xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 8730046c)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)			 \
43 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 		if ((__active) == !policy_is_inactive(__policy))
45 
46 #define for_each_active_policy(__policy)		\
47 	for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)		\
49 	for_each_suitable_policy(__policy, false)
50 
51 #define for_each_policy(__policy)			\
52 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53 
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)				\
57 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58 
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93 
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 	init_cpufreq_transition_notifier_list_called = true;
99 	return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102 
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 	return off;
107 }
108 void disable_cpufreq(void)
109 {
110 	off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113 
114 bool have_governor_per_policy(void)
115 {
116 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119 
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 	if (have_governor_per_policy())
123 		return &policy->kobj;
124 	else
125 		return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128 
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 	u64 idle_time;
132 	u64 cur_wall_time;
133 	u64 busy_time;
134 
135 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
136 
137 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143 
144 	idle_time = cur_wall_time - busy_time;
145 	if (wall)
146 		*wall = cputime_to_usecs(cur_wall_time);
147 
148 	return cputime_to_usecs(idle_time);
149 }
150 
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154 
155 	if (idle_time == -1ULL)
156 		return get_cpu_idle_time_jiffy(cpu, wall);
157 	else if (!io_busy)
158 		idle_time += get_cpu_iowait_time_us(cpu, wall);
159 
160 	return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163 
164 /*
165  * This is a generic cpufreq init() routine which can be used by cpufreq
166  * drivers of SMP systems. It will do following:
167  * - validate & show freq table passed
168  * - set policies transition latency
169  * - policy->cpus with all possible CPUs
170  */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172 		struct cpufreq_frequency_table *table,
173 		unsigned int transition_latency)
174 {
175 	int ret;
176 
177 	ret = cpufreq_table_validate_and_show(policy, table);
178 	if (ret) {
179 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180 		return ret;
181 	}
182 
183 	policy->cpuinfo.transition_latency = transition_latency;
184 
185 	/*
186 	 * The driver only supports the SMP configuration where all processors
187 	 * share the clock and voltage and clock.
188 	 */
189 	cpumask_setall(policy->cpus);
190 
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194 
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198 
199 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202 
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206 
207 	if (!policy || IS_ERR(policy->clk)) {
208 		pr_err("%s: No %s associated to cpu: %d\n",
209 		       __func__, policy ? "clk" : "policy", cpu);
210 		return 0;
211 	}
212 
213 	return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216 
217 /**
218  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219  *
220  * @cpu: cpu to find policy for.
221  *
222  * This returns policy for 'cpu', returns NULL if it doesn't exist.
223  * It also increments the kobject reference count to mark it busy and so would
224  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226  * freed as that depends on the kobj count.
227  *
228  * Return: A valid policy on success, otherwise NULL on failure.
229  */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232 	struct cpufreq_policy *policy = NULL;
233 	unsigned long flags;
234 
235 	if (WARN_ON(cpu >= nr_cpu_ids))
236 		return NULL;
237 
238 	/* get the cpufreq driver */
239 	read_lock_irqsave(&cpufreq_driver_lock, flags);
240 
241 	if (cpufreq_driver) {
242 		/* get the CPU */
243 		policy = cpufreq_cpu_get_raw(cpu);
244 		if (policy)
245 			kobject_get(&policy->kobj);
246 	}
247 
248 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249 
250 	return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253 
254 /**
255  * cpufreq_cpu_put: Decrements the usage count of a policy
256  *
257  * @policy: policy earlier returned by cpufreq_cpu_get().
258  *
259  * This decrements the kobject reference count incremented earlier by calling
260  * cpufreq_cpu_get().
261  */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264 	kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267 
268 /*********************************************************************
269  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
270  *********************************************************************/
271 
272 /**
273  * adjust_jiffies - adjust the system "loops_per_jiffy"
274  *
275  * This function alters the system "loops_per_jiffy" for the clock
276  * speed change. Note that loops_per_jiffy cannot be updated on SMP
277  * systems as each CPU might be scaled differently. So, use the arch
278  * per-CPU loops_per_jiffy value wherever possible.
279  */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283 	static unsigned long l_p_j_ref;
284 	static unsigned int l_p_j_ref_freq;
285 
286 	if (ci->flags & CPUFREQ_CONST_LOOPS)
287 		return;
288 
289 	if (!l_p_j_ref_freq) {
290 		l_p_j_ref = loops_per_jiffy;
291 		l_p_j_ref_freq = ci->old;
292 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293 			 l_p_j_ref, l_p_j_ref_freq);
294 	}
295 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 								ci->new);
298 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299 			 loops_per_jiffy, ci->new);
300 	}
301 #endif
302 }
303 
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305 		struct cpufreq_freqs *freqs, unsigned int state)
306 {
307 	BUG_ON(irqs_disabled());
308 
309 	if (cpufreq_disabled())
310 		return;
311 
312 	freqs->flags = cpufreq_driver->flags;
313 	pr_debug("notification %u of frequency transition to %u kHz\n",
314 		 state, freqs->new);
315 
316 	switch (state) {
317 
318 	case CPUFREQ_PRECHANGE:
319 		/* detect if the driver reported a value as "old frequency"
320 		 * which is not equal to what the cpufreq core thinks is
321 		 * "old frequency".
322 		 */
323 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324 			if ((policy) && (policy->cpu == freqs->cpu) &&
325 			    (policy->cur) && (policy->cur != freqs->old)) {
326 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 					 freqs->old, policy->cur);
328 				freqs->old = policy->cur;
329 			}
330 		}
331 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332 				CPUFREQ_PRECHANGE, freqs);
333 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334 		break;
335 
336 	case CPUFREQ_POSTCHANGE:
337 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338 		pr_debug("FREQ: %lu - CPU: %lu\n",
339 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340 		trace_cpu_frequency(freqs->new, freqs->cpu);
341 		cpufreq_stats_record_transition(policy, freqs->new);
342 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343 				CPUFREQ_POSTCHANGE, freqs);
344 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
345 			policy->cur = freqs->new;
346 		break;
347 	}
348 }
349 
350 /**
351  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352  * on frequency transition.
353  *
354  * This function calls the transition notifiers and the "adjust_jiffies"
355  * function. It is called twice on all CPU frequency changes that have
356  * external effects.
357  */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359 		struct cpufreq_freqs *freqs, unsigned int state)
360 {
361 	for_each_cpu(freqs->cpu, policy->cpus)
362 		__cpufreq_notify_transition(policy, freqs, state);
363 }
364 
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367 		struct cpufreq_freqs *freqs, int transition_failed)
368 {
369 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 	if (!transition_failed)
371 		return;
372 
373 	swap(freqs->old, freqs->new);
374 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377 
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379 		struct cpufreq_freqs *freqs)
380 {
381 
382 	/*
383 	 * Catch double invocations of _begin() which lead to self-deadlock.
384 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385 	 * doesn't invoke _begin() on their behalf, and hence the chances of
386 	 * double invocations are very low. Moreover, there are scenarios
387 	 * where these checks can emit false-positive warnings in these
388 	 * drivers; so we avoid that by skipping them altogether.
389 	 */
390 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391 				&& current == policy->transition_task);
392 
393 wait:
394 	wait_event(policy->transition_wait, !policy->transition_ongoing);
395 
396 	spin_lock(&policy->transition_lock);
397 
398 	if (unlikely(policy->transition_ongoing)) {
399 		spin_unlock(&policy->transition_lock);
400 		goto wait;
401 	}
402 
403 	policy->transition_ongoing = true;
404 	policy->transition_task = current;
405 
406 	spin_unlock(&policy->transition_lock);
407 
408 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411 
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413 		struct cpufreq_freqs *freqs, int transition_failed)
414 {
415 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
416 		return;
417 
418 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
419 
420 	policy->transition_ongoing = false;
421 	policy->transition_task = NULL;
422 
423 	wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426 
427 /*
428  * Fast frequency switching status count.  Positive means "enabled", negative
429  * means "disabled" and 0 means "not decided yet".
430  */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433 
434 static void cpufreq_list_transition_notifiers(void)
435 {
436 	struct notifier_block *nb;
437 
438 	pr_info("Registered transition notifiers:\n");
439 
440 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
441 
442 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 		pr_info("%pF\n", nb->notifier_call);
444 
445 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447 
448 /**
449  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450  * @policy: cpufreq policy to enable fast frequency switching for.
451  *
452  * Try to enable fast frequency switching for @policy.
453  *
454  * The attempt will fail if there is at least one transition notifier registered
455  * at this point, as fast frequency switching is quite fundamentally at odds
456  * with transition notifiers.  Thus if successful, it will make registration of
457  * transition notifiers fail going forward.
458  */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 	lockdep_assert_held(&policy->rwsem);
462 
463 	if (!policy->fast_switch_possible)
464 		return;
465 
466 	mutex_lock(&cpufreq_fast_switch_lock);
467 	if (cpufreq_fast_switch_count >= 0) {
468 		cpufreq_fast_switch_count++;
469 		policy->fast_switch_enabled = true;
470 	} else {
471 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 			policy->cpu);
473 		cpufreq_list_transition_notifiers();
474 	}
475 	mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478 
479 /**
480  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481  * @policy: cpufreq policy to disable fast frequency switching for.
482  */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 	mutex_lock(&cpufreq_fast_switch_lock);
486 	if (policy->fast_switch_enabled) {
487 		policy->fast_switch_enabled = false;
488 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 			cpufreq_fast_switch_count--;
490 	}
491 	mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494 
495 /**
496  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497  * one.
498  * @target_freq: target frequency to resolve.
499  *
500  * The target to driver frequency mapping is cached in the policy.
501  *
502  * Return: Lowest driver-supported frequency greater than or equal to the
503  * given target_freq, subject to policy (min/max) and driver limitations.
504  */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506 					 unsigned int target_freq)
507 {
508 	target_freq = clamp_val(target_freq, policy->min, policy->max);
509 	policy->cached_target_freq = target_freq;
510 
511 	if (cpufreq_driver->target_index) {
512 		int idx;
513 
514 		idx = cpufreq_frequency_table_target(policy, target_freq,
515 						     CPUFREQ_RELATION_L);
516 		policy->cached_resolved_idx = idx;
517 		return policy->freq_table[idx].frequency;
518 	}
519 
520 	if (cpufreq_driver->resolve_freq)
521 		return cpufreq_driver->resolve_freq(policy, target_freq);
522 
523 	return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526 
527 /*********************************************************************
528  *                          SYSFS INTERFACE                          *
529  *********************************************************************/
530 static ssize_t show_boost(struct kobject *kobj,
531 				 struct attribute *attr, char *buf)
532 {
533 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
534 }
535 
536 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
537 				  const char *buf, size_t count)
538 {
539 	int ret, enable;
540 
541 	ret = sscanf(buf, "%d", &enable);
542 	if (ret != 1 || enable < 0 || enable > 1)
543 		return -EINVAL;
544 
545 	if (cpufreq_boost_trigger_state(enable)) {
546 		pr_err("%s: Cannot %s BOOST!\n",
547 		       __func__, enable ? "enable" : "disable");
548 		return -EINVAL;
549 	}
550 
551 	pr_debug("%s: cpufreq BOOST %s\n",
552 		 __func__, enable ? "enabled" : "disabled");
553 
554 	return count;
555 }
556 define_one_global_rw(boost);
557 
558 static struct cpufreq_governor *find_governor(const char *str_governor)
559 {
560 	struct cpufreq_governor *t;
561 
562 	for_each_governor(t)
563 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
564 			return t;
565 
566 	return NULL;
567 }
568 
569 /**
570  * cpufreq_parse_governor - parse a governor string
571  */
572 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
573 				struct cpufreq_governor **governor)
574 {
575 	int err = -EINVAL;
576 
577 	if (cpufreq_driver->setpolicy) {
578 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
579 			*policy = CPUFREQ_POLICY_PERFORMANCE;
580 			err = 0;
581 		} else if (!strncasecmp(str_governor, "powersave",
582 						CPUFREQ_NAME_LEN)) {
583 			*policy = CPUFREQ_POLICY_POWERSAVE;
584 			err = 0;
585 		}
586 	} else {
587 		struct cpufreq_governor *t;
588 
589 		mutex_lock(&cpufreq_governor_mutex);
590 
591 		t = find_governor(str_governor);
592 
593 		if (t == NULL) {
594 			int ret;
595 
596 			mutex_unlock(&cpufreq_governor_mutex);
597 			ret = request_module("cpufreq_%s", str_governor);
598 			mutex_lock(&cpufreq_governor_mutex);
599 
600 			if (ret == 0)
601 				t = find_governor(str_governor);
602 		}
603 
604 		if (t != NULL) {
605 			*governor = t;
606 			err = 0;
607 		}
608 
609 		mutex_unlock(&cpufreq_governor_mutex);
610 	}
611 	return err;
612 }
613 
614 /**
615  * cpufreq_per_cpu_attr_read() / show_##file_name() -
616  * print out cpufreq information
617  *
618  * Write out information from cpufreq_driver->policy[cpu]; object must be
619  * "unsigned int".
620  */
621 
622 #define show_one(file_name, object)			\
623 static ssize_t show_##file_name				\
624 (struct cpufreq_policy *policy, char *buf)		\
625 {							\
626 	return sprintf(buf, "%u\n", policy->object);	\
627 }
628 
629 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
630 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
631 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
632 show_one(scaling_min_freq, min);
633 show_one(scaling_max_freq, max);
634 
635 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
636 {
637 	ssize_t ret;
638 
639 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
640 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
641 	else
642 		ret = sprintf(buf, "%u\n", policy->cur);
643 	return ret;
644 }
645 
646 static int cpufreq_set_policy(struct cpufreq_policy *policy,
647 				struct cpufreq_policy *new_policy);
648 
649 /**
650  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
651  */
652 #define store_one(file_name, object)			\
653 static ssize_t store_##file_name					\
654 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
655 {									\
656 	int ret, temp;							\
657 	struct cpufreq_policy new_policy;				\
658 									\
659 	memcpy(&new_policy, policy, sizeof(*policy));			\
660 									\
661 	ret = sscanf(buf, "%u", &new_policy.object);			\
662 	if (ret != 1)							\
663 		return -EINVAL;						\
664 									\
665 	temp = new_policy.object;					\
666 	ret = cpufreq_set_policy(policy, &new_policy);		\
667 	if (!ret)							\
668 		policy->user_policy.object = temp;			\
669 									\
670 	return ret ? ret : count;					\
671 }
672 
673 store_one(scaling_min_freq, min);
674 store_one(scaling_max_freq, max);
675 
676 /**
677  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
678  */
679 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
680 					char *buf)
681 {
682 	unsigned int cur_freq = __cpufreq_get(policy);
683 	if (!cur_freq)
684 		return sprintf(buf, "<unknown>");
685 	return sprintf(buf, "%u\n", cur_freq);
686 }
687 
688 /**
689  * show_scaling_governor - show the current policy for the specified CPU
690  */
691 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
692 {
693 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
694 		return sprintf(buf, "powersave\n");
695 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
696 		return sprintf(buf, "performance\n");
697 	else if (policy->governor)
698 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
699 				policy->governor->name);
700 	return -EINVAL;
701 }
702 
703 /**
704  * store_scaling_governor - store policy for the specified CPU
705  */
706 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
707 					const char *buf, size_t count)
708 {
709 	int ret;
710 	char	str_governor[16];
711 	struct cpufreq_policy new_policy;
712 
713 	memcpy(&new_policy, policy, sizeof(*policy));
714 
715 	ret = sscanf(buf, "%15s", str_governor);
716 	if (ret != 1)
717 		return -EINVAL;
718 
719 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
720 						&new_policy.governor))
721 		return -EINVAL;
722 
723 	ret = cpufreq_set_policy(policy, &new_policy);
724 	return ret ? ret : count;
725 }
726 
727 /**
728  * show_scaling_driver - show the cpufreq driver currently loaded
729  */
730 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
731 {
732 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
733 }
734 
735 /**
736  * show_scaling_available_governors - show the available CPUfreq governors
737  */
738 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
739 						char *buf)
740 {
741 	ssize_t i = 0;
742 	struct cpufreq_governor *t;
743 
744 	if (!has_target()) {
745 		i += sprintf(buf, "performance powersave");
746 		goto out;
747 	}
748 
749 	for_each_governor(t) {
750 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
751 		    - (CPUFREQ_NAME_LEN + 2)))
752 			goto out;
753 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
754 	}
755 out:
756 	i += sprintf(&buf[i], "\n");
757 	return i;
758 }
759 
760 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
761 {
762 	ssize_t i = 0;
763 	unsigned int cpu;
764 
765 	for_each_cpu(cpu, mask) {
766 		if (i)
767 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
768 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
769 		if (i >= (PAGE_SIZE - 5))
770 			break;
771 	}
772 	i += sprintf(&buf[i], "\n");
773 	return i;
774 }
775 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
776 
777 /**
778  * show_related_cpus - show the CPUs affected by each transition even if
779  * hw coordination is in use
780  */
781 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
782 {
783 	return cpufreq_show_cpus(policy->related_cpus, buf);
784 }
785 
786 /**
787  * show_affected_cpus - show the CPUs affected by each transition
788  */
789 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
790 {
791 	return cpufreq_show_cpus(policy->cpus, buf);
792 }
793 
794 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
795 					const char *buf, size_t count)
796 {
797 	unsigned int freq = 0;
798 	unsigned int ret;
799 
800 	if (!policy->governor || !policy->governor->store_setspeed)
801 		return -EINVAL;
802 
803 	ret = sscanf(buf, "%u", &freq);
804 	if (ret != 1)
805 		return -EINVAL;
806 
807 	policy->governor->store_setspeed(policy, freq);
808 
809 	return count;
810 }
811 
812 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
813 {
814 	if (!policy->governor || !policy->governor->show_setspeed)
815 		return sprintf(buf, "<unsupported>\n");
816 
817 	return policy->governor->show_setspeed(policy, buf);
818 }
819 
820 /**
821  * show_bios_limit - show the current cpufreq HW/BIOS limitation
822  */
823 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
824 {
825 	unsigned int limit;
826 	int ret;
827 	if (cpufreq_driver->bios_limit) {
828 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
829 		if (!ret)
830 			return sprintf(buf, "%u\n", limit);
831 	}
832 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
833 }
834 
835 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
836 cpufreq_freq_attr_ro(cpuinfo_min_freq);
837 cpufreq_freq_attr_ro(cpuinfo_max_freq);
838 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
839 cpufreq_freq_attr_ro(scaling_available_governors);
840 cpufreq_freq_attr_ro(scaling_driver);
841 cpufreq_freq_attr_ro(scaling_cur_freq);
842 cpufreq_freq_attr_ro(bios_limit);
843 cpufreq_freq_attr_ro(related_cpus);
844 cpufreq_freq_attr_ro(affected_cpus);
845 cpufreq_freq_attr_rw(scaling_min_freq);
846 cpufreq_freq_attr_rw(scaling_max_freq);
847 cpufreq_freq_attr_rw(scaling_governor);
848 cpufreq_freq_attr_rw(scaling_setspeed);
849 
850 static struct attribute *default_attrs[] = {
851 	&cpuinfo_min_freq.attr,
852 	&cpuinfo_max_freq.attr,
853 	&cpuinfo_transition_latency.attr,
854 	&scaling_min_freq.attr,
855 	&scaling_max_freq.attr,
856 	&affected_cpus.attr,
857 	&related_cpus.attr,
858 	&scaling_governor.attr,
859 	&scaling_driver.attr,
860 	&scaling_available_governors.attr,
861 	&scaling_setspeed.attr,
862 	NULL
863 };
864 
865 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
866 #define to_attr(a) container_of(a, struct freq_attr, attr)
867 
868 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
869 {
870 	struct cpufreq_policy *policy = to_policy(kobj);
871 	struct freq_attr *fattr = to_attr(attr);
872 	ssize_t ret;
873 
874 	down_read(&policy->rwsem);
875 	ret = fattr->show(policy, buf);
876 	up_read(&policy->rwsem);
877 
878 	return ret;
879 }
880 
881 static ssize_t store(struct kobject *kobj, struct attribute *attr,
882 		     const char *buf, size_t count)
883 {
884 	struct cpufreq_policy *policy = to_policy(kobj);
885 	struct freq_attr *fattr = to_attr(attr);
886 	ssize_t ret = -EINVAL;
887 
888 	get_online_cpus();
889 
890 	if (cpu_online(policy->cpu)) {
891 		down_write(&policy->rwsem);
892 		ret = fattr->store(policy, buf, count);
893 		up_write(&policy->rwsem);
894 	}
895 
896 	put_online_cpus();
897 
898 	return ret;
899 }
900 
901 static void cpufreq_sysfs_release(struct kobject *kobj)
902 {
903 	struct cpufreq_policy *policy = to_policy(kobj);
904 	pr_debug("last reference is dropped\n");
905 	complete(&policy->kobj_unregister);
906 }
907 
908 static const struct sysfs_ops sysfs_ops = {
909 	.show	= show,
910 	.store	= store,
911 };
912 
913 static struct kobj_type ktype_cpufreq = {
914 	.sysfs_ops	= &sysfs_ops,
915 	.default_attrs	= default_attrs,
916 	.release	= cpufreq_sysfs_release,
917 };
918 
919 static int add_cpu_dev_symlink(struct cpufreq_policy *policy,
920 			       struct device *dev)
921 {
922 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
923 	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
924 }
925 
926 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
927 				   struct device *dev)
928 {
929 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
930 	sysfs_remove_link(&dev->kobj, "cpufreq");
931 }
932 
933 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
934 {
935 	struct freq_attr **drv_attr;
936 	int ret = 0;
937 
938 	/* set up files for this cpu device */
939 	drv_attr = cpufreq_driver->attr;
940 	while (drv_attr && *drv_attr) {
941 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
942 		if (ret)
943 			return ret;
944 		drv_attr++;
945 	}
946 	if (cpufreq_driver->get) {
947 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
948 		if (ret)
949 			return ret;
950 	}
951 
952 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
953 	if (ret)
954 		return ret;
955 
956 	if (cpufreq_driver->bios_limit) {
957 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
958 		if (ret)
959 			return ret;
960 	}
961 
962 	return 0;
963 }
964 
965 __weak struct cpufreq_governor *cpufreq_default_governor(void)
966 {
967 	return NULL;
968 }
969 
970 static int cpufreq_init_policy(struct cpufreq_policy *policy)
971 {
972 	struct cpufreq_governor *gov = NULL;
973 	struct cpufreq_policy new_policy;
974 
975 	memcpy(&new_policy, policy, sizeof(*policy));
976 
977 	/* Update governor of new_policy to the governor used before hotplug */
978 	gov = find_governor(policy->last_governor);
979 	if (gov) {
980 		pr_debug("Restoring governor %s for cpu %d\n",
981 				policy->governor->name, policy->cpu);
982 	} else {
983 		gov = cpufreq_default_governor();
984 		if (!gov)
985 			return -ENODATA;
986 	}
987 
988 	new_policy.governor = gov;
989 
990 	/* Use the default policy if there is no last_policy. */
991 	if (cpufreq_driver->setpolicy) {
992 		if (policy->last_policy)
993 			new_policy.policy = policy->last_policy;
994 		else
995 			cpufreq_parse_governor(gov->name, &new_policy.policy,
996 					       NULL);
997 	}
998 	/* set default policy */
999 	return cpufreq_set_policy(policy, &new_policy);
1000 }
1001 
1002 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1003 {
1004 	int ret = 0;
1005 
1006 	/* Has this CPU been taken care of already? */
1007 	if (cpumask_test_cpu(cpu, policy->cpus))
1008 		return 0;
1009 
1010 	down_write(&policy->rwsem);
1011 	if (has_target())
1012 		cpufreq_stop_governor(policy);
1013 
1014 	cpumask_set_cpu(cpu, policy->cpus);
1015 
1016 	if (has_target()) {
1017 		ret = cpufreq_start_governor(policy);
1018 		if (ret)
1019 			pr_err("%s: Failed to start governor\n", __func__);
1020 	}
1021 	up_write(&policy->rwsem);
1022 	return ret;
1023 }
1024 
1025 static void handle_update(struct work_struct *work)
1026 {
1027 	struct cpufreq_policy *policy =
1028 		container_of(work, struct cpufreq_policy, update);
1029 	unsigned int cpu = policy->cpu;
1030 	pr_debug("handle_update for cpu %u called\n", cpu);
1031 	cpufreq_update_policy(cpu);
1032 }
1033 
1034 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1035 {
1036 	struct cpufreq_policy *policy;
1037 	int ret;
1038 
1039 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1040 	if (!policy)
1041 		return NULL;
1042 
1043 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1044 		goto err_free_policy;
1045 
1046 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1047 		goto err_free_cpumask;
1048 
1049 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1050 		goto err_free_rcpumask;
1051 
1052 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1053 				   cpufreq_global_kobject, "policy%u", cpu);
1054 	if (ret) {
1055 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1056 		goto err_free_real_cpus;
1057 	}
1058 
1059 	INIT_LIST_HEAD(&policy->policy_list);
1060 	init_rwsem(&policy->rwsem);
1061 	spin_lock_init(&policy->transition_lock);
1062 	init_waitqueue_head(&policy->transition_wait);
1063 	init_completion(&policy->kobj_unregister);
1064 	INIT_WORK(&policy->update, handle_update);
1065 
1066 	policy->cpu = cpu;
1067 	return policy;
1068 
1069 err_free_real_cpus:
1070 	free_cpumask_var(policy->real_cpus);
1071 err_free_rcpumask:
1072 	free_cpumask_var(policy->related_cpus);
1073 err_free_cpumask:
1074 	free_cpumask_var(policy->cpus);
1075 err_free_policy:
1076 	kfree(policy);
1077 
1078 	return NULL;
1079 }
1080 
1081 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1082 {
1083 	struct kobject *kobj;
1084 	struct completion *cmp;
1085 
1086 	if (notify)
1087 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1088 					     CPUFREQ_REMOVE_POLICY, policy);
1089 
1090 	down_write(&policy->rwsem);
1091 	cpufreq_stats_free_table(policy);
1092 	kobj = &policy->kobj;
1093 	cmp = &policy->kobj_unregister;
1094 	up_write(&policy->rwsem);
1095 	kobject_put(kobj);
1096 
1097 	/*
1098 	 * We need to make sure that the underlying kobj is
1099 	 * actually not referenced anymore by anybody before we
1100 	 * proceed with unloading.
1101 	 */
1102 	pr_debug("waiting for dropping of refcount\n");
1103 	wait_for_completion(cmp);
1104 	pr_debug("wait complete\n");
1105 }
1106 
1107 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1108 {
1109 	unsigned long flags;
1110 	int cpu;
1111 
1112 	/* Remove policy from list */
1113 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1114 	list_del(&policy->policy_list);
1115 
1116 	for_each_cpu(cpu, policy->related_cpus)
1117 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1118 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1119 
1120 	cpufreq_policy_put_kobj(policy, notify);
1121 	free_cpumask_var(policy->real_cpus);
1122 	free_cpumask_var(policy->related_cpus);
1123 	free_cpumask_var(policy->cpus);
1124 	kfree(policy);
1125 }
1126 
1127 static int cpufreq_online(unsigned int cpu)
1128 {
1129 	struct cpufreq_policy *policy;
1130 	bool new_policy;
1131 	unsigned long flags;
1132 	unsigned int j;
1133 	int ret;
1134 
1135 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1136 
1137 	/* Check if this CPU already has a policy to manage it */
1138 	policy = per_cpu(cpufreq_cpu_data, cpu);
1139 	if (policy) {
1140 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1141 		if (!policy_is_inactive(policy))
1142 			return cpufreq_add_policy_cpu(policy, cpu);
1143 
1144 		/* This is the only online CPU for the policy.  Start over. */
1145 		new_policy = false;
1146 		down_write(&policy->rwsem);
1147 		policy->cpu = cpu;
1148 		policy->governor = NULL;
1149 		up_write(&policy->rwsem);
1150 	} else {
1151 		new_policy = true;
1152 		policy = cpufreq_policy_alloc(cpu);
1153 		if (!policy)
1154 			return -ENOMEM;
1155 	}
1156 
1157 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1158 
1159 	/* call driver. From then on the cpufreq must be able
1160 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1161 	 */
1162 	ret = cpufreq_driver->init(policy);
1163 	if (ret) {
1164 		pr_debug("initialization failed\n");
1165 		goto out_free_policy;
1166 	}
1167 
1168 	down_write(&policy->rwsem);
1169 
1170 	if (new_policy) {
1171 		/* related_cpus should at least include policy->cpus. */
1172 		cpumask_copy(policy->related_cpus, policy->cpus);
1173 		/* Clear mask of registered CPUs */
1174 		cpumask_clear(policy->real_cpus);
1175 	}
1176 
1177 	/*
1178 	 * affected cpus must always be the one, which are online. We aren't
1179 	 * managing offline cpus here.
1180 	 */
1181 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1182 
1183 	if (new_policy) {
1184 		policy->user_policy.min = policy->min;
1185 		policy->user_policy.max = policy->max;
1186 
1187 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1188 		for_each_cpu(j, policy->related_cpus)
1189 			per_cpu(cpufreq_cpu_data, j) = policy;
1190 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1191 	}
1192 
1193 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1194 		policy->cur = cpufreq_driver->get(policy->cpu);
1195 		if (!policy->cur) {
1196 			pr_err("%s: ->get() failed\n", __func__);
1197 			goto out_exit_policy;
1198 		}
1199 	}
1200 
1201 	/*
1202 	 * Sometimes boot loaders set CPU frequency to a value outside of
1203 	 * frequency table present with cpufreq core. In such cases CPU might be
1204 	 * unstable if it has to run on that frequency for long duration of time
1205 	 * and so its better to set it to a frequency which is specified in
1206 	 * freq-table. This also makes cpufreq stats inconsistent as
1207 	 * cpufreq-stats would fail to register because current frequency of CPU
1208 	 * isn't found in freq-table.
1209 	 *
1210 	 * Because we don't want this change to effect boot process badly, we go
1211 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1212 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1213 	 * is initialized to zero).
1214 	 *
1215 	 * We are passing target-freq as "policy->cur - 1" otherwise
1216 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1217 	 * equal to target-freq.
1218 	 */
1219 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1220 	    && has_target()) {
1221 		/* Are we running at unknown frequency ? */
1222 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1223 		if (ret == -EINVAL) {
1224 			/* Warn user and fix it */
1225 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1226 				__func__, policy->cpu, policy->cur);
1227 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1228 				CPUFREQ_RELATION_L);
1229 
1230 			/*
1231 			 * Reaching here after boot in a few seconds may not
1232 			 * mean that system will remain stable at "unknown"
1233 			 * frequency for longer duration. Hence, a BUG_ON().
1234 			 */
1235 			BUG_ON(ret);
1236 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1237 				__func__, policy->cpu, policy->cur);
1238 		}
1239 	}
1240 
1241 	if (new_policy) {
1242 		ret = cpufreq_add_dev_interface(policy);
1243 		if (ret)
1244 			goto out_exit_policy;
1245 
1246 		cpufreq_stats_create_table(policy);
1247 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1248 				CPUFREQ_CREATE_POLICY, policy);
1249 
1250 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1251 		list_add(&policy->policy_list, &cpufreq_policy_list);
1252 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1253 	}
1254 
1255 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1256 				     CPUFREQ_START, policy);
1257 
1258 	ret = cpufreq_init_policy(policy);
1259 	if (ret) {
1260 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1261 		       __func__, cpu, ret);
1262 		/* cpufreq_policy_free() will notify based on this */
1263 		new_policy = false;
1264 		goto out_exit_policy;
1265 	}
1266 
1267 	up_write(&policy->rwsem);
1268 
1269 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1270 
1271 	/* Callback for handling stuff after policy is ready */
1272 	if (cpufreq_driver->ready)
1273 		cpufreq_driver->ready(policy);
1274 
1275 	pr_debug("initialization complete\n");
1276 
1277 	return 0;
1278 
1279 out_exit_policy:
1280 	up_write(&policy->rwsem);
1281 
1282 	if (cpufreq_driver->exit)
1283 		cpufreq_driver->exit(policy);
1284 out_free_policy:
1285 	cpufreq_policy_free(policy, !new_policy);
1286 	return ret;
1287 }
1288 
1289 static int cpufreq_offline(unsigned int cpu);
1290 
1291 /**
1292  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1293  * @dev: CPU device.
1294  * @sif: Subsystem interface structure pointer (not used)
1295  */
1296 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1297 {
1298 	struct cpufreq_policy *policy;
1299 	unsigned cpu = dev->id;
1300 	int ret;
1301 
1302 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1303 
1304 	if (cpu_online(cpu)) {
1305 		ret = cpufreq_online(cpu);
1306 		if (ret)
1307 			return ret;
1308 	}
1309 
1310 	/* Create sysfs link on CPU registration */
1311 	policy = per_cpu(cpufreq_cpu_data, cpu);
1312 	if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1313 		return 0;
1314 
1315 	ret = add_cpu_dev_symlink(policy, dev);
1316 	if (ret) {
1317 		cpumask_clear_cpu(cpu, policy->real_cpus);
1318 		cpufreq_offline(cpu);
1319 	}
1320 
1321 	return ret;
1322 }
1323 
1324 static int cpufreq_offline(unsigned int cpu)
1325 {
1326 	struct cpufreq_policy *policy;
1327 	int ret;
1328 
1329 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1330 
1331 	policy = cpufreq_cpu_get_raw(cpu);
1332 	if (!policy) {
1333 		pr_debug("%s: No cpu_data found\n", __func__);
1334 		return 0;
1335 	}
1336 
1337 	down_write(&policy->rwsem);
1338 	if (has_target())
1339 		cpufreq_stop_governor(policy);
1340 
1341 	cpumask_clear_cpu(cpu, policy->cpus);
1342 
1343 	if (policy_is_inactive(policy)) {
1344 		if (has_target())
1345 			strncpy(policy->last_governor, policy->governor->name,
1346 				CPUFREQ_NAME_LEN);
1347 		else
1348 			policy->last_policy = policy->policy;
1349 	} else if (cpu == policy->cpu) {
1350 		/* Nominate new CPU */
1351 		policy->cpu = cpumask_any(policy->cpus);
1352 	}
1353 
1354 	/* Start governor again for active policy */
1355 	if (!policy_is_inactive(policy)) {
1356 		if (has_target()) {
1357 			ret = cpufreq_start_governor(policy);
1358 			if (ret)
1359 				pr_err("%s: Failed to start governor\n", __func__);
1360 		}
1361 
1362 		goto unlock;
1363 	}
1364 
1365 	if (cpufreq_driver->stop_cpu)
1366 		cpufreq_driver->stop_cpu(policy);
1367 
1368 	if (has_target())
1369 		cpufreq_exit_governor(policy);
1370 
1371 	/*
1372 	 * Perform the ->exit() even during light-weight tear-down,
1373 	 * since this is a core component, and is essential for the
1374 	 * subsequent light-weight ->init() to succeed.
1375 	 */
1376 	if (cpufreq_driver->exit) {
1377 		cpufreq_driver->exit(policy);
1378 		policy->freq_table = NULL;
1379 	}
1380 
1381 unlock:
1382 	up_write(&policy->rwsem);
1383 	return 0;
1384 }
1385 
1386 /**
1387  * cpufreq_remove_dev - remove a CPU device
1388  *
1389  * Removes the cpufreq interface for a CPU device.
1390  */
1391 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1392 {
1393 	unsigned int cpu = dev->id;
1394 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1395 
1396 	if (!policy)
1397 		return;
1398 
1399 	if (cpu_online(cpu))
1400 		cpufreq_offline(cpu);
1401 
1402 	cpumask_clear_cpu(cpu, policy->real_cpus);
1403 	remove_cpu_dev_symlink(policy, dev);
1404 
1405 	if (cpumask_empty(policy->real_cpus))
1406 		cpufreq_policy_free(policy, true);
1407 }
1408 
1409 /**
1410  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1411  *	in deep trouble.
1412  *	@policy: policy managing CPUs
1413  *	@new_freq: CPU frequency the CPU actually runs at
1414  *
1415  *	We adjust to current frequency first, and need to clean up later.
1416  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1417  */
1418 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1419 				unsigned int new_freq)
1420 {
1421 	struct cpufreq_freqs freqs;
1422 
1423 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1424 		 policy->cur, new_freq);
1425 
1426 	freqs.old = policy->cur;
1427 	freqs.new = new_freq;
1428 
1429 	cpufreq_freq_transition_begin(policy, &freqs);
1430 	cpufreq_freq_transition_end(policy, &freqs, 0);
1431 }
1432 
1433 /**
1434  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1435  * @cpu: CPU number
1436  *
1437  * This is the last known freq, without actually getting it from the driver.
1438  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1439  */
1440 unsigned int cpufreq_quick_get(unsigned int cpu)
1441 {
1442 	struct cpufreq_policy *policy;
1443 	unsigned int ret_freq = 0;
1444 	unsigned long flags;
1445 
1446 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1447 
1448 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1449 		ret_freq = cpufreq_driver->get(cpu);
1450 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1451 		return ret_freq;
1452 	}
1453 
1454 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1455 
1456 	policy = cpufreq_cpu_get(cpu);
1457 	if (policy) {
1458 		ret_freq = policy->cur;
1459 		cpufreq_cpu_put(policy);
1460 	}
1461 
1462 	return ret_freq;
1463 }
1464 EXPORT_SYMBOL(cpufreq_quick_get);
1465 
1466 /**
1467  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1468  * @cpu: CPU number
1469  *
1470  * Just return the max possible frequency for a given CPU.
1471  */
1472 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1473 {
1474 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1475 	unsigned int ret_freq = 0;
1476 
1477 	if (policy) {
1478 		ret_freq = policy->max;
1479 		cpufreq_cpu_put(policy);
1480 	}
1481 
1482 	return ret_freq;
1483 }
1484 EXPORT_SYMBOL(cpufreq_quick_get_max);
1485 
1486 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1487 {
1488 	unsigned int ret_freq = 0;
1489 
1490 	if (!cpufreq_driver->get)
1491 		return ret_freq;
1492 
1493 	ret_freq = cpufreq_driver->get(policy->cpu);
1494 
1495 	/*
1496 	 * Updating inactive policies is invalid, so avoid doing that.  Also
1497 	 * if fast frequency switching is used with the given policy, the check
1498 	 * against policy->cur is pointless, so skip it in that case too.
1499 	 */
1500 	if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1501 		return ret_freq;
1502 
1503 	if (ret_freq && policy->cur &&
1504 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1505 		/* verify no discrepancy between actual and
1506 					saved value exists */
1507 		if (unlikely(ret_freq != policy->cur)) {
1508 			cpufreq_out_of_sync(policy, ret_freq);
1509 			schedule_work(&policy->update);
1510 		}
1511 	}
1512 
1513 	return ret_freq;
1514 }
1515 
1516 /**
1517  * cpufreq_get - get the current CPU frequency (in kHz)
1518  * @cpu: CPU number
1519  *
1520  * Get the CPU current (static) CPU frequency
1521  */
1522 unsigned int cpufreq_get(unsigned int cpu)
1523 {
1524 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1525 	unsigned int ret_freq = 0;
1526 
1527 	if (policy) {
1528 		down_read(&policy->rwsem);
1529 
1530 		if (!policy_is_inactive(policy))
1531 			ret_freq = __cpufreq_get(policy);
1532 
1533 		up_read(&policy->rwsem);
1534 
1535 		cpufreq_cpu_put(policy);
1536 	}
1537 
1538 	return ret_freq;
1539 }
1540 EXPORT_SYMBOL(cpufreq_get);
1541 
1542 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1543 {
1544 	unsigned int new_freq;
1545 
1546 	new_freq = cpufreq_driver->get(policy->cpu);
1547 	if (!new_freq)
1548 		return 0;
1549 
1550 	if (!policy->cur) {
1551 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1552 		policy->cur = new_freq;
1553 	} else if (policy->cur != new_freq && has_target()) {
1554 		cpufreq_out_of_sync(policy, new_freq);
1555 	}
1556 
1557 	return new_freq;
1558 }
1559 
1560 static struct subsys_interface cpufreq_interface = {
1561 	.name		= "cpufreq",
1562 	.subsys		= &cpu_subsys,
1563 	.add_dev	= cpufreq_add_dev,
1564 	.remove_dev	= cpufreq_remove_dev,
1565 };
1566 
1567 /*
1568  * In case platform wants some specific frequency to be configured
1569  * during suspend..
1570  */
1571 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1572 {
1573 	int ret;
1574 
1575 	if (!policy->suspend_freq) {
1576 		pr_debug("%s: suspend_freq not defined\n", __func__);
1577 		return 0;
1578 	}
1579 
1580 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1581 			policy->suspend_freq);
1582 
1583 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1584 			CPUFREQ_RELATION_H);
1585 	if (ret)
1586 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1587 				__func__, policy->suspend_freq, ret);
1588 
1589 	return ret;
1590 }
1591 EXPORT_SYMBOL(cpufreq_generic_suspend);
1592 
1593 /**
1594  * cpufreq_suspend() - Suspend CPUFreq governors
1595  *
1596  * Called during system wide Suspend/Hibernate cycles for suspending governors
1597  * as some platforms can't change frequency after this point in suspend cycle.
1598  * Because some of the devices (like: i2c, regulators, etc) they use for
1599  * changing frequency are suspended quickly after this point.
1600  */
1601 void cpufreq_suspend(void)
1602 {
1603 	struct cpufreq_policy *policy;
1604 
1605 	if (!cpufreq_driver)
1606 		return;
1607 
1608 	if (!has_target() && !cpufreq_driver->suspend)
1609 		goto suspend;
1610 
1611 	pr_debug("%s: Suspending Governors\n", __func__);
1612 
1613 	for_each_active_policy(policy) {
1614 		if (has_target()) {
1615 			down_write(&policy->rwsem);
1616 			cpufreq_stop_governor(policy);
1617 			up_write(&policy->rwsem);
1618 		}
1619 
1620 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1621 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1622 				policy);
1623 	}
1624 
1625 suspend:
1626 	cpufreq_suspended = true;
1627 }
1628 
1629 /**
1630  * cpufreq_resume() - Resume CPUFreq governors
1631  *
1632  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1633  * are suspended with cpufreq_suspend().
1634  */
1635 void cpufreq_resume(void)
1636 {
1637 	struct cpufreq_policy *policy;
1638 	int ret;
1639 
1640 	if (!cpufreq_driver)
1641 		return;
1642 
1643 	cpufreq_suspended = false;
1644 
1645 	if (!has_target() && !cpufreq_driver->resume)
1646 		return;
1647 
1648 	pr_debug("%s: Resuming Governors\n", __func__);
1649 
1650 	for_each_active_policy(policy) {
1651 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1652 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1653 				policy);
1654 		} else if (has_target()) {
1655 			down_write(&policy->rwsem);
1656 			ret = cpufreq_start_governor(policy);
1657 			up_write(&policy->rwsem);
1658 
1659 			if (ret)
1660 				pr_err("%s: Failed to start governor for policy: %p\n",
1661 				       __func__, policy);
1662 		}
1663 	}
1664 }
1665 
1666 /**
1667  *	cpufreq_get_current_driver - return current driver's name
1668  *
1669  *	Return the name string of the currently loaded cpufreq driver
1670  *	or NULL, if none.
1671  */
1672 const char *cpufreq_get_current_driver(void)
1673 {
1674 	if (cpufreq_driver)
1675 		return cpufreq_driver->name;
1676 
1677 	return NULL;
1678 }
1679 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1680 
1681 /**
1682  *	cpufreq_get_driver_data - return current driver data
1683  *
1684  *	Return the private data of the currently loaded cpufreq
1685  *	driver, or NULL if no cpufreq driver is loaded.
1686  */
1687 void *cpufreq_get_driver_data(void)
1688 {
1689 	if (cpufreq_driver)
1690 		return cpufreq_driver->driver_data;
1691 
1692 	return NULL;
1693 }
1694 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1695 
1696 /*********************************************************************
1697  *                     NOTIFIER LISTS INTERFACE                      *
1698  *********************************************************************/
1699 
1700 /**
1701  *	cpufreq_register_notifier - register a driver with cpufreq
1702  *	@nb: notifier function to register
1703  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1704  *
1705  *	Add a driver to one of two lists: either a list of drivers that
1706  *      are notified about clock rate changes (once before and once after
1707  *      the transition), or a list of drivers that are notified about
1708  *      changes in cpufreq policy.
1709  *
1710  *	This function may sleep, and has the same return conditions as
1711  *	blocking_notifier_chain_register.
1712  */
1713 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1714 {
1715 	int ret;
1716 
1717 	if (cpufreq_disabled())
1718 		return -EINVAL;
1719 
1720 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1721 
1722 	switch (list) {
1723 	case CPUFREQ_TRANSITION_NOTIFIER:
1724 		mutex_lock(&cpufreq_fast_switch_lock);
1725 
1726 		if (cpufreq_fast_switch_count > 0) {
1727 			mutex_unlock(&cpufreq_fast_switch_lock);
1728 			return -EBUSY;
1729 		}
1730 		ret = srcu_notifier_chain_register(
1731 				&cpufreq_transition_notifier_list, nb);
1732 		if (!ret)
1733 			cpufreq_fast_switch_count--;
1734 
1735 		mutex_unlock(&cpufreq_fast_switch_lock);
1736 		break;
1737 	case CPUFREQ_POLICY_NOTIFIER:
1738 		ret = blocking_notifier_chain_register(
1739 				&cpufreq_policy_notifier_list, nb);
1740 		break;
1741 	default:
1742 		ret = -EINVAL;
1743 	}
1744 
1745 	return ret;
1746 }
1747 EXPORT_SYMBOL(cpufreq_register_notifier);
1748 
1749 /**
1750  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1751  *	@nb: notifier block to be unregistered
1752  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1753  *
1754  *	Remove a driver from the CPU frequency notifier list.
1755  *
1756  *	This function may sleep, and has the same return conditions as
1757  *	blocking_notifier_chain_unregister.
1758  */
1759 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1760 {
1761 	int ret;
1762 
1763 	if (cpufreq_disabled())
1764 		return -EINVAL;
1765 
1766 	switch (list) {
1767 	case CPUFREQ_TRANSITION_NOTIFIER:
1768 		mutex_lock(&cpufreq_fast_switch_lock);
1769 
1770 		ret = srcu_notifier_chain_unregister(
1771 				&cpufreq_transition_notifier_list, nb);
1772 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1773 			cpufreq_fast_switch_count++;
1774 
1775 		mutex_unlock(&cpufreq_fast_switch_lock);
1776 		break;
1777 	case CPUFREQ_POLICY_NOTIFIER:
1778 		ret = blocking_notifier_chain_unregister(
1779 				&cpufreq_policy_notifier_list, nb);
1780 		break;
1781 	default:
1782 		ret = -EINVAL;
1783 	}
1784 
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1788 
1789 
1790 /*********************************************************************
1791  *                              GOVERNORS                            *
1792  *********************************************************************/
1793 
1794 /**
1795  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1796  * @policy: cpufreq policy to switch the frequency for.
1797  * @target_freq: New frequency to set (may be approximate).
1798  *
1799  * Carry out a fast frequency switch without sleeping.
1800  *
1801  * The driver's ->fast_switch() callback invoked by this function must be
1802  * suitable for being called from within RCU-sched read-side critical sections
1803  * and it is expected to select the minimum available frequency greater than or
1804  * equal to @target_freq (CPUFREQ_RELATION_L).
1805  *
1806  * This function must not be called if policy->fast_switch_enabled is unset.
1807  *
1808  * Governors calling this function must guarantee that it will never be invoked
1809  * twice in parallel for the same policy and that it will never be called in
1810  * parallel with either ->target() or ->target_index() for the same policy.
1811  *
1812  * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1813  * callback to indicate an error condition, the hardware configuration must be
1814  * preserved.
1815  */
1816 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1817 					unsigned int target_freq)
1818 {
1819 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1820 
1821 	return cpufreq_driver->fast_switch(policy, target_freq);
1822 }
1823 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1824 
1825 /* Must set freqs->new to intermediate frequency */
1826 static int __target_intermediate(struct cpufreq_policy *policy,
1827 				 struct cpufreq_freqs *freqs, int index)
1828 {
1829 	int ret;
1830 
1831 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1832 
1833 	/* We don't need to switch to intermediate freq */
1834 	if (!freqs->new)
1835 		return 0;
1836 
1837 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1838 		 __func__, policy->cpu, freqs->old, freqs->new);
1839 
1840 	cpufreq_freq_transition_begin(policy, freqs);
1841 	ret = cpufreq_driver->target_intermediate(policy, index);
1842 	cpufreq_freq_transition_end(policy, freqs, ret);
1843 
1844 	if (ret)
1845 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1846 		       __func__, ret);
1847 
1848 	return ret;
1849 }
1850 
1851 static int __target_index(struct cpufreq_policy *policy, int index)
1852 {
1853 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1854 	unsigned int intermediate_freq = 0;
1855 	unsigned int newfreq = policy->freq_table[index].frequency;
1856 	int retval = -EINVAL;
1857 	bool notify;
1858 
1859 	if (newfreq == policy->cur)
1860 		return 0;
1861 
1862 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1863 	if (notify) {
1864 		/* Handle switching to intermediate frequency */
1865 		if (cpufreq_driver->get_intermediate) {
1866 			retval = __target_intermediate(policy, &freqs, index);
1867 			if (retval)
1868 				return retval;
1869 
1870 			intermediate_freq = freqs.new;
1871 			/* Set old freq to intermediate */
1872 			if (intermediate_freq)
1873 				freqs.old = freqs.new;
1874 		}
1875 
1876 		freqs.new = newfreq;
1877 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1878 			 __func__, policy->cpu, freqs.old, freqs.new);
1879 
1880 		cpufreq_freq_transition_begin(policy, &freqs);
1881 	}
1882 
1883 	retval = cpufreq_driver->target_index(policy, index);
1884 	if (retval)
1885 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1886 		       retval);
1887 
1888 	if (notify) {
1889 		cpufreq_freq_transition_end(policy, &freqs, retval);
1890 
1891 		/*
1892 		 * Failed after setting to intermediate freq? Driver should have
1893 		 * reverted back to initial frequency and so should we. Check
1894 		 * here for intermediate_freq instead of get_intermediate, in
1895 		 * case we haven't switched to intermediate freq at all.
1896 		 */
1897 		if (unlikely(retval && intermediate_freq)) {
1898 			freqs.old = intermediate_freq;
1899 			freqs.new = policy->restore_freq;
1900 			cpufreq_freq_transition_begin(policy, &freqs);
1901 			cpufreq_freq_transition_end(policy, &freqs, 0);
1902 		}
1903 	}
1904 
1905 	return retval;
1906 }
1907 
1908 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1909 			    unsigned int target_freq,
1910 			    unsigned int relation)
1911 {
1912 	unsigned int old_target_freq = target_freq;
1913 	int index;
1914 
1915 	if (cpufreq_disabled())
1916 		return -ENODEV;
1917 
1918 	/* Make sure that target_freq is within supported range */
1919 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1920 
1921 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1922 		 policy->cpu, target_freq, relation, old_target_freq);
1923 
1924 	/*
1925 	 * This might look like a redundant call as we are checking it again
1926 	 * after finding index. But it is left intentionally for cases where
1927 	 * exactly same freq is called again and so we can save on few function
1928 	 * calls.
1929 	 */
1930 	if (target_freq == policy->cur)
1931 		return 0;
1932 
1933 	/* Save last value to restore later on errors */
1934 	policy->restore_freq = policy->cur;
1935 
1936 	if (cpufreq_driver->target)
1937 		return cpufreq_driver->target(policy, target_freq, relation);
1938 
1939 	if (!cpufreq_driver->target_index)
1940 		return -EINVAL;
1941 
1942 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1943 
1944 	return __target_index(policy, index);
1945 }
1946 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1947 
1948 int cpufreq_driver_target(struct cpufreq_policy *policy,
1949 			  unsigned int target_freq,
1950 			  unsigned int relation)
1951 {
1952 	int ret = -EINVAL;
1953 
1954 	down_write(&policy->rwsem);
1955 
1956 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1957 
1958 	up_write(&policy->rwsem);
1959 
1960 	return ret;
1961 }
1962 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1963 
1964 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1965 {
1966 	return NULL;
1967 }
1968 
1969 static int cpufreq_init_governor(struct cpufreq_policy *policy)
1970 {
1971 	int ret;
1972 
1973 	/* Don't start any governor operations if we are entering suspend */
1974 	if (cpufreq_suspended)
1975 		return 0;
1976 	/*
1977 	 * Governor might not be initiated here if ACPI _PPC changed
1978 	 * notification happened, so check it.
1979 	 */
1980 	if (!policy->governor)
1981 		return -EINVAL;
1982 
1983 	if (policy->governor->max_transition_latency &&
1984 	    policy->cpuinfo.transition_latency >
1985 	    policy->governor->max_transition_latency) {
1986 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
1987 
1988 		if (gov) {
1989 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1990 				policy->governor->name, gov->name);
1991 			policy->governor = gov;
1992 		} else {
1993 			return -EINVAL;
1994 		}
1995 	}
1996 
1997 	if (!try_module_get(policy->governor->owner))
1998 		return -EINVAL;
1999 
2000 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2001 
2002 	if (policy->governor->init) {
2003 		ret = policy->governor->init(policy);
2004 		if (ret) {
2005 			module_put(policy->governor->owner);
2006 			return ret;
2007 		}
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2014 {
2015 	if (cpufreq_suspended || !policy->governor)
2016 		return;
2017 
2018 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2019 
2020 	if (policy->governor->exit)
2021 		policy->governor->exit(policy);
2022 
2023 	module_put(policy->governor->owner);
2024 }
2025 
2026 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2027 {
2028 	int ret;
2029 
2030 	if (cpufreq_suspended)
2031 		return 0;
2032 
2033 	if (!policy->governor)
2034 		return -EINVAL;
2035 
2036 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2037 
2038 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2039 		cpufreq_update_current_freq(policy);
2040 
2041 	if (policy->governor->start) {
2042 		ret = policy->governor->start(policy);
2043 		if (ret)
2044 			return ret;
2045 	}
2046 
2047 	if (policy->governor->limits)
2048 		policy->governor->limits(policy);
2049 
2050 	return 0;
2051 }
2052 
2053 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2054 {
2055 	if (cpufreq_suspended || !policy->governor)
2056 		return;
2057 
2058 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2059 
2060 	if (policy->governor->stop)
2061 		policy->governor->stop(policy);
2062 }
2063 
2064 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2065 {
2066 	if (cpufreq_suspended || !policy->governor)
2067 		return;
2068 
2069 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2070 
2071 	if (policy->governor->limits)
2072 		policy->governor->limits(policy);
2073 }
2074 
2075 int cpufreq_register_governor(struct cpufreq_governor *governor)
2076 {
2077 	int err;
2078 
2079 	if (!governor)
2080 		return -EINVAL;
2081 
2082 	if (cpufreq_disabled())
2083 		return -ENODEV;
2084 
2085 	mutex_lock(&cpufreq_governor_mutex);
2086 
2087 	err = -EBUSY;
2088 	if (!find_governor(governor->name)) {
2089 		err = 0;
2090 		list_add(&governor->governor_list, &cpufreq_governor_list);
2091 	}
2092 
2093 	mutex_unlock(&cpufreq_governor_mutex);
2094 	return err;
2095 }
2096 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2097 
2098 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2099 {
2100 	struct cpufreq_policy *policy;
2101 	unsigned long flags;
2102 
2103 	if (!governor)
2104 		return;
2105 
2106 	if (cpufreq_disabled())
2107 		return;
2108 
2109 	/* clear last_governor for all inactive policies */
2110 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2111 	for_each_inactive_policy(policy) {
2112 		if (!strcmp(policy->last_governor, governor->name)) {
2113 			policy->governor = NULL;
2114 			strcpy(policy->last_governor, "\0");
2115 		}
2116 	}
2117 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2118 
2119 	mutex_lock(&cpufreq_governor_mutex);
2120 	list_del(&governor->governor_list);
2121 	mutex_unlock(&cpufreq_governor_mutex);
2122 	return;
2123 }
2124 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2125 
2126 
2127 /*********************************************************************
2128  *                          POLICY INTERFACE                         *
2129  *********************************************************************/
2130 
2131 /**
2132  * cpufreq_get_policy - get the current cpufreq_policy
2133  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2134  *	is written
2135  *
2136  * Reads the current cpufreq policy.
2137  */
2138 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2139 {
2140 	struct cpufreq_policy *cpu_policy;
2141 	if (!policy)
2142 		return -EINVAL;
2143 
2144 	cpu_policy = cpufreq_cpu_get(cpu);
2145 	if (!cpu_policy)
2146 		return -EINVAL;
2147 
2148 	memcpy(policy, cpu_policy, sizeof(*policy));
2149 
2150 	cpufreq_cpu_put(cpu_policy);
2151 	return 0;
2152 }
2153 EXPORT_SYMBOL(cpufreq_get_policy);
2154 
2155 /*
2156  * policy : current policy.
2157  * new_policy: policy to be set.
2158  */
2159 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2160 				struct cpufreq_policy *new_policy)
2161 {
2162 	struct cpufreq_governor *old_gov;
2163 	int ret;
2164 
2165 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2166 		 new_policy->cpu, new_policy->min, new_policy->max);
2167 
2168 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2169 
2170 	/*
2171 	* This check works well when we store new min/max freq attributes,
2172 	* because new_policy is a copy of policy with one field updated.
2173 	*/
2174 	if (new_policy->min > new_policy->max)
2175 		return -EINVAL;
2176 
2177 	/* verify the cpu speed can be set within this limit */
2178 	ret = cpufreq_driver->verify(new_policy);
2179 	if (ret)
2180 		return ret;
2181 
2182 	/* adjust if necessary - all reasons */
2183 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2184 			CPUFREQ_ADJUST, new_policy);
2185 
2186 	/*
2187 	 * verify the cpu speed can be set within this limit, which might be
2188 	 * different to the first one
2189 	 */
2190 	ret = cpufreq_driver->verify(new_policy);
2191 	if (ret)
2192 		return ret;
2193 
2194 	/* notification of the new policy */
2195 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2196 			CPUFREQ_NOTIFY, new_policy);
2197 
2198 	policy->min = new_policy->min;
2199 	policy->max = new_policy->max;
2200 
2201 	policy->cached_target_freq = UINT_MAX;
2202 
2203 	pr_debug("new min and max freqs are %u - %u kHz\n",
2204 		 policy->min, policy->max);
2205 
2206 	if (cpufreq_driver->setpolicy) {
2207 		policy->policy = new_policy->policy;
2208 		pr_debug("setting range\n");
2209 		return cpufreq_driver->setpolicy(new_policy);
2210 	}
2211 
2212 	if (new_policy->governor == policy->governor) {
2213 		pr_debug("cpufreq: governor limits update\n");
2214 		cpufreq_governor_limits(policy);
2215 		return 0;
2216 	}
2217 
2218 	pr_debug("governor switch\n");
2219 
2220 	/* save old, working values */
2221 	old_gov = policy->governor;
2222 	/* end old governor */
2223 	if (old_gov) {
2224 		cpufreq_stop_governor(policy);
2225 		cpufreq_exit_governor(policy);
2226 	}
2227 
2228 	/* start new governor */
2229 	policy->governor = new_policy->governor;
2230 	ret = cpufreq_init_governor(policy);
2231 	if (!ret) {
2232 		ret = cpufreq_start_governor(policy);
2233 		if (!ret) {
2234 			pr_debug("cpufreq: governor change\n");
2235 			return 0;
2236 		}
2237 		cpufreq_exit_governor(policy);
2238 	}
2239 
2240 	/* new governor failed, so re-start old one */
2241 	pr_debug("starting governor %s failed\n", policy->governor->name);
2242 	if (old_gov) {
2243 		policy->governor = old_gov;
2244 		if (cpufreq_init_governor(policy))
2245 			policy->governor = NULL;
2246 		else
2247 			cpufreq_start_governor(policy);
2248 	}
2249 
2250 	return ret;
2251 }
2252 
2253 /**
2254  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2255  *	@cpu: CPU which shall be re-evaluated
2256  *
2257  *	Useful for policy notifiers which have different necessities
2258  *	at different times.
2259  */
2260 void cpufreq_update_policy(unsigned int cpu)
2261 {
2262 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2263 	struct cpufreq_policy new_policy;
2264 
2265 	if (!policy)
2266 		return;
2267 
2268 	down_write(&policy->rwsem);
2269 
2270 	if (policy_is_inactive(policy))
2271 		goto unlock;
2272 
2273 	pr_debug("updating policy for CPU %u\n", cpu);
2274 	memcpy(&new_policy, policy, sizeof(*policy));
2275 	new_policy.min = policy->user_policy.min;
2276 	new_policy.max = policy->user_policy.max;
2277 
2278 	/*
2279 	 * BIOS might change freq behind our back
2280 	 * -> ask driver for current freq and notify governors about a change
2281 	 */
2282 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2283 		if (cpufreq_suspended)
2284 			goto unlock;
2285 
2286 		new_policy.cur = cpufreq_update_current_freq(policy);
2287 		if (WARN_ON(!new_policy.cur))
2288 			goto unlock;
2289 	}
2290 
2291 	cpufreq_set_policy(policy, &new_policy);
2292 
2293 unlock:
2294 	up_write(&policy->rwsem);
2295 
2296 	cpufreq_cpu_put(policy);
2297 }
2298 EXPORT_SYMBOL(cpufreq_update_policy);
2299 
2300 /*********************************************************************
2301  *               BOOST						     *
2302  *********************************************************************/
2303 static int cpufreq_boost_set_sw(int state)
2304 {
2305 	struct cpufreq_policy *policy;
2306 	int ret = -EINVAL;
2307 
2308 	for_each_active_policy(policy) {
2309 		if (!policy->freq_table)
2310 			continue;
2311 
2312 		ret = cpufreq_frequency_table_cpuinfo(policy,
2313 						      policy->freq_table);
2314 		if (ret) {
2315 			pr_err("%s: Policy frequency update failed\n",
2316 			       __func__);
2317 			break;
2318 		}
2319 
2320 		down_write(&policy->rwsem);
2321 		policy->user_policy.max = policy->max;
2322 		cpufreq_governor_limits(policy);
2323 		up_write(&policy->rwsem);
2324 	}
2325 
2326 	return ret;
2327 }
2328 
2329 int cpufreq_boost_trigger_state(int state)
2330 {
2331 	unsigned long flags;
2332 	int ret = 0;
2333 
2334 	if (cpufreq_driver->boost_enabled == state)
2335 		return 0;
2336 
2337 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2338 	cpufreq_driver->boost_enabled = state;
2339 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2340 
2341 	ret = cpufreq_driver->set_boost(state);
2342 	if (ret) {
2343 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2344 		cpufreq_driver->boost_enabled = !state;
2345 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2346 
2347 		pr_err("%s: Cannot %s BOOST\n",
2348 		       __func__, state ? "enable" : "disable");
2349 	}
2350 
2351 	return ret;
2352 }
2353 
2354 static bool cpufreq_boost_supported(void)
2355 {
2356 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2357 }
2358 
2359 static int create_boost_sysfs_file(void)
2360 {
2361 	int ret;
2362 
2363 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2364 	if (ret)
2365 		pr_err("%s: cannot register global BOOST sysfs file\n",
2366 		       __func__);
2367 
2368 	return ret;
2369 }
2370 
2371 static void remove_boost_sysfs_file(void)
2372 {
2373 	if (cpufreq_boost_supported())
2374 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2375 }
2376 
2377 int cpufreq_enable_boost_support(void)
2378 {
2379 	if (!cpufreq_driver)
2380 		return -EINVAL;
2381 
2382 	if (cpufreq_boost_supported())
2383 		return 0;
2384 
2385 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2386 
2387 	/* This will get removed on driver unregister */
2388 	return create_boost_sysfs_file();
2389 }
2390 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2391 
2392 int cpufreq_boost_enabled(void)
2393 {
2394 	return cpufreq_driver->boost_enabled;
2395 }
2396 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2397 
2398 /*********************************************************************
2399  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2400  *********************************************************************/
2401 static enum cpuhp_state hp_online;
2402 
2403 /**
2404  * cpufreq_register_driver - register a CPU Frequency driver
2405  * @driver_data: A struct cpufreq_driver containing the values#
2406  * submitted by the CPU Frequency driver.
2407  *
2408  * Registers a CPU Frequency driver to this core code. This code
2409  * returns zero on success, -EEXIST when another driver got here first
2410  * (and isn't unregistered in the meantime).
2411  *
2412  */
2413 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2414 {
2415 	unsigned long flags;
2416 	int ret;
2417 
2418 	if (cpufreq_disabled())
2419 		return -ENODEV;
2420 
2421 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2422 	    !(driver_data->setpolicy || driver_data->target_index ||
2423 		    driver_data->target) ||
2424 	     (driver_data->setpolicy && (driver_data->target_index ||
2425 		    driver_data->target)) ||
2426 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2427 		return -EINVAL;
2428 
2429 	pr_debug("trying to register driver %s\n", driver_data->name);
2430 
2431 	/* Protect against concurrent CPU online/offline. */
2432 	get_online_cpus();
2433 
2434 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2435 	if (cpufreq_driver) {
2436 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2437 		ret = -EEXIST;
2438 		goto out;
2439 	}
2440 	cpufreq_driver = driver_data;
2441 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2442 
2443 	if (driver_data->setpolicy)
2444 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2445 
2446 	if (cpufreq_boost_supported()) {
2447 		ret = create_boost_sysfs_file();
2448 		if (ret)
2449 			goto err_null_driver;
2450 	}
2451 
2452 	ret = subsys_interface_register(&cpufreq_interface);
2453 	if (ret)
2454 		goto err_boost_unreg;
2455 
2456 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2457 	    list_empty(&cpufreq_policy_list)) {
2458 		/* if all ->init() calls failed, unregister */
2459 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2460 			 driver_data->name);
2461 		goto err_if_unreg;
2462 	}
2463 
2464 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "cpufreq:online",
2465 					cpufreq_online,
2466 					cpufreq_offline);
2467 	if (ret < 0)
2468 		goto err_if_unreg;
2469 	hp_online = ret;
2470 	ret = 0;
2471 
2472 	pr_debug("driver %s up and running\n", driver_data->name);
2473 	goto out;
2474 
2475 err_if_unreg:
2476 	subsys_interface_unregister(&cpufreq_interface);
2477 err_boost_unreg:
2478 	remove_boost_sysfs_file();
2479 err_null_driver:
2480 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2481 	cpufreq_driver = NULL;
2482 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2483 out:
2484 	put_online_cpus();
2485 	return ret;
2486 }
2487 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2488 
2489 /**
2490  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2491  *
2492  * Unregister the current CPUFreq driver. Only call this if you have
2493  * the right to do so, i.e. if you have succeeded in initialising before!
2494  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2495  * currently not initialised.
2496  */
2497 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2498 {
2499 	unsigned long flags;
2500 
2501 	if (!cpufreq_driver || (driver != cpufreq_driver))
2502 		return -EINVAL;
2503 
2504 	pr_debug("unregistering driver %s\n", driver->name);
2505 
2506 	/* Protect against concurrent cpu hotplug */
2507 	get_online_cpus();
2508 	subsys_interface_unregister(&cpufreq_interface);
2509 	remove_boost_sysfs_file();
2510 	cpuhp_remove_state_nocalls(hp_online);
2511 
2512 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2513 
2514 	cpufreq_driver = NULL;
2515 
2516 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2517 	put_online_cpus();
2518 
2519 	return 0;
2520 }
2521 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2522 
2523 /*
2524  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2525  * or mutexes when secondary CPUs are halted.
2526  */
2527 static struct syscore_ops cpufreq_syscore_ops = {
2528 	.shutdown = cpufreq_suspend,
2529 };
2530 
2531 struct kobject *cpufreq_global_kobject;
2532 EXPORT_SYMBOL(cpufreq_global_kobject);
2533 
2534 static int __init cpufreq_core_init(void)
2535 {
2536 	if (cpufreq_disabled())
2537 		return -ENODEV;
2538 
2539 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2540 	BUG_ON(!cpufreq_global_kobject);
2541 
2542 	register_syscore_ops(&cpufreq_syscore_ops);
2543 
2544 	return 0;
2545 }
2546 core_initcall(cpufreq_core_init);
2547