freq.attr, 894 &affected_cpus.attr, 895 &related_cpus.attr, 896 &scaling_governor.attr, 897 &scaling_driver.attr, 898 &scaling_available_governors.attr, 899 &scaling_setspeed.attr, 900 NULL 901 }; 902 903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 904 #define to_attr(a) container_of(a, struct freq_attr, attr) 905 906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 907 { 908 struct cpufreq_policy *policy = to_policy(kobj); 909 struct freq_attr *fattr = to_attr(attr); 910 ssize_t ret; 911 912 down_read(&policy->rwsem); 913 ret = fattr->show(policy, buf); 914 up_read(&policy->rwsem); 915 916 return ret; 917 } 918 919 static ssize_t store(struct kobject *kobj, struct attribute *attr, 920 const char *buf, size_t count) 921 { 922 struct cpufreq_policy *policy = to_policy(kobj); 923 struct freq_attr *fattr = to_attr(attr); 924 ssize_t ret = -EINVAL; 925 926 /* 927 * cpus_read_trylock() is used here to work around a circular lock 928 * dependency problem with respect to the cpufreq_register_driver(). 929 */ 930 if (!cpus_read_trylock()) 931 return -EBUSY; 932 933 if (cpu_online(policy->cpu)) { 934 down_write(&policy->rwsem); 935 ret = fattr->store(policy, buf, count); 936 up_write(&policy->rwsem); 937 } 938 939 cpus_read_unlock(); 940 941 return ret; 942 } 943 944 static void cpufreq_sysfs_release(struct kobject *kobj) 945 { 946 struct cpufreq_policy *policy = to_policy(kobj); 947 pr_debug("last reference is dropped\n"); 948 complete(&policy->kobj_unregister); 949 } 950 951 static const struct sysfs_ops sysfs_ops = { 952 .show = show, 953 .store = store, 954 }; 955 956 static struct kobj_type ktype_cpufreq = { 957 .sysfs_ops = &sysfs_ops, 958 .default_attrs = default_attrs, 959 .release = cpufreq_sysfs_release, 960 }; 961 962 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 963 { 964 struct device *dev = get_cpu_device(cpu); 965 966 if (!dev) 967 return; 968 969 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 970 return; 971 972 dev_dbg(dev, "%s: Adding symlink\n", __func__); 973 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 974 dev_err(dev, "cpufreq symlink creation failed\n"); 975 } 976 977 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 978 struct device *dev) 979 { 980 dev_dbg(dev, "%s: Removing symlink\n", __func__); 981 sysfs_remove_link(&dev->kobj, "cpufreq"); 982 } 983 984 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 985 { 986 struct freq_attr **drv_attr; 987 int ret = 0; 988 989 /* set up files for this cpu device */ 990 drv_attr = cpufreq_driver->attr; 991 while (drv_attr && *drv_attr) { 992 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 993 if (ret) 994 return ret; 995 drv_attr++; 996 } 997 if (cpufreq_driver->get) { 998 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 999 if (ret) 1000 return ret; 1001 } 1002 1003 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1004 if (ret) 1005 return ret; 1006 1007 if (cpufreq_driver->bios_limit) { 1008 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1009 if (ret) 1010 return ret; 1011 } 1012 1013 return 0; 1014 } 1015 1016 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1017 { 1018 return NULL; 1019 } 1020 1021 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1022 { 1023 struct cpufreq_governor *gov = NULL; 1024 struct cpufreq_policy new_policy; 1025 1026 memcpy(&new_policy, policy, sizeof(*policy)); 1027 1028 /* Update governor of new_policy to the governor used before hotplug */ 1029 gov = find_governor(policy->last_governor); 1030 if (gov) { 1031 pr_debug("Restoring governor %s for cpu %d\n", 1032 policy->governor->name, policy->cpu); 1033 } else { 1034 gov = cpufreq_default_governor(); 1035 if (!gov) 1036 return -ENODATA; 1037 } 1038 1039 new_policy.governor = gov; 1040 1041 /* Use the default policy if there is no last_policy. */ 1042 if (cpufreq_driver->setpolicy) { 1043 if (policy->last_policy) 1044 new_policy.policy = policy->last_policy; 1045 else 1046 cpufreq_parse_governor(gov->name, &new_policy); 1047 } 1048 /* set default policy */ 1049 return cpufreq_set_policy(policy, &new_policy); 1050 } 1051 1052 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1053 { 1054 int ret = 0; 1055 1056 /* Has this CPU been taken care of already? */ 1057 if (cpumask_test_cpu(cpu, policy->cpus)) 1058 return 0; 1059 1060 down_write(&policy->rwsem); 1061 if (has_target()) 1062 cpufreq_stop_governor(policy); 1063 1064 cpumask_set_cpu(cpu, policy->cpus); 1065 1066 if (has_target()) { 1067 ret = cpufreq_start_governor(policy); 1068 if (ret) 1069 pr_err("%s: Failed to start governor\n", __func__); 1070 } 1071 up_write(&policy->rwsem); 1072 return ret; 1073 } 1074 1075 static void handle_update(struct work_struct *work) 1076 { 1077 struct cpufreq_policy *policy = 1078 container_of(work, struct cpufreq_policy, update); 1079 unsigned int cpu = policy->cpu; 1080 pr_debug("handle_update for cpu %u called\n", cpu); 1081 cpufreq_update_policy(cpu); 1082 } 1083 1084 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1085 { 1086 struct cpufreq_policy *policy; 1087 int ret; 1088 1089 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1090 if (!policy) 1091 return NULL; 1092 1093 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1094 goto err_free_policy; 1095 1096 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1097 goto err_free_cpumask; 1098 1099 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1100 goto err_free_rcpumask; 1101 1102 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1103 cpufreq_global_kobject, "policy%u", cpu); 1104 if (ret) { 1105 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1106 goto err_free_real_cpus; 1107 } 1108 1109 INIT_LIST_HEAD(&policy->policy_list); 1110 init_rwsem(&policy->rwsem); 1111 spin_lock_init(&policy->transition_lock); 1112 init_waitqueue_head(&policy->transition_wait); 1113 init_completion(&policy->kobj_unregister); 1114 INIT_WORK(&policy->update, handle_update); 1115 1116 policy->cpu = cpu; 1117 return policy; 1118 1119 err_free_real_cpus: 1120 free_cpumask_var(policy->real_cpus); 1121 err_free_rcpumask: 1122 free_cpumask_var(policy->related_cpus); 1123 err_free_cpumask: 1124 free_cpumask_var(policy->cpus); 1125 err_free_policy: 1126 kfree(policy); 1127 1128 return NULL; 1129 } 1130 1131 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1132 { 1133 struct kobject *kobj; 1134 struct completion *cmp; 1135 1136 down_write(&policy->rwsem); 1137 cpufreq_stats_free_table(policy); 1138 kobj = &policy->kobj; 1139 cmp = &policy->kobj_unregister; 1140 up_write(&policy->rwsem); 1141 kobject_put(kobj); 1142 1143 /* 1144 * We need to make sure that the underlying kobj is 1145 * actually not referenced anymore by anybody before we 1146 * proceed with unloading. 1147 */ 1148 pr_debug("waiting for dropping of refcount\n"); 1149 wait_for_completion(cmp); 1150 pr_debug("wait complete\n"); 1151 } 1152 1153 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1154 { 1155 unsigned long flags; 1156 int cpu; 1157 1158 /* Remove policy from list */ 1159 write_lock_irqsave(&cpufreq_driver_lock, flags); 1160 list_del(&policy->policy_list); 1161 1162 for_each_cpu(cpu, policy->related_cpus) 1163 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1164 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1165 1166 cpufreq_policy_put_kobj(policy); 1167 free_cpumask_var(policy->real_cpus); 1168 free_cpumask_var(policy->related_cpus); 1169 free_cpumask_var(policy->cpus); 1170 kfree(policy); 1171 } 1172 1173 static int cpufreq_online(unsigned int cpu) 1174 { 1175 struct cpufreq_policy *policy; 1176 bool new_policy; 1177 unsigned long flags; 1178 unsigned int j; 1179 int ret; 1180 1181 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1182 1183 /* Check if this CPU already has a policy to manage it */ 1184 policy = per_cpu(cpufreq_cpu_data, cpu); 1185 if (policy) { 1186 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1187 if (!policy_is_inactive(policy)) 1188 return cpufreq_add_policy_cpu(policy, cpu); 1189 1190 /* This is the only online CPU for the policy. Start over. */ 1191 new_policy = false; 1192 down_write(&policy->rwsem); 1193 policy->cpu = cpu; 1194 policy->governor = NULL; 1195 up_write(&policy->rwsem); 1196 } else { 1197 new_policy = true; 1198 policy = cpufreq_policy_alloc(cpu); 1199 if (!policy) 1200 return -ENOMEM; 1201 } 1202 1203 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1204 1205 /* call driver. From then on the cpufreq must be able 1206 * to accept all calls to ->verify and ->setpolicy for this CPU 1207 */ 1208 ret = cpufreq_driver->init(policy); 1209 if (ret) { 1210 pr_debug("initialization failed\n"); 1211 goto out_free_policy; 1212 } 1213 1214 ret = cpufreq_table_validate_and_sort(policy); 1215 if (ret) 1216 goto out_exit_policy; 1217 1218 down_write(&policy->rwsem); 1219 1220 if (new_policy) { 1221 /* related_cpus should at least include policy->cpus. */ 1222 cpumask_copy(policy->related_cpus, policy->cpus); 1223 } 1224 1225 /* 1226 * affected cpus must always be the one, which are online. We aren't 1227 * managing offline cpus here. 1228 */ 1229 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1230 1231 if (new_policy) { 1232 policy->user_policy.min = policy->min; 1233 policy->user_policy.max = policy->max; 1234 1235 for_each_cpu(j, policy->related_cpus) { 1236 per_cpu(cpufreq_cpu_data, j) = policy; 1237 add_cpu_dev_symlink(policy, j); 1238 } 1239 } else { 1240 policy->min = policy->user_policy.min; 1241 policy->max = policy->user_policy.max; 1242 } 1243 1244 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1245 policy->cur = cpufreq_driver->get(policy->cpu); 1246 if (!policy->cur) { 1247 pr_err("%s: ->get() failed\n", __func__); 1248 goto out_destroy_policy; 1249 } 1250 } 1251 1252 /* 1253 * Sometimes boot loaders set CPU frequency to a value outside of 1254 * frequency table present with cpufreq core. In such cases CPU might be 1255 * unstable if it has to run on that frequency for long duration of time 1256 * and so its better to set it to a frequency which is specified in 1257 * freq-table. This also makes cpufreq stats inconsistent as 1258 * cpufreq-stats would fail to register because current frequency of CPU 1259 * isn't found in freq-table. 1260 * 1261 * Because we don't want this change to effect boot process badly, we go 1262 * for the next freq which is >= policy->cur ('cur' must be set by now, 1263 * otherwise we will end up setting freq to lowest of the table as 'cur' 1264 * is initialized to zero). 1265 * 1266 * We are passing target-freq as "policy->cur - 1" otherwise 1267 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1268 * equal to target-freq. 1269 */ 1270 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1271 && has_target()) { 1272 /* Are we running at unknown frequency ? */ 1273 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1274 if (ret == -EINVAL) { 1275 /* Warn user and fix it */ 1276 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1277 __func__, policy->cpu, policy->cur); 1278 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1279 CPUFREQ_RELATION_L); 1280 1281 /* 1282 * Reaching here after boot in a few seconds may not 1283 * mean that system will remain stable at "unknown" 1284 * frequency for longer duration. Hence, a BUG_ON(). 1285 */ 1286 BUG_ON(ret); 1287 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1288 __func__, policy->cpu, policy->cur); 1289 } 1290 } 1291 1292 if (new_policy) { 1293 ret = cpufreq_add_dev_interface(policy); 1294 if (ret) 1295 goto out_destroy_policy; 1296 1297 cpufreq_stats_create_table(policy); 1298 1299 write_lock_irqsave(&cpufreq_driver_lock, flags); 1300 list_add(&policy->policy_list, &cpufreq_policy_list); 1301 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1302 } 1303 1304 ret = cpufreq_init_policy(policy); 1305 if (ret) { 1306 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1307 __func__, cpu, ret); 1308 /* cpufreq_policy_free() will notify based on this */ 1309 new_policy = false; 1310 goto out_destroy_policy; 1311 } 1312 1313 up_write(&policy->rwsem); 1314 1315 kobject_uevent(&policy->kobj, KOBJ_ADD); 1316 1317 /* Callback for handling stuff after policy is ready */ 1318 if (cpufreq_driver->ready) 1319 cpufreq_driver->ready(policy); 1320 1321 pr_debug("initialization complete\n"); 1322 1323 return 0; 1324 1325 out_destroy_policy: 1326 for_each_cpu(j, policy->real_cpus) 1327 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1328 1329 up_write(&policy->rwsem); 1330 1331 out_exit_policy: 1332 if (cpufreq_driver->exit) 1333 cpufreq_driver->exit(policy); 1334 1335 out_free_policy: 1336 cpufreq_policy_free(policy); 1337 return ret; 1338 } 1339 1340 /** 1341 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1342 * @dev: CPU device. 1343 * @sif: Subsystem interface structure pointer (not used) 1344 */ 1345 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1346 { 1347 struct cpufreq_policy *policy; 1348 unsigned cpu = dev->id; 1349 int ret; 1350 1351 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1352 1353 if (cpu_online(cpu)) { 1354 ret = cpufreq_online(cpu); 1355 if (ret) 1356 return ret; 1357 } 1358 1359 /* Create sysfs link on CPU registration */ 1360 policy = per_cpu(cpufreq_cpu_data, cpu); 1361 if (policy) 1362 add_cpu_dev_symlink(policy, cpu); 1363 1364 return 0; 1365 } 1366 1367 static int cpufreq_offline(unsigned int cpu) 1368 { 1369 struct cpufreq_policy *policy; 1370 int ret; 1371 1372 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1373 1374 policy = cpufreq_cpu_get_raw(cpu); 1375 if (!policy) { 1376 pr_debug("%s: No cpu_data found\n", __func__); 1377 return 0; 1378 } 1379 1380 down_write(&policy->rwsem); 1381 if (has_target()) 1382 cpufreq_stop_governor(policy); 1383 1384 cpumask_clear_cpu(cpu, policy->cpus); 1385 1386 if (policy_is_inactive(policy)) { 1387 if (has_target()) 1388 strncpy(policy->last_governor, policy->governor->name, 1389 CPUFREQ_NAME_LEN); 1390 else 1391 policy->last_policy = policy->policy; 1392 } else if (cpu == policy->cpu) { 1393 /* Nominate new CPU */ 1394 policy->cpu = cpumask_any(policy->cpus); 1395 } 1396 1397 /* Start governor again for active policy */ 1398 if (!policy_is_inactive(policy)) { 1399 if (has_target()) { 1400 ret = cpufreq_start_governor(policy); 1401 if (ret) 1402 pr_err("%s: Failed to start governor\n", __func__); 1403 } 1404 1405 goto unlock; 1406 } 1407 1408 if (cpufreq_driver->stop_cpu) 1409 cpufreq_driver->stop_cpu(policy); 1410 1411 if (has_target()) 1412 cpufreq_exit_governor(policy); 1413 1414 /* 1415 * Perform the ->exit() even during light-weight tear-down, 1416 * since this is a core component, and is essential for the 1417 * subsequent light-weight ->init() to succeed. 1418 */ 1419 if (cpufreq_driver->exit) { 1420 cpufreq_driver->exit(policy); 1421 policy->freq_table = NULL; 1422 } 1423 1424 unlock: 1425 up_write(&policy->rwsem); 1426 return 0; 1427 } 1428 1429 /** 1430 * cpufreq_remove_dev - remove a CPU device 1431 * 1432 * Removes the cpufreq interface for a CPU device. 1433 */ 1434 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1435 { 1436 unsigned int cpu = dev->id; 1437 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1438 1439 if (!policy) 1440 return; 1441 1442 if (cpu_online(cpu)) 1443 cpufreq_offline(cpu); 1444 1445 cpumask_clear_cpu(cpu, policy->real_cpus); 1446 remove_cpu_dev_symlink(policy, dev); 1447 1448 if (cpumask_empty(policy->real_cpus)) 1449 cpufreq_policy_free(policy); 1450 } 1451 1452 /** 1453 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1454 * in deep trouble. 1455 * @policy: policy managing CPUs 1456 * @new_freq: CPU frequency the CPU actually runs at 1457 * 1458 * We adjust to current frequency first, and need to clean up later. 1459 * So either call to cpufreq_update_policy() or schedule handle_update()). 1460 */ 1461 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1462 unsigned int new_freq) 1463 { 1464 struct cpufreq_freqs freqs; 1465 1466 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1467 policy->cur, new_freq); 1468 1469 freqs.old = policy->cur; 1470 freqs.new = new_freq; 1471 1472 cpufreq_freq_transition_begin(policy, &freqs); 1473 cpufreq_freq_transition_end(policy, &freqs, 0); 1474 } 1475 1476 /** 1477 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1478 * @cpu: CPU number 1479 * 1480 * This is the last known freq, without actually getting it from the driver. 1481 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1482 */ 1483 unsigned int cpufreq_quick_get(unsigned int cpu) 1484 { 1485 struct cpufreq_policy *policy; 1486 unsigned int ret_freq = 0; 1487 unsigned long flags; 1488 1489 read_lock_irqsave(&cpufreq_driver_lock, flags); 1490 1491 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1492 ret_freq = cpufreq_driver->get(cpu); 1493 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1494 return ret_freq; 1495 } 1496 1497 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1498 1499 policy = cpufreq_cpu_get(cpu); 1500 if (policy) { 1501 ret_freq = policy->cur; 1502 cpufreq_cpu_put(policy); 1503 } 1504 1505 return ret_freq; 1506 } 1507 EXPORT_SYMBOL(cpufreq_quick_get); 1508 1509 /** 1510 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1511 * @cpu: CPU number 1512 * 1513 * Just return the max possible frequency for a given CPU. 1514 */ 1515 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1516 { 1517 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1518 unsigned int ret_freq = 0; 1519 1520 if (policy) { 1521 ret_freq = policy->max; 1522 cpufreq_cpu_put(policy); 1523 } 1524 1525 return ret_freq; 1526 } 1527 EXPORT_SYMBOL(cpufreq_quick_get_max); 1528 1529 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1530 { 1531 unsigned int ret_freq = 0; 1532 1533 if (!cpufreq_driver->get) 1534 return ret_freq; 1535 1536 ret_freq = cpufreq_driver->get(policy->cpu); 1537 1538 /* 1539 * Updating inactive policies is invalid, so avoid doing that. Also 1540 * if fast frequency switching is used with the given policy, the check 1541 * against policy->cur is pointless, so skip it in that case too. 1542 */ 1543 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled) 1544 return ret_freq; 1545 1546 if (ret_freq && policy->cur && 1547 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1548 /* verify no discrepancy between actual and 1549 saved value exists */ 1550 if (unlikely(ret_freq != policy->cur)) { 1551 cpufreq_out_of_sync(policy, ret_freq); 1552 schedule_work(&policy->update); 1553 } 1554 } 1555 1556 return ret_freq; 1557 } 1558 1559 /** 1560 * cpufreq_get - get the current CPU frequency (in kHz) 1561 * @cpu: CPU number 1562 * 1563 * Get the CPU current (static) CPU frequency 1564 */ 1565 unsigned int cpufreq_get(unsigned int cpu) 1566 { 1567 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1568 unsigned int ret_freq = 0; 1569 1570 if (policy) { 1571 down_read(&policy->rwsem); 1572 1573 if (!policy_is_inactive(policy)) 1574 ret_freq = __cpufreq_get(policy); 1575 1576 up_read(&policy->rwsem); 1577 1578 cpufreq_cpu_put(policy); 1579 } 1580 1581 return ret_freq; 1582 } 1583 EXPORT_SYMBOL(cpufreq_get); 1584 1585 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy) 1586 { 1587 unsigned int new_freq; 1588 1589 new_freq = cpufreq_driver->get(policy->cpu); 1590 if (!new_freq) 1591 return 0; 1592 1593 if (!policy->cur) { 1594 pr_debug("cpufreq: Driver did not initialize current freq\n"); 1595 policy->cur = new_freq; 1596 } else if (policy->cur != new_freq && has_target()) { 1597 cpufreq_out_of_sync(policy, new_freq); 1598 } 1599 1600 return new_freq; 1601 } 1602 1603 static struct subsys_interface cpufreq_interface = { 1604 .name = "cpufreq", 1605 .subsys = &cpu_subsys, 1606 .add_dev = cpufreq_add_dev, 1607 .remove_dev = cpufreq_remove_dev, 1608 }; 1609 1610 /* 1611 * In case platform wants some specific frequency to be configured 1612 * during suspend.. 1613 */ 1614 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1615 { 1616 int ret; 1617 1618 if (!policy->suspend_freq) { 1619 pr_debug("%s: suspend_freq not defined\n", __func__); 1620 return 0; 1621 } 1622 1623 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1624 policy->suspend_freq); 1625 1626 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1627 CPUFREQ_RELATION_H); 1628 if (ret) 1629 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1630 __func__, policy->suspend_freq, ret); 1631 1632 return ret; 1633 } 1634 EXPORT_SYMBOL(cpufreq_generic_suspend); 1635 1636 /** 1637 * cpufreq_suspend() - Suspend CPUFreq governors 1638 * 1639 * Called during system wide Suspend/Hibernate cycles for suspending governors 1640 * as some platforms can't change frequency after this point in suspend cycle. 1641 * Because some of the devices (like: i2c, regulators, etc) they use for 1642 * changing frequency are suspended quickly after this point. 1643 */ 1644 void cpufreq_suspend(void) 1645 { 1646 struct cpufreq_policy *policy; 1647 1648 if (!cpufreq_driver) 1649 return; 1650 1651 if (!has_target() && !cpufreq_driver->suspend) 1652 goto suspend; 1653 1654 pr_debug("%s: Suspending Governors\n", __func__); 1655 1656 for_each_active_policy(policy) { 1657 if (has_target()) { 1658 down_write(&policy->rwsem); 1659 cpufreq_stop_governor(policy); 1660 up_write(&policy->rwsem); 1661 } 1662 1663 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1664 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1665 policy); 1666 } 1667 1668 suspend: 1669 cpufreq_suspended = true; 1670 } 1671 1672 /** 1673 * cpufreq_resume() - Resume CPUFreq governors 1674 * 1675 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1676 * are suspended with cpufreq_suspend(). 1677 */ 1678 void cpufreq_resume(void) 1679 { 1680 struct cpufreq_policy *policy; 1681 int ret; 1682 1683 if (!cpufreq_driver) 1684 return; 1685 1686 if (unlikely(!cpufreq_suspended)) 1687 return; 1688 1689 cpufreq_suspended = false; 1690 1691 if (!has_target() && !cpufreq_driver->resume) 1692 return; 1693 1694 pr_debug("%s: Resuming Governors\n", __func__); 1695 1696 for_each_active_policy(policy) { 1697 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1698 pr_err("%s: Failed to resume driver: %p\n", __func__, 1699 policy); 1700 } else if (has_target()) { 1701 down_write(&policy->rwsem); 1702 ret = cpufreq_start_governor(policy); 1703 up_write(&policy->rwsem); 1704 1705 if (ret) 1706 pr_err("%s: Failed to start governor for policy: %p\n", 1707 __func__, policy); 1708 } 1709 } 1710 } 1711 1712 /** 1713 * cpufreq_get_current_driver - return current driver's name 1714 * 1715 * Return the name string of the currently loaded cpufreq driver 1716 * or NULL, if none. 1717 */ 1718 const char *cpufreq_get_current_driver(void) 1719 { 1720 if (cpufreq_driver) 1721 return cpufreq_driver->name; 1722 1723 return NULL; 1724 } 1725 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1726 1727 /** 1728 * cpufreq_get_driver_data - return current driver data 1729 * 1730 * Return the private data of the currently loaded cpufreq 1731 * driver, or NULL if no cpufreq driver is loaded. 1732 */ 1733 void *cpufreq_get_driver_data(void) 1734 { 1735 if (cpufreq_driver) 1736 return cpufreq_driver->driver_data; 1737 1738 return NULL; 1739 } 1740 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1741 1742 /********************************************************************* 1743 * NOTIFIER LISTS INTERFACE * 1744 *********************************************************************/ 1745 1746 /** 1747 * cpufreq_register_notifier - register a driver with cpufreq 1748 * @nb: notifier function to register 1749 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1750 * 1751 * Add a driver to one of two lists: either a list of drivers that 1752 * are notified about clock rate changes (once before and once after 1753 * the transition), or a list of drivers that are notified about 1754 * changes in cpufreq policy. 1755 * 1756 * This function may sleep, and has the same return conditions as 1757 * blocking_notifier_chain_register. 1758 */ 1759 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1760 { 1761 int ret; 1762 1763 if (cpufreq_disabled()) 1764 return -EINVAL; 1765 1766 switch (list) { 1767 case CPUFREQ_TRANSITION_NOTIFIER: 1768 mutex_lock(&cpufreq_fast_switch_lock); 1769 1770 if (cpufreq_fast_switch_count > 0) { 1771 mutex_unlock(&cpufreq_fast_switch_lock); 1772 return -EBUSY; 1773 } 1774 ret = srcu_notifier_chain_register( 1775 &cpufreq_transition_notifier_list, nb); 1776 if (!ret) 1777 cpufreq_fast_switch_count--; 1778 1779 mutex_unlock(&cpufreq_fast_switch_lock); 1780 break; 1781 case CPUFREQ_POLICY_NOTIFIER: 1782 ret = blocking_notifier_chain_register( 1783 &cpufreq_policy_notifier_list, nb); 1784 break; 1785 default: 1786 ret = -EINVAL; 1787 } 1788 1789 return ret; 1790 } 1791 EXPORT_SYMBOL(cpufreq_register_notifier); 1792 1793 /** 1794 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1795 * @nb: notifier block to be unregistered 1796 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1797 * 1798 * Remove a driver from the CPU frequency notifier list. 1799 * 1800 * This function may sleep, and has the same return conditions as 1801 * blocking_notifier_chain_unregister. 1802 */ 1803 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1804 { 1805 int ret; 1806 1807 if (cpufreq_disabled()) 1808 return -EINVAL; 1809 1810 switch (list) { 1811 case CPUFREQ_TRANSITION_NOTIFIER: 1812 mutex_lock(&cpufreq_fast_switch_lock); 1813 1814 ret = srcu_notifier_chain_unregister( 1815 &cpufreq_transition_notifier_list, nb); 1816 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1817 cpufreq_fast_switch_count++; 1818 1819 mutex_unlock(&cpufreq_fast_switch_lock); 1820 break; 1821 case CPUFREQ_POLICY_NOTIFIER: 1822 ret = blocking_notifier_chain_unregister( 1823 &cpufreq_policy_notifier_list, nb); 1824 break; 1825 default: 1826 ret = -EINVAL; 1827 } 1828 1829 return ret; 1830 } 1831 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1832 1833 1834 /********************************************************************* 1835 * GOVERNORS * 1836 *********************************************************************/ 1837 1838 /** 1839 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1840 * @policy: cpufreq policy to switch the frequency for. 1841 * @target_freq: New frequency to set (may be approximate). 1842 * 1843 * Carry out a fast frequency switch without sleeping. 1844 * 1845 * The driver's ->fast_switch() callback invoked by this function must be 1846 * suitable for being called from within RCU-sched read-side critical sections 1847 * and it is expected to select the minimum available frequency greater than or 1848 * equal to @target_freq (CPUFREQ_RELATION_L). 1849 * 1850 * This function must not be called if policy->fast_switch_enabled is unset. 1851 * 1852 * Governors calling this function must guarantee that it will never be invoked 1853 * twice in parallel for the same policy and that it will never be called in 1854 * parallel with either ->target() or ->target_index() for the same policy. 1855 * 1856 * Returns the actual frequency set for the CPU. 1857 * 1858 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 1859 * error condition, the hardware configuration must be preserved. 1860 */ 1861 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1862 unsigned int target_freq) 1863 { 1864 target_freq = clamp_val(target_freq, policy->min, policy->max); 1865 1866 return cpufreq_driver->fast_switch(policy, target_freq); 1867 } 1868 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1869 1870 /* Must set freqs->new to intermediate frequency */ 1871 static int __target_intermediate(struct cpufreq_policy *policy, 1872 struct cpufreq_freqs *freqs, int index) 1873 { 1874 int ret; 1875 1876 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1877 1878 /* We don't need to switch to intermediate freq */ 1879 if (!freqs->new) 1880 return 0; 1881 1882 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1883 __func__, policy->cpu, freqs->old, freqs->new); 1884 1885 cpufreq_freq_transition_begin(policy, freqs); 1886 ret = cpufreq_driver->target_intermediate(policy, index); 1887 cpufreq_freq_transition_end(policy, freqs, ret); 1888 1889 if (ret) 1890 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1891 __func__, ret); 1892 1893 return ret; 1894 } 1895 1896 static int __target_index(struct cpufreq_policy *policy, int index) 1897 { 1898 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1899 unsigned int intermediate_freq = 0; 1900 unsigned int newfreq = policy->freq_table[index].frequency; 1901 int retval = -EINVAL; 1902 bool notify; 1903 1904 if (newfreq == policy->cur) 1905 return 0; 1906 1907 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1908 if (notify) { 1909 /* Handle switching to intermediate frequency */ 1910 if (cpufreq_driver->get_intermediate) { 1911 retval = __target_intermediate(policy, &freqs, index); 1912 if (retval) 1913 return retval; 1914 1915 intermediate_freq = freqs.new; 1916 /* Set old freq to intermediate */ 1917 if (intermediate_freq) 1918 freqs.old = freqs.new; 1919 } 1920 1921 freqs.new = newfreq; 1922 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1923 __func__, policy->cpu, freqs.old, freqs.new); 1924 1925 cpufreq_freq_transition_begin(policy, &freqs); 1926 } 1927 1928 retval = cpufreq_driver->target_index(policy, index); 1929 if (retval) 1930 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1931 retval); 1932 1933 if (notify) { 1934 cpufreq_freq_transition_end(policy, &freqs, retval); 1935 1936 /* 1937 * Failed after setting to intermediate freq? Driver should have 1938 * reverted back to initial frequency and so should we. Check 1939 * here for intermediate_freq instead of get_intermediate, in 1940 * case we haven't switched to intermediate freq at all. 1941 */ 1942 if (unlikely(retval && intermediate_freq)) { 1943 freqs.old = intermediate_freq; 1944 freqs.new = policy->restore_freq; 1945 cpufreq_freq_transition_begin(policy, &freqs); 1946 cpufreq_freq_transition_end(policy, &freqs, 0); 1947 } 1948 } 1949 1950 return retval; 1951 } 1952 1953 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1954 unsigned int target_freq, 1955 unsigned int relation) 1956 { 1957 unsigned int old_target_freq = target_freq; 1958 int index; 1959 1960 if (cpufreq_disabled()) 1961 return -ENODEV; 1962 1963 /* Make sure that target_freq is within supported range */ 1964 target_freq = clamp_val(target_freq, policy->min, policy->max); 1965 1966 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1967 policy->cpu, target_freq, relation, old_target_freq); 1968 1969 /* 1970 * This might look like a redundant call as we are checking it again 1971 * after finding index. But it is left intentionally for cases where 1972 * exactly same freq is called again and so we can save on few function 1973 * calls. 1974 */ 1975 if (target_freq == policy->cur) 1976 return 0; 1977 1978 /* Save last value to restore later on errors */ 1979 policy->restore_freq = policy->cur; 1980 1981 if (cpufreq_driver->target) 1982 return cpufreq_driver->target(policy, target_freq, relation); 1983 1984 if (!cpufreq_driver->target_index) 1985 return -EINVAL; 1986 1987 index = cpufreq_frequency_table_target(policy, target_freq, relation); 1988 1989 return __target_index(policy, index); 1990 } 1991 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1992 1993 int cpufreq_driver_target(struct cpufreq_policy *policy, 1994 unsigned int target_freq, 1995 unsigned int relation) 1996 { 1997 int ret = -EINVAL; 1998 1999 down_write(&policy->rwsem); 2000 2001 ret = __cpufreq_driver_target(policy, target_freq, relation); 2002 2003 up_write(&policy->rwsem); 2004 2005 return ret; 2006 } 2007 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2008 2009 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2010 { 2011 return NULL; 2012 } 2013 2014 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2015 { 2016 int ret; 2017 2018 /* Don't start any governor operations if we are entering suspend */ 2019 if (cpufreq_suspended) 2020 return 0; 2021 /* 2022 * Governor might not be initiated here if ACPI _PPC changed 2023 * notification happened, so check it. 2024 */ 2025 if (!policy->governor) 2026 return -EINVAL; 2027 2028 /* Platform doesn't want dynamic frequency switching ? */ 2029 if (policy->governor->dynamic_switching && 2030 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2031 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2032 2033 if (gov) { 2034 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2035 policy->governor->name, gov->name); 2036 policy->governor = gov; 2037 } else { 2038 return -EINVAL; 2039 } 2040 } 2041 2042 if (!try_module_get(policy->governor->owner)) 2043 return -EINVAL; 2044 2045 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2046 2047 if (policy->governor->init) { 2048 ret = policy->governor->init(policy); 2049 if (ret) { 2050 module_put(policy->governor->owner); 2051 return ret; 2052 } 2053 } 2054 2055 return 0; 2056 } 2057 2058 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2059 { 2060 if (cpufreq_suspended || !policy->governor) 2061 return; 2062 2063 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2064 2065 if (policy->governor->exit) 2066 policy->governor->exit(policy); 2067 2068 module_put(policy->governor->owner); 2069 } 2070 2071 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2072 { 2073 int ret; 2074 2075 if (cpufreq_suspended) 2076 return 0; 2077 2078 if (!policy->governor) 2079 return -EINVAL; 2080 2081 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2082 2083 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) 2084 cpufreq_update_current_freq(policy); 2085 2086 if (policy->governor->start) { 2087 ret = policy->governor->start(policy); 2088 if (ret) 2089 return ret; 2090 } 2091 2092 if (policy->governor->limits) 2093 policy->governor->limits(policy); 2094 2095 return 0; 2096 } 2097 2098 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2099 { 2100 if (cpufreq_suspended || !policy->governor) 2101 return; 2102 2103 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2104 2105 if (policy->governor->stop) 2106 policy->governor->stop(policy); 2107 } 2108 2109 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2110 { 2111 if (cpufreq_suspended || !policy->governor) 2112 return; 2113 2114 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2115 2116 if (policy->governor->limits) 2117 policy->governor->limits(policy); 2118 } 2119 2120 int cpufreq_register_governor(struct cpufreq_governor *governor) 2121 { 2122 int err; 2123 2124 if (!governor) 2125 return -EINVAL; 2126 2127 if (cpufreq_disabled()) 2128 return -ENODEV; 2129 2130 mutex_lock(&cpufreq_governor_mutex); 2131 2132 err = -EBUSY; 2133 if (!find_governor(governor->name)) { 2134 err = 0; 2135 list_add(&governor->governor_list, &cpufreq_governor_list); 2136 } 2137 2138 mutex_unlock(&cpufreq_governor_mutex); 2139 return err; 2140 } 2141 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2142 2143 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2144 { 2145 struct cpufreq_policy *policy; 2146 unsigned long flags; 2147 2148 if (!governor) 2149 return; 2150 2151 if (cpufreq_disabled()) 2152 return; 2153 2154 /* clear last_governor for all inactive policies */ 2155 read_lock_irqsave(&cpufreq_driver_lock, flags); 2156 for_each_inactive_policy(policy) { 2157 if (!strcmp(policy->last_governor, governor->name)) { 2158 policy->governor = NULL; 2159 strcpy(policy->last_governor, "\0"); 2160 } 2161 } 2162 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2163 2164 mutex_lock(&cpufreq_governor_mutex); 2165 list_del(&governor->governor_list); 2166 mutex_unlock(&cpufreq_governor_mutex); 2167 } 2168 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2169 2170 2171 /********************************************************************* 2172 * POLICY INTERFACE * 2173 *********************************************************************/ 2174 2175 /** 2176 * cpufreq_get_policy - get the current cpufreq_policy 2177 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2178 * is written 2179 * 2180 * Reads the current cpufreq policy. 2181 */ 2182 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2183 { 2184 struct cpufreq_policy *cpu_policy; 2185 if (!policy) 2186 return -EINVAL; 2187 2188 cpu_policy = cpufreq_cpu_get(cpu); 2189 if (!cpu_policy) 2190 return -EINVAL; 2191 2192 memcpy(policy, cpu_policy, sizeof(*policy)); 2193 2194 cpufreq_cpu_put(cpu_policy); 2195 return 0; 2196 } 2197 EXPORT_SYMBOL(cpufreq_get_policy); 2198 2199 /* 2200 * policy : current policy. 2201 * new_policy: policy to be set. 2202 */ 2203 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2204 struct cpufreq_policy *new_policy) 2205 { 2206 struct cpufreq_governor *old_gov; 2207 int ret; 2208 2209 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2210 new_policy->cpu, new_policy->min, new_policy->max); 2211 2212 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2213 2214 /* 2215 * This check works well when we store new min/max freq attributes, 2216 * because new_policy is a copy of policy with one field updated. 2217 */ 2218 if (new_policy->min > new_policy->max) 2219 return -EINVAL; 2220 2221 /* verify the cpu speed can be set within this limit */ 2222 ret = cpufreq_driver->verify(new_policy); 2223 if (ret) 2224 return ret; 2225 2226 /* adjust if necessary - all reasons */ 2227 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2228 CPUFREQ_ADJUST, new_policy); 2229 2230 /* 2231 * verify the cpu speed can be set within this limit, which might be 2232 * different to the first one 2233 */ 2234 ret = cpufreq_driver->verify(new_policy); 2235 if (ret) 2236 return ret; 2237 2238 /* notification of the new policy */ 2239 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2240 CPUFREQ_NOTIFY, new_policy); 2241 2242 policy->min = new_policy->min; 2243 policy->max = new_policy->max; 2244 trace_cpu_frequency_limits(policy); 2245 2246 policy->cached_target_freq = UINT_MAX; 2247 2248 pr_debug("new min and max freqs are %u - %u kHz\n", 2249 policy->min, policy->max); 2250 2251 if (cpufreq_driver->setpolicy) { 2252 policy->policy = new_policy->policy; 2253 pr_debug("setting range\n"); 2254 return cpufreq_driver->setpolicy(new_policy); 2255 } 2256 2257 if (new_policy->governor == policy->governor) { 2258 pr_debug("cpufreq: governor limits update\n"); 2259 cpufreq_governor_limits(policy); 2260 return 0; 2261 } 2262 2263 pr_debug("governor switch\n"); 2264 2265 /* save old, working values */ 2266 old_gov = policy->governor; 2267 /* end old governor */ 2268 if (old_gov) { 2269 cpufreq_stop_governor(policy); 2270 cpufreq_exit_governor(policy); 2271 } 2272 2273 /* start new governor */ 2274 policy->governor = new_policy->governor; 2275 ret = cpufreq_init_governor(policy); 2276 if (!ret) { 2277 ret = cpufreq_start_governor(policy); 2278 if (!ret) { 2279 pr_debug("cpufreq: governor change\n"); 2280 return 0; 2281 } 2282 cpufreq_exit_governor(policy); 2283 } 2284 2285 /* new governor failed, so re-start old one */ 2286 pr_debug("starting governor %s failed\n", policy->governor->name); 2287 if (old_gov) { 2288 policy->governor = old_gov; 2289 if (cpufreq_init_governor(policy)) 2290 policy->governor = NULL; 2291 else 2292 cpufreq_start_governor(policy); 2293 } 2294 2295 return ret; 2296 } 2297 2298 /** 2299 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2300 * @cpu: CPU which shall be re-evaluated 2301 * 2302 * Useful for policy notifiers which have different necessities 2303 * at different times. 2304 */ 2305 void cpufreq_update_policy(unsigned int cpu) 2306 { 2307 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2308 struct cpufreq_policy new_policy; 2309 2310 if (!policy) 2311 return; 2312 2313 down_write(&policy->rwsem); 2314 2315 if (policy_is_inactive(policy)) 2316 goto unlock; 2317 2318 pr_debug("updating policy for CPU %u\n", cpu); 2319 memcpy(&new_policy, policy, sizeof(*policy)); 2320 new_policy.min = policy->user_policy.min; 2321 new_policy.max = policy->user_policy.max; 2322 2323 /* 2324 * BIOS might change freq behind our back 2325 * -> ask driver for current freq and notify governors about a change 2326 */ 2327 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2328 if (cpufreq_suspended) 2329 goto unlock; 2330 2331 new_policy.cur = cpufreq_update_current_freq(policy); 2332 if (WARN_ON(!new_policy.cur)) 2333 goto unlock; 2334 } 2335 2336 cpufreq_set_policy(policy, &new_policy); 2337 2338 unlock: 2339 up_write(&policy->rwsem); 2340 2341 cpufreq_cpu_put(policy); 2342 } 2343 EXPORT_SYMBOL(cpufreq_update_policy); 2344 2345 /********************************************************************* 2346 * BOOST * 2347 *********************************************************************/ 2348 static int cpufreq_boost_set_sw(int state) 2349 { 2350 struct cpufreq_policy *policy; 2351 int ret = -EINVAL; 2352 2353 for_each_active_policy(policy) { 2354 if (!policy->freq_table) 2355 continue; 2356 2357 ret = cpufreq_frequency_table_cpuinfo(policy, 2358 policy->freq_table); 2359 if (ret) { 2360 pr_err("%s: Policy frequency update failed\n", 2361 __func__); 2362 break; 2363 } 2364 2365 down_write(&policy->rwsem); 2366 policy->user_policy.max = policy->max; 2367 cpufreq_governor_limits(policy); 2368 up_write(&policy->rwsem); 2369 } 2370 2371 return ret; 2372 } 2373 2374 int cpufreq_boost_trigger_state(int state) 2375 { 2376 unsigned long flags; 2377 int ret = 0; 2378 2379 if (cpufreq_driver->boost_enabled == state) 2380 return 0; 2381 2382 write_lock_irqsave(&cpufreq_driver_lock, flags); 2383 cpufreq_driver->boost_enabled = state; 2384 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2385 2386 ret = cpufreq_driver->set_boost(state); 2387 if (ret) { 2388 write_lock_irqsave(&cpufreq_driver_lock, flags); 2389 cpufreq_driver->boost_enabled = !state; 2390 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2391 2392 pr_err("%s: Cannot %s BOOST\n", 2393 __func__, state ? "enable" : "disable"); 2394 } 2395 2396 return ret; 2397 } 2398 2399 static bool cpufreq_boost_supported(void) 2400 { 2401 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2402 } 2403 2404 static int create_boost_sysfs_file(void) 2405 { 2406 int ret; 2407 2408 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2409 if (ret) 2410 pr_err("%s: cannot register global BOOST sysfs file\n", 2411 __func__); 2412 2413 return ret; 2414 } 2415 2416 static void remove_boost_sysfs_file(void) 2417 { 2418 if (cpufreq_boost_supported()) 2419 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2420 } 2421 2422 int cpufreq_enable_boost_support(void) 2423 { 2424 if (!cpufreq_driver) 2425 return -EINVAL; 2426 2427 if (cpufreq_boost_supported()) 2428 return 0; 2429 2430 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2431 2432 /* This will get removed on driver unregister */ 2433 return create_boost_sysfs_file(); 2434 } 2435 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2436 2437 int cpufreq_boost_enabled(void) 2438 { 2439 return cpufreq_driver->boost_enabled; 2440 } 2441 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2442 2443 /********************************************************************* 2444 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2445 *********************************************************************/ 2446 static enum cpuhp_state hp_online; 2447 2448 static int cpuhp_cpufreq_online(unsigned int cpu) 2449 { 2450 cpufreq_online(cpu); 2451 2452 return 0; 2453 } 2454 2455 static int cpuhp_cpufreq_offline(unsigned int cpu) 2456 { 2457 cpufreq_offline(cpu); 2458 2459 return 0; 2460 } 2461 2462 /** 2463 * cpufreq_register_driver - register a CPU Frequency driver 2464 * @driver_data: A struct cpufreq_driver containing the values# 2465 * submitted by the CPU Frequency driver. 2466 * 2467 * Registers a CPU Frequency driver to this core code. This code 2468 * returns zero on success, -EEXIST when another driver got here first 2469 * (and isn't unregistered in the meantime). 2470 * 2471 */ 2472 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2473 { 2474 unsigned long flags; 2475 int ret; 2476 2477 if (cpufreq_disabled()) 2478 return -ENODEV; 2479 2480 if (!driver_data || !driver_data->verify || !driver_data->init || 2481 !(driver_data->setpolicy || driver_data->target_index || 2482 driver_data->target) || 2483 (driver_data->setpolicy && (driver_data->target_index || 2484 driver_data->target)) || 2485 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2486 return -EINVAL; 2487 2488 pr_debug("trying to register driver %s\n", driver_data->name); 2489 2490 /* Protect against concurrent CPU online/offline. */ 2491 cpus_read_lock(); 2492 2493 write_lock_irqsave(&cpufreq_driver_lock, flags); 2494 if (cpufreq_driver) { 2495 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2496 ret = -EEXIST; 2497 goto out; 2498 } 2499 cpufreq_driver = driver_data; 2500 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2501 2502 if (driver_data->setpolicy) 2503 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2504 2505 if (cpufreq_boost_supported()) { 2506 ret = create_boost_sysfs_file(); 2507 if (ret) 2508 goto err_null_driver; 2509 } 2510 2511 ret = subsys_interface_register(&cpufreq_interface); 2512 if (ret) 2513 goto err_boost_unreg; 2514 2515 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2516 list_empty(&cpufreq_policy_list)) { 2517 /* if all ->init() calls failed, unregister */ 2518 ret = -ENODEV; 2519 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2520 driver_data->name); 2521 goto err_if_unreg; 2522 } 2523 2524 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2525 "cpufreq:online", 2526 cpuhp_cpufreq_online, 2527 cpuhp_cpufreq_offline); 2528 if (ret < 0) 2529 goto err_if_unreg; 2530 hp_online = ret; 2531 ret = 0; 2532 2533 pr_debug("driver %s up and running\n", driver_data->name); 2534 goto out; 2535 2536 err_if_unreg: 2537 subsys_interface_unregister(&cpufreq_interface); 2538 err_boost_unreg: 2539 remove_boost_sysfs_file(); 2540 err_null_driver: 2541 write_lock_irqsave(&cpufreq_driver_lock, flags); 2542 cpufreq_driver = NULL; 2543 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2544 out: 2545 cpus_read_unlock(); 2546 return ret; 2547 } 2548 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2549 2550 /** 2551 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2552 * 2553 * Unregister the current CPUFreq driver. Only call this if you have 2554 * the right to do so, i.e. if you have succeeded in initialising before! 2555 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2556 * currently not initialised. 2557 */ 2558 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2559 { 2560 unsigned long flags; 2561 2562 if (!cpufreq_driver || (driver != cpufreq_driver)) 2563 return -EINVAL; 2564 2565 pr_debug("unregistering driver %s\n", driver->name); 2566 2567 /* Protect against concurrent cpu hotplug */ 2568 cpus_read_lock(); 2569 subsys_interface_unregister(&cpufreq_interface); 2570 remove_boost_sysfs_file(); 2571 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2572 2573 write_lock_irqsave(&cpufreq_driver_lock, flags); 2574 2575 cpufreq_driver = NULL; 2576 2577 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2578 cpus_read_unlock(); 2579 2580 return 0; 2581 } 2582 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2583 2584 /* 2585 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2586 * or mutexes when secondary CPUs are halted. 2587 */ 2588 static struct syscore_ops cpufreq_syscore_ops = { 2589 .shutdown = cpufreq_suspend, 2590 }; 2591 2592 struct kobject *cpufreq_global_kobject; 2593 EXPORT_SYMBOL(cpufreq_global_kobject); 2594 2595 static int __init cpufreq_core_init(void) 2596 { 2597 if (cpufreq_disabled()) 2598 return -ENODEV; 2599 2600 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2601 BUG_ON(!cpufreq_global_kobject); 2602 2603 register_syscore_ops(&cpufreq_syscore_ops); 2604 2605 return 0; 2606 } 2607 module_param(off, int, 0444); 2608 core_initcall(cpufreq_core_init); 2609