1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 #define for_each_policy(__policy) \ 46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 47 48 /* Iterate over governors */ 49 static LIST_HEAD(cpufreq_governor_list); 50 #define for_each_governor(__governor) \ 51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 52 53 static char default_governor[CPUFREQ_NAME_LEN]; 54 55 /* 56 * The "cpufreq driver" - the arch- or hardware-dependent low 57 * level driver of CPUFreq support, and its spinlock. This lock 58 * also protects the cpufreq_cpu_data array. 59 */ 60 static struct cpufreq_driver *cpufreq_driver; 61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 62 static DEFINE_RWLOCK(cpufreq_driver_lock); 63 64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 65 bool cpufreq_supports_freq_invariance(void) 66 { 67 return static_branch_likely(&cpufreq_freq_invariance); 68 } 69 70 /* Flag to suspend/resume CPUFreq governors */ 71 static bool cpufreq_suspended; 72 73 static inline bool has_target(void) 74 { 75 return cpufreq_driver->target_index || cpufreq_driver->target; 76 } 77 78 /* internal prototypes */ 79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 80 static int cpufreq_init_governor(struct cpufreq_policy *policy); 81 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 82 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 83 static int cpufreq_set_policy(struct cpufreq_policy *policy, 84 struct cpufreq_governor *new_gov, 85 unsigned int new_pol); 86 87 /* 88 * Two notifier lists: the "policy" list is involved in the 89 * validation process for a new CPU frequency policy; the 90 * "transition" list for kernel code that needs to handle 91 * changes to devices when the CPU clock speed changes. 92 * The mutex locks both lists. 93 */ 94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 96 97 static int off __read_mostly; 98 static int cpufreq_disabled(void) 99 { 100 return off; 101 } 102 void disable_cpufreq(void) 103 { 104 off = 1; 105 } 106 static DEFINE_MUTEX(cpufreq_governor_mutex); 107 108 bool have_governor_per_policy(void) 109 { 110 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 111 } 112 EXPORT_SYMBOL_GPL(have_governor_per_policy); 113 114 static struct kobject *cpufreq_global_kobject; 115 116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 117 { 118 if (have_governor_per_policy()) 119 return &policy->kobj; 120 else 121 return cpufreq_global_kobject; 122 } 123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 124 125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 126 { 127 struct kernel_cpustat kcpustat; 128 u64 cur_wall_time; 129 u64 idle_time; 130 u64 busy_time; 131 132 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 133 134 kcpustat_cpu_fetch(&kcpustat, cpu); 135 136 busy_time = kcpustat.cpustat[CPUTIME_USER]; 137 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 138 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 139 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 140 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 141 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 142 143 idle_time = cur_wall_time - busy_time; 144 if (wall) 145 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 146 147 return div_u64(idle_time, NSEC_PER_USEC); 148 } 149 150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 151 { 152 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 153 154 if (idle_time == -1ULL) 155 return get_cpu_idle_time_jiffy(cpu, wall); 156 else if (!io_busy) 157 idle_time += get_cpu_iowait_time_us(cpu, wall); 158 159 return idle_time; 160 } 161 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 162 163 /* 164 * This is a generic cpufreq init() routine which can be used by cpufreq 165 * drivers of SMP systems. It will do following: 166 * - validate & show freq table passed 167 * - set policies transition latency 168 * - policy->cpus with all possible CPUs 169 */ 170 void cpufreq_generic_init(struct cpufreq_policy *policy, 171 struct cpufreq_frequency_table *table, 172 unsigned int transition_latency) 173 { 174 policy->freq_table = table; 175 policy->cpuinfo.transition_latency = transition_latency; 176 177 /* 178 * The driver only supports the SMP configuration where all processors 179 * share the clock and voltage and clock. 180 */ 181 cpumask_setall(policy->cpus); 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 184 185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 188 189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 190 } 191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 192 193 unsigned int cpufreq_generic_get(unsigned int cpu) 194 { 195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 196 197 if (!policy || IS_ERR(policy->clk)) { 198 pr_err("%s: No %s associated to cpu: %d\n", 199 __func__, policy ? "clk" : "policy", cpu); 200 return 0; 201 } 202 203 return clk_get_rate(policy->clk) / 1000; 204 } 205 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 206 207 /** 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 209 * @cpu: CPU to find the policy for. 210 * 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 212 * the kobject reference counter of that policy. Return a valid policy on 213 * success or NULL on failure. 214 * 215 * The policy returned by this function has to be released with the help of 216 * cpufreq_cpu_put() to balance its kobject reference counter properly. 217 */ 218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 219 { 220 struct cpufreq_policy *policy = NULL; 221 unsigned long flags; 222 223 if (WARN_ON(cpu >= nr_cpu_ids)) 224 return NULL; 225 226 /* get the cpufreq driver */ 227 read_lock_irqsave(&cpufreq_driver_lock, flags); 228 229 if (cpufreq_driver) { 230 /* get the CPU */ 231 policy = cpufreq_cpu_get_raw(cpu); 232 if (policy) 233 kobject_get(&policy->kobj); 234 } 235 236 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 237 238 return policy; 239 } 240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 241 242 /** 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 244 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 245 */ 246 void cpufreq_cpu_put(struct cpufreq_policy *policy) 247 { 248 kobject_put(&policy->kobj); 249 } 250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 251 252 /** 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 255 */ 256 void cpufreq_cpu_release(struct cpufreq_policy *policy) 257 { 258 if (WARN_ON(!policy)) 259 return; 260 261 lockdep_assert_held(&policy->rwsem); 262 263 up_write(&policy->rwsem); 264 265 cpufreq_cpu_put(policy); 266 } 267 268 /** 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 270 * @cpu: CPU to find the policy for. 271 * 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 273 * if the policy returned by it is not NULL, acquire its rwsem for writing. 274 * Return the policy if it is active or release it and return NULL otherwise. 275 * 276 * The policy returned by this function has to be released with the help of 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 278 * counter properly. 279 */ 280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 281 { 282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 283 284 if (!policy) 285 return NULL; 286 287 down_write(&policy->rwsem); 288 289 if (policy_is_inactive(policy)) { 290 cpufreq_cpu_release(policy); 291 return NULL; 292 } 293 294 return policy; 295 } 296 297 /********************************************************************* 298 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 299 *********************************************************************/ 300 301 /** 302 * adjust_jiffies - Adjust the system "loops_per_jiffy". 303 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 304 * @ci: Frequency change information. 305 * 306 * This function alters the system "loops_per_jiffy" for the clock 307 * speed change. Note that loops_per_jiffy cannot be updated on SMP 308 * systems as each CPU might be scaled differently. So, use the arch 309 * per-CPU loops_per_jiffy value wherever possible. 310 */ 311 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 312 { 313 #ifndef CONFIG_SMP 314 static unsigned long l_p_j_ref; 315 static unsigned int l_p_j_ref_freq; 316 317 if (ci->flags & CPUFREQ_CONST_LOOPS) 318 return; 319 320 if (!l_p_j_ref_freq) { 321 l_p_j_ref = loops_per_jiffy; 322 l_p_j_ref_freq = ci->old; 323 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 324 l_p_j_ref, l_p_j_ref_freq); 325 } 326 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 327 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 328 ci->new); 329 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 330 loops_per_jiffy, ci->new); 331 } 332 #endif 333 } 334 335 /** 336 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 337 * @policy: cpufreq policy to enable fast frequency switching for. 338 * @freqs: contain details of the frequency update. 339 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 340 * 341 * This function calls the transition notifiers and adjust_jiffies(). 342 * 343 * It is called twice on all CPU frequency changes that have external effects. 344 */ 345 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 346 struct cpufreq_freqs *freqs, 347 unsigned int state) 348 { 349 int cpu; 350 351 BUG_ON(irqs_disabled()); 352 353 if (cpufreq_disabled()) 354 return; 355 356 freqs->policy = policy; 357 freqs->flags = cpufreq_driver->flags; 358 pr_debug("notification %u of frequency transition to %u kHz\n", 359 state, freqs->new); 360 361 switch (state) { 362 case CPUFREQ_PRECHANGE: 363 /* 364 * Detect if the driver reported a value as "old frequency" 365 * which is not equal to what the cpufreq core thinks is 366 * "old frequency". 367 */ 368 if (policy->cur && policy->cur != freqs->old) { 369 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 370 freqs->old, policy->cur); 371 freqs->old = policy->cur; 372 } 373 374 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 375 CPUFREQ_PRECHANGE, freqs); 376 377 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 378 break; 379 380 case CPUFREQ_POSTCHANGE: 381 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 382 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 383 cpumask_pr_args(policy->cpus)); 384 385 for_each_cpu(cpu, policy->cpus) 386 trace_cpu_frequency(freqs->new, cpu); 387 388 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 389 CPUFREQ_POSTCHANGE, freqs); 390 391 cpufreq_stats_record_transition(policy, freqs->new); 392 policy->cur = freqs->new; 393 } 394 } 395 396 /* Do post notifications when there are chances that transition has failed */ 397 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 398 struct cpufreq_freqs *freqs, int transition_failed) 399 { 400 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 401 if (!transition_failed) 402 return; 403 404 swap(freqs->old, freqs->new); 405 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 406 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 407 } 408 409 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 410 struct cpufreq_freqs *freqs) 411 { 412 413 /* 414 * Catch double invocations of _begin() which lead to self-deadlock. 415 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 416 * doesn't invoke _begin() on their behalf, and hence the chances of 417 * double invocations are very low. Moreover, there are scenarios 418 * where these checks can emit false-positive warnings in these 419 * drivers; so we avoid that by skipping them altogether. 420 */ 421 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 422 && current == policy->transition_task); 423 424 wait: 425 wait_event(policy->transition_wait, !policy->transition_ongoing); 426 427 spin_lock(&policy->transition_lock); 428 429 if (unlikely(policy->transition_ongoing)) { 430 spin_unlock(&policy->transition_lock); 431 goto wait; 432 } 433 434 policy->transition_ongoing = true; 435 policy->transition_task = current; 436 437 spin_unlock(&policy->transition_lock); 438 439 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 440 } 441 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 442 443 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 444 struct cpufreq_freqs *freqs, int transition_failed) 445 { 446 if (WARN_ON(!policy->transition_ongoing)) 447 return; 448 449 cpufreq_notify_post_transition(policy, freqs, transition_failed); 450 451 arch_set_freq_scale(policy->related_cpus, 452 policy->cur, 453 policy->cpuinfo.max_freq); 454 455 policy->transition_ongoing = false; 456 policy->transition_task = NULL; 457 458 wake_up(&policy->transition_wait); 459 } 460 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 461 462 /* 463 * Fast frequency switching status count. Positive means "enabled", negative 464 * means "disabled" and 0 means "not decided yet". 465 */ 466 static int cpufreq_fast_switch_count; 467 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 468 469 static void cpufreq_list_transition_notifiers(void) 470 { 471 struct notifier_block *nb; 472 473 pr_info("Registered transition notifiers:\n"); 474 475 mutex_lock(&cpufreq_transition_notifier_list.mutex); 476 477 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 478 pr_info("%pS\n", nb->notifier_call); 479 480 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 481 } 482 483 /** 484 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 485 * @policy: cpufreq policy to enable fast frequency switching for. 486 * 487 * Try to enable fast frequency switching for @policy. 488 * 489 * The attempt will fail if there is at least one transition notifier registered 490 * at this point, as fast frequency switching is quite fundamentally at odds 491 * with transition notifiers. Thus if successful, it will make registration of 492 * transition notifiers fail going forward. 493 */ 494 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 495 { 496 lockdep_assert_held(&policy->rwsem); 497 498 if (!policy->fast_switch_possible) 499 return; 500 501 mutex_lock(&cpufreq_fast_switch_lock); 502 if (cpufreq_fast_switch_count >= 0) { 503 cpufreq_fast_switch_count++; 504 policy->fast_switch_enabled = true; 505 } else { 506 pr_warn("CPU%u: Fast frequency switching not enabled\n", 507 policy->cpu); 508 cpufreq_list_transition_notifiers(); 509 } 510 mutex_unlock(&cpufreq_fast_switch_lock); 511 } 512 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 513 514 /** 515 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 516 * @policy: cpufreq policy to disable fast frequency switching for. 517 */ 518 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 519 { 520 mutex_lock(&cpufreq_fast_switch_lock); 521 if (policy->fast_switch_enabled) { 522 policy->fast_switch_enabled = false; 523 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 524 cpufreq_fast_switch_count--; 525 } 526 mutex_unlock(&cpufreq_fast_switch_lock); 527 } 528 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 529 530 /** 531 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 532 * one. 533 * @policy: associated policy to interrogate 534 * @target_freq: target frequency to resolve. 535 * 536 * The target to driver frequency mapping is cached in the policy. 537 * 538 * Return: Lowest driver-supported frequency greater than or equal to the 539 * given target_freq, subject to policy (min/max) and driver limitations. 540 */ 541 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 542 unsigned int target_freq) 543 { 544 target_freq = clamp_val(target_freq, policy->min, policy->max); 545 policy->cached_target_freq = target_freq; 546 547 if (cpufreq_driver->target_index) { 548 unsigned int idx; 549 550 idx = cpufreq_frequency_table_target(policy, target_freq, 551 CPUFREQ_RELATION_L); 552 policy->cached_resolved_idx = idx; 553 return policy->freq_table[idx].frequency; 554 } 555 556 if (cpufreq_driver->resolve_freq) 557 return cpufreq_driver->resolve_freq(policy, target_freq); 558 559 return target_freq; 560 } 561 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 562 563 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 564 { 565 unsigned int latency; 566 567 if (policy->transition_delay_us) 568 return policy->transition_delay_us; 569 570 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 571 if (latency) { 572 /* 573 * For platforms that can change the frequency very fast (< 10 574 * us), the above formula gives a decent transition delay. But 575 * for platforms where transition_latency is in milliseconds, it 576 * ends up giving unrealistic values. 577 * 578 * Cap the default transition delay to 10 ms, which seems to be 579 * a reasonable amount of time after which we should reevaluate 580 * the frequency. 581 */ 582 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 583 } 584 585 return LATENCY_MULTIPLIER; 586 } 587 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 588 589 /********************************************************************* 590 * SYSFS INTERFACE * 591 *********************************************************************/ 592 static ssize_t show_boost(struct kobject *kobj, 593 struct kobj_attribute *attr, char *buf) 594 { 595 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 596 } 597 598 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 599 const char *buf, size_t count) 600 { 601 int ret, enable; 602 603 ret = sscanf(buf, "%d", &enable); 604 if (ret != 1 || enable < 0 || enable > 1) 605 return -EINVAL; 606 607 if (cpufreq_boost_trigger_state(enable)) { 608 pr_err("%s: Cannot %s BOOST!\n", 609 __func__, enable ? "enable" : "disable"); 610 return -EINVAL; 611 } 612 613 pr_debug("%s: cpufreq BOOST %s\n", 614 __func__, enable ? "enabled" : "disabled"); 615 616 return count; 617 } 618 define_one_global_rw(boost); 619 620 static struct cpufreq_governor *find_governor(const char *str_governor) 621 { 622 struct cpufreq_governor *t; 623 624 for_each_governor(t) 625 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 626 return t; 627 628 return NULL; 629 } 630 631 static struct cpufreq_governor *get_governor(const char *str_governor) 632 { 633 struct cpufreq_governor *t; 634 635 mutex_lock(&cpufreq_governor_mutex); 636 t = find_governor(str_governor); 637 if (!t) 638 goto unlock; 639 640 if (!try_module_get(t->owner)) 641 t = NULL; 642 643 unlock: 644 mutex_unlock(&cpufreq_governor_mutex); 645 646 return t; 647 } 648 649 static unsigned int cpufreq_parse_policy(char *str_governor) 650 { 651 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 652 return CPUFREQ_POLICY_PERFORMANCE; 653 654 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 655 return CPUFREQ_POLICY_POWERSAVE; 656 657 return CPUFREQ_POLICY_UNKNOWN; 658 } 659 660 /** 661 * cpufreq_parse_governor - parse a governor string only for has_target() 662 * @str_governor: Governor name. 663 */ 664 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 665 { 666 struct cpufreq_governor *t; 667 668 t = get_governor(str_governor); 669 if (t) 670 return t; 671 672 if (request_module("cpufreq_%s", str_governor)) 673 return NULL; 674 675 return get_governor(str_governor); 676 } 677 678 /* 679 * cpufreq_per_cpu_attr_read() / show_##file_name() - 680 * print out cpufreq information 681 * 682 * Write out information from cpufreq_driver->policy[cpu]; object must be 683 * "unsigned int". 684 */ 685 686 #define show_one(file_name, object) \ 687 static ssize_t show_##file_name \ 688 (struct cpufreq_policy *policy, char *buf) \ 689 { \ 690 return sprintf(buf, "%u\n", policy->object); \ 691 } 692 693 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 694 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 695 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 696 show_one(scaling_min_freq, min); 697 show_one(scaling_max_freq, max); 698 699 __weak unsigned int arch_freq_get_on_cpu(int cpu) 700 { 701 return 0; 702 } 703 704 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 705 { 706 ssize_t ret; 707 unsigned int freq; 708 709 freq = arch_freq_get_on_cpu(policy->cpu); 710 if (freq) 711 ret = sprintf(buf, "%u\n", freq); 712 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 713 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 714 else 715 ret = sprintf(buf, "%u\n", policy->cur); 716 return ret; 717 } 718 719 /* 720 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 721 */ 722 #define store_one(file_name, object) \ 723 static ssize_t store_##file_name \ 724 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 725 { \ 726 unsigned long val; \ 727 int ret; \ 728 \ 729 ret = sscanf(buf, "%lu", &val); \ 730 if (ret != 1) \ 731 return -EINVAL; \ 732 \ 733 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 734 return ret >= 0 ? count : ret; \ 735 } 736 737 store_one(scaling_min_freq, min); 738 store_one(scaling_max_freq, max); 739 740 /* 741 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 742 */ 743 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 744 char *buf) 745 { 746 unsigned int cur_freq = __cpufreq_get(policy); 747 748 if (cur_freq) 749 return sprintf(buf, "%u\n", cur_freq); 750 751 return sprintf(buf, "<unknown>\n"); 752 } 753 754 /* 755 * show_scaling_governor - show the current policy for the specified CPU 756 */ 757 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 758 { 759 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 760 return sprintf(buf, "powersave\n"); 761 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 762 return sprintf(buf, "performance\n"); 763 else if (policy->governor) 764 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 765 policy->governor->name); 766 return -EINVAL; 767 } 768 769 /* 770 * store_scaling_governor - store policy for the specified CPU 771 */ 772 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 773 const char *buf, size_t count) 774 { 775 char str_governor[16]; 776 int ret; 777 778 ret = sscanf(buf, "%15s", str_governor); 779 if (ret != 1) 780 return -EINVAL; 781 782 if (cpufreq_driver->setpolicy) { 783 unsigned int new_pol; 784 785 new_pol = cpufreq_parse_policy(str_governor); 786 if (!new_pol) 787 return -EINVAL; 788 789 ret = cpufreq_set_policy(policy, NULL, new_pol); 790 } else { 791 struct cpufreq_governor *new_gov; 792 793 new_gov = cpufreq_parse_governor(str_governor); 794 if (!new_gov) 795 return -EINVAL; 796 797 ret = cpufreq_set_policy(policy, new_gov, 798 CPUFREQ_POLICY_UNKNOWN); 799 800 module_put(new_gov->owner); 801 } 802 803 return ret ? ret : count; 804 } 805 806 /* 807 * show_scaling_driver - show the cpufreq driver currently loaded 808 */ 809 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 810 { 811 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 812 } 813 814 /* 815 * show_scaling_available_governors - show the available CPUfreq governors 816 */ 817 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 818 char *buf) 819 { 820 ssize_t i = 0; 821 struct cpufreq_governor *t; 822 823 if (!has_target()) { 824 i += sprintf(buf, "performance powersave"); 825 goto out; 826 } 827 828 mutex_lock(&cpufreq_governor_mutex); 829 for_each_governor(t) { 830 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 831 - (CPUFREQ_NAME_LEN + 2))) 832 break; 833 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 834 } 835 mutex_unlock(&cpufreq_governor_mutex); 836 out: 837 i += sprintf(&buf[i], "\n"); 838 return i; 839 } 840 841 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 842 { 843 ssize_t i = 0; 844 unsigned int cpu; 845 846 for_each_cpu(cpu, mask) { 847 if (i) 848 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 849 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 850 if (i >= (PAGE_SIZE - 5)) 851 break; 852 } 853 i += sprintf(&buf[i], "\n"); 854 return i; 855 } 856 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 857 858 /* 859 * show_related_cpus - show the CPUs affected by each transition even if 860 * hw coordination is in use 861 */ 862 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 863 { 864 return cpufreq_show_cpus(policy->related_cpus, buf); 865 } 866 867 /* 868 * show_affected_cpus - show the CPUs affected by each transition 869 */ 870 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 871 { 872 return cpufreq_show_cpus(policy->cpus, buf); 873 } 874 875 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 876 const char *buf, size_t count) 877 { 878 unsigned int freq = 0; 879 unsigned int ret; 880 881 if (!policy->governor || !policy->governor->store_setspeed) 882 return -EINVAL; 883 884 ret = sscanf(buf, "%u", &freq); 885 if (ret != 1) 886 return -EINVAL; 887 888 policy->governor->store_setspeed(policy, freq); 889 890 return count; 891 } 892 893 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 894 { 895 if (!policy->governor || !policy->governor->show_setspeed) 896 return sprintf(buf, "<unsupported>\n"); 897 898 return policy->governor->show_setspeed(policy, buf); 899 } 900 901 /* 902 * show_bios_limit - show the current cpufreq HW/BIOS limitation 903 */ 904 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 905 { 906 unsigned int limit; 907 int ret; 908 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 909 if (!ret) 910 return sprintf(buf, "%u\n", limit); 911 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 912 } 913 914 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 915 cpufreq_freq_attr_ro(cpuinfo_min_freq); 916 cpufreq_freq_attr_ro(cpuinfo_max_freq); 917 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 918 cpufreq_freq_attr_ro(scaling_available_governors); 919 cpufreq_freq_attr_ro(scaling_driver); 920 cpufreq_freq_attr_ro(scaling_cur_freq); 921 cpufreq_freq_attr_ro(bios_limit); 922 cpufreq_freq_attr_ro(related_cpus); 923 cpufreq_freq_attr_ro(affected_cpus); 924 cpufreq_freq_attr_rw(scaling_min_freq); 925 cpufreq_freq_attr_rw(scaling_max_freq); 926 cpufreq_freq_attr_rw(scaling_governor); 927 cpufreq_freq_attr_rw(scaling_setspeed); 928 929 static struct attribute *default_attrs[] = { 930 &cpuinfo_min_freq.attr, 931 &cpuinfo_max_freq.attr, 932 &cpuinfo_transition_latency.attr, 933 &scaling_min_freq.attr, 934 &scaling_max_freq.attr, 935 &affected_cpus.attr, 936 &related_cpus.attr, 937 &scaling_governor.attr, 938 &scaling_driver.attr, 939 &scaling_available_governors.attr, 940 &scaling_setspeed.attr, 941 NULL 942 }; 943 944 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 945 #define to_attr(a) container_of(a, struct freq_attr, attr) 946 947 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 948 { 949 struct cpufreq_policy *policy = to_policy(kobj); 950 struct freq_attr *fattr = to_attr(attr); 951 ssize_t ret; 952 953 if (!fattr->show) 954 return -EIO; 955 956 down_read(&policy->rwsem); 957 ret = fattr->show(policy, buf); 958 up_read(&policy->rwsem); 959 960 return ret; 961 } 962 963 static ssize_t store(struct kobject *kobj, struct attribute *attr, 964 const char *buf, size_t count) 965 { 966 struct cpufreq_policy *policy = to_policy(kobj); 967 struct freq_attr *fattr = to_attr(attr); 968 ssize_t ret = -EINVAL; 969 970 if (!fattr->store) 971 return -EIO; 972 973 /* 974 * cpus_read_trylock() is used here to work around a circular lock 975 * dependency problem with respect to the cpufreq_register_driver(). 976 */ 977 if (!cpus_read_trylock()) 978 return -EBUSY; 979 980 if (cpu_online(policy->cpu)) { 981 down_write(&policy->rwsem); 982 ret = fattr->store(policy, buf, count); 983 up_write(&policy->rwsem); 984 } 985 986 cpus_read_unlock(); 987 988 return ret; 989 } 990 991 static void cpufreq_sysfs_release(struct kobject *kobj) 992 { 993 struct cpufreq_policy *policy = to_policy(kobj); 994 pr_debug("last reference is dropped\n"); 995 complete(&policy->kobj_unregister); 996 } 997 998 static const struct sysfs_ops sysfs_ops = { 999 .show = show, 1000 .store = store, 1001 }; 1002 1003 static struct kobj_type ktype_cpufreq = { 1004 .sysfs_ops = &sysfs_ops, 1005 .default_attrs = default_attrs, 1006 .release = cpufreq_sysfs_release, 1007 }; 1008 1009 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1010 { 1011 struct device *dev = get_cpu_device(cpu); 1012 1013 if (unlikely(!dev)) 1014 return; 1015 1016 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1017 return; 1018 1019 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1020 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1021 dev_err(dev, "cpufreq symlink creation failed\n"); 1022 } 1023 1024 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1025 struct device *dev) 1026 { 1027 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1028 sysfs_remove_link(&dev->kobj, "cpufreq"); 1029 } 1030 1031 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1032 { 1033 struct freq_attr **drv_attr; 1034 int ret = 0; 1035 1036 /* set up files for this cpu device */ 1037 drv_attr = cpufreq_driver->attr; 1038 while (drv_attr && *drv_attr) { 1039 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1040 if (ret) 1041 return ret; 1042 drv_attr++; 1043 } 1044 if (cpufreq_driver->get) { 1045 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1046 if (ret) 1047 return ret; 1048 } 1049 1050 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1051 if (ret) 1052 return ret; 1053 1054 if (cpufreq_driver->bios_limit) { 1055 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1056 if (ret) 1057 return ret; 1058 } 1059 1060 return 0; 1061 } 1062 1063 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1064 { 1065 struct cpufreq_governor *gov = NULL; 1066 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1067 int ret; 1068 1069 if (has_target()) { 1070 /* Update policy governor to the one used before hotplug. */ 1071 gov = get_governor(policy->last_governor); 1072 if (gov) { 1073 pr_debug("Restoring governor %s for cpu %d\n", 1074 gov->name, policy->cpu); 1075 } else { 1076 gov = get_governor(default_governor); 1077 } 1078 1079 if (!gov) { 1080 gov = cpufreq_default_governor(); 1081 __module_get(gov->owner); 1082 } 1083 1084 } else { 1085 1086 /* Use the default policy if there is no last_policy. */ 1087 if (policy->last_policy) { 1088 pol = policy->last_policy; 1089 } else { 1090 pol = cpufreq_parse_policy(default_governor); 1091 /* 1092 * In case the default governor is neither "performance" 1093 * nor "powersave", fall back to the initial policy 1094 * value set by the driver. 1095 */ 1096 if (pol == CPUFREQ_POLICY_UNKNOWN) 1097 pol = policy->policy; 1098 } 1099 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1100 pol != CPUFREQ_POLICY_POWERSAVE) 1101 return -ENODATA; 1102 } 1103 1104 ret = cpufreq_set_policy(policy, gov, pol); 1105 if (gov) 1106 module_put(gov->owner); 1107 1108 return ret; 1109 } 1110 1111 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1112 { 1113 int ret = 0; 1114 1115 /* Has this CPU been taken care of already? */ 1116 if (cpumask_test_cpu(cpu, policy->cpus)) 1117 return 0; 1118 1119 down_write(&policy->rwsem); 1120 if (has_target()) 1121 cpufreq_stop_governor(policy); 1122 1123 cpumask_set_cpu(cpu, policy->cpus); 1124 1125 if (has_target()) { 1126 ret = cpufreq_start_governor(policy); 1127 if (ret) 1128 pr_err("%s: Failed to start governor\n", __func__); 1129 } 1130 up_write(&policy->rwsem); 1131 return ret; 1132 } 1133 1134 void refresh_frequency_limits(struct cpufreq_policy *policy) 1135 { 1136 if (!policy_is_inactive(policy)) { 1137 pr_debug("updating policy for CPU %u\n", policy->cpu); 1138 1139 cpufreq_set_policy(policy, policy->governor, policy->policy); 1140 } 1141 } 1142 EXPORT_SYMBOL(refresh_frequency_limits); 1143 1144 static void handle_update(struct work_struct *work) 1145 { 1146 struct cpufreq_policy *policy = 1147 container_of(work, struct cpufreq_policy, update); 1148 1149 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1150 down_write(&policy->rwsem); 1151 refresh_frequency_limits(policy); 1152 up_write(&policy->rwsem); 1153 } 1154 1155 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1156 void *data) 1157 { 1158 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1159 1160 schedule_work(&policy->update); 1161 return 0; 1162 } 1163 1164 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1165 void *data) 1166 { 1167 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1168 1169 schedule_work(&policy->update); 1170 return 0; 1171 } 1172 1173 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1174 { 1175 struct kobject *kobj; 1176 struct completion *cmp; 1177 1178 down_write(&policy->rwsem); 1179 cpufreq_stats_free_table(policy); 1180 kobj = &policy->kobj; 1181 cmp = &policy->kobj_unregister; 1182 up_write(&policy->rwsem); 1183 kobject_put(kobj); 1184 1185 /* 1186 * We need to make sure that the underlying kobj is 1187 * actually not referenced anymore by anybody before we 1188 * proceed with unloading. 1189 */ 1190 pr_debug("waiting for dropping of refcount\n"); 1191 wait_for_completion(cmp); 1192 pr_debug("wait complete\n"); 1193 } 1194 1195 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1196 { 1197 struct cpufreq_policy *policy; 1198 struct device *dev = get_cpu_device(cpu); 1199 int ret; 1200 1201 if (!dev) 1202 return NULL; 1203 1204 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1205 if (!policy) 1206 return NULL; 1207 1208 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1209 goto err_free_policy; 1210 1211 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1212 goto err_free_cpumask; 1213 1214 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1215 goto err_free_rcpumask; 1216 1217 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1218 cpufreq_global_kobject, "policy%u", cpu); 1219 if (ret) { 1220 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1221 /* 1222 * The entire policy object will be freed below, but the extra 1223 * memory allocated for the kobject name needs to be freed by 1224 * releasing the kobject. 1225 */ 1226 kobject_put(&policy->kobj); 1227 goto err_free_real_cpus; 1228 } 1229 1230 freq_constraints_init(&policy->constraints); 1231 1232 policy->nb_min.notifier_call = cpufreq_notifier_min; 1233 policy->nb_max.notifier_call = cpufreq_notifier_max; 1234 1235 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1236 &policy->nb_min); 1237 if (ret) { 1238 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1239 ret, cpumask_pr_args(policy->cpus)); 1240 goto err_kobj_remove; 1241 } 1242 1243 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1244 &policy->nb_max); 1245 if (ret) { 1246 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1247 ret, cpumask_pr_args(policy->cpus)); 1248 goto err_min_qos_notifier; 1249 } 1250 1251 INIT_LIST_HEAD(&policy->policy_list); 1252 init_rwsem(&policy->rwsem); 1253 spin_lock_init(&policy->transition_lock); 1254 init_waitqueue_head(&policy->transition_wait); 1255 init_completion(&policy->kobj_unregister); 1256 INIT_WORK(&policy->update, handle_update); 1257 1258 policy->cpu = cpu; 1259 return policy; 1260 1261 err_min_qos_notifier: 1262 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1263 &policy->nb_min); 1264 err_kobj_remove: 1265 cpufreq_policy_put_kobj(policy); 1266 err_free_real_cpus: 1267 free_cpumask_var(policy->real_cpus); 1268 err_free_rcpumask: 1269 free_cpumask_var(policy->related_cpus); 1270 err_free_cpumask: 1271 free_cpumask_var(policy->cpus); 1272 err_free_policy: 1273 kfree(policy); 1274 1275 return NULL; 1276 } 1277 1278 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1279 { 1280 unsigned long flags; 1281 int cpu; 1282 1283 /* Remove policy from list */ 1284 write_lock_irqsave(&cpufreq_driver_lock, flags); 1285 list_del(&policy->policy_list); 1286 1287 for_each_cpu(cpu, policy->related_cpus) 1288 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1289 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1290 1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1292 &policy->nb_max); 1293 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1294 &policy->nb_min); 1295 1296 /* Cancel any pending policy->update work before freeing the policy. */ 1297 cancel_work_sync(&policy->update); 1298 1299 if (policy->max_freq_req) { 1300 /* 1301 * CPUFREQ_CREATE_POLICY notification is sent only after 1302 * successfully adding max_freq_req request. 1303 */ 1304 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1305 CPUFREQ_REMOVE_POLICY, policy); 1306 freq_qos_remove_request(policy->max_freq_req); 1307 } 1308 1309 freq_qos_remove_request(policy->min_freq_req); 1310 kfree(policy->min_freq_req); 1311 1312 cpufreq_policy_put_kobj(policy); 1313 free_cpumask_var(policy->real_cpus); 1314 free_cpumask_var(policy->related_cpus); 1315 free_cpumask_var(policy->cpus); 1316 kfree(policy); 1317 } 1318 1319 static int cpufreq_online(unsigned int cpu) 1320 { 1321 struct cpufreq_policy *policy; 1322 bool new_policy; 1323 unsigned long flags; 1324 unsigned int j; 1325 int ret; 1326 1327 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1328 1329 /* Check if this CPU already has a policy to manage it */ 1330 policy = per_cpu(cpufreq_cpu_data, cpu); 1331 if (policy) { 1332 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1333 if (!policy_is_inactive(policy)) 1334 return cpufreq_add_policy_cpu(policy, cpu); 1335 1336 /* This is the only online CPU for the policy. Start over. */ 1337 new_policy = false; 1338 down_write(&policy->rwsem); 1339 policy->cpu = cpu; 1340 policy->governor = NULL; 1341 up_write(&policy->rwsem); 1342 } else { 1343 new_policy = true; 1344 policy = cpufreq_policy_alloc(cpu); 1345 if (!policy) 1346 return -ENOMEM; 1347 } 1348 1349 if (!new_policy && cpufreq_driver->online) { 1350 ret = cpufreq_driver->online(policy); 1351 if (ret) { 1352 pr_debug("%s: %d: initialization failed\n", __func__, 1353 __LINE__); 1354 goto out_exit_policy; 1355 } 1356 1357 /* Recover policy->cpus using related_cpus */ 1358 cpumask_copy(policy->cpus, policy->related_cpus); 1359 } else { 1360 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1361 1362 /* 1363 * Call driver. From then on the cpufreq must be able 1364 * to accept all calls to ->verify and ->setpolicy for this CPU. 1365 */ 1366 ret = cpufreq_driver->init(policy); 1367 if (ret) { 1368 pr_debug("%s: %d: initialization failed\n", __func__, 1369 __LINE__); 1370 goto out_free_policy; 1371 } 1372 1373 ret = cpufreq_table_validate_and_sort(policy); 1374 if (ret) 1375 goto out_exit_policy; 1376 1377 /* related_cpus should at least include policy->cpus. */ 1378 cpumask_copy(policy->related_cpus, policy->cpus); 1379 } 1380 1381 down_write(&policy->rwsem); 1382 /* 1383 * affected cpus must always be the one, which are online. We aren't 1384 * managing offline cpus here. 1385 */ 1386 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1387 1388 if (new_policy) { 1389 for_each_cpu(j, policy->related_cpus) { 1390 per_cpu(cpufreq_cpu_data, j) = policy; 1391 add_cpu_dev_symlink(policy, j); 1392 } 1393 1394 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1395 GFP_KERNEL); 1396 if (!policy->min_freq_req) { 1397 ret = -ENOMEM; 1398 goto out_destroy_policy; 1399 } 1400 1401 ret = freq_qos_add_request(&policy->constraints, 1402 policy->min_freq_req, FREQ_QOS_MIN, 1403 policy->min); 1404 if (ret < 0) { 1405 /* 1406 * So we don't call freq_qos_remove_request() for an 1407 * uninitialized request. 1408 */ 1409 kfree(policy->min_freq_req); 1410 policy->min_freq_req = NULL; 1411 goto out_destroy_policy; 1412 } 1413 1414 /* 1415 * This must be initialized right here to avoid calling 1416 * freq_qos_remove_request() on uninitialized request in case 1417 * of errors. 1418 */ 1419 policy->max_freq_req = policy->min_freq_req + 1; 1420 1421 ret = freq_qos_add_request(&policy->constraints, 1422 policy->max_freq_req, FREQ_QOS_MAX, 1423 policy->max); 1424 if (ret < 0) { 1425 policy->max_freq_req = NULL; 1426 goto out_destroy_policy; 1427 } 1428 1429 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1430 CPUFREQ_CREATE_POLICY, policy); 1431 } 1432 1433 if (cpufreq_driver->get && has_target()) { 1434 policy->cur = cpufreq_driver->get(policy->cpu); 1435 if (!policy->cur) { 1436 ret = -EIO; 1437 pr_err("%s: ->get() failed\n", __func__); 1438 goto out_destroy_policy; 1439 } 1440 } 1441 1442 /* 1443 * Sometimes boot loaders set CPU frequency to a value outside of 1444 * frequency table present with cpufreq core. In such cases CPU might be 1445 * unstable if it has to run on that frequency for long duration of time 1446 * and so its better to set it to a frequency which is specified in 1447 * freq-table. This also makes cpufreq stats inconsistent as 1448 * cpufreq-stats would fail to register because current frequency of CPU 1449 * isn't found in freq-table. 1450 * 1451 * Because we don't want this change to effect boot process badly, we go 1452 * for the next freq which is >= policy->cur ('cur' must be set by now, 1453 * otherwise we will end up setting freq to lowest of the table as 'cur' 1454 * is initialized to zero). 1455 * 1456 * We are passing target-freq as "policy->cur - 1" otherwise 1457 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1458 * equal to target-freq. 1459 */ 1460 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1461 && has_target()) { 1462 unsigned int old_freq = policy->cur; 1463 1464 /* Are we running at unknown frequency ? */ 1465 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1466 if (ret == -EINVAL) { 1467 ret = __cpufreq_driver_target(policy, old_freq - 1, 1468 CPUFREQ_RELATION_L); 1469 1470 /* 1471 * Reaching here after boot in a few seconds may not 1472 * mean that system will remain stable at "unknown" 1473 * frequency for longer duration. Hence, a BUG_ON(). 1474 */ 1475 BUG_ON(ret); 1476 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1477 __func__, policy->cpu, old_freq, policy->cur); 1478 } 1479 } 1480 1481 if (new_policy) { 1482 ret = cpufreq_add_dev_interface(policy); 1483 if (ret) 1484 goto out_destroy_policy; 1485 1486 cpufreq_stats_create_table(policy); 1487 1488 write_lock_irqsave(&cpufreq_driver_lock, flags); 1489 list_add(&policy->policy_list, &cpufreq_policy_list); 1490 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1491 } 1492 1493 ret = cpufreq_init_policy(policy); 1494 if (ret) { 1495 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1496 __func__, cpu, ret); 1497 goto out_destroy_policy; 1498 } 1499 1500 up_write(&policy->rwsem); 1501 1502 kobject_uevent(&policy->kobj, KOBJ_ADD); 1503 1504 /* Callback for handling stuff after policy is ready */ 1505 if (cpufreq_driver->ready) 1506 cpufreq_driver->ready(policy); 1507 1508 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1509 policy->cdev = of_cpufreq_cooling_register(policy); 1510 1511 pr_debug("initialization complete\n"); 1512 1513 return 0; 1514 1515 out_destroy_policy: 1516 for_each_cpu(j, policy->real_cpus) 1517 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1518 1519 up_write(&policy->rwsem); 1520 1521 out_exit_policy: 1522 if (cpufreq_driver->exit) 1523 cpufreq_driver->exit(policy); 1524 1525 out_free_policy: 1526 cpufreq_policy_free(policy); 1527 return ret; 1528 } 1529 1530 /** 1531 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1532 * @dev: CPU device. 1533 * @sif: Subsystem interface structure pointer (not used) 1534 */ 1535 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1536 { 1537 struct cpufreq_policy *policy; 1538 unsigned cpu = dev->id; 1539 int ret; 1540 1541 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1542 1543 if (cpu_online(cpu)) { 1544 ret = cpufreq_online(cpu); 1545 if (ret) 1546 return ret; 1547 } 1548 1549 /* Create sysfs link on CPU registration */ 1550 policy = per_cpu(cpufreq_cpu_data, cpu); 1551 if (policy) 1552 add_cpu_dev_symlink(policy, cpu); 1553 1554 return 0; 1555 } 1556 1557 static int cpufreq_offline(unsigned int cpu) 1558 { 1559 struct cpufreq_policy *policy; 1560 int ret; 1561 1562 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1563 1564 policy = cpufreq_cpu_get_raw(cpu); 1565 if (!policy) { 1566 pr_debug("%s: No cpu_data found\n", __func__); 1567 return 0; 1568 } 1569 1570 down_write(&policy->rwsem); 1571 if (has_target()) 1572 cpufreq_stop_governor(policy); 1573 1574 cpumask_clear_cpu(cpu, policy->cpus); 1575 1576 if (policy_is_inactive(policy)) { 1577 if (has_target()) 1578 strncpy(policy->last_governor, policy->governor->name, 1579 CPUFREQ_NAME_LEN); 1580 else 1581 policy->last_policy = policy->policy; 1582 } else if (cpu == policy->cpu) { 1583 /* Nominate new CPU */ 1584 policy->cpu = cpumask_any(policy->cpus); 1585 } 1586 1587 /* Start governor again for active policy */ 1588 if (!policy_is_inactive(policy)) { 1589 if (has_target()) { 1590 ret = cpufreq_start_governor(policy); 1591 if (ret) 1592 pr_err("%s: Failed to start governor\n", __func__); 1593 } 1594 1595 goto unlock; 1596 } 1597 1598 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1599 cpufreq_cooling_unregister(policy->cdev); 1600 policy->cdev = NULL; 1601 } 1602 1603 if (cpufreq_driver->stop_cpu) 1604 cpufreq_driver->stop_cpu(policy); 1605 1606 if (has_target()) 1607 cpufreq_exit_governor(policy); 1608 1609 /* 1610 * Perform the ->offline() during light-weight tear-down, as 1611 * that allows fast recovery when the CPU comes back. 1612 */ 1613 if (cpufreq_driver->offline) { 1614 cpufreq_driver->offline(policy); 1615 } else if (cpufreq_driver->exit) { 1616 cpufreq_driver->exit(policy); 1617 policy->freq_table = NULL; 1618 } 1619 1620 unlock: 1621 up_write(&policy->rwsem); 1622 return 0; 1623 } 1624 1625 /* 1626 * cpufreq_remove_dev - remove a CPU device 1627 * 1628 * Removes the cpufreq interface for a CPU device. 1629 */ 1630 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1631 { 1632 unsigned int cpu = dev->id; 1633 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1634 1635 if (!policy) 1636 return; 1637 1638 if (cpu_online(cpu)) 1639 cpufreq_offline(cpu); 1640 1641 cpumask_clear_cpu(cpu, policy->real_cpus); 1642 remove_cpu_dev_symlink(policy, dev); 1643 1644 if (cpumask_empty(policy->real_cpus)) { 1645 /* We did light-weight exit earlier, do full tear down now */ 1646 if (cpufreq_driver->offline) 1647 cpufreq_driver->exit(policy); 1648 1649 cpufreq_policy_free(policy); 1650 } 1651 } 1652 1653 /** 1654 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1655 * @policy: Policy managing CPUs. 1656 * @new_freq: New CPU frequency. 1657 * 1658 * Adjust to the current frequency first and clean up later by either calling 1659 * cpufreq_update_policy(), or scheduling handle_update(). 1660 */ 1661 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1662 unsigned int new_freq) 1663 { 1664 struct cpufreq_freqs freqs; 1665 1666 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1667 policy->cur, new_freq); 1668 1669 freqs.old = policy->cur; 1670 freqs.new = new_freq; 1671 1672 cpufreq_freq_transition_begin(policy, &freqs); 1673 cpufreq_freq_transition_end(policy, &freqs, 0); 1674 } 1675 1676 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1677 { 1678 unsigned int new_freq; 1679 1680 new_freq = cpufreq_driver->get(policy->cpu); 1681 if (!new_freq) 1682 return 0; 1683 1684 /* 1685 * If fast frequency switching is used with the given policy, the check 1686 * against policy->cur is pointless, so skip it in that case. 1687 */ 1688 if (policy->fast_switch_enabled || !has_target()) 1689 return new_freq; 1690 1691 if (policy->cur != new_freq) { 1692 cpufreq_out_of_sync(policy, new_freq); 1693 if (update) 1694 schedule_work(&policy->update); 1695 } 1696 1697 return new_freq; 1698 } 1699 1700 /** 1701 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1702 * @cpu: CPU number 1703 * 1704 * This is the last known freq, without actually getting it from the driver. 1705 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1706 */ 1707 unsigned int cpufreq_quick_get(unsigned int cpu) 1708 { 1709 struct cpufreq_policy *policy; 1710 unsigned int ret_freq = 0; 1711 unsigned long flags; 1712 1713 read_lock_irqsave(&cpufreq_driver_lock, flags); 1714 1715 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1716 ret_freq = cpufreq_driver->get(cpu); 1717 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1718 return ret_freq; 1719 } 1720 1721 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1722 1723 policy = cpufreq_cpu_get(cpu); 1724 if (policy) { 1725 ret_freq = policy->cur; 1726 cpufreq_cpu_put(policy); 1727 } 1728 1729 return ret_freq; 1730 } 1731 EXPORT_SYMBOL(cpufreq_quick_get); 1732 1733 /** 1734 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1735 * @cpu: CPU number 1736 * 1737 * Just return the max possible frequency for a given CPU. 1738 */ 1739 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1740 { 1741 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1742 unsigned int ret_freq = 0; 1743 1744 if (policy) { 1745 ret_freq = policy->max; 1746 cpufreq_cpu_put(policy); 1747 } 1748 1749 return ret_freq; 1750 } 1751 EXPORT_SYMBOL(cpufreq_quick_get_max); 1752 1753 /** 1754 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1755 * @cpu: CPU number 1756 * 1757 * The default return value is the max_freq field of cpuinfo. 1758 */ 1759 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1760 { 1761 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1762 unsigned int ret_freq = 0; 1763 1764 if (policy) { 1765 ret_freq = policy->cpuinfo.max_freq; 1766 cpufreq_cpu_put(policy); 1767 } 1768 1769 return ret_freq; 1770 } 1771 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1772 1773 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1774 { 1775 if (unlikely(policy_is_inactive(policy))) 1776 return 0; 1777 1778 return cpufreq_verify_current_freq(policy, true); 1779 } 1780 1781 /** 1782 * cpufreq_get - get the current CPU frequency (in kHz) 1783 * @cpu: CPU number 1784 * 1785 * Get the CPU current (static) CPU frequency 1786 */ 1787 unsigned int cpufreq_get(unsigned int cpu) 1788 { 1789 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1790 unsigned int ret_freq = 0; 1791 1792 if (policy) { 1793 down_read(&policy->rwsem); 1794 if (cpufreq_driver->get) 1795 ret_freq = __cpufreq_get(policy); 1796 up_read(&policy->rwsem); 1797 1798 cpufreq_cpu_put(policy); 1799 } 1800 1801 return ret_freq; 1802 } 1803 EXPORT_SYMBOL(cpufreq_get); 1804 1805 static struct subsys_interface cpufreq_interface = { 1806 .name = "cpufreq", 1807 .subsys = &cpu_subsys, 1808 .add_dev = cpufreq_add_dev, 1809 .remove_dev = cpufreq_remove_dev, 1810 }; 1811 1812 /* 1813 * In case platform wants some specific frequency to be configured 1814 * during suspend.. 1815 */ 1816 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1817 { 1818 int ret; 1819 1820 if (!policy->suspend_freq) { 1821 pr_debug("%s: suspend_freq not defined\n", __func__); 1822 return 0; 1823 } 1824 1825 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1826 policy->suspend_freq); 1827 1828 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1829 CPUFREQ_RELATION_H); 1830 if (ret) 1831 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1832 __func__, policy->suspend_freq, ret); 1833 1834 return ret; 1835 } 1836 EXPORT_SYMBOL(cpufreq_generic_suspend); 1837 1838 /** 1839 * cpufreq_suspend() - Suspend CPUFreq governors. 1840 * 1841 * Called during system wide Suspend/Hibernate cycles for suspending governors 1842 * as some platforms can't change frequency after this point in suspend cycle. 1843 * Because some of the devices (like: i2c, regulators, etc) they use for 1844 * changing frequency are suspended quickly after this point. 1845 */ 1846 void cpufreq_suspend(void) 1847 { 1848 struct cpufreq_policy *policy; 1849 1850 if (!cpufreq_driver) 1851 return; 1852 1853 if (!has_target() && !cpufreq_driver->suspend) 1854 goto suspend; 1855 1856 pr_debug("%s: Suspending Governors\n", __func__); 1857 1858 for_each_active_policy(policy) { 1859 if (has_target()) { 1860 down_write(&policy->rwsem); 1861 cpufreq_stop_governor(policy); 1862 up_write(&policy->rwsem); 1863 } 1864 1865 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1866 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1867 cpufreq_driver->name); 1868 } 1869 1870 suspend: 1871 cpufreq_suspended = true; 1872 } 1873 1874 /** 1875 * cpufreq_resume() - Resume CPUFreq governors. 1876 * 1877 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1878 * are suspended with cpufreq_suspend(). 1879 */ 1880 void cpufreq_resume(void) 1881 { 1882 struct cpufreq_policy *policy; 1883 int ret; 1884 1885 if (!cpufreq_driver) 1886 return; 1887 1888 if (unlikely(!cpufreq_suspended)) 1889 return; 1890 1891 cpufreq_suspended = false; 1892 1893 if (!has_target() && !cpufreq_driver->resume) 1894 return; 1895 1896 pr_debug("%s: Resuming Governors\n", __func__); 1897 1898 for_each_active_policy(policy) { 1899 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1900 pr_err("%s: Failed to resume driver: %p\n", __func__, 1901 policy); 1902 } else if (has_target()) { 1903 down_write(&policy->rwsem); 1904 ret = cpufreq_start_governor(policy); 1905 up_write(&policy->rwsem); 1906 1907 if (ret) 1908 pr_err("%s: Failed to start governor for policy: %p\n", 1909 __func__, policy); 1910 } 1911 } 1912 } 1913 1914 /** 1915 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1916 * @flags: Flags to test against the current cpufreq driver's flags. 1917 * 1918 * Assumes that the driver is there, so callers must ensure that this is the 1919 * case. 1920 */ 1921 bool cpufreq_driver_test_flags(u16 flags) 1922 { 1923 return !!(cpufreq_driver->flags & flags); 1924 } 1925 1926 /** 1927 * cpufreq_get_current_driver - Return the current driver's name. 1928 * 1929 * Return the name string of the currently registered cpufreq driver or NULL if 1930 * none. 1931 */ 1932 const char *cpufreq_get_current_driver(void) 1933 { 1934 if (cpufreq_driver) 1935 return cpufreq_driver->name; 1936 1937 return NULL; 1938 } 1939 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1940 1941 /** 1942 * cpufreq_get_driver_data - Return current driver data. 1943 * 1944 * Return the private data of the currently registered cpufreq driver, or NULL 1945 * if no cpufreq driver has been registered. 1946 */ 1947 void *cpufreq_get_driver_data(void) 1948 { 1949 if (cpufreq_driver) 1950 return cpufreq_driver->driver_data; 1951 1952 return NULL; 1953 } 1954 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1955 1956 /********************************************************************* 1957 * NOTIFIER LISTS INTERFACE * 1958 *********************************************************************/ 1959 1960 /** 1961 * cpufreq_register_notifier - Register a notifier with cpufreq. 1962 * @nb: notifier function to register. 1963 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 1964 * 1965 * Add a notifier to one of two lists: either a list of notifiers that run on 1966 * clock rate changes (once before and once after every transition), or a list 1967 * of notifiers that ron on cpufreq policy changes. 1968 * 1969 * This function may sleep and it has the same return values as 1970 * blocking_notifier_chain_register(). 1971 */ 1972 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1973 { 1974 int ret; 1975 1976 if (cpufreq_disabled()) 1977 return -EINVAL; 1978 1979 switch (list) { 1980 case CPUFREQ_TRANSITION_NOTIFIER: 1981 mutex_lock(&cpufreq_fast_switch_lock); 1982 1983 if (cpufreq_fast_switch_count > 0) { 1984 mutex_unlock(&cpufreq_fast_switch_lock); 1985 return -EBUSY; 1986 } 1987 ret = srcu_notifier_chain_register( 1988 &cpufreq_transition_notifier_list, nb); 1989 if (!ret) 1990 cpufreq_fast_switch_count--; 1991 1992 mutex_unlock(&cpufreq_fast_switch_lock); 1993 break; 1994 case CPUFREQ_POLICY_NOTIFIER: 1995 ret = blocking_notifier_chain_register( 1996 &cpufreq_policy_notifier_list, nb); 1997 break; 1998 default: 1999 ret = -EINVAL; 2000 } 2001 2002 return ret; 2003 } 2004 EXPORT_SYMBOL(cpufreq_register_notifier); 2005 2006 /** 2007 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2008 * @nb: notifier block to be unregistered. 2009 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2010 * 2011 * Remove a notifier from one of the cpufreq notifier lists. 2012 * 2013 * This function may sleep and it has the same return values as 2014 * blocking_notifier_chain_unregister(). 2015 */ 2016 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2017 { 2018 int ret; 2019 2020 if (cpufreq_disabled()) 2021 return -EINVAL; 2022 2023 switch (list) { 2024 case CPUFREQ_TRANSITION_NOTIFIER: 2025 mutex_lock(&cpufreq_fast_switch_lock); 2026 2027 ret = srcu_notifier_chain_unregister( 2028 &cpufreq_transition_notifier_list, nb); 2029 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2030 cpufreq_fast_switch_count++; 2031 2032 mutex_unlock(&cpufreq_fast_switch_lock); 2033 break; 2034 case CPUFREQ_POLICY_NOTIFIER: 2035 ret = blocking_notifier_chain_unregister( 2036 &cpufreq_policy_notifier_list, nb); 2037 break; 2038 default: 2039 ret = -EINVAL; 2040 } 2041 2042 return ret; 2043 } 2044 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2045 2046 2047 /********************************************************************* 2048 * GOVERNORS * 2049 *********************************************************************/ 2050 2051 /** 2052 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2053 * @policy: cpufreq policy to switch the frequency for. 2054 * @target_freq: New frequency to set (may be approximate). 2055 * 2056 * Carry out a fast frequency switch without sleeping. 2057 * 2058 * The driver's ->fast_switch() callback invoked by this function must be 2059 * suitable for being called from within RCU-sched read-side critical sections 2060 * and it is expected to select the minimum available frequency greater than or 2061 * equal to @target_freq (CPUFREQ_RELATION_L). 2062 * 2063 * This function must not be called if policy->fast_switch_enabled is unset. 2064 * 2065 * Governors calling this function must guarantee that it will never be invoked 2066 * twice in parallel for the same policy and that it will never be called in 2067 * parallel with either ->target() or ->target_index() for the same policy. 2068 * 2069 * Returns the actual frequency set for the CPU. 2070 * 2071 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2072 * error condition, the hardware configuration must be preserved. 2073 */ 2074 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2075 unsigned int target_freq) 2076 { 2077 unsigned int freq; 2078 int cpu; 2079 2080 target_freq = clamp_val(target_freq, policy->min, policy->max); 2081 freq = cpufreq_driver->fast_switch(policy, target_freq); 2082 2083 if (!freq) 2084 return 0; 2085 2086 policy->cur = freq; 2087 arch_set_freq_scale(policy->related_cpus, freq, 2088 policy->cpuinfo.max_freq); 2089 cpufreq_stats_record_transition(policy, freq); 2090 2091 if (trace_cpu_frequency_enabled()) { 2092 for_each_cpu(cpu, policy->cpus) 2093 trace_cpu_frequency(freq, cpu); 2094 } 2095 2096 return freq; 2097 } 2098 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2099 2100 /** 2101 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2102 * @cpu: Target CPU. 2103 * @min_perf: Minimum (required) performance level (units of @capacity). 2104 * @target_perf: Terget (desired) performance level (units of @capacity). 2105 * @capacity: Capacity of the target CPU. 2106 * 2107 * Carry out a fast performance level switch of @cpu without sleeping. 2108 * 2109 * The driver's ->adjust_perf() callback invoked by this function must be 2110 * suitable for being called from within RCU-sched read-side critical sections 2111 * and it is expected to select a suitable performance level equal to or above 2112 * @min_perf and preferably equal to or below @target_perf. 2113 * 2114 * This function must not be called if policy->fast_switch_enabled is unset. 2115 * 2116 * Governors calling this function must guarantee that it will never be invoked 2117 * twice in parallel for the same CPU and that it will never be called in 2118 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2119 * the same CPU. 2120 */ 2121 void cpufreq_driver_adjust_perf(unsigned int cpu, 2122 unsigned long min_perf, 2123 unsigned long target_perf, 2124 unsigned long capacity) 2125 { 2126 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2127 } 2128 2129 /** 2130 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2131 * 2132 * Return 'true' if the ->adjust_perf callback is present for the 2133 * current driver or 'false' otherwise. 2134 */ 2135 bool cpufreq_driver_has_adjust_perf(void) 2136 { 2137 return !!cpufreq_driver->adjust_perf; 2138 } 2139 2140 /* Must set freqs->new to intermediate frequency */ 2141 static int __target_intermediate(struct cpufreq_policy *policy, 2142 struct cpufreq_freqs *freqs, int index) 2143 { 2144 int ret; 2145 2146 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2147 2148 /* We don't need to switch to intermediate freq */ 2149 if (!freqs->new) 2150 return 0; 2151 2152 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2153 __func__, policy->cpu, freqs->old, freqs->new); 2154 2155 cpufreq_freq_transition_begin(policy, freqs); 2156 ret = cpufreq_driver->target_intermediate(policy, index); 2157 cpufreq_freq_transition_end(policy, freqs, ret); 2158 2159 if (ret) 2160 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2161 __func__, ret); 2162 2163 return ret; 2164 } 2165 2166 static int __target_index(struct cpufreq_policy *policy, int index) 2167 { 2168 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2169 unsigned int restore_freq, intermediate_freq = 0; 2170 unsigned int newfreq = policy->freq_table[index].frequency; 2171 int retval = -EINVAL; 2172 bool notify; 2173 2174 if (newfreq == policy->cur) 2175 return 0; 2176 2177 /* Save last value to restore later on errors */ 2178 restore_freq = policy->cur; 2179 2180 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2181 if (notify) { 2182 /* Handle switching to intermediate frequency */ 2183 if (cpufreq_driver->get_intermediate) { 2184 retval = __target_intermediate(policy, &freqs, index); 2185 if (retval) 2186 return retval; 2187 2188 intermediate_freq = freqs.new; 2189 /* Set old freq to intermediate */ 2190 if (intermediate_freq) 2191 freqs.old = freqs.new; 2192 } 2193 2194 freqs.new = newfreq; 2195 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2196 __func__, policy->cpu, freqs.old, freqs.new); 2197 2198 cpufreq_freq_transition_begin(policy, &freqs); 2199 } 2200 2201 retval = cpufreq_driver->target_index(policy, index); 2202 if (retval) 2203 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2204 retval); 2205 2206 if (notify) { 2207 cpufreq_freq_transition_end(policy, &freqs, retval); 2208 2209 /* 2210 * Failed after setting to intermediate freq? Driver should have 2211 * reverted back to initial frequency and so should we. Check 2212 * here for intermediate_freq instead of get_intermediate, in 2213 * case we haven't switched to intermediate freq at all. 2214 */ 2215 if (unlikely(retval && intermediate_freq)) { 2216 freqs.old = intermediate_freq; 2217 freqs.new = restore_freq; 2218 cpufreq_freq_transition_begin(policy, &freqs); 2219 cpufreq_freq_transition_end(policy, &freqs, 0); 2220 } 2221 } 2222 2223 return retval; 2224 } 2225 2226 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2227 unsigned int target_freq, 2228 unsigned int relation) 2229 { 2230 unsigned int old_target_freq = target_freq; 2231 int index; 2232 2233 if (cpufreq_disabled()) 2234 return -ENODEV; 2235 2236 /* Make sure that target_freq is within supported range */ 2237 target_freq = clamp_val(target_freq, policy->min, policy->max); 2238 2239 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2240 policy->cpu, target_freq, relation, old_target_freq); 2241 2242 /* 2243 * This might look like a redundant call as we are checking it again 2244 * after finding index. But it is left intentionally for cases where 2245 * exactly same freq is called again and so we can save on few function 2246 * calls. 2247 */ 2248 if (target_freq == policy->cur && 2249 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2250 return 0; 2251 2252 if (cpufreq_driver->target) 2253 return cpufreq_driver->target(policy, target_freq, relation); 2254 2255 if (!cpufreq_driver->target_index) 2256 return -EINVAL; 2257 2258 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2259 2260 return __target_index(policy, index); 2261 } 2262 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2263 2264 int cpufreq_driver_target(struct cpufreq_policy *policy, 2265 unsigned int target_freq, 2266 unsigned int relation) 2267 { 2268 int ret; 2269 2270 down_write(&policy->rwsem); 2271 2272 ret = __cpufreq_driver_target(policy, target_freq, relation); 2273 2274 up_write(&policy->rwsem); 2275 2276 return ret; 2277 } 2278 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2279 2280 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2281 { 2282 return NULL; 2283 } 2284 2285 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2286 { 2287 int ret; 2288 2289 /* Don't start any governor operations if we are entering suspend */ 2290 if (cpufreq_suspended) 2291 return 0; 2292 /* 2293 * Governor might not be initiated here if ACPI _PPC changed 2294 * notification happened, so check it. 2295 */ 2296 if (!policy->governor) 2297 return -EINVAL; 2298 2299 /* Platform doesn't want dynamic frequency switching ? */ 2300 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2301 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2302 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2303 2304 if (gov) { 2305 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2306 policy->governor->name, gov->name); 2307 policy->governor = gov; 2308 } else { 2309 return -EINVAL; 2310 } 2311 } 2312 2313 if (!try_module_get(policy->governor->owner)) 2314 return -EINVAL; 2315 2316 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2317 2318 if (policy->governor->init) { 2319 ret = policy->governor->init(policy); 2320 if (ret) { 2321 module_put(policy->governor->owner); 2322 return ret; 2323 } 2324 } 2325 2326 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2327 2328 return 0; 2329 } 2330 2331 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2332 { 2333 if (cpufreq_suspended || !policy->governor) 2334 return; 2335 2336 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2337 2338 if (policy->governor->exit) 2339 policy->governor->exit(policy); 2340 2341 module_put(policy->governor->owner); 2342 } 2343 2344 int cpufreq_start_governor(struct cpufreq_policy *policy) 2345 { 2346 int ret; 2347 2348 if (cpufreq_suspended) 2349 return 0; 2350 2351 if (!policy->governor) 2352 return -EINVAL; 2353 2354 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2355 2356 if (cpufreq_driver->get) 2357 cpufreq_verify_current_freq(policy, false); 2358 2359 if (policy->governor->start) { 2360 ret = policy->governor->start(policy); 2361 if (ret) 2362 return ret; 2363 } 2364 2365 if (policy->governor->limits) 2366 policy->governor->limits(policy); 2367 2368 return 0; 2369 } 2370 2371 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2372 { 2373 if (cpufreq_suspended || !policy->governor) 2374 return; 2375 2376 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2377 2378 if (policy->governor->stop) 2379 policy->governor->stop(policy); 2380 } 2381 2382 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2383 { 2384 if (cpufreq_suspended || !policy->governor) 2385 return; 2386 2387 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2388 2389 if (policy->governor->limits) 2390 policy->governor->limits(policy); 2391 } 2392 2393 int cpufreq_register_governor(struct cpufreq_governor *governor) 2394 { 2395 int err; 2396 2397 if (!governor) 2398 return -EINVAL; 2399 2400 if (cpufreq_disabled()) 2401 return -ENODEV; 2402 2403 mutex_lock(&cpufreq_governor_mutex); 2404 2405 err = -EBUSY; 2406 if (!find_governor(governor->name)) { 2407 err = 0; 2408 list_add(&governor->governor_list, &cpufreq_governor_list); 2409 } 2410 2411 mutex_unlock(&cpufreq_governor_mutex); 2412 return err; 2413 } 2414 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2415 2416 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2417 { 2418 struct cpufreq_policy *policy; 2419 unsigned long flags; 2420 2421 if (!governor) 2422 return; 2423 2424 if (cpufreq_disabled()) 2425 return; 2426 2427 /* clear last_governor for all inactive policies */ 2428 read_lock_irqsave(&cpufreq_driver_lock, flags); 2429 for_each_inactive_policy(policy) { 2430 if (!strcmp(policy->last_governor, governor->name)) { 2431 policy->governor = NULL; 2432 strcpy(policy->last_governor, "\0"); 2433 } 2434 } 2435 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2436 2437 mutex_lock(&cpufreq_governor_mutex); 2438 list_del(&governor->governor_list); 2439 mutex_unlock(&cpufreq_governor_mutex); 2440 } 2441 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2442 2443 2444 /********************************************************************* 2445 * POLICY INTERFACE * 2446 *********************************************************************/ 2447 2448 /** 2449 * cpufreq_get_policy - get the current cpufreq_policy 2450 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2451 * is written 2452 * @cpu: CPU to find the policy for 2453 * 2454 * Reads the current cpufreq policy. 2455 */ 2456 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2457 { 2458 struct cpufreq_policy *cpu_policy; 2459 if (!policy) 2460 return -EINVAL; 2461 2462 cpu_policy = cpufreq_cpu_get(cpu); 2463 if (!cpu_policy) 2464 return -EINVAL; 2465 2466 memcpy(policy, cpu_policy, sizeof(*policy)); 2467 2468 cpufreq_cpu_put(cpu_policy); 2469 return 0; 2470 } 2471 EXPORT_SYMBOL(cpufreq_get_policy); 2472 2473 /** 2474 * cpufreq_set_policy - Modify cpufreq policy parameters. 2475 * @policy: Policy object to modify. 2476 * @new_gov: Policy governor pointer. 2477 * @new_pol: Policy value (for drivers with built-in governors). 2478 * 2479 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2480 * limits to be set for the policy, update @policy with the verified limits 2481 * values and either invoke the driver's ->setpolicy() callback (if present) or 2482 * carry out a governor update for @policy. That is, run the current governor's 2483 * ->limits() callback (if @new_gov points to the same object as the one in 2484 * @policy) or replace the governor for @policy with @new_gov. 2485 * 2486 * The cpuinfo part of @policy is not updated by this function. 2487 */ 2488 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2489 struct cpufreq_governor *new_gov, 2490 unsigned int new_pol) 2491 { 2492 struct cpufreq_policy_data new_data; 2493 struct cpufreq_governor *old_gov; 2494 int ret; 2495 2496 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2497 new_data.freq_table = policy->freq_table; 2498 new_data.cpu = policy->cpu; 2499 /* 2500 * PM QoS framework collects all the requests from users and provide us 2501 * the final aggregated value here. 2502 */ 2503 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2504 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2505 2506 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2507 new_data.cpu, new_data.min, new_data.max); 2508 2509 /* 2510 * Verify that the CPU speed can be set within these limits and make sure 2511 * that min <= max. 2512 */ 2513 ret = cpufreq_driver->verify(&new_data); 2514 if (ret) 2515 return ret; 2516 2517 policy->min = new_data.min; 2518 policy->max = new_data.max; 2519 trace_cpu_frequency_limits(policy); 2520 2521 policy->cached_target_freq = UINT_MAX; 2522 2523 pr_debug("new min and max freqs are %u - %u kHz\n", 2524 policy->min, policy->max); 2525 2526 if (cpufreq_driver->setpolicy) { 2527 policy->policy = new_pol; 2528 pr_debug("setting range\n"); 2529 return cpufreq_driver->setpolicy(policy); 2530 } 2531 2532 if (new_gov == policy->governor) { 2533 pr_debug("governor limits update\n"); 2534 cpufreq_governor_limits(policy); 2535 return 0; 2536 } 2537 2538 pr_debug("governor switch\n"); 2539 2540 /* save old, working values */ 2541 old_gov = policy->governor; 2542 /* end old governor */ 2543 if (old_gov) { 2544 cpufreq_stop_governor(policy); 2545 cpufreq_exit_governor(policy); 2546 } 2547 2548 /* start new governor */ 2549 policy->governor = new_gov; 2550 ret = cpufreq_init_governor(policy); 2551 if (!ret) { 2552 ret = cpufreq_start_governor(policy); 2553 if (!ret) { 2554 pr_debug("governor change\n"); 2555 sched_cpufreq_governor_change(policy, old_gov); 2556 return 0; 2557 } 2558 cpufreq_exit_governor(policy); 2559 } 2560 2561 /* new governor failed, so re-start old one */ 2562 pr_debug("starting governor %s failed\n", policy->governor->name); 2563 if (old_gov) { 2564 policy->governor = old_gov; 2565 if (cpufreq_init_governor(policy)) 2566 policy->governor = NULL; 2567 else 2568 cpufreq_start_governor(policy); 2569 } 2570 2571 return ret; 2572 } 2573 2574 /** 2575 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2576 * @cpu: CPU to re-evaluate the policy for. 2577 * 2578 * Update the current frequency for the cpufreq policy of @cpu and use 2579 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2580 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2581 * for the policy in question, among other things. 2582 */ 2583 void cpufreq_update_policy(unsigned int cpu) 2584 { 2585 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2586 2587 if (!policy) 2588 return; 2589 2590 /* 2591 * BIOS might change freq behind our back 2592 * -> ask driver for current freq and notify governors about a change 2593 */ 2594 if (cpufreq_driver->get && has_target() && 2595 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2596 goto unlock; 2597 2598 refresh_frequency_limits(policy); 2599 2600 unlock: 2601 cpufreq_cpu_release(policy); 2602 } 2603 EXPORT_SYMBOL(cpufreq_update_policy); 2604 2605 /** 2606 * cpufreq_update_limits - Update policy limits for a given CPU. 2607 * @cpu: CPU to update the policy limits for. 2608 * 2609 * Invoke the driver's ->update_limits callback if present or call 2610 * cpufreq_update_policy() for @cpu. 2611 */ 2612 void cpufreq_update_limits(unsigned int cpu) 2613 { 2614 if (cpufreq_driver->update_limits) 2615 cpufreq_driver->update_limits(cpu); 2616 else 2617 cpufreq_update_policy(cpu); 2618 } 2619 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2620 2621 /********************************************************************* 2622 * BOOST * 2623 *********************************************************************/ 2624 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2625 { 2626 int ret; 2627 2628 if (!policy->freq_table) 2629 return -ENXIO; 2630 2631 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2632 if (ret) { 2633 pr_err("%s: Policy frequency update failed\n", __func__); 2634 return ret; 2635 } 2636 2637 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2638 if (ret < 0) 2639 return ret; 2640 2641 return 0; 2642 } 2643 2644 int cpufreq_boost_trigger_state(int state) 2645 { 2646 struct cpufreq_policy *policy; 2647 unsigned long flags; 2648 int ret = 0; 2649 2650 if (cpufreq_driver->boost_enabled == state) 2651 return 0; 2652 2653 write_lock_irqsave(&cpufreq_driver_lock, flags); 2654 cpufreq_driver->boost_enabled = state; 2655 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2656 2657 get_online_cpus(); 2658 for_each_active_policy(policy) { 2659 ret = cpufreq_driver->set_boost(policy, state); 2660 if (ret) 2661 goto err_reset_state; 2662 } 2663 put_online_cpus(); 2664 2665 return 0; 2666 2667 err_reset_state: 2668 put_online_cpus(); 2669 2670 write_lock_irqsave(&cpufreq_driver_lock, flags); 2671 cpufreq_driver->boost_enabled = !state; 2672 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2673 2674 pr_err("%s: Cannot %s BOOST\n", 2675 __func__, state ? "enable" : "disable"); 2676 2677 return ret; 2678 } 2679 2680 static bool cpufreq_boost_supported(void) 2681 { 2682 return cpufreq_driver->set_boost; 2683 } 2684 2685 static int create_boost_sysfs_file(void) 2686 { 2687 int ret; 2688 2689 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2690 if (ret) 2691 pr_err("%s: cannot register global BOOST sysfs file\n", 2692 __func__); 2693 2694 return ret; 2695 } 2696 2697 static void remove_boost_sysfs_file(void) 2698 { 2699 if (cpufreq_boost_supported()) 2700 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2701 } 2702 2703 int cpufreq_enable_boost_support(void) 2704 { 2705 if (!cpufreq_driver) 2706 return -EINVAL; 2707 2708 if (cpufreq_boost_supported()) 2709 return 0; 2710 2711 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2712 2713 /* This will get removed on driver unregister */ 2714 return create_boost_sysfs_file(); 2715 } 2716 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2717 2718 int cpufreq_boost_enabled(void) 2719 { 2720 return cpufreq_driver->boost_enabled; 2721 } 2722 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2723 2724 /********************************************************************* 2725 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2726 *********************************************************************/ 2727 static enum cpuhp_state hp_online; 2728 2729 static int cpuhp_cpufreq_online(unsigned int cpu) 2730 { 2731 cpufreq_online(cpu); 2732 2733 return 0; 2734 } 2735 2736 static int cpuhp_cpufreq_offline(unsigned int cpu) 2737 { 2738 cpufreq_offline(cpu); 2739 2740 return 0; 2741 } 2742 2743 /** 2744 * cpufreq_register_driver - register a CPU Frequency driver 2745 * @driver_data: A struct cpufreq_driver containing the values# 2746 * submitted by the CPU Frequency driver. 2747 * 2748 * Registers a CPU Frequency driver to this core code. This code 2749 * returns zero on success, -EEXIST when another driver got here first 2750 * (and isn't unregistered in the meantime). 2751 * 2752 */ 2753 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2754 { 2755 unsigned long flags; 2756 int ret; 2757 2758 if (cpufreq_disabled()) 2759 return -ENODEV; 2760 2761 /* 2762 * The cpufreq core depends heavily on the availability of device 2763 * structure, make sure they are available before proceeding further. 2764 */ 2765 if (!get_cpu_device(0)) 2766 return -EPROBE_DEFER; 2767 2768 if (!driver_data || !driver_data->verify || !driver_data->init || 2769 !(driver_data->setpolicy || driver_data->target_index || 2770 driver_data->target) || 2771 (driver_data->setpolicy && (driver_data->target_index || 2772 driver_data->target)) || 2773 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2774 (!driver_data->online != !driver_data->offline)) 2775 return -EINVAL; 2776 2777 pr_debug("trying to register driver %s\n", driver_data->name); 2778 2779 /* Protect against concurrent CPU online/offline. */ 2780 cpus_read_lock(); 2781 2782 write_lock_irqsave(&cpufreq_driver_lock, flags); 2783 if (cpufreq_driver) { 2784 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2785 ret = -EEXIST; 2786 goto out; 2787 } 2788 cpufreq_driver = driver_data; 2789 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2790 2791 /* 2792 * Mark support for the scheduler's frequency invariance engine for 2793 * drivers that implement target(), target_index() or fast_switch(). 2794 */ 2795 if (!cpufreq_driver->setpolicy) { 2796 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2797 pr_debug("supports frequency invariance"); 2798 } 2799 2800 if (driver_data->setpolicy) 2801 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2802 2803 if (cpufreq_boost_supported()) { 2804 ret = create_boost_sysfs_file(); 2805 if (ret) 2806 goto err_null_driver; 2807 } 2808 2809 ret = subsys_interface_register(&cpufreq_interface); 2810 if (ret) 2811 goto err_boost_unreg; 2812 2813 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2814 list_empty(&cpufreq_policy_list)) { 2815 /* if all ->init() calls failed, unregister */ 2816 ret = -ENODEV; 2817 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2818 driver_data->name); 2819 goto err_if_unreg; 2820 } 2821 2822 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2823 "cpufreq:online", 2824 cpuhp_cpufreq_online, 2825 cpuhp_cpufreq_offline); 2826 if (ret < 0) 2827 goto err_if_unreg; 2828 hp_online = ret; 2829 ret = 0; 2830 2831 pr_debug("driver %s up and running\n", driver_data->name); 2832 goto out; 2833 2834 err_if_unreg: 2835 subsys_interface_unregister(&cpufreq_interface); 2836 err_boost_unreg: 2837 remove_boost_sysfs_file(); 2838 err_null_driver: 2839 write_lock_irqsave(&cpufreq_driver_lock, flags); 2840 cpufreq_driver = NULL; 2841 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2842 out: 2843 cpus_read_unlock(); 2844 return ret; 2845 } 2846 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2847 2848 /* 2849 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2850 * 2851 * Unregister the current CPUFreq driver. Only call this if you have 2852 * the right to do so, i.e. if you have succeeded in initialising before! 2853 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2854 * currently not initialised. 2855 */ 2856 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2857 { 2858 unsigned long flags; 2859 2860 if (!cpufreq_driver || (driver != cpufreq_driver)) 2861 return -EINVAL; 2862 2863 pr_debug("unregistering driver %s\n", driver->name); 2864 2865 /* Protect against concurrent cpu hotplug */ 2866 cpus_read_lock(); 2867 subsys_interface_unregister(&cpufreq_interface); 2868 remove_boost_sysfs_file(); 2869 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2870 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2871 2872 write_lock_irqsave(&cpufreq_driver_lock, flags); 2873 2874 cpufreq_driver = NULL; 2875 2876 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2877 cpus_read_unlock(); 2878 2879 return 0; 2880 } 2881 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2882 2883 static int __init cpufreq_core_init(void) 2884 { 2885 struct cpufreq_governor *gov = cpufreq_default_governor(); 2886 2887 if (cpufreq_disabled()) 2888 return -ENODEV; 2889 2890 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2891 BUG_ON(!cpufreq_global_kobject); 2892 2893 if (!strlen(default_governor)) 2894 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2895 2896 return 0; 2897 } 2898 module_param(off, int, 0444); 2899 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2900 core_initcall(cpufreq_core_init); 2901