xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 static char default_governor[CPUFREQ_NAME_LEN];
54 
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
65 bool cpufreq_supports_freq_invariance(void)
66 {
67 	return static_branch_likely(&cpufreq_freq_invariance);
68 }
69 
70 /* Flag to suspend/resume CPUFreq governors */
71 static bool cpufreq_suspended;
72 
73 static inline bool has_target(void)
74 {
75 	return cpufreq_driver->target_index || cpufreq_driver->target;
76 }
77 
78 /* internal prototypes */
79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
80 static int cpufreq_init_governor(struct cpufreq_policy *policy);
81 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 static int cpufreq_set_policy(struct cpufreq_policy *policy,
84 			      struct cpufreq_governor *new_gov,
85 			      unsigned int new_pol);
86 
87 /*
88  * Two notifier lists: the "policy" list is involved in the
89  * validation process for a new CPU frequency policy; the
90  * "transition" list for kernel code that needs to handle
91  * changes to devices when the CPU clock speed changes.
92  * The mutex locks both lists.
93  */
94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
96 
97 static int off __read_mostly;
98 static int cpufreq_disabled(void)
99 {
100 	return off;
101 }
102 void disable_cpufreq(void)
103 {
104 	off = 1;
105 }
106 static DEFINE_MUTEX(cpufreq_governor_mutex);
107 
108 bool have_governor_per_policy(void)
109 {
110 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
111 }
112 EXPORT_SYMBOL_GPL(have_governor_per_policy);
113 
114 static struct kobject *cpufreq_global_kobject;
115 
116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
117 {
118 	if (have_governor_per_policy())
119 		return &policy->kobj;
120 	else
121 		return cpufreq_global_kobject;
122 }
123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
124 
125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
126 {
127 	struct kernel_cpustat kcpustat;
128 	u64 cur_wall_time;
129 	u64 idle_time;
130 	u64 busy_time;
131 
132 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
133 
134 	kcpustat_cpu_fetch(&kcpustat, cpu);
135 
136 	busy_time = kcpustat.cpustat[CPUTIME_USER];
137 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
138 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
139 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
140 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
141 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
142 
143 	idle_time = cur_wall_time - busy_time;
144 	if (wall)
145 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
146 
147 	return div_u64(idle_time, NSEC_PER_USEC);
148 }
149 
150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
151 {
152 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
153 
154 	if (idle_time == -1ULL)
155 		return get_cpu_idle_time_jiffy(cpu, wall);
156 	else if (!io_busy)
157 		idle_time += get_cpu_iowait_time_us(cpu, wall);
158 
159 	return idle_time;
160 }
161 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
162 
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 		struct cpufreq_frequency_table *table,
172 		unsigned int transition_latency)
173 {
174 	policy->freq_table = table;
175 	policy->cpuinfo.transition_latency = transition_latency;
176 
177 	/*
178 	 * The driver only supports the SMP configuration where all processors
179 	 * share the clock and voltage and clock.
180 	 */
181 	cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 	struct cpufreq_policy *policy = NULL;
221 	unsigned long flags;
222 
223 	if (WARN_ON(cpu >= nr_cpu_ids))
224 		return NULL;
225 
226 	/* get the cpufreq driver */
227 	read_lock_irqsave(&cpufreq_driver_lock, flags);
228 
229 	if (cpufreq_driver) {
230 		/* get the CPU */
231 		policy = cpufreq_cpu_get_raw(cpu);
232 		if (policy)
233 			kobject_get(&policy->kobj);
234 	}
235 
236 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237 
238 	return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241 
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 	kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251 
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 	if (WARN_ON(!policy))
259 		return;
260 
261 	lockdep_assert_held(&policy->rwsem);
262 
263 	up_write(&policy->rwsem);
264 
265 	cpufreq_cpu_put(policy);
266 }
267 
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283 
284 	if (!policy)
285 		return NULL;
286 
287 	down_write(&policy->rwsem);
288 
289 	if (policy_is_inactive(policy)) {
290 		cpufreq_cpu_release(policy);
291 		return NULL;
292 	}
293 
294 	return policy;
295 }
296 
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300 
301 /**
302  * adjust_jiffies - Adjust the system "loops_per_jiffy".
303  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
304  * @ci: Frequency change information.
305  *
306  * This function alters the system "loops_per_jiffy" for the clock
307  * speed change. Note that loops_per_jiffy cannot be updated on SMP
308  * systems as each CPU might be scaled differently. So, use the arch
309  * per-CPU loops_per_jiffy value wherever possible.
310  */
311 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
312 {
313 #ifndef CONFIG_SMP
314 	static unsigned long l_p_j_ref;
315 	static unsigned int l_p_j_ref_freq;
316 
317 	if (ci->flags & CPUFREQ_CONST_LOOPS)
318 		return;
319 
320 	if (!l_p_j_ref_freq) {
321 		l_p_j_ref = loops_per_jiffy;
322 		l_p_j_ref_freq = ci->old;
323 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
324 			 l_p_j_ref, l_p_j_ref_freq);
325 	}
326 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
327 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
328 								ci->new);
329 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
330 			 loops_per_jiffy, ci->new);
331 	}
332 #endif
333 }
334 
335 /**
336  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
337  * @policy: cpufreq policy to enable fast frequency switching for.
338  * @freqs: contain details of the frequency update.
339  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
340  *
341  * This function calls the transition notifiers and adjust_jiffies().
342  *
343  * It is called twice on all CPU frequency changes that have external effects.
344  */
345 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
346 				      struct cpufreq_freqs *freqs,
347 				      unsigned int state)
348 {
349 	int cpu;
350 
351 	BUG_ON(irqs_disabled());
352 
353 	if (cpufreq_disabled())
354 		return;
355 
356 	freqs->policy = policy;
357 	freqs->flags = cpufreq_driver->flags;
358 	pr_debug("notification %u of frequency transition to %u kHz\n",
359 		 state, freqs->new);
360 
361 	switch (state) {
362 	case CPUFREQ_PRECHANGE:
363 		/*
364 		 * Detect if the driver reported a value as "old frequency"
365 		 * which is not equal to what the cpufreq core thinks is
366 		 * "old frequency".
367 		 */
368 		if (policy->cur && policy->cur != freqs->old) {
369 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
370 				 freqs->old, policy->cur);
371 			freqs->old = policy->cur;
372 		}
373 
374 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
375 					 CPUFREQ_PRECHANGE, freqs);
376 
377 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
378 		break;
379 
380 	case CPUFREQ_POSTCHANGE:
381 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
382 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
383 			 cpumask_pr_args(policy->cpus));
384 
385 		for_each_cpu(cpu, policy->cpus)
386 			trace_cpu_frequency(freqs->new, cpu);
387 
388 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
389 					 CPUFREQ_POSTCHANGE, freqs);
390 
391 		cpufreq_stats_record_transition(policy, freqs->new);
392 		policy->cur = freqs->new;
393 	}
394 }
395 
396 /* Do post notifications when there are chances that transition has failed */
397 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
398 		struct cpufreq_freqs *freqs, int transition_failed)
399 {
400 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
401 	if (!transition_failed)
402 		return;
403 
404 	swap(freqs->old, freqs->new);
405 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
406 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
407 }
408 
409 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
410 		struct cpufreq_freqs *freqs)
411 {
412 
413 	/*
414 	 * Catch double invocations of _begin() which lead to self-deadlock.
415 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
416 	 * doesn't invoke _begin() on their behalf, and hence the chances of
417 	 * double invocations are very low. Moreover, there are scenarios
418 	 * where these checks can emit false-positive warnings in these
419 	 * drivers; so we avoid that by skipping them altogether.
420 	 */
421 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
422 				&& current == policy->transition_task);
423 
424 wait:
425 	wait_event(policy->transition_wait, !policy->transition_ongoing);
426 
427 	spin_lock(&policy->transition_lock);
428 
429 	if (unlikely(policy->transition_ongoing)) {
430 		spin_unlock(&policy->transition_lock);
431 		goto wait;
432 	}
433 
434 	policy->transition_ongoing = true;
435 	policy->transition_task = current;
436 
437 	spin_unlock(&policy->transition_lock);
438 
439 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
440 }
441 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
442 
443 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
444 		struct cpufreq_freqs *freqs, int transition_failed)
445 {
446 	if (WARN_ON(!policy->transition_ongoing))
447 		return;
448 
449 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
450 
451 	arch_set_freq_scale(policy->related_cpus,
452 			    policy->cur,
453 			    policy->cpuinfo.max_freq);
454 
455 	policy->transition_ongoing = false;
456 	policy->transition_task = NULL;
457 
458 	wake_up(&policy->transition_wait);
459 }
460 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
461 
462 /*
463  * Fast frequency switching status count.  Positive means "enabled", negative
464  * means "disabled" and 0 means "not decided yet".
465  */
466 static int cpufreq_fast_switch_count;
467 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
468 
469 static void cpufreq_list_transition_notifiers(void)
470 {
471 	struct notifier_block *nb;
472 
473 	pr_info("Registered transition notifiers:\n");
474 
475 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
476 
477 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
478 		pr_info("%pS\n", nb->notifier_call);
479 
480 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
481 }
482 
483 /**
484  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
485  * @policy: cpufreq policy to enable fast frequency switching for.
486  *
487  * Try to enable fast frequency switching for @policy.
488  *
489  * The attempt will fail if there is at least one transition notifier registered
490  * at this point, as fast frequency switching is quite fundamentally at odds
491  * with transition notifiers.  Thus if successful, it will make registration of
492  * transition notifiers fail going forward.
493  */
494 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
495 {
496 	lockdep_assert_held(&policy->rwsem);
497 
498 	if (!policy->fast_switch_possible)
499 		return;
500 
501 	mutex_lock(&cpufreq_fast_switch_lock);
502 	if (cpufreq_fast_switch_count >= 0) {
503 		cpufreq_fast_switch_count++;
504 		policy->fast_switch_enabled = true;
505 	} else {
506 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
507 			policy->cpu);
508 		cpufreq_list_transition_notifiers();
509 	}
510 	mutex_unlock(&cpufreq_fast_switch_lock);
511 }
512 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
513 
514 /**
515  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
516  * @policy: cpufreq policy to disable fast frequency switching for.
517  */
518 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
519 {
520 	mutex_lock(&cpufreq_fast_switch_lock);
521 	if (policy->fast_switch_enabled) {
522 		policy->fast_switch_enabled = false;
523 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
524 			cpufreq_fast_switch_count--;
525 	}
526 	mutex_unlock(&cpufreq_fast_switch_lock);
527 }
528 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
529 
530 /**
531  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
532  * one.
533  * @policy: associated policy to interrogate
534  * @target_freq: target frequency to resolve.
535  *
536  * The target to driver frequency mapping is cached in the policy.
537  *
538  * Return: Lowest driver-supported frequency greater than or equal to the
539  * given target_freq, subject to policy (min/max) and driver limitations.
540  */
541 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
542 					 unsigned int target_freq)
543 {
544 	target_freq = clamp_val(target_freq, policy->min, policy->max);
545 	policy->cached_target_freq = target_freq;
546 
547 	if (cpufreq_driver->target_index) {
548 		unsigned int idx;
549 
550 		idx = cpufreq_frequency_table_target(policy, target_freq,
551 						     CPUFREQ_RELATION_L);
552 		policy->cached_resolved_idx = idx;
553 		return policy->freq_table[idx].frequency;
554 	}
555 
556 	if (cpufreq_driver->resolve_freq)
557 		return cpufreq_driver->resolve_freq(policy, target_freq);
558 
559 	return target_freq;
560 }
561 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
562 
563 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
564 {
565 	unsigned int latency;
566 
567 	if (policy->transition_delay_us)
568 		return policy->transition_delay_us;
569 
570 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
571 	if (latency) {
572 		/*
573 		 * For platforms that can change the frequency very fast (< 10
574 		 * us), the above formula gives a decent transition delay. But
575 		 * for platforms where transition_latency is in milliseconds, it
576 		 * ends up giving unrealistic values.
577 		 *
578 		 * Cap the default transition delay to 10 ms, which seems to be
579 		 * a reasonable amount of time after which we should reevaluate
580 		 * the frequency.
581 		 */
582 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
583 	}
584 
585 	return LATENCY_MULTIPLIER;
586 }
587 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
588 
589 /*********************************************************************
590  *                          SYSFS INTERFACE                          *
591  *********************************************************************/
592 static ssize_t show_boost(struct kobject *kobj,
593 			  struct kobj_attribute *attr, char *buf)
594 {
595 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
596 }
597 
598 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
599 			   const char *buf, size_t count)
600 {
601 	int ret, enable;
602 
603 	ret = sscanf(buf, "%d", &enable);
604 	if (ret != 1 || enable < 0 || enable > 1)
605 		return -EINVAL;
606 
607 	if (cpufreq_boost_trigger_state(enable)) {
608 		pr_err("%s: Cannot %s BOOST!\n",
609 		       __func__, enable ? "enable" : "disable");
610 		return -EINVAL;
611 	}
612 
613 	pr_debug("%s: cpufreq BOOST %s\n",
614 		 __func__, enable ? "enabled" : "disabled");
615 
616 	return count;
617 }
618 define_one_global_rw(boost);
619 
620 static struct cpufreq_governor *find_governor(const char *str_governor)
621 {
622 	struct cpufreq_governor *t;
623 
624 	for_each_governor(t)
625 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
626 			return t;
627 
628 	return NULL;
629 }
630 
631 static struct cpufreq_governor *get_governor(const char *str_governor)
632 {
633 	struct cpufreq_governor *t;
634 
635 	mutex_lock(&cpufreq_governor_mutex);
636 	t = find_governor(str_governor);
637 	if (!t)
638 		goto unlock;
639 
640 	if (!try_module_get(t->owner))
641 		t = NULL;
642 
643 unlock:
644 	mutex_unlock(&cpufreq_governor_mutex);
645 
646 	return t;
647 }
648 
649 static unsigned int cpufreq_parse_policy(char *str_governor)
650 {
651 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
652 		return CPUFREQ_POLICY_PERFORMANCE;
653 
654 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
655 		return CPUFREQ_POLICY_POWERSAVE;
656 
657 	return CPUFREQ_POLICY_UNKNOWN;
658 }
659 
660 /**
661  * cpufreq_parse_governor - parse a governor string only for has_target()
662  * @str_governor: Governor name.
663  */
664 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
665 {
666 	struct cpufreq_governor *t;
667 
668 	t = get_governor(str_governor);
669 	if (t)
670 		return t;
671 
672 	if (request_module("cpufreq_%s", str_governor))
673 		return NULL;
674 
675 	return get_governor(str_governor);
676 }
677 
678 /*
679  * cpufreq_per_cpu_attr_read() / show_##file_name() -
680  * print out cpufreq information
681  *
682  * Write out information from cpufreq_driver->policy[cpu]; object must be
683  * "unsigned int".
684  */
685 
686 #define show_one(file_name, object)			\
687 static ssize_t show_##file_name				\
688 (struct cpufreq_policy *policy, char *buf)		\
689 {							\
690 	return sprintf(buf, "%u\n", policy->object);	\
691 }
692 
693 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
694 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
695 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
696 show_one(scaling_min_freq, min);
697 show_one(scaling_max_freq, max);
698 
699 __weak unsigned int arch_freq_get_on_cpu(int cpu)
700 {
701 	return 0;
702 }
703 
704 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
705 {
706 	ssize_t ret;
707 	unsigned int freq;
708 
709 	freq = arch_freq_get_on_cpu(policy->cpu);
710 	if (freq)
711 		ret = sprintf(buf, "%u\n", freq);
712 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
713 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
714 	else
715 		ret = sprintf(buf, "%u\n", policy->cur);
716 	return ret;
717 }
718 
719 /*
720  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
721  */
722 #define store_one(file_name, object)			\
723 static ssize_t store_##file_name					\
724 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
725 {									\
726 	unsigned long val;						\
727 	int ret;							\
728 									\
729 	ret = sscanf(buf, "%lu", &val);					\
730 	if (ret != 1)							\
731 		return -EINVAL;						\
732 									\
733 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
734 	return ret >= 0 ? count : ret;					\
735 }
736 
737 store_one(scaling_min_freq, min);
738 store_one(scaling_max_freq, max);
739 
740 /*
741  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
742  */
743 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
744 					char *buf)
745 {
746 	unsigned int cur_freq = __cpufreq_get(policy);
747 
748 	if (cur_freq)
749 		return sprintf(buf, "%u\n", cur_freq);
750 
751 	return sprintf(buf, "<unknown>\n");
752 }
753 
754 /*
755  * show_scaling_governor - show the current policy for the specified CPU
756  */
757 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
758 {
759 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
760 		return sprintf(buf, "powersave\n");
761 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
762 		return sprintf(buf, "performance\n");
763 	else if (policy->governor)
764 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
765 				policy->governor->name);
766 	return -EINVAL;
767 }
768 
769 /*
770  * store_scaling_governor - store policy for the specified CPU
771  */
772 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
773 					const char *buf, size_t count)
774 {
775 	char str_governor[16];
776 	int ret;
777 
778 	ret = sscanf(buf, "%15s", str_governor);
779 	if (ret != 1)
780 		return -EINVAL;
781 
782 	if (cpufreq_driver->setpolicy) {
783 		unsigned int new_pol;
784 
785 		new_pol = cpufreq_parse_policy(str_governor);
786 		if (!new_pol)
787 			return -EINVAL;
788 
789 		ret = cpufreq_set_policy(policy, NULL, new_pol);
790 	} else {
791 		struct cpufreq_governor *new_gov;
792 
793 		new_gov = cpufreq_parse_governor(str_governor);
794 		if (!new_gov)
795 			return -EINVAL;
796 
797 		ret = cpufreq_set_policy(policy, new_gov,
798 					 CPUFREQ_POLICY_UNKNOWN);
799 
800 		module_put(new_gov->owner);
801 	}
802 
803 	return ret ? ret : count;
804 }
805 
806 /*
807  * show_scaling_driver - show the cpufreq driver currently loaded
808  */
809 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
810 {
811 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
812 }
813 
814 /*
815  * show_scaling_available_governors - show the available CPUfreq governors
816  */
817 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
818 						char *buf)
819 {
820 	ssize_t i = 0;
821 	struct cpufreq_governor *t;
822 
823 	if (!has_target()) {
824 		i += sprintf(buf, "performance powersave");
825 		goto out;
826 	}
827 
828 	mutex_lock(&cpufreq_governor_mutex);
829 	for_each_governor(t) {
830 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
831 		    - (CPUFREQ_NAME_LEN + 2)))
832 			break;
833 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
834 	}
835 	mutex_unlock(&cpufreq_governor_mutex);
836 out:
837 	i += sprintf(&buf[i], "\n");
838 	return i;
839 }
840 
841 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
842 {
843 	ssize_t i = 0;
844 	unsigned int cpu;
845 
846 	for_each_cpu(cpu, mask) {
847 		if (i)
848 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
849 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
850 		if (i >= (PAGE_SIZE - 5))
851 			break;
852 	}
853 	i += sprintf(&buf[i], "\n");
854 	return i;
855 }
856 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
857 
858 /*
859  * show_related_cpus - show the CPUs affected by each transition even if
860  * hw coordination is in use
861  */
862 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
863 {
864 	return cpufreq_show_cpus(policy->related_cpus, buf);
865 }
866 
867 /*
868  * show_affected_cpus - show the CPUs affected by each transition
869  */
870 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
871 {
872 	return cpufreq_show_cpus(policy->cpus, buf);
873 }
874 
875 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
876 					const char *buf, size_t count)
877 {
878 	unsigned int freq = 0;
879 	unsigned int ret;
880 
881 	if (!policy->governor || !policy->governor->store_setspeed)
882 		return -EINVAL;
883 
884 	ret = sscanf(buf, "%u", &freq);
885 	if (ret != 1)
886 		return -EINVAL;
887 
888 	policy->governor->store_setspeed(policy, freq);
889 
890 	return count;
891 }
892 
893 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
894 {
895 	if (!policy->governor || !policy->governor->show_setspeed)
896 		return sprintf(buf, "<unsupported>\n");
897 
898 	return policy->governor->show_setspeed(policy, buf);
899 }
900 
901 /*
902  * show_bios_limit - show the current cpufreq HW/BIOS limitation
903  */
904 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
905 {
906 	unsigned int limit;
907 	int ret;
908 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
909 	if (!ret)
910 		return sprintf(buf, "%u\n", limit);
911 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
912 }
913 
914 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
915 cpufreq_freq_attr_ro(cpuinfo_min_freq);
916 cpufreq_freq_attr_ro(cpuinfo_max_freq);
917 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
918 cpufreq_freq_attr_ro(scaling_available_governors);
919 cpufreq_freq_attr_ro(scaling_driver);
920 cpufreq_freq_attr_ro(scaling_cur_freq);
921 cpufreq_freq_attr_ro(bios_limit);
922 cpufreq_freq_attr_ro(related_cpus);
923 cpufreq_freq_attr_ro(affected_cpus);
924 cpufreq_freq_attr_rw(scaling_min_freq);
925 cpufreq_freq_attr_rw(scaling_max_freq);
926 cpufreq_freq_attr_rw(scaling_governor);
927 cpufreq_freq_attr_rw(scaling_setspeed);
928 
929 static struct attribute *default_attrs[] = {
930 	&cpuinfo_min_freq.attr,
931 	&cpuinfo_max_freq.attr,
932 	&cpuinfo_transition_latency.attr,
933 	&scaling_min_freq.attr,
934 	&scaling_max_freq.attr,
935 	&affected_cpus.attr,
936 	&related_cpus.attr,
937 	&scaling_governor.attr,
938 	&scaling_driver.attr,
939 	&scaling_available_governors.attr,
940 	&scaling_setspeed.attr,
941 	NULL
942 };
943 
944 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
945 #define to_attr(a) container_of(a, struct freq_attr, attr)
946 
947 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
948 {
949 	struct cpufreq_policy *policy = to_policy(kobj);
950 	struct freq_attr *fattr = to_attr(attr);
951 	ssize_t ret;
952 
953 	if (!fattr->show)
954 		return -EIO;
955 
956 	down_read(&policy->rwsem);
957 	ret = fattr->show(policy, buf);
958 	up_read(&policy->rwsem);
959 
960 	return ret;
961 }
962 
963 static ssize_t store(struct kobject *kobj, struct attribute *attr,
964 		     const char *buf, size_t count)
965 {
966 	struct cpufreq_policy *policy = to_policy(kobj);
967 	struct freq_attr *fattr = to_attr(attr);
968 	ssize_t ret = -EINVAL;
969 
970 	if (!fattr->store)
971 		return -EIO;
972 
973 	/*
974 	 * cpus_read_trylock() is used here to work around a circular lock
975 	 * dependency problem with respect to the cpufreq_register_driver().
976 	 */
977 	if (!cpus_read_trylock())
978 		return -EBUSY;
979 
980 	if (cpu_online(policy->cpu)) {
981 		down_write(&policy->rwsem);
982 		ret = fattr->store(policy, buf, count);
983 		up_write(&policy->rwsem);
984 	}
985 
986 	cpus_read_unlock();
987 
988 	return ret;
989 }
990 
991 static void cpufreq_sysfs_release(struct kobject *kobj)
992 {
993 	struct cpufreq_policy *policy = to_policy(kobj);
994 	pr_debug("last reference is dropped\n");
995 	complete(&policy->kobj_unregister);
996 }
997 
998 static const struct sysfs_ops sysfs_ops = {
999 	.show	= show,
1000 	.store	= store,
1001 };
1002 
1003 static struct kobj_type ktype_cpufreq = {
1004 	.sysfs_ops	= &sysfs_ops,
1005 	.default_attrs	= default_attrs,
1006 	.release	= cpufreq_sysfs_release,
1007 };
1008 
1009 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1010 {
1011 	struct device *dev = get_cpu_device(cpu);
1012 
1013 	if (unlikely(!dev))
1014 		return;
1015 
1016 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1017 		return;
1018 
1019 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1020 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1021 		dev_err(dev, "cpufreq symlink creation failed\n");
1022 }
1023 
1024 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1025 				   struct device *dev)
1026 {
1027 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1028 	sysfs_remove_link(&dev->kobj, "cpufreq");
1029 }
1030 
1031 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1032 {
1033 	struct freq_attr **drv_attr;
1034 	int ret = 0;
1035 
1036 	/* set up files for this cpu device */
1037 	drv_attr = cpufreq_driver->attr;
1038 	while (drv_attr && *drv_attr) {
1039 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1040 		if (ret)
1041 			return ret;
1042 		drv_attr++;
1043 	}
1044 	if (cpufreq_driver->get) {
1045 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1046 		if (ret)
1047 			return ret;
1048 	}
1049 
1050 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1051 	if (ret)
1052 		return ret;
1053 
1054 	if (cpufreq_driver->bios_limit) {
1055 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1056 		if (ret)
1057 			return ret;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1064 {
1065 	struct cpufreq_governor *gov = NULL;
1066 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1067 	int ret;
1068 
1069 	if (has_target()) {
1070 		/* Update policy governor to the one used before hotplug. */
1071 		gov = get_governor(policy->last_governor);
1072 		if (gov) {
1073 			pr_debug("Restoring governor %s for cpu %d\n",
1074 				 gov->name, policy->cpu);
1075 		} else {
1076 			gov = get_governor(default_governor);
1077 		}
1078 
1079 		if (!gov) {
1080 			gov = cpufreq_default_governor();
1081 			__module_get(gov->owner);
1082 		}
1083 
1084 	} else {
1085 
1086 		/* Use the default policy if there is no last_policy. */
1087 		if (policy->last_policy) {
1088 			pol = policy->last_policy;
1089 		} else {
1090 			pol = cpufreq_parse_policy(default_governor);
1091 			/*
1092 			 * In case the default governor is neither "performance"
1093 			 * nor "powersave", fall back to the initial policy
1094 			 * value set by the driver.
1095 			 */
1096 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1097 				pol = policy->policy;
1098 		}
1099 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1100 		    pol != CPUFREQ_POLICY_POWERSAVE)
1101 			return -ENODATA;
1102 	}
1103 
1104 	ret = cpufreq_set_policy(policy, gov, pol);
1105 	if (gov)
1106 		module_put(gov->owner);
1107 
1108 	return ret;
1109 }
1110 
1111 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1112 {
1113 	int ret = 0;
1114 
1115 	/* Has this CPU been taken care of already? */
1116 	if (cpumask_test_cpu(cpu, policy->cpus))
1117 		return 0;
1118 
1119 	down_write(&policy->rwsem);
1120 	if (has_target())
1121 		cpufreq_stop_governor(policy);
1122 
1123 	cpumask_set_cpu(cpu, policy->cpus);
1124 
1125 	if (has_target()) {
1126 		ret = cpufreq_start_governor(policy);
1127 		if (ret)
1128 			pr_err("%s: Failed to start governor\n", __func__);
1129 	}
1130 	up_write(&policy->rwsem);
1131 	return ret;
1132 }
1133 
1134 void refresh_frequency_limits(struct cpufreq_policy *policy)
1135 {
1136 	if (!policy_is_inactive(policy)) {
1137 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1138 
1139 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1140 	}
1141 }
1142 EXPORT_SYMBOL(refresh_frequency_limits);
1143 
1144 static void handle_update(struct work_struct *work)
1145 {
1146 	struct cpufreq_policy *policy =
1147 		container_of(work, struct cpufreq_policy, update);
1148 
1149 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1150 	down_write(&policy->rwsem);
1151 	refresh_frequency_limits(policy);
1152 	up_write(&policy->rwsem);
1153 }
1154 
1155 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1156 				void *data)
1157 {
1158 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1159 
1160 	schedule_work(&policy->update);
1161 	return 0;
1162 }
1163 
1164 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1165 				void *data)
1166 {
1167 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1168 
1169 	schedule_work(&policy->update);
1170 	return 0;
1171 }
1172 
1173 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1174 {
1175 	struct kobject *kobj;
1176 	struct completion *cmp;
1177 
1178 	down_write(&policy->rwsem);
1179 	cpufreq_stats_free_table(policy);
1180 	kobj = &policy->kobj;
1181 	cmp = &policy->kobj_unregister;
1182 	up_write(&policy->rwsem);
1183 	kobject_put(kobj);
1184 
1185 	/*
1186 	 * We need to make sure that the underlying kobj is
1187 	 * actually not referenced anymore by anybody before we
1188 	 * proceed with unloading.
1189 	 */
1190 	pr_debug("waiting for dropping of refcount\n");
1191 	wait_for_completion(cmp);
1192 	pr_debug("wait complete\n");
1193 }
1194 
1195 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1196 {
1197 	struct cpufreq_policy *policy;
1198 	struct device *dev = get_cpu_device(cpu);
1199 	int ret;
1200 
1201 	if (!dev)
1202 		return NULL;
1203 
1204 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1205 	if (!policy)
1206 		return NULL;
1207 
1208 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1209 		goto err_free_policy;
1210 
1211 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1212 		goto err_free_cpumask;
1213 
1214 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1215 		goto err_free_rcpumask;
1216 
1217 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1218 				   cpufreq_global_kobject, "policy%u", cpu);
1219 	if (ret) {
1220 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1221 		/*
1222 		 * The entire policy object will be freed below, but the extra
1223 		 * memory allocated for the kobject name needs to be freed by
1224 		 * releasing the kobject.
1225 		 */
1226 		kobject_put(&policy->kobj);
1227 		goto err_free_real_cpus;
1228 	}
1229 
1230 	freq_constraints_init(&policy->constraints);
1231 
1232 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1233 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1234 
1235 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1236 				    &policy->nb_min);
1237 	if (ret) {
1238 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1239 			ret, cpumask_pr_args(policy->cpus));
1240 		goto err_kobj_remove;
1241 	}
1242 
1243 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1244 				    &policy->nb_max);
1245 	if (ret) {
1246 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1247 			ret, cpumask_pr_args(policy->cpus));
1248 		goto err_min_qos_notifier;
1249 	}
1250 
1251 	INIT_LIST_HEAD(&policy->policy_list);
1252 	init_rwsem(&policy->rwsem);
1253 	spin_lock_init(&policy->transition_lock);
1254 	init_waitqueue_head(&policy->transition_wait);
1255 	init_completion(&policy->kobj_unregister);
1256 	INIT_WORK(&policy->update, handle_update);
1257 
1258 	policy->cpu = cpu;
1259 	return policy;
1260 
1261 err_min_qos_notifier:
1262 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1263 				 &policy->nb_min);
1264 err_kobj_remove:
1265 	cpufreq_policy_put_kobj(policy);
1266 err_free_real_cpus:
1267 	free_cpumask_var(policy->real_cpus);
1268 err_free_rcpumask:
1269 	free_cpumask_var(policy->related_cpus);
1270 err_free_cpumask:
1271 	free_cpumask_var(policy->cpus);
1272 err_free_policy:
1273 	kfree(policy);
1274 
1275 	return NULL;
1276 }
1277 
1278 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1279 {
1280 	unsigned long flags;
1281 	int cpu;
1282 
1283 	/* Remove policy from list */
1284 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1285 	list_del(&policy->policy_list);
1286 
1287 	for_each_cpu(cpu, policy->related_cpus)
1288 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1289 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1290 
1291 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1292 				 &policy->nb_max);
1293 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294 				 &policy->nb_min);
1295 
1296 	/* Cancel any pending policy->update work before freeing the policy. */
1297 	cancel_work_sync(&policy->update);
1298 
1299 	if (policy->max_freq_req) {
1300 		/*
1301 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1302 		 * successfully adding max_freq_req request.
1303 		 */
1304 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1305 					     CPUFREQ_REMOVE_POLICY, policy);
1306 		freq_qos_remove_request(policy->max_freq_req);
1307 	}
1308 
1309 	freq_qos_remove_request(policy->min_freq_req);
1310 	kfree(policy->min_freq_req);
1311 
1312 	cpufreq_policy_put_kobj(policy);
1313 	free_cpumask_var(policy->real_cpus);
1314 	free_cpumask_var(policy->related_cpus);
1315 	free_cpumask_var(policy->cpus);
1316 	kfree(policy);
1317 }
1318 
1319 static int cpufreq_online(unsigned int cpu)
1320 {
1321 	struct cpufreq_policy *policy;
1322 	bool new_policy;
1323 	unsigned long flags;
1324 	unsigned int j;
1325 	int ret;
1326 
1327 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1328 
1329 	/* Check if this CPU already has a policy to manage it */
1330 	policy = per_cpu(cpufreq_cpu_data, cpu);
1331 	if (policy) {
1332 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1333 		if (!policy_is_inactive(policy))
1334 			return cpufreq_add_policy_cpu(policy, cpu);
1335 
1336 		/* This is the only online CPU for the policy.  Start over. */
1337 		new_policy = false;
1338 		down_write(&policy->rwsem);
1339 		policy->cpu = cpu;
1340 		policy->governor = NULL;
1341 		up_write(&policy->rwsem);
1342 	} else {
1343 		new_policy = true;
1344 		policy = cpufreq_policy_alloc(cpu);
1345 		if (!policy)
1346 			return -ENOMEM;
1347 	}
1348 
1349 	if (!new_policy && cpufreq_driver->online) {
1350 		ret = cpufreq_driver->online(policy);
1351 		if (ret) {
1352 			pr_debug("%s: %d: initialization failed\n", __func__,
1353 				 __LINE__);
1354 			goto out_exit_policy;
1355 		}
1356 
1357 		/* Recover policy->cpus using related_cpus */
1358 		cpumask_copy(policy->cpus, policy->related_cpus);
1359 	} else {
1360 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1361 
1362 		/*
1363 		 * Call driver. From then on the cpufreq must be able
1364 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1365 		 */
1366 		ret = cpufreq_driver->init(policy);
1367 		if (ret) {
1368 			pr_debug("%s: %d: initialization failed\n", __func__,
1369 				 __LINE__);
1370 			goto out_free_policy;
1371 		}
1372 
1373 		ret = cpufreq_table_validate_and_sort(policy);
1374 		if (ret)
1375 			goto out_exit_policy;
1376 
1377 		/* related_cpus should at least include policy->cpus. */
1378 		cpumask_copy(policy->related_cpus, policy->cpus);
1379 	}
1380 
1381 	down_write(&policy->rwsem);
1382 	/*
1383 	 * affected cpus must always be the one, which are online. We aren't
1384 	 * managing offline cpus here.
1385 	 */
1386 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1387 
1388 	if (new_policy) {
1389 		for_each_cpu(j, policy->related_cpus) {
1390 			per_cpu(cpufreq_cpu_data, j) = policy;
1391 			add_cpu_dev_symlink(policy, j);
1392 		}
1393 
1394 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1395 					       GFP_KERNEL);
1396 		if (!policy->min_freq_req) {
1397 			ret = -ENOMEM;
1398 			goto out_destroy_policy;
1399 		}
1400 
1401 		ret = freq_qos_add_request(&policy->constraints,
1402 					   policy->min_freq_req, FREQ_QOS_MIN,
1403 					   policy->min);
1404 		if (ret < 0) {
1405 			/*
1406 			 * So we don't call freq_qos_remove_request() for an
1407 			 * uninitialized request.
1408 			 */
1409 			kfree(policy->min_freq_req);
1410 			policy->min_freq_req = NULL;
1411 			goto out_destroy_policy;
1412 		}
1413 
1414 		/*
1415 		 * This must be initialized right here to avoid calling
1416 		 * freq_qos_remove_request() on uninitialized request in case
1417 		 * of errors.
1418 		 */
1419 		policy->max_freq_req = policy->min_freq_req + 1;
1420 
1421 		ret = freq_qos_add_request(&policy->constraints,
1422 					   policy->max_freq_req, FREQ_QOS_MAX,
1423 					   policy->max);
1424 		if (ret < 0) {
1425 			policy->max_freq_req = NULL;
1426 			goto out_destroy_policy;
1427 		}
1428 
1429 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1430 				CPUFREQ_CREATE_POLICY, policy);
1431 	}
1432 
1433 	if (cpufreq_driver->get && has_target()) {
1434 		policy->cur = cpufreq_driver->get(policy->cpu);
1435 		if (!policy->cur) {
1436 			ret = -EIO;
1437 			pr_err("%s: ->get() failed\n", __func__);
1438 			goto out_destroy_policy;
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * Sometimes boot loaders set CPU frequency to a value outside of
1444 	 * frequency table present with cpufreq core. In such cases CPU might be
1445 	 * unstable if it has to run on that frequency for long duration of time
1446 	 * and so its better to set it to a frequency which is specified in
1447 	 * freq-table. This also makes cpufreq stats inconsistent as
1448 	 * cpufreq-stats would fail to register because current frequency of CPU
1449 	 * isn't found in freq-table.
1450 	 *
1451 	 * Because we don't want this change to effect boot process badly, we go
1452 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1453 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1454 	 * is initialized to zero).
1455 	 *
1456 	 * We are passing target-freq as "policy->cur - 1" otherwise
1457 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1458 	 * equal to target-freq.
1459 	 */
1460 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1461 	    && has_target()) {
1462 		unsigned int old_freq = policy->cur;
1463 
1464 		/* Are we running at unknown frequency ? */
1465 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1466 		if (ret == -EINVAL) {
1467 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1468 						      CPUFREQ_RELATION_L);
1469 
1470 			/*
1471 			 * Reaching here after boot in a few seconds may not
1472 			 * mean that system will remain stable at "unknown"
1473 			 * frequency for longer duration. Hence, a BUG_ON().
1474 			 */
1475 			BUG_ON(ret);
1476 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1477 				__func__, policy->cpu, old_freq, policy->cur);
1478 		}
1479 	}
1480 
1481 	if (new_policy) {
1482 		ret = cpufreq_add_dev_interface(policy);
1483 		if (ret)
1484 			goto out_destroy_policy;
1485 
1486 		cpufreq_stats_create_table(policy);
1487 
1488 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1489 		list_add(&policy->policy_list, &cpufreq_policy_list);
1490 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1491 	}
1492 
1493 	ret = cpufreq_init_policy(policy);
1494 	if (ret) {
1495 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1496 		       __func__, cpu, ret);
1497 		goto out_destroy_policy;
1498 	}
1499 
1500 	up_write(&policy->rwsem);
1501 
1502 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1503 
1504 	/* Callback for handling stuff after policy is ready */
1505 	if (cpufreq_driver->ready)
1506 		cpufreq_driver->ready(policy);
1507 
1508 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1509 		policy->cdev = of_cpufreq_cooling_register(policy);
1510 
1511 	pr_debug("initialization complete\n");
1512 
1513 	return 0;
1514 
1515 out_destroy_policy:
1516 	for_each_cpu(j, policy->real_cpus)
1517 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1518 
1519 	up_write(&policy->rwsem);
1520 
1521 out_exit_policy:
1522 	if (cpufreq_driver->exit)
1523 		cpufreq_driver->exit(policy);
1524 
1525 out_free_policy:
1526 	cpufreq_policy_free(policy);
1527 	return ret;
1528 }
1529 
1530 /**
1531  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1532  * @dev: CPU device.
1533  * @sif: Subsystem interface structure pointer (not used)
1534  */
1535 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1536 {
1537 	struct cpufreq_policy *policy;
1538 	unsigned cpu = dev->id;
1539 	int ret;
1540 
1541 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1542 
1543 	if (cpu_online(cpu)) {
1544 		ret = cpufreq_online(cpu);
1545 		if (ret)
1546 			return ret;
1547 	}
1548 
1549 	/* Create sysfs link on CPU registration */
1550 	policy = per_cpu(cpufreq_cpu_data, cpu);
1551 	if (policy)
1552 		add_cpu_dev_symlink(policy, cpu);
1553 
1554 	return 0;
1555 }
1556 
1557 static int cpufreq_offline(unsigned int cpu)
1558 {
1559 	struct cpufreq_policy *policy;
1560 	int ret;
1561 
1562 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1563 
1564 	policy = cpufreq_cpu_get_raw(cpu);
1565 	if (!policy) {
1566 		pr_debug("%s: No cpu_data found\n", __func__);
1567 		return 0;
1568 	}
1569 
1570 	down_write(&policy->rwsem);
1571 	if (has_target())
1572 		cpufreq_stop_governor(policy);
1573 
1574 	cpumask_clear_cpu(cpu, policy->cpus);
1575 
1576 	if (policy_is_inactive(policy)) {
1577 		if (has_target())
1578 			strncpy(policy->last_governor, policy->governor->name,
1579 				CPUFREQ_NAME_LEN);
1580 		else
1581 			policy->last_policy = policy->policy;
1582 	} else if (cpu == policy->cpu) {
1583 		/* Nominate new CPU */
1584 		policy->cpu = cpumask_any(policy->cpus);
1585 	}
1586 
1587 	/* Start governor again for active policy */
1588 	if (!policy_is_inactive(policy)) {
1589 		if (has_target()) {
1590 			ret = cpufreq_start_governor(policy);
1591 			if (ret)
1592 				pr_err("%s: Failed to start governor\n", __func__);
1593 		}
1594 
1595 		goto unlock;
1596 	}
1597 
1598 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1599 		cpufreq_cooling_unregister(policy->cdev);
1600 		policy->cdev = NULL;
1601 	}
1602 
1603 	if (cpufreq_driver->stop_cpu)
1604 		cpufreq_driver->stop_cpu(policy);
1605 
1606 	if (has_target())
1607 		cpufreq_exit_governor(policy);
1608 
1609 	/*
1610 	 * Perform the ->offline() during light-weight tear-down, as
1611 	 * that allows fast recovery when the CPU comes back.
1612 	 */
1613 	if (cpufreq_driver->offline) {
1614 		cpufreq_driver->offline(policy);
1615 	} else if (cpufreq_driver->exit) {
1616 		cpufreq_driver->exit(policy);
1617 		policy->freq_table = NULL;
1618 	}
1619 
1620 unlock:
1621 	up_write(&policy->rwsem);
1622 	return 0;
1623 }
1624 
1625 /*
1626  * cpufreq_remove_dev - remove a CPU device
1627  *
1628  * Removes the cpufreq interface for a CPU device.
1629  */
1630 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1631 {
1632 	unsigned int cpu = dev->id;
1633 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1634 
1635 	if (!policy)
1636 		return;
1637 
1638 	if (cpu_online(cpu))
1639 		cpufreq_offline(cpu);
1640 
1641 	cpumask_clear_cpu(cpu, policy->real_cpus);
1642 	remove_cpu_dev_symlink(policy, dev);
1643 
1644 	if (cpumask_empty(policy->real_cpus)) {
1645 		/* We did light-weight exit earlier, do full tear down now */
1646 		if (cpufreq_driver->offline)
1647 			cpufreq_driver->exit(policy);
1648 
1649 		cpufreq_policy_free(policy);
1650 	}
1651 }
1652 
1653 /**
1654  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1655  * @policy: Policy managing CPUs.
1656  * @new_freq: New CPU frequency.
1657  *
1658  * Adjust to the current frequency first and clean up later by either calling
1659  * cpufreq_update_policy(), or scheduling handle_update().
1660  */
1661 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1662 				unsigned int new_freq)
1663 {
1664 	struct cpufreq_freqs freqs;
1665 
1666 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1667 		 policy->cur, new_freq);
1668 
1669 	freqs.old = policy->cur;
1670 	freqs.new = new_freq;
1671 
1672 	cpufreq_freq_transition_begin(policy, &freqs);
1673 	cpufreq_freq_transition_end(policy, &freqs, 0);
1674 }
1675 
1676 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1677 {
1678 	unsigned int new_freq;
1679 
1680 	new_freq = cpufreq_driver->get(policy->cpu);
1681 	if (!new_freq)
1682 		return 0;
1683 
1684 	/*
1685 	 * If fast frequency switching is used with the given policy, the check
1686 	 * against policy->cur is pointless, so skip it in that case.
1687 	 */
1688 	if (policy->fast_switch_enabled || !has_target())
1689 		return new_freq;
1690 
1691 	if (policy->cur != new_freq) {
1692 		cpufreq_out_of_sync(policy, new_freq);
1693 		if (update)
1694 			schedule_work(&policy->update);
1695 	}
1696 
1697 	return new_freq;
1698 }
1699 
1700 /**
1701  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1702  * @cpu: CPU number
1703  *
1704  * This is the last known freq, without actually getting it from the driver.
1705  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1706  */
1707 unsigned int cpufreq_quick_get(unsigned int cpu)
1708 {
1709 	struct cpufreq_policy *policy;
1710 	unsigned int ret_freq = 0;
1711 	unsigned long flags;
1712 
1713 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1714 
1715 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1716 		ret_freq = cpufreq_driver->get(cpu);
1717 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1718 		return ret_freq;
1719 	}
1720 
1721 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1722 
1723 	policy = cpufreq_cpu_get(cpu);
1724 	if (policy) {
1725 		ret_freq = policy->cur;
1726 		cpufreq_cpu_put(policy);
1727 	}
1728 
1729 	return ret_freq;
1730 }
1731 EXPORT_SYMBOL(cpufreq_quick_get);
1732 
1733 /**
1734  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1735  * @cpu: CPU number
1736  *
1737  * Just return the max possible frequency for a given CPU.
1738  */
1739 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1740 {
1741 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1742 	unsigned int ret_freq = 0;
1743 
1744 	if (policy) {
1745 		ret_freq = policy->max;
1746 		cpufreq_cpu_put(policy);
1747 	}
1748 
1749 	return ret_freq;
1750 }
1751 EXPORT_SYMBOL(cpufreq_quick_get_max);
1752 
1753 /**
1754  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1755  * @cpu: CPU number
1756  *
1757  * The default return value is the max_freq field of cpuinfo.
1758  */
1759 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1760 {
1761 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1762 	unsigned int ret_freq = 0;
1763 
1764 	if (policy) {
1765 		ret_freq = policy->cpuinfo.max_freq;
1766 		cpufreq_cpu_put(policy);
1767 	}
1768 
1769 	return ret_freq;
1770 }
1771 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1772 
1773 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1774 {
1775 	if (unlikely(policy_is_inactive(policy)))
1776 		return 0;
1777 
1778 	return cpufreq_verify_current_freq(policy, true);
1779 }
1780 
1781 /**
1782  * cpufreq_get - get the current CPU frequency (in kHz)
1783  * @cpu: CPU number
1784  *
1785  * Get the CPU current (static) CPU frequency
1786  */
1787 unsigned int cpufreq_get(unsigned int cpu)
1788 {
1789 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1790 	unsigned int ret_freq = 0;
1791 
1792 	if (policy) {
1793 		down_read(&policy->rwsem);
1794 		if (cpufreq_driver->get)
1795 			ret_freq = __cpufreq_get(policy);
1796 		up_read(&policy->rwsem);
1797 
1798 		cpufreq_cpu_put(policy);
1799 	}
1800 
1801 	return ret_freq;
1802 }
1803 EXPORT_SYMBOL(cpufreq_get);
1804 
1805 static struct subsys_interface cpufreq_interface = {
1806 	.name		= "cpufreq",
1807 	.subsys		= &cpu_subsys,
1808 	.add_dev	= cpufreq_add_dev,
1809 	.remove_dev	= cpufreq_remove_dev,
1810 };
1811 
1812 /*
1813  * In case platform wants some specific frequency to be configured
1814  * during suspend..
1815  */
1816 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1817 {
1818 	int ret;
1819 
1820 	if (!policy->suspend_freq) {
1821 		pr_debug("%s: suspend_freq not defined\n", __func__);
1822 		return 0;
1823 	}
1824 
1825 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1826 			policy->suspend_freq);
1827 
1828 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1829 			CPUFREQ_RELATION_H);
1830 	if (ret)
1831 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1832 				__func__, policy->suspend_freq, ret);
1833 
1834 	return ret;
1835 }
1836 EXPORT_SYMBOL(cpufreq_generic_suspend);
1837 
1838 /**
1839  * cpufreq_suspend() - Suspend CPUFreq governors.
1840  *
1841  * Called during system wide Suspend/Hibernate cycles for suspending governors
1842  * as some platforms can't change frequency after this point in suspend cycle.
1843  * Because some of the devices (like: i2c, regulators, etc) they use for
1844  * changing frequency are suspended quickly after this point.
1845  */
1846 void cpufreq_suspend(void)
1847 {
1848 	struct cpufreq_policy *policy;
1849 
1850 	if (!cpufreq_driver)
1851 		return;
1852 
1853 	if (!has_target() && !cpufreq_driver->suspend)
1854 		goto suspend;
1855 
1856 	pr_debug("%s: Suspending Governors\n", __func__);
1857 
1858 	for_each_active_policy(policy) {
1859 		if (has_target()) {
1860 			down_write(&policy->rwsem);
1861 			cpufreq_stop_governor(policy);
1862 			up_write(&policy->rwsem);
1863 		}
1864 
1865 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1866 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1867 				cpufreq_driver->name);
1868 	}
1869 
1870 suspend:
1871 	cpufreq_suspended = true;
1872 }
1873 
1874 /**
1875  * cpufreq_resume() - Resume CPUFreq governors.
1876  *
1877  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1878  * are suspended with cpufreq_suspend().
1879  */
1880 void cpufreq_resume(void)
1881 {
1882 	struct cpufreq_policy *policy;
1883 	int ret;
1884 
1885 	if (!cpufreq_driver)
1886 		return;
1887 
1888 	if (unlikely(!cpufreq_suspended))
1889 		return;
1890 
1891 	cpufreq_suspended = false;
1892 
1893 	if (!has_target() && !cpufreq_driver->resume)
1894 		return;
1895 
1896 	pr_debug("%s: Resuming Governors\n", __func__);
1897 
1898 	for_each_active_policy(policy) {
1899 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1900 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1901 				policy);
1902 		} else if (has_target()) {
1903 			down_write(&policy->rwsem);
1904 			ret = cpufreq_start_governor(policy);
1905 			up_write(&policy->rwsem);
1906 
1907 			if (ret)
1908 				pr_err("%s: Failed to start governor for policy: %p\n",
1909 				       __func__, policy);
1910 		}
1911 	}
1912 }
1913 
1914 /**
1915  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1916  * @flags: Flags to test against the current cpufreq driver's flags.
1917  *
1918  * Assumes that the driver is there, so callers must ensure that this is the
1919  * case.
1920  */
1921 bool cpufreq_driver_test_flags(u16 flags)
1922 {
1923 	return !!(cpufreq_driver->flags & flags);
1924 }
1925 
1926 /**
1927  * cpufreq_get_current_driver - Return the current driver's name.
1928  *
1929  * Return the name string of the currently registered cpufreq driver or NULL if
1930  * none.
1931  */
1932 const char *cpufreq_get_current_driver(void)
1933 {
1934 	if (cpufreq_driver)
1935 		return cpufreq_driver->name;
1936 
1937 	return NULL;
1938 }
1939 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1940 
1941 /**
1942  * cpufreq_get_driver_data - Return current driver data.
1943  *
1944  * Return the private data of the currently registered cpufreq driver, or NULL
1945  * if no cpufreq driver has been registered.
1946  */
1947 void *cpufreq_get_driver_data(void)
1948 {
1949 	if (cpufreq_driver)
1950 		return cpufreq_driver->driver_data;
1951 
1952 	return NULL;
1953 }
1954 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1955 
1956 /*********************************************************************
1957  *                     NOTIFIER LISTS INTERFACE                      *
1958  *********************************************************************/
1959 
1960 /**
1961  * cpufreq_register_notifier - Register a notifier with cpufreq.
1962  * @nb: notifier function to register.
1963  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1964  *
1965  * Add a notifier to one of two lists: either a list of notifiers that run on
1966  * clock rate changes (once before and once after every transition), or a list
1967  * of notifiers that ron on cpufreq policy changes.
1968  *
1969  * This function may sleep and it has the same return values as
1970  * blocking_notifier_chain_register().
1971  */
1972 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1973 {
1974 	int ret;
1975 
1976 	if (cpufreq_disabled())
1977 		return -EINVAL;
1978 
1979 	switch (list) {
1980 	case CPUFREQ_TRANSITION_NOTIFIER:
1981 		mutex_lock(&cpufreq_fast_switch_lock);
1982 
1983 		if (cpufreq_fast_switch_count > 0) {
1984 			mutex_unlock(&cpufreq_fast_switch_lock);
1985 			return -EBUSY;
1986 		}
1987 		ret = srcu_notifier_chain_register(
1988 				&cpufreq_transition_notifier_list, nb);
1989 		if (!ret)
1990 			cpufreq_fast_switch_count--;
1991 
1992 		mutex_unlock(&cpufreq_fast_switch_lock);
1993 		break;
1994 	case CPUFREQ_POLICY_NOTIFIER:
1995 		ret = blocking_notifier_chain_register(
1996 				&cpufreq_policy_notifier_list, nb);
1997 		break;
1998 	default:
1999 		ret = -EINVAL;
2000 	}
2001 
2002 	return ret;
2003 }
2004 EXPORT_SYMBOL(cpufreq_register_notifier);
2005 
2006 /**
2007  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2008  * @nb: notifier block to be unregistered.
2009  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2010  *
2011  * Remove a notifier from one of the cpufreq notifier lists.
2012  *
2013  * This function may sleep and it has the same return values as
2014  * blocking_notifier_chain_unregister().
2015  */
2016 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2017 {
2018 	int ret;
2019 
2020 	if (cpufreq_disabled())
2021 		return -EINVAL;
2022 
2023 	switch (list) {
2024 	case CPUFREQ_TRANSITION_NOTIFIER:
2025 		mutex_lock(&cpufreq_fast_switch_lock);
2026 
2027 		ret = srcu_notifier_chain_unregister(
2028 				&cpufreq_transition_notifier_list, nb);
2029 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2030 			cpufreq_fast_switch_count++;
2031 
2032 		mutex_unlock(&cpufreq_fast_switch_lock);
2033 		break;
2034 	case CPUFREQ_POLICY_NOTIFIER:
2035 		ret = blocking_notifier_chain_unregister(
2036 				&cpufreq_policy_notifier_list, nb);
2037 		break;
2038 	default:
2039 		ret = -EINVAL;
2040 	}
2041 
2042 	return ret;
2043 }
2044 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2045 
2046 
2047 /*********************************************************************
2048  *                              GOVERNORS                            *
2049  *********************************************************************/
2050 
2051 /**
2052  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2053  * @policy: cpufreq policy to switch the frequency for.
2054  * @target_freq: New frequency to set (may be approximate).
2055  *
2056  * Carry out a fast frequency switch without sleeping.
2057  *
2058  * The driver's ->fast_switch() callback invoked by this function must be
2059  * suitable for being called from within RCU-sched read-side critical sections
2060  * and it is expected to select the minimum available frequency greater than or
2061  * equal to @target_freq (CPUFREQ_RELATION_L).
2062  *
2063  * This function must not be called if policy->fast_switch_enabled is unset.
2064  *
2065  * Governors calling this function must guarantee that it will never be invoked
2066  * twice in parallel for the same policy and that it will never be called in
2067  * parallel with either ->target() or ->target_index() for the same policy.
2068  *
2069  * Returns the actual frequency set for the CPU.
2070  *
2071  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2072  * error condition, the hardware configuration must be preserved.
2073  */
2074 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2075 					unsigned int target_freq)
2076 {
2077 	unsigned int freq;
2078 	int cpu;
2079 
2080 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2081 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2082 
2083 	if (!freq)
2084 		return 0;
2085 
2086 	policy->cur = freq;
2087 	arch_set_freq_scale(policy->related_cpus, freq,
2088 			    policy->cpuinfo.max_freq);
2089 	cpufreq_stats_record_transition(policy, freq);
2090 
2091 	if (trace_cpu_frequency_enabled()) {
2092 		for_each_cpu(cpu, policy->cpus)
2093 			trace_cpu_frequency(freq, cpu);
2094 	}
2095 
2096 	return freq;
2097 }
2098 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2099 
2100 /**
2101  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2102  * @cpu: Target CPU.
2103  * @min_perf: Minimum (required) performance level (units of @capacity).
2104  * @target_perf: Terget (desired) performance level (units of @capacity).
2105  * @capacity: Capacity of the target CPU.
2106  *
2107  * Carry out a fast performance level switch of @cpu without sleeping.
2108  *
2109  * The driver's ->adjust_perf() callback invoked by this function must be
2110  * suitable for being called from within RCU-sched read-side critical sections
2111  * and it is expected to select a suitable performance level equal to or above
2112  * @min_perf and preferably equal to or below @target_perf.
2113  *
2114  * This function must not be called if policy->fast_switch_enabled is unset.
2115  *
2116  * Governors calling this function must guarantee that it will never be invoked
2117  * twice in parallel for the same CPU and that it will never be called in
2118  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2119  * the same CPU.
2120  */
2121 void cpufreq_driver_adjust_perf(unsigned int cpu,
2122 				 unsigned long min_perf,
2123 				 unsigned long target_perf,
2124 				 unsigned long capacity)
2125 {
2126 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2127 }
2128 
2129 /**
2130  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2131  *
2132  * Return 'true' if the ->adjust_perf callback is present for the
2133  * current driver or 'false' otherwise.
2134  */
2135 bool cpufreq_driver_has_adjust_perf(void)
2136 {
2137 	return !!cpufreq_driver->adjust_perf;
2138 }
2139 
2140 /* Must set freqs->new to intermediate frequency */
2141 static int __target_intermediate(struct cpufreq_policy *policy,
2142 				 struct cpufreq_freqs *freqs, int index)
2143 {
2144 	int ret;
2145 
2146 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2147 
2148 	/* We don't need to switch to intermediate freq */
2149 	if (!freqs->new)
2150 		return 0;
2151 
2152 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2153 		 __func__, policy->cpu, freqs->old, freqs->new);
2154 
2155 	cpufreq_freq_transition_begin(policy, freqs);
2156 	ret = cpufreq_driver->target_intermediate(policy, index);
2157 	cpufreq_freq_transition_end(policy, freqs, ret);
2158 
2159 	if (ret)
2160 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2161 		       __func__, ret);
2162 
2163 	return ret;
2164 }
2165 
2166 static int __target_index(struct cpufreq_policy *policy, int index)
2167 {
2168 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2169 	unsigned int restore_freq, intermediate_freq = 0;
2170 	unsigned int newfreq = policy->freq_table[index].frequency;
2171 	int retval = -EINVAL;
2172 	bool notify;
2173 
2174 	if (newfreq == policy->cur)
2175 		return 0;
2176 
2177 	/* Save last value to restore later on errors */
2178 	restore_freq = policy->cur;
2179 
2180 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2181 	if (notify) {
2182 		/* Handle switching to intermediate frequency */
2183 		if (cpufreq_driver->get_intermediate) {
2184 			retval = __target_intermediate(policy, &freqs, index);
2185 			if (retval)
2186 				return retval;
2187 
2188 			intermediate_freq = freqs.new;
2189 			/* Set old freq to intermediate */
2190 			if (intermediate_freq)
2191 				freqs.old = freqs.new;
2192 		}
2193 
2194 		freqs.new = newfreq;
2195 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2196 			 __func__, policy->cpu, freqs.old, freqs.new);
2197 
2198 		cpufreq_freq_transition_begin(policy, &freqs);
2199 	}
2200 
2201 	retval = cpufreq_driver->target_index(policy, index);
2202 	if (retval)
2203 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2204 		       retval);
2205 
2206 	if (notify) {
2207 		cpufreq_freq_transition_end(policy, &freqs, retval);
2208 
2209 		/*
2210 		 * Failed after setting to intermediate freq? Driver should have
2211 		 * reverted back to initial frequency and so should we. Check
2212 		 * here for intermediate_freq instead of get_intermediate, in
2213 		 * case we haven't switched to intermediate freq at all.
2214 		 */
2215 		if (unlikely(retval && intermediate_freq)) {
2216 			freqs.old = intermediate_freq;
2217 			freqs.new = restore_freq;
2218 			cpufreq_freq_transition_begin(policy, &freqs);
2219 			cpufreq_freq_transition_end(policy, &freqs, 0);
2220 		}
2221 	}
2222 
2223 	return retval;
2224 }
2225 
2226 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2227 			    unsigned int target_freq,
2228 			    unsigned int relation)
2229 {
2230 	unsigned int old_target_freq = target_freq;
2231 	int index;
2232 
2233 	if (cpufreq_disabled())
2234 		return -ENODEV;
2235 
2236 	/* Make sure that target_freq is within supported range */
2237 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2238 
2239 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2240 		 policy->cpu, target_freq, relation, old_target_freq);
2241 
2242 	/*
2243 	 * This might look like a redundant call as we are checking it again
2244 	 * after finding index. But it is left intentionally for cases where
2245 	 * exactly same freq is called again and so we can save on few function
2246 	 * calls.
2247 	 */
2248 	if (target_freq == policy->cur &&
2249 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2250 		return 0;
2251 
2252 	if (cpufreq_driver->target)
2253 		return cpufreq_driver->target(policy, target_freq, relation);
2254 
2255 	if (!cpufreq_driver->target_index)
2256 		return -EINVAL;
2257 
2258 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2259 
2260 	return __target_index(policy, index);
2261 }
2262 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2263 
2264 int cpufreq_driver_target(struct cpufreq_policy *policy,
2265 			  unsigned int target_freq,
2266 			  unsigned int relation)
2267 {
2268 	int ret;
2269 
2270 	down_write(&policy->rwsem);
2271 
2272 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2273 
2274 	up_write(&policy->rwsem);
2275 
2276 	return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2279 
2280 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2281 {
2282 	return NULL;
2283 }
2284 
2285 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2286 {
2287 	int ret;
2288 
2289 	/* Don't start any governor operations if we are entering suspend */
2290 	if (cpufreq_suspended)
2291 		return 0;
2292 	/*
2293 	 * Governor might not be initiated here if ACPI _PPC changed
2294 	 * notification happened, so check it.
2295 	 */
2296 	if (!policy->governor)
2297 		return -EINVAL;
2298 
2299 	/* Platform doesn't want dynamic frequency switching ? */
2300 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2301 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2302 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2303 
2304 		if (gov) {
2305 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2306 				policy->governor->name, gov->name);
2307 			policy->governor = gov;
2308 		} else {
2309 			return -EINVAL;
2310 		}
2311 	}
2312 
2313 	if (!try_module_get(policy->governor->owner))
2314 		return -EINVAL;
2315 
2316 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2317 
2318 	if (policy->governor->init) {
2319 		ret = policy->governor->init(policy);
2320 		if (ret) {
2321 			module_put(policy->governor->owner);
2322 			return ret;
2323 		}
2324 	}
2325 
2326 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2327 
2328 	return 0;
2329 }
2330 
2331 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2332 {
2333 	if (cpufreq_suspended || !policy->governor)
2334 		return;
2335 
2336 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2337 
2338 	if (policy->governor->exit)
2339 		policy->governor->exit(policy);
2340 
2341 	module_put(policy->governor->owner);
2342 }
2343 
2344 int cpufreq_start_governor(struct cpufreq_policy *policy)
2345 {
2346 	int ret;
2347 
2348 	if (cpufreq_suspended)
2349 		return 0;
2350 
2351 	if (!policy->governor)
2352 		return -EINVAL;
2353 
2354 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2355 
2356 	if (cpufreq_driver->get)
2357 		cpufreq_verify_current_freq(policy, false);
2358 
2359 	if (policy->governor->start) {
2360 		ret = policy->governor->start(policy);
2361 		if (ret)
2362 			return ret;
2363 	}
2364 
2365 	if (policy->governor->limits)
2366 		policy->governor->limits(policy);
2367 
2368 	return 0;
2369 }
2370 
2371 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2372 {
2373 	if (cpufreq_suspended || !policy->governor)
2374 		return;
2375 
2376 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2377 
2378 	if (policy->governor->stop)
2379 		policy->governor->stop(policy);
2380 }
2381 
2382 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2383 {
2384 	if (cpufreq_suspended || !policy->governor)
2385 		return;
2386 
2387 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2388 
2389 	if (policy->governor->limits)
2390 		policy->governor->limits(policy);
2391 }
2392 
2393 int cpufreq_register_governor(struct cpufreq_governor *governor)
2394 {
2395 	int err;
2396 
2397 	if (!governor)
2398 		return -EINVAL;
2399 
2400 	if (cpufreq_disabled())
2401 		return -ENODEV;
2402 
2403 	mutex_lock(&cpufreq_governor_mutex);
2404 
2405 	err = -EBUSY;
2406 	if (!find_governor(governor->name)) {
2407 		err = 0;
2408 		list_add(&governor->governor_list, &cpufreq_governor_list);
2409 	}
2410 
2411 	mutex_unlock(&cpufreq_governor_mutex);
2412 	return err;
2413 }
2414 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2415 
2416 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2417 {
2418 	struct cpufreq_policy *policy;
2419 	unsigned long flags;
2420 
2421 	if (!governor)
2422 		return;
2423 
2424 	if (cpufreq_disabled())
2425 		return;
2426 
2427 	/* clear last_governor for all inactive policies */
2428 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2429 	for_each_inactive_policy(policy) {
2430 		if (!strcmp(policy->last_governor, governor->name)) {
2431 			policy->governor = NULL;
2432 			strcpy(policy->last_governor, "\0");
2433 		}
2434 	}
2435 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2436 
2437 	mutex_lock(&cpufreq_governor_mutex);
2438 	list_del(&governor->governor_list);
2439 	mutex_unlock(&cpufreq_governor_mutex);
2440 }
2441 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2442 
2443 
2444 /*********************************************************************
2445  *                          POLICY INTERFACE                         *
2446  *********************************************************************/
2447 
2448 /**
2449  * cpufreq_get_policy - get the current cpufreq_policy
2450  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2451  *	is written
2452  * @cpu: CPU to find the policy for
2453  *
2454  * Reads the current cpufreq policy.
2455  */
2456 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2457 {
2458 	struct cpufreq_policy *cpu_policy;
2459 	if (!policy)
2460 		return -EINVAL;
2461 
2462 	cpu_policy = cpufreq_cpu_get(cpu);
2463 	if (!cpu_policy)
2464 		return -EINVAL;
2465 
2466 	memcpy(policy, cpu_policy, sizeof(*policy));
2467 
2468 	cpufreq_cpu_put(cpu_policy);
2469 	return 0;
2470 }
2471 EXPORT_SYMBOL(cpufreq_get_policy);
2472 
2473 /**
2474  * cpufreq_set_policy - Modify cpufreq policy parameters.
2475  * @policy: Policy object to modify.
2476  * @new_gov: Policy governor pointer.
2477  * @new_pol: Policy value (for drivers with built-in governors).
2478  *
2479  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2480  * limits to be set for the policy, update @policy with the verified limits
2481  * values and either invoke the driver's ->setpolicy() callback (if present) or
2482  * carry out a governor update for @policy.  That is, run the current governor's
2483  * ->limits() callback (if @new_gov points to the same object as the one in
2484  * @policy) or replace the governor for @policy with @new_gov.
2485  *
2486  * The cpuinfo part of @policy is not updated by this function.
2487  */
2488 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2489 			      struct cpufreq_governor *new_gov,
2490 			      unsigned int new_pol)
2491 {
2492 	struct cpufreq_policy_data new_data;
2493 	struct cpufreq_governor *old_gov;
2494 	int ret;
2495 
2496 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2497 	new_data.freq_table = policy->freq_table;
2498 	new_data.cpu = policy->cpu;
2499 	/*
2500 	 * PM QoS framework collects all the requests from users and provide us
2501 	 * the final aggregated value here.
2502 	 */
2503 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2504 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2505 
2506 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2507 		 new_data.cpu, new_data.min, new_data.max);
2508 
2509 	/*
2510 	 * Verify that the CPU speed can be set within these limits and make sure
2511 	 * that min <= max.
2512 	 */
2513 	ret = cpufreq_driver->verify(&new_data);
2514 	if (ret)
2515 		return ret;
2516 
2517 	policy->min = new_data.min;
2518 	policy->max = new_data.max;
2519 	trace_cpu_frequency_limits(policy);
2520 
2521 	policy->cached_target_freq = UINT_MAX;
2522 
2523 	pr_debug("new min and max freqs are %u - %u kHz\n",
2524 		 policy->min, policy->max);
2525 
2526 	if (cpufreq_driver->setpolicy) {
2527 		policy->policy = new_pol;
2528 		pr_debug("setting range\n");
2529 		return cpufreq_driver->setpolicy(policy);
2530 	}
2531 
2532 	if (new_gov == policy->governor) {
2533 		pr_debug("governor limits update\n");
2534 		cpufreq_governor_limits(policy);
2535 		return 0;
2536 	}
2537 
2538 	pr_debug("governor switch\n");
2539 
2540 	/* save old, working values */
2541 	old_gov = policy->governor;
2542 	/* end old governor */
2543 	if (old_gov) {
2544 		cpufreq_stop_governor(policy);
2545 		cpufreq_exit_governor(policy);
2546 	}
2547 
2548 	/* start new governor */
2549 	policy->governor = new_gov;
2550 	ret = cpufreq_init_governor(policy);
2551 	if (!ret) {
2552 		ret = cpufreq_start_governor(policy);
2553 		if (!ret) {
2554 			pr_debug("governor change\n");
2555 			sched_cpufreq_governor_change(policy, old_gov);
2556 			return 0;
2557 		}
2558 		cpufreq_exit_governor(policy);
2559 	}
2560 
2561 	/* new governor failed, so re-start old one */
2562 	pr_debug("starting governor %s failed\n", policy->governor->name);
2563 	if (old_gov) {
2564 		policy->governor = old_gov;
2565 		if (cpufreq_init_governor(policy))
2566 			policy->governor = NULL;
2567 		else
2568 			cpufreq_start_governor(policy);
2569 	}
2570 
2571 	return ret;
2572 }
2573 
2574 /**
2575  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2576  * @cpu: CPU to re-evaluate the policy for.
2577  *
2578  * Update the current frequency for the cpufreq policy of @cpu and use
2579  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2580  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2581  * for the policy in question, among other things.
2582  */
2583 void cpufreq_update_policy(unsigned int cpu)
2584 {
2585 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2586 
2587 	if (!policy)
2588 		return;
2589 
2590 	/*
2591 	 * BIOS might change freq behind our back
2592 	 * -> ask driver for current freq and notify governors about a change
2593 	 */
2594 	if (cpufreq_driver->get && has_target() &&
2595 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2596 		goto unlock;
2597 
2598 	refresh_frequency_limits(policy);
2599 
2600 unlock:
2601 	cpufreq_cpu_release(policy);
2602 }
2603 EXPORT_SYMBOL(cpufreq_update_policy);
2604 
2605 /**
2606  * cpufreq_update_limits - Update policy limits for a given CPU.
2607  * @cpu: CPU to update the policy limits for.
2608  *
2609  * Invoke the driver's ->update_limits callback if present or call
2610  * cpufreq_update_policy() for @cpu.
2611  */
2612 void cpufreq_update_limits(unsigned int cpu)
2613 {
2614 	if (cpufreq_driver->update_limits)
2615 		cpufreq_driver->update_limits(cpu);
2616 	else
2617 		cpufreq_update_policy(cpu);
2618 }
2619 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2620 
2621 /*********************************************************************
2622  *               BOOST						     *
2623  *********************************************************************/
2624 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2625 {
2626 	int ret;
2627 
2628 	if (!policy->freq_table)
2629 		return -ENXIO;
2630 
2631 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2632 	if (ret) {
2633 		pr_err("%s: Policy frequency update failed\n", __func__);
2634 		return ret;
2635 	}
2636 
2637 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2638 	if (ret < 0)
2639 		return ret;
2640 
2641 	return 0;
2642 }
2643 
2644 int cpufreq_boost_trigger_state(int state)
2645 {
2646 	struct cpufreq_policy *policy;
2647 	unsigned long flags;
2648 	int ret = 0;
2649 
2650 	if (cpufreq_driver->boost_enabled == state)
2651 		return 0;
2652 
2653 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2654 	cpufreq_driver->boost_enabled = state;
2655 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2656 
2657 	get_online_cpus();
2658 	for_each_active_policy(policy) {
2659 		ret = cpufreq_driver->set_boost(policy, state);
2660 		if (ret)
2661 			goto err_reset_state;
2662 	}
2663 	put_online_cpus();
2664 
2665 	return 0;
2666 
2667 err_reset_state:
2668 	put_online_cpus();
2669 
2670 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2671 	cpufreq_driver->boost_enabled = !state;
2672 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2673 
2674 	pr_err("%s: Cannot %s BOOST\n",
2675 	       __func__, state ? "enable" : "disable");
2676 
2677 	return ret;
2678 }
2679 
2680 static bool cpufreq_boost_supported(void)
2681 {
2682 	return cpufreq_driver->set_boost;
2683 }
2684 
2685 static int create_boost_sysfs_file(void)
2686 {
2687 	int ret;
2688 
2689 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2690 	if (ret)
2691 		pr_err("%s: cannot register global BOOST sysfs file\n",
2692 		       __func__);
2693 
2694 	return ret;
2695 }
2696 
2697 static void remove_boost_sysfs_file(void)
2698 {
2699 	if (cpufreq_boost_supported())
2700 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2701 }
2702 
2703 int cpufreq_enable_boost_support(void)
2704 {
2705 	if (!cpufreq_driver)
2706 		return -EINVAL;
2707 
2708 	if (cpufreq_boost_supported())
2709 		return 0;
2710 
2711 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2712 
2713 	/* This will get removed on driver unregister */
2714 	return create_boost_sysfs_file();
2715 }
2716 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2717 
2718 int cpufreq_boost_enabled(void)
2719 {
2720 	return cpufreq_driver->boost_enabled;
2721 }
2722 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2723 
2724 /*********************************************************************
2725  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2726  *********************************************************************/
2727 static enum cpuhp_state hp_online;
2728 
2729 static int cpuhp_cpufreq_online(unsigned int cpu)
2730 {
2731 	cpufreq_online(cpu);
2732 
2733 	return 0;
2734 }
2735 
2736 static int cpuhp_cpufreq_offline(unsigned int cpu)
2737 {
2738 	cpufreq_offline(cpu);
2739 
2740 	return 0;
2741 }
2742 
2743 /**
2744  * cpufreq_register_driver - register a CPU Frequency driver
2745  * @driver_data: A struct cpufreq_driver containing the values#
2746  * submitted by the CPU Frequency driver.
2747  *
2748  * Registers a CPU Frequency driver to this core code. This code
2749  * returns zero on success, -EEXIST when another driver got here first
2750  * (and isn't unregistered in the meantime).
2751  *
2752  */
2753 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2754 {
2755 	unsigned long flags;
2756 	int ret;
2757 
2758 	if (cpufreq_disabled())
2759 		return -ENODEV;
2760 
2761 	/*
2762 	 * The cpufreq core depends heavily on the availability of device
2763 	 * structure, make sure they are available before proceeding further.
2764 	 */
2765 	if (!get_cpu_device(0))
2766 		return -EPROBE_DEFER;
2767 
2768 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2769 	    !(driver_data->setpolicy || driver_data->target_index ||
2770 		    driver_data->target) ||
2771 	     (driver_data->setpolicy && (driver_data->target_index ||
2772 		    driver_data->target)) ||
2773 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2774 	     (!driver_data->online != !driver_data->offline))
2775 		return -EINVAL;
2776 
2777 	pr_debug("trying to register driver %s\n", driver_data->name);
2778 
2779 	/* Protect against concurrent CPU online/offline. */
2780 	cpus_read_lock();
2781 
2782 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2783 	if (cpufreq_driver) {
2784 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2785 		ret = -EEXIST;
2786 		goto out;
2787 	}
2788 	cpufreq_driver = driver_data;
2789 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790 
2791 	/*
2792 	 * Mark support for the scheduler's frequency invariance engine for
2793 	 * drivers that implement target(), target_index() or fast_switch().
2794 	 */
2795 	if (!cpufreq_driver->setpolicy) {
2796 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2797 		pr_debug("supports frequency invariance");
2798 	}
2799 
2800 	if (driver_data->setpolicy)
2801 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2802 
2803 	if (cpufreq_boost_supported()) {
2804 		ret = create_boost_sysfs_file();
2805 		if (ret)
2806 			goto err_null_driver;
2807 	}
2808 
2809 	ret = subsys_interface_register(&cpufreq_interface);
2810 	if (ret)
2811 		goto err_boost_unreg;
2812 
2813 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2814 	    list_empty(&cpufreq_policy_list)) {
2815 		/* if all ->init() calls failed, unregister */
2816 		ret = -ENODEV;
2817 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2818 			 driver_data->name);
2819 		goto err_if_unreg;
2820 	}
2821 
2822 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2823 						   "cpufreq:online",
2824 						   cpuhp_cpufreq_online,
2825 						   cpuhp_cpufreq_offline);
2826 	if (ret < 0)
2827 		goto err_if_unreg;
2828 	hp_online = ret;
2829 	ret = 0;
2830 
2831 	pr_debug("driver %s up and running\n", driver_data->name);
2832 	goto out;
2833 
2834 err_if_unreg:
2835 	subsys_interface_unregister(&cpufreq_interface);
2836 err_boost_unreg:
2837 	remove_boost_sysfs_file();
2838 err_null_driver:
2839 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2840 	cpufreq_driver = NULL;
2841 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2842 out:
2843 	cpus_read_unlock();
2844 	return ret;
2845 }
2846 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2847 
2848 /*
2849  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2850  *
2851  * Unregister the current CPUFreq driver. Only call this if you have
2852  * the right to do so, i.e. if you have succeeded in initialising before!
2853  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2854  * currently not initialised.
2855  */
2856 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2857 {
2858 	unsigned long flags;
2859 
2860 	if (!cpufreq_driver || (driver != cpufreq_driver))
2861 		return -EINVAL;
2862 
2863 	pr_debug("unregistering driver %s\n", driver->name);
2864 
2865 	/* Protect against concurrent cpu hotplug */
2866 	cpus_read_lock();
2867 	subsys_interface_unregister(&cpufreq_interface);
2868 	remove_boost_sysfs_file();
2869 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2870 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2871 
2872 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2873 
2874 	cpufreq_driver = NULL;
2875 
2876 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2877 	cpus_read_unlock();
2878 
2879 	return 0;
2880 }
2881 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2882 
2883 static int __init cpufreq_core_init(void)
2884 {
2885 	struct cpufreq_governor *gov = cpufreq_default_governor();
2886 
2887 	if (cpufreq_disabled())
2888 		return -ENODEV;
2889 
2890 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2891 	BUG_ON(!cpufreq_global_kobject);
2892 
2893 	if (!strlen(default_governor))
2894 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2895 
2896 	return 0;
2897 }
2898 module_param(off, int, 0444);
2899 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2900 core_initcall(cpufreq_core_init);
2901