1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <asm/cputime.h> 21 #include <linux/kernel.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/notifier.h> 26 #include <linux/cpufreq.h> 27 #include <linux/delay.h> 28 #include <linux/interrupt.h> 29 #include <linux/spinlock.h> 30 #include <linux/tick.h> 31 #include <linux/device.h> 32 #include <linux/slab.h> 33 #include <linux/cpu.h> 34 #include <linux/completion.h> 35 #include <linux/mutex.h> 36 #include <linux/syscore_ops.h> 37 38 #include <trace/events/power.h> 39 40 /** 41 * The "cpufreq driver" - the arch- or hardware-dependent low 42 * level driver of CPUFreq support, and its spinlock. This lock 43 * also protects the cpufreq_cpu_data array. 44 */ 45 static struct cpufreq_driver *cpufreq_driver; 46 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 47 static DEFINE_RWLOCK(cpufreq_driver_lock); 48 static DEFINE_MUTEX(cpufreq_governor_lock); 49 50 #ifdef CONFIG_HOTPLUG_CPU 51 /* This one keeps track of the previously set governor of a removed CPU */ 52 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 53 #endif 54 55 /* 56 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 57 * all cpufreq/hotplug/workqueue/etc related lock issues. 58 * 59 * The rules for this semaphore: 60 * - Any routine that wants to read from the policy structure will 61 * do a down_read on this semaphore. 62 * - Any routine that will write to the policy structure and/or may take away 63 * the policy altogether (eg. CPU hotplug), will hold this lock in write 64 * mode before doing so. 65 * 66 * Additional rules: 67 * - Governor routines that can be called in cpufreq hotplug path should not 68 * take this sem as top level hotplug notifier handler takes this. 69 * - Lock should not be held across 70 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 71 */ 72 static DEFINE_PER_CPU(int, cpufreq_policy_cpu); 73 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 74 75 #define lock_policy_rwsem(mode, cpu) \ 76 static int lock_policy_rwsem_##mode(int cpu) \ 77 { \ 78 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 79 BUG_ON(policy_cpu == -1); \ 80 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 81 \ 82 return 0; \ 83 } 84 85 lock_policy_rwsem(read, cpu); 86 lock_policy_rwsem(write, cpu); 87 88 #define unlock_policy_rwsem(mode, cpu) \ 89 static void unlock_policy_rwsem_##mode(int cpu) \ 90 { \ 91 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 92 BUG_ON(policy_cpu == -1); \ 93 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 94 } 95 96 unlock_policy_rwsem(read, cpu); 97 unlock_policy_rwsem(write, cpu); 98 99 /* internal prototypes */ 100 static int __cpufreq_governor(struct cpufreq_policy *policy, 101 unsigned int event); 102 static unsigned int __cpufreq_get(unsigned int cpu); 103 static void handle_update(struct work_struct *work); 104 105 /** 106 * Two notifier lists: the "policy" list is involved in the 107 * validation process for a new CPU frequency policy; the 108 * "transition" list for kernel code that needs to handle 109 * changes to devices when the CPU clock speed changes. 110 * The mutex locks both lists. 111 */ 112 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 113 static struct srcu_notifier_head cpufreq_transition_notifier_list; 114 115 static bool init_cpufreq_transition_notifier_list_called; 116 static int __init init_cpufreq_transition_notifier_list(void) 117 { 118 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 119 init_cpufreq_transition_notifier_list_called = true; 120 return 0; 121 } 122 pure_initcall(init_cpufreq_transition_notifier_list); 123 124 static int off __read_mostly; 125 static int cpufreq_disabled(void) 126 { 127 return off; 128 } 129 void disable_cpufreq(void) 130 { 131 off = 1; 132 } 133 static LIST_HEAD(cpufreq_governor_list); 134 static DEFINE_MUTEX(cpufreq_governor_mutex); 135 136 bool have_governor_per_policy(void) 137 { 138 return cpufreq_driver->have_governor_per_policy; 139 } 140 EXPORT_SYMBOL_GPL(have_governor_per_policy); 141 142 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 143 { 144 if (have_governor_per_policy()) 145 return &policy->kobj; 146 else 147 return cpufreq_global_kobject; 148 } 149 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 150 151 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 152 { 153 u64 idle_time; 154 u64 cur_wall_time; 155 u64 busy_time; 156 157 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 158 159 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 160 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 161 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 162 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 163 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 164 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 165 166 idle_time = cur_wall_time - busy_time; 167 if (wall) 168 *wall = cputime_to_usecs(cur_wall_time); 169 170 return cputime_to_usecs(idle_time); 171 } 172 173 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 174 { 175 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 176 177 if (idle_time == -1ULL) 178 return get_cpu_idle_time_jiffy(cpu, wall); 179 else if (!io_busy) 180 idle_time += get_cpu_iowait_time_us(cpu, wall); 181 182 return idle_time; 183 } 184 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 185 186 static struct cpufreq_policy *__cpufreq_cpu_get(unsigned int cpu, bool sysfs) 187 { 188 struct cpufreq_policy *data; 189 unsigned long flags; 190 191 if (cpu >= nr_cpu_ids) 192 goto err_out; 193 194 /* get the cpufreq driver */ 195 read_lock_irqsave(&cpufreq_driver_lock, flags); 196 197 if (!cpufreq_driver) 198 goto err_out_unlock; 199 200 if (!try_module_get(cpufreq_driver->owner)) 201 goto err_out_unlock; 202 203 /* get the CPU */ 204 data = per_cpu(cpufreq_cpu_data, cpu); 205 206 if (!data) 207 goto err_out_put_module; 208 209 if (!sysfs && !kobject_get(&data->kobj)) 210 goto err_out_put_module; 211 212 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 213 return data; 214 215 err_out_put_module: 216 module_put(cpufreq_driver->owner); 217 err_out_unlock: 218 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 219 err_out: 220 return NULL; 221 } 222 223 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 224 { 225 if (cpufreq_disabled()) 226 return NULL; 227 228 return __cpufreq_cpu_get(cpu, false); 229 } 230 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 231 232 static struct cpufreq_policy *cpufreq_cpu_get_sysfs(unsigned int cpu) 233 { 234 return __cpufreq_cpu_get(cpu, true); 235 } 236 237 static void __cpufreq_cpu_put(struct cpufreq_policy *data, bool sysfs) 238 { 239 if (!sysfs) 240 kobject_put(&data->kobj); 241 module_put(cpufreq_driver->owner); 242 } 243 244 void cpufreq_cpu_put(struct cpufreq_policy *data) 245 { 246 if (cpufreq_disabled()) 247 return; 248 249 __cpufreq_cpu_put(data, false); 250 } 251 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 252 253 static void cpufreq_cpu_put_sysfs(struct cpufreq_policy *data) 254 { 255 __cpufreq_cpu_put(data, true); 256 } 257 258 /********************************************************************* 259 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 260 *********************************************************************/ 261 262 /** 263 * adjust_jiffies - adjust the system "loops_per_jiffy" 264 * 265 * This function alters the system "loops_per_jiffy" for the clock 266 * speed change. Note that loops_per_jiffy cannot be updated on SMP 267 * systems as each CPU might be scaled differently. So, use the arch 268 * per-CPU loops_per_jiffy value wherever possible. 269 */ 270 #ifndef CONFIG_SMP 271 static unsigned long l_p_j_ref; 272 static unsigned int l_p_j_ref_freq; 273 274 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 275 { 276 if (ci->flags & CPUFREQ_CONST_LOOPS) 277 return; 278 279 if (!l_p_j_ref_freq) { 280 l_p_j_ref = loops_per_jiffy; 281 l_p_j_ref_freq = ci->old; 282 pr_debug("saving %lu as reference value for loops_per_jiffy; " 283 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 284 } 285 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) || 286 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 287 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 288 ci->new); 289 pr_debug("scaling loops_per_jiffy to %lu " 290 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 291 } 292 } 293 #else 294 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 295 { 296 return; 297 } 298 #endif 299 300 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 301 struct cpufreq_freqs *freqs, unsigned int state) 302 { 303 BUG_ON(irqs_disabled()); 304 305 if (cpufreq_disabled()) 306 return; 307 308 freqs->flags = cpufreq_driver->flags; 309 pr_debug("notification %u of frequency transition to %u kHz\n", 310 state, freqs->new); 311 312 switch (state) { 313 314 case CPUFREQ_PRECHANGE: 315 if (WARN(policy->transition_ongoing == 316 cpumask_weight(policy->cpus), 317 "In middle of another frequency transition\n")) 318 return; 319 320 policy->transition_ongoing++; 321 322 /* detect if the driver reported a value as "old frequency" 323 * which is not equal to what the cpufreq core thinks is 324 * "old frequency". 325 */ 326 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 327 if ((policy) && (policy->cpu == freqs->cpu) && 328 (policy->cur) && (policy->cur != freqs->old)) { 329 pr_debug("Warning: CPU frequency is" 330 " %u, cpufreq assumed %u kHz.\n", 331 freqs->old, policy->cur); 332 freqs->old = policy->cur; 333 } 334 } 335 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 336 CPUFREQ_PRECHANGE, freqs); 337 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 338 break; 339 340 case CPUFREQ_POSTCHANGE: 341 if (WARN(!policy->transition_ongoing, 342 "No frequency transition in progress\n")) 343 return; 344 345 policy->transition_ongoing--; 346 347 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 348 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 349 (unsigned long)freqs->cpu); 350 trace_cpu_frequency(freqs->new, freqs->cpu); 351 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 352 CPUFREQ_POSTCHANGE, freqs); 353 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 354 policy->cur = freqs->new; 355 break; 356 } 357 } 358 359 /** 360 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 361 * on frequency transition. 362 * 363 * This function calls the transition notifiers and the "adjust_jiffies" 364 * function. It is called twice on all CPU frequency changes that have 365 * external effects. 366 */ 367 void cpufreq_notify_transition(struct cpufreq_policy *policy, 368 struct cpufreq_freqs *freqs, unsigned int state) 369 { 370 for_each_cpu(freqs->cpu, policy->cpus) 371 __cpufreq_notify_transition(policy, freqs, state); 372 } 373 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 374 375 376 /********************************************************************* 377 * SYSFS INTERFACE * 378 *********************************************************************/ 379 380 static struct cpufreq_governor *__find_governor(const char *str_governor) 381 { 382 struct cpufreq_governor *t; 383 384 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 385 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 386 return t; 387 388 return NULL; 389 } 390 391 /** 392 * cpufreq_parse_governor - parse a governor string 393 */ 394 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 395 struct cpufreq_governor **governor) 396 { 397 int err = -EINVAL; 398 399 if (!cpufreq_driver) 400 goto out; 401 402 if (cpufreq_driver->setpolicy) { 403 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 404 *policy = CPUFREQ_POLICY_PERFORMANCE; 405 err = 0; 406 } else if (!strnicmp(str_governor, "powersave", 407 CPUFREQ_NAME_LEN)) { 408 *policy = CPUFREQ_POLICY_POWERSAVE; 409 err = 0; 410 } 411 } else if (cpufreq_driver->target) { 412 struct cpufreq_governor *t; 413 414 mutex_lock(&cpufreq_governor_mutex); 415 416 t = __find_governor(str_governor); 417 418 if (t == NULL) { 419 int ret; 420 421 mutex_unlock(&cpufreq_governor_mutex); 422 ret = request_module("cpufreq_%s", str_governor); 423 mutex_lock(&cpufreq_governor_mutex); 424 425 if (ret == 0) 426 t = __find_governor(str_governor); 427 } 428 429 if (t != NULL) { 430 *governor = t; 431 err = 0; 432 } 433 434 mutex_unlock(&cpufreq_governor_mutex); 435 } 436 out: 437 return err; 438 } 439 440 /** 441 * cpufreq_per_cpu_attr_read() / show_##file_name() - 442 * print out cpufreq information 443 * 444 * Write out information from cpufreq_driver->policy[cpu]; object must be 445 * "unsigned int". 446 */ 447 448 #define show_one(file_name, object) \ 449 static ssize_t show_##file_name \ 450 (struct cpufreq_policy *policy, char *buf) \ 451 { \ 452 return sprintf(buf, "%u\n", policy->object); \ 453 } 454 455 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 456 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 457 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 458 show_one(scaling_min_freq, min); 459 show_one(scaling_max_freq, max); 460 show_one(scaling_cur_freq, cur); 461 462 static int __cpufreq_set_policy(struct cpufreq_policy *data, 463 struct cpufreq_policy *policy); 464 465 /** 466 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 467 */ 468 #define store_one(file_name, object) \ 469 static ssize_t store_##file_name \ 470 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 471 { \ 472 unsigned int ret; \ 473 struct cpufreq_policy new_policy; \ 474 \ 475 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 476 if (ret) \ 477 return -EINVAL; \ 478 \ 479 ret = sscanf(buf, "%u", &new_policy.object); \ 480 if (ret != 1) \ 481 return -EINVAL; \ 482 \ 483 ret = __cpufreq_set_policy(policy, &new_policy); \ 484 policy->user_policy.object = policy->object; \ 485 \ 486 return ret ? ret : count; \ 487 } 488 489 store_one(scaling_min_freq, min); 490 store_one(scaling_max_freq, max); 491 492 /** 493 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 494 */ 495 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 496 char *buf) 497 { 498 unsigned int cur_freq = __cpufreq_get(policy->cpu); 499 if (!cur_freq) 500 return sprintf(buf, "<unknown>"); 501 return sprintf(buf, "%u\n", cur_freq); 502 } 503 504 /** 505 * show_scaling_governor - show the current policy for the specified CPU 506 */ 507 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 508 { 509 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 510 return sprintf(buf, "powersave\n"); 511 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 512 return sprintf(buf, "performance\n"); 513 else if (policy->governor) 514 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 515 policy->governor->name); 516 return -EINVAL; 517 } 518 519 /** 520 * store_scaling_governor - store policy for the specified CPU 521 */ 522 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 523 const char *buf, size_t count) 524 { 525 unsigned int ret; 526 char str_governor[16]; 527 struct cpufreq_policy new_policy; 528 529 ret = cpufreq_get_policy(&new_policy, policy->cpu); 530 if (ret) 531 return ret; 532 533 ret = sscanf(buf, "%15s", str_governor); 534 if (ret != 1) 535 return -EINVAL; 536 537 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 538 &new_policy.governor)) 539 return -EINVAL; 540 541 /* 542 * Do not use cpufreq_set_policy here or the user_policy.max 543 * will be wrongly overridden 544 */ 545 ret = __cpufreq_set_policy(policy, &new_policy); 546 547 policy->user_policy.policy = policy->policy; 548 policy->user_policy.governor = policy->governor; 549 550 if (ret) 551 return ret; 552 else 553 return count; 554 } 555 556 /** 557 * show_scaling_driver - show the cpufreq driver currently loaded 558 */ 559 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 560 { 561 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 562 } 563 564 /** 565 * show_scaling_available_governors - show the available CPUfreq governors 566 */ 567 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 568 char *buf) 569 { 570 ssize_t i = 0; 571 struct cpufreq_governor *t; 572 573 if (!cpufreq_driver->target) { 574 i += sprintf(buf, "performance powersave"); 575 goto out; 576 } 577 578 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 579 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 580 - (CPUFREQ_NAME_LEN + 2))) 581 goto out; 582 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 583 } 584 out: 585 i += sprintf(&buf[i], "\n"); 586 return i; 587 } 588 589 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 590 { 591 ssize_t i = 0; 592 unsigned int cpu; 593 594 for_each_cpu(cpu, mask) { 595 if (i) 596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 597 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 598 if (i >= (PAGE_SIZE - 5)) 599 break; 600 } 601 i += sprintf(&buf[i], "\n"); 602 return i; 603 } 604 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 605 606 /** 607 * show_related_cpus - show the CPUs affected by each transition even if 608 * hw coordination is in use 609 */ 610 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 611 { 612 return cpufreq_show_cpus(policy->related_cpus, buf); 613 } 614 615 /** 616 * show_affected_cpus - show the CPUs affected by each transition 617 */ 618 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 619 { 620 return cpufreq_show_cpus(policy->cpus, buf); 621 } 622 623 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 624 const char *buf, size_t count) 625 { 626 unsigned int freq = 0; 627 unsigned int ret; 628 629 if (!policy->governor || !policy->governor->store_setspeed) 630 return -EINVAL; 631 632 ret = sscanf(buf, "%u", &freq); 633 if (ret != 1) 634 return -EINVAL; 635 636 policy->governor->store_setspeed(policy, freq); 637 638 return count; 639 } 640 641 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 642 { 643 if (!policy->governor || !policy->governor->show_setspeed) 644 return sprintf(buf, "<unsupported>\n"); 645 646 return policy->governor->show_setspeed(policy, buf); 647 } 648 649 /** 650 * show_bios_limit - show the current cpufreq HW/BIOS limitation 651 */ 652 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 653 { 654 unsigned int limit; 655 int ret; 656 if (cpufreq_driver->bios_limit) { 657 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 658 if (!ret) 659 return sprintf(buf, "%u\n", limit); 660 } 661 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 662 } 663 664 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 665 cpufreq_freq_attr_ro(cpuinfo_min_freq); 666 cpufreq_freq_attr_ro(cpuinfo_max_freq); 667 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 668 cpufreq_freq_attr_ro(scaling_available_governors); 669 cpufreq_freq_attr_ro(scaling_driver); 670 cpufreq_freq_attr_ro(scaling_cur_freq); 671 cpufreq_freq_attr_ro(bios_limit); 672 cpufreq_freq_attr_ro(related_cpus); 673 cpufreq_freq_attr_ro(affected_cpus); 674 cpufreq_freq_attr_rw(scaling_min_freq); 675 cpufreq_freq_attr_rw(scaling_max_freq); 676 cpufreq_freq_attr_rw(scaling_governor); 677 cpufreq_freq_attr_rw(scaling_setspeed); 678 679 static struct attribute *default_attrs[] = { 680 &cpuinfo_min_freq.attr, 681 &cpuinfo_max_freq.attr, 682 &cpuinfo_transition_latency.attr, 683 &scaling_min_freq.attr, 684 &scaling_max_freq.attr, 685 &affected_cpus.attr, 686 &related_cpus.attr, 687 &scaling_governor.attr, 688 &scaling_driver.attr, 689 &scaling_available_governors.attr, 690 &scaling_setspeed.attr, 691 NULL 692 }; 693 694 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 695 #define to_attr(a) container_of(a, struct freq_attr, attr) 696 697 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 698 { 699 struct cpufreq_policy *policy = to_policy(kobj); 700 struct freq_attr *fattr = to_attr(attr); 701 ssize_t ret = -EINVAL; 702 policy = cpufreq_cpu_get_sysfs(policy->cpu); 703 if (!policy) 704 goto no_policy; 705 706 if (lock_policy_rwsem_read(policy->cpu) < 0) 707 goto fail; 708 709 if (fattr->show) 710 ret = fattr->show(policy, buf); 711 else 712 ret = -EIO; 713 714 unlock_policy_rwsem_read(policy->cpu); 715 fail: 716 cpufreq_cpu_put_sysfs(policy); 717 no_policy: 718 return ret; 719 } 720 721 static ssize_t store(struct kobject *kobj, struct attribute *attr, 722 const char *buf, size_t count) 723 { 724 struct cpufreq_policy *policy = to_policy(kobj); 725 struct freq_attr *fattr = to_attr(attr); 726 ssize_t ret = -EINVAL; 727 policy = cpufreq_cpu_get_sysfs(policy->cpu); 728 if (!policy) 729 goto no_policy; 730 731 if (lock_policy_rwsem_write(policy->cpu) < 0) 732 goto fail; 733 734 if (fattr->store) 735 ret = fattr->store(policy, buf, count); 736 else 737 ret = -EIO; 738 739 unlock_policy_rwsem_write(policy->cpu); 740 fail: 741 cpufreq_cpu_put_sysfs(policy); 742 no_policy: 743 return ret; 744 } 745 746 static void cpufreq_sysfs_release(struct kobject *kobj) 747 { 748 struct cpufreq_policy *policy = to_policy(kobj); 749 pr_debug("last reference is dropped\n"); 750 complete(&policy->kobj_unregister); 751 } 752 753 static const struct sysfs_ops sysfs_ops = { 754 .show = show, 755 .store = store, 756 }; 757 758 static struct kobj_type ktype_cpufreq = { 759 .sysfs_ops = &sysfs_ops, 760 .default_attrs = default_attrs, 761 .release = cpufreq_sysfs_release, 762 }; 763 764 struct kobject *cpufreq_global_kobject; 765 EXPORT_SYMBOL(cpufreq_global_kobject); 766 767 static int cpufreq_global_kobject_usage; 768 769 int cpufreq_get_global_kobject(void) 770 { 771 if (!cpufreq_global_kobject_usage++) 772 return kobject_add(cpufreq_global_kobject, 773 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 774 775 return 0; 776 } 777 EXPORT_SYMBOL(cpufreq_get_global_kobject); 778 779 void cpufreq_put_global_kobject(void) 780 { 781 if (!--cpufreq_global_kobject_usage) 782 kobject_del(cpufreq_global_kobject); 783 } 784 EXPORT_SYMBOL(cpufreq_put_global_kobject); 785 786 int cpufreq_sysfs_create_file(const struct attribute *attr) 787 { 788 int ret = cpufreq_get_global_kobject(); 789 790 if (!ret) { 791 ret = sysfs_create_file(cpufreq_global_kobject, attr); 792 if (ret) 793 cpufreq_put_global_kobject(); 794 } 795 796 return ret; 797 } 798 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 799 800 void cpufreq_sysfs_remove_file(const struct attribute *attr) 801 { 802 sysfs_remove_file(cpufreq_global_kobject, attr); 803 cpufreq_put_global_kobject(); 804 } 805 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 806 807 /* symlink affected CPUs */ 808 static int cpufreq_add_dev_symlink(unsigned int cpu, 809 struct cpufreq_policy *policy) 810 { 811 unsigned int j; 812 int ret = 0; 813 814 for_each_cpu(j, policy->cpus) { 815 struct cpufreq_policy *managed_policy; 816 struct device *cpu_dev; 817 818 if (j == cpu) 819 continue; 820 821 pr_debug("CPU %u already managed, adding link\n", j); 822 managed_policy = cpufreq_cpu_get(cpu); 823 cpu_dev = get_cpu_device(j); 824 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 825 "cpufreq"); 826 if (ret) { 827 cpufreq_cpu_put(managed_policy); 828 return ret; 829 } 830 } 831 return ret; 832 } 833 834 static int cpufreq_add_dev_interface(unsigned int cpu, 835 struct cpufreq_policy *policy, 836 struct device *dev) 837 { 838 struct cpufreq_policy new_policy; 839 struct freq_attr **drv_attr; 840 unsigned long flags; 841 int ret = 0; 842 unsigned int j; 843 844 /* prepare interface data */ 845 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 846 &dev->kobj, "cpufreq"); 847 if (ret) 848 return ret; 849 850 /* set up files for this cpu device */ 851 drv_attr = cpufreq_driver->attr; 852 while ((drv_attr) && (*drv_attr)) { 853 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 854 if (ret) 855 goto err_out_kobj_put; 856 drv_attr++; 857 } 858 if (cpufreq_driver->get) { 859 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 860 if (ret) 861 goto err_out_kobj_put; 862 } 863 if (cpufreq_driver->target) { 864 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 865 if (ret) 866 goto err_out_kobj_put; 867 } 868 if (cpufreq_driver->bios_limit) { 869 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 870 if (ret) 871 goto err_out_kobj_put; 872 } 873 874 write_lock_irqsave(&cpufreq_driver_lock, flags); 875 for_each_cpu(j, policy->cpus) { 876 per_cpu(cpufreq_cpu_data, j) = policy; 877 per_cpu(cpufreq_policy_cpu, j) = policy->cpu; 878 } 879 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 880 881 ret = cpufreq_add_dev_symlink(cpu, policy); 882 if (ret) 883 goto err_out_kobj_put; 884 885 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 886 /* assure that the starting sequence is run in __cpufreq_set_policy */ 887 policy->governor = NULL; 888 889 /* set default policy */ 890 ret = __cpufreq_set_policy(policy, &new_policy); 891 policy->user_policy.policy = policy->policy; 892 policy->user_policy.governor = policy->governor; 893 894 if (ret) { 895 pr_debug("setting policy failed\n"); 896 if (cpufreq_driver->exit) 897 cpufreq_driver->exit(policy); 898 } 899 return ret; 900 901 err_out_kobj_put: 902 kobject_put(&policy->kobj); 903 wait_for_completion(&policy->kobj_unregister); 904 return ret; 905 } 906 907 #ifdef CONFIG_HOTPLUG_CPU 908 static int cpufreq_add_policy_cpu(unsigned int cpu, unsigned int sibling, 909 struct device *dev) 910 { 911 struct cpufreq_policy *policy; 912 int ret = 0, has_target = !!cpufreq_driver->target; 913 unsigned long flags; 914 915 policy = cpufreq_cpu_get(sibling); 916 WARN_ON(!policy); 917 918 if (has_target) 919 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 920 921 lock_policy_rwsem_write(sibling); 922 923 write_lock_irqsave(&cpufreq_driver_lock, flags); 924 925 cpumask_set_cpu(cpu, policy->cpus); 926 per_cpu(cpufreq_policy_cpu, cpu) = policy->cpu; 927 per_cpu(cpufreq_cpu_data, cpu) = policy; 928 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 929 930 unlock_policy_rwsem_write(sibling); 931 932 if (has_target) { 933 __cpufreq_governor(policy, CPUFREQ_GOV_START); 934 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 935 } 936 937 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 938 if (ret) { 939 cpufreq_cpu_put(policy); 940 return ret; 941 } 942 943 return 0; 944 } 945 #endif 946 947 /** 948 * cpufreq_add_dev - add a CPU device 949 * 950 * Adds the cpufreq interface for a CPU device. 951 * 952 * The Oracle says: try running cpufreq registration/unregistration concurrently 953 * with with cpu hotplugging and all hell will break loose. Tried to clean this 954 * mess up, but more thorough testing is needed. - Mathieu 955 */ 956 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 957 { 958 unsigned int j, cpu = dev->id; 959 int ret = -ENOMEM; 960 struct cpufreq_policy *policy; 961 unsigned long flags; 962 #ifdef CONFIG_HOTPLUG_CPU 963 struct cpufreq_governor *gov; 964 int sibling; 965 #endif 966 967 if (cpu_is_offline(cpu)) 968 return 0; 969 970 pr_debug("adding CPU %u\n", cpu); 971 972 #ifdef CONFIG_SMP 973 /* check whether a different CPU already registered this 974 * CPU because it is in the same boat. */ 975 policy = cpufreq_cpu_get(cpu); 976 if (unlikely(policy)) { 977 cpufreq_cpu_put(policy); 978 return 0; 979 } 980 981 #ifdef CONFIG_HOTPLUG_CPU 982 /* Check if this cpu was hot-unplugged earlier and has siblings */ 983 read_lock_irqsave(&cpufreq_driver_lock, flags); 984 for_each_online_cpu(sibling) { 985 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling); 986 if (cp && cpumask_test_cpu(cpu, cp->related_cpus)) { 987 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 988 return cpufreq_add_policy_cpu(cpu, sibling, dev); 989 } 990 } 991 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 992 #endif 993 #endif 994 995 if (!try_module_get(cpufreq_driver->owner)) { 996 ret = -EINVAL; 997 goto module_out; 998 } 999 1000 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 1001 if (!policy) 1002 goto nomem_out; 1003 1004 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1005 goto err_free_policy; 1006 1007 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1008 goto err_free_cpumask; 1009 1010 policy->cpu = cpu; 1011 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1012 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1013 1014 /* Initially set CPU itself as the policy_cpu */ 1015 per_cpu(cpufreq_policy_cpu, cpu) = cpu; 1016 1017 init_completion(&policy->kobj_unregister); 1018 INIT_WORK(&policy->update, handle_update); 1019 1020 /* call driver. From then on the cpufreq must be able 1021 * to accept all calls to ->verify and ->setpolicy for this CPU 1022 */ 1023 ret = cpufreq_driver->init(policy); 1024 if (ret) { 1025 pr_debug("initialization failed\n"); 1026 goto err_set_policy_cpu; 1027 } 1028 1029 /* related cpus should atleast have policy->cpus */ 1030 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1031 1032 /* 1033 * affected cpus must always be the one, which are online. We aren't 1034 * managing offline cpus here. 1035 */ 1036 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1037 1038 policy->user_policy.min = policy->min; 1039 policy->user_policy.max = policy->max; 1040 1041 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1042 CPUFREQ_START, policy); 1043 1044 #ifdef CONFIG_HOTPLUG_CPU 1045 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 1046 if (gov) { 1047 policy->governor = gov; 1048 pr_debug("Restoring governor %s for cpu %d\n", 1049 policy->governor->name, cpu); 1050 } 1051 #endif 1052 1053 ret = cpufreq_add_dev_interface(cpu, policy, dev); 1054 if (ret) 1055 goto err_out_unregister; 1056 1057 kobject_uevent(&policy->kobj, KOBJ_ADD); 1058 module_put(cpufreq_driver->owner); 1059 pr_debug("initialization complete\n"); 1060 1061 return 0; 1062 1063 err_out_unregister: 1064 write_lock_irqsave(&cpufreq_driver_lock, flags); 1065 for_each_cpu(j, policy->cpus) 1066 per_cpu(cpufreq_cpu_data, j) = NULL; 1067 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1068 1069 kobject_put(&policy->kobj); 1070 wait_for_completion(&policy->kobj_unregister); 1071 1072 err_set_policy_cpu: 1073 per_cpu(cpufreq_policy_cpu, cpu) = -1; 1074 free_cpumask_var(policy->related_cpus); 1075 err_free_cpumask: 1076 free_cpumask_var(policy->cpus); 1077 err_free_policy: 1078 kfree(policy); 1079 nomem_out: 1080 module_put(cpufreq_driver->owner); 1081 module_out: 1082 return ret; 1083 } 1084 1085 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1086 { 1087 int j; 1088 1089 policy->last_cpu = policy->cpu; 1090 policy->cpu = cpu; 1091 1092 for_each_cpu(j, policy->cpus) 1093 per_cpu(cpufreq_policy_cpu, j) = cpu; 1094 1095 #ifdef CONFIG_CPU_FREQ_TABLE 1096 cpufreq_frequency_table_update_policy_cpu(policy); 1097 #endif 1098 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1099 CPUFREQ_UPDATE_POLICY_CPU, policy); 1100 } 1101 1102 /** 1103 * __cpufreq_remove_dev - remove a CPU device 1104 * 1105 * Removes the cpufreq interface for a CPU device. 1106 * Caller should already have policy_rwsem in write mode for this CPU. 1107 * This routine frees the rwsem before returning. 1108 */ 1109 static int __cpufreq_remove_dev(struct device *dev, 1110 struct subsys_interface *sif) 1111 { 1112 unsigned int cpu = dev->id, ret, cpus; 1113 unsigned long flags; 1114 struct cpufreq_policy *data; 1115 struct kobject *kobj; 1116 struct completion *cmp; 1117 struct device *cpu_dev; 1118 1119 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1120 1121 write_lock_irqsave(&cpufreq_driver_lock, flags); 1122 1123 data = per_cpu(cpufreq_cpu_data, cpu); 1124 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1125 1126 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1127 1128 if (!data) { 1129 pr_debug("%s: No cpu_data found\n", __func__); 1130 return -EINVAL; 1131 } 1132 1133 if (cpufreq_driver->target) 1134 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1135 1136 #ifdef CONFIG_HOTPLUG_CPU 1137 if (!cpufreq_driver->setpolicy) 1138 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1139 data->governor->name, CPUFREQ_NAME_LEN); 1140 #endif 1141 1142 WARN_ON(lock_policy_rwsem_write(cpu)); 1143 cpus = cpumask_weight(data->cpus); 1144 1145 if (cpus > 1) 1146 cpumask_clear_cpu(cpu, data->cpus); 1147 unlock_policy_rwsem_write(cpu); 1148 1149 if (cpu != data->cpu) { 1150 sysfs_remove_link(&dev->kobj, "cpufreq"); 1151 } else if (cpus > 1) { 1152 /* first sibling now owns the new sysfs dir */ 1153 cpu_dev = get_cpu_device(cpumask_first(data->cpus)); 1154 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1155 ret = kobject_move(&data->kobj, &cpu_dev->kobj); 1156 if (ret) { 1157 pr_err("%s: Failed to move kobj: %d", __func__, ret); 1158 1159 WARN_ON(lock_policy_rwsem_write(cpu)); 1160 cpumask_set_cpu(cpu, data->cpus); 1161 1162 write_lock_irqsave(&cpufreq_driver_lock, flags); 1163 per_cpu(cpufreq_cpu_data, cpu) = data; 1164 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1165 1166 unlock_policy_rwsem_write(cpu); 1167 1168 ret = sysfs_create_link(&cpu_dev->kobj, &data->kobj, 1169 "cpufreq"); 1170 return -EINVAL; 1171 } 1172 1173 WARN_ON(lock_policy_rwsem_write(cpu)); 1174 update_policy_cpu(data, cpu_dev->id); 1175 unlock_policy_rwsem_write(cpu); 1176 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1177 __func__, cpu_dev->id, cpu); 1178 } 1179 1180 /* If cpu is last user of policy, free policy */ 1181 if (cpus == 1) { 1182 if (cpufreq_driver->target) 1183 __cpufreq_governor(data, CPUFREQ_GOV_POLICY_EXIT); 1184 1185 lock_policy_rwsem_read(cpu); 1186 kobj = &data->kobj; 1187 cmp = &data->kobj_unregister; 1188 unlock_policy_rwsem_read(cpu); 1189 kobject_put(kobj); 1190 1191 /* we need to make sure that the underlying kobj is actually 1192 * not referenced anymore by anybody before we proceed with 1193 * unloading. 1194 */ 1195 pr_debug("waiting for dropping of refcount\n"); 1196 wait_for_completion(cmp); 1197 pr_debug("wait complete\n"); 1198 1199 if (cpufreq_driver->exit) 1200 cpufreq_driver->exit(data); 1201 1202 free_cpumask_var(data->related_cpus); 1203 free_cpumask_var(data->cpus); 1204 kfree(data); 1205 } else { 1206 pr_debug("%s: removing link, cpu: %d\n", __func__, cpu); 1207 cpufreq_cpu_put(data); 1208 if (cpufreq_driver->target) { 1209 __cpufreq_governor(data, CPUFREQ_GOV_START); 1210 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1211 } 1212 } 1213 1214 per_cpu(cpufreq_policy_cpu, cpu) = -1; 1215 return 0; 1216 } 1217 1218 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1219 { 1220 unsigned int cpu = dev->id; 1221 int retval; 1222 1223 if (cpu_is_offline(cpu)) 1224 return 0; 1225 1226 retval = __cpufreq_remove_dev(dev, sif); 1227 return retval; 1228 } 1229 1230 static void handle_update(struct work_struct *work) 1231 { 1232 struct cpufreq_policy *policy = 1233 container_of(work, struct cpufreq_policy, update); 1234 unsigned int cpu = policy->cpu; 1235 pr_debug("handle_update for cpu %u called\n", cpu); 1236 cpufreq_update_policy(cpu); 1237 } 1238 1239 /** 1240 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1241 * in deep trouble. 1242 * @cpu: cpu number 1243 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1244 * @new_freq: CPU frequency the CPU actually runs at 1245 * 1246 * We adjust to current frequency first, and need to clean up later. 1247 * So either call to cpufreq_update_policy() or schedule handle_update()). 1248 */ 1249 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1250 unsigned int new_freq) 1251 { 1252 struct cpufreq_policy *policy; 1253 struct cpufreq_freqs freqs; 1254 unsigned long flags; 1255 1256 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1257 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1258 1259 freqs.old = old_freq; 1260 freqs.new = new_freq; 1261 1262 read_lock_irqsave(&cpufreq_driver_lock, flags); 1263 policy = per_cpu(cpufreq_cpu_data, cpu); 1264 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1265 1266 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); 1267 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); 1268 } 1269 1270 /** 1271 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1272 * @cpu: CPU number 1273 * 1274 * This is the last known freq, without actually getting it from the driver. 1275 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1276 */ 1277 unsigned int cpufreq_quick_get(unsigned int cpu) 1278 { 1279 struct cpufreq_policy *policy; 1280 unsigned int ret_freq = 0; 1281 1282 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1283 return cpufreq_driver->get(cpu); 1284 1285 policy = cpufreq_cpu_get(cpu); 1286 if (policy) { 1287 ret_freq = policy->cur; 1288 cpufreq_cpu_put(policy); 1289 } 1290 1291 return ret_freq; 1292 } 1293 EXPORT_SYMBOL(cpufreq_quick_get); 1294 1295 /** 1296 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1297 * @cpu: CPU number 1298 * 1299 * Just return the max possible frequency for a given CPU. 1300 */ 1301 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1302 { 1303 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1304 unsigned int ret_freq = 0; 1305 1306 if (policy) { 1307 ret_freq = policy->max; 1308 cpufreq_cpu_put(policy); 1309 } 1310 1311 return ret_freq; 1312 } 1313 EXPORT_SYMBOL(cpufreq_quick_get_max); 1314 1315 static unsigned int __cpufreq_get(unsigned int cpu) 1316 { 1317 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1318 unsigned int ret_freq = 0; 1319 1320 if (!cpufreq_driver->get) 1321 return ret_freq; 1322 1323 ret_freq = cpufreq_driver->get(cpu); 1324 1325 if (ret_freq && policy->cur && 1326 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1327 /* verify no discrepancy between actual and 1328 saved value exists */ 1329 if (unlikely(ret_freq != policy->cur)) { 1330 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1331 schedule_work(&policy->update); 1332 } 1333 } 1334 1335 return ret_freq; 1336 } 1337 1338 /** 1339 * cpufreq_get - get the current CPU frequency (in kHz) 1340 * @cpu: CPU number 1341 * 1342 * Get the CPU current (static) CPU frequency 1343 */ 1344 unsigned int cpufreq_get(unsigned int cpu) 1345 { 1346 unsigned int ret_freq = 0; 1347 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1348 1349 if (!policy) 1350 goto out; 1351 1352 if (unlikely(lock_policy_rwsem_read(cpu))) 1353 goto out_policy; 1354 1355 ret_freq = __cpufreq_get(cpu); 1356 1357 unlock_policy_rwsem_read(cpu); 1358 1359 out_policy: 1360 cpufreq_cpu_put(policy); 1361 out: 1362 return ret_freq; 1363 } 1364 EXPORT_SYMBOL(cpufreq_get); 1365 1366 static struct subsys_interface cpufreq_interface = { 1367 .name = "cpufreq", 1368 .subsys = &cpu_subsys, 1369 .add_dev = cpufreq_add_dev, 1370 .remove_dev = cpufreq_remove_dev, 1371 }; 1372 1373 /** 1374 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1375 * 1376 * This function is only executed for the boot processor. The other CPUs 1377 * have been put offline by means of CPU hotplug. 1378 */ 1379 static int cpufreq_bp_suspend(void) 1380 { 1381 int ret = 0; 1382 1383 int cpu = smp_processor_id(); 1384 struct cpufreq_policy *cpu_policy; 1385 1386 pr_debug("suspending cpu %u\n", cpu); 1387 1388 /* If there's no policy for the boot CPU, we have nothing to do. */ 1389 cpu_policy = cpufreq_cpu_get(cpu); 1390 if (!cpu_policy) 1391 return 0; 1392 1393 if (cpufreq_driver->suspend) { 1394 ret = cpufreq_driver->suspend(cpu_policy); 1395 if (ret) 1396 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1397 "step on CPU %u\n", cpu_policy->cpu); 1398 } 1399 1400 cpufreq_cpu_put(cpu_policy); 1401 return ret; 1402 } 1403 1404 /** 1405 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1406 * 1407 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1408 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1409 * restored. It will verify that the current freq is in sync with 1410 * what we believe it to be. This is a bit later than when it 1411 * should be, but nonethteless it's better than calling 1412 * cpufreq_driver->get() here which might re-enable interrupts... 1413 * 1414 * This function is only executed for the boot CPU. The other CPUs have not 1415 * been turned on yet. 1416 */ 1417 static void cpufreq_bp_resume(void) 1418 { 1419 int ret = 0; 1420 1421 int cpu = smp_processor_id(); 1422 struct cpufreq_policy *cpu_policy; 1423 1424 pr_debug("resuming cpu %u\n", cpu); 1425 1426 /* If there's no policy for the boot CPU, we have nothing to do. */ 1427 cpu_policy = cpufreq_cpu_get(cpu); 1428 if (!cpu_policy) 1429 return; 1430 1431 if (cpufreq_driver->resume) { 1432 ret = cpufreq_driver->resume(cpu_policy); 1433 if (ret) { 1434 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1435 "step on CPU %u\n", cpu_policy->cpu); 1436 goto fail; 1437 } 1438 } 1439 1440 schedule_work(&cpu_policy->update); 1441 1442 fail: 1443 cpufreq_cpu_put(cpu_policy); 1444 } 1445 1446 static struct syscore_ops cpufreq_syscore_ops = { 1447 .suspend = cpufreq_bp_suspend, 1448 .resume = cpufreq_bp_resume, 1449 }; 1450 1451 /** 1452 * cpufreq_get_current_driver - return current driver's name 1453 * 1454 * Return the name string of the currently loaded cpufreq driver 1455 * or NULL, if none. 1456 */ 1457 const char *cpufreq_get_current_driver(void) 1458 { 1459 if (cpufreq_driver) 1460 return cpufreq_driver->name; 1461 1462 return NULL; 1463 } 1464 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1465 1466 /********************************************************************* 1467 * NOTIFIER LISTS INTERFACE * 1468 *********************************************************************/ 1469 1470 /** 1471 * cpufreq_register_notifier - register a driver with cpufreq 1472 * @nb: notifier function to register 1473 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1474 * 1475 * Add a driver to one of two lists: either a list of drivers that 1476 * are notified about clock rate changes (once before and once after 1477 * the transition), or a list of drivers that are notified about 1478 * changes in cpufreq policy. 1479 * 1480 * This function may sleep, and has the same return conditions as 1481 * blocking_notifier_chain_register. 1482 */ 1483 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1484 { 1485 int ret; 1486 1487 if (cpufreq_disabled()) 1488 return -EINVAL; 1489 1490 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1491 1492 switch (list) { 1493 case CPUFREQ_TRANSITION_NOTIFIER: 1494 ret = srcu_notifier_chain_register( 1495 &cpufreq_transition_notifier_list, nb); 1496 break; 1497 case CPUFREQ_POLICY_NOTIFIER: 1498 ret = blocking_notifier_chain_register( 1499 &cpufreq_policy_notifier_list, nb); 1500 break; 1501 default: 1502 ret = -EINVAL; 1503 } 1504 1505 return ret; 1506 } 1507 EXPORT_SYMBOL(cpufreq_register_notifier); 1508 1509 /** 1510 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1511 * @nb: notifier block to be unregistered 1512 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1513 * 1514 * Remove a driver from the CPU frequency notifier list. 1515 * 1516 * This function may sleep, and has the same return conditions as 1517 * blocking_notifier_chain_unregister. 1518 */ 1519 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1520 { 1521 int ret; 1522 1523 if (cpufreq_disabled()) 1524 return -EINVAL; 1525 1526 switch (list) { 1527 case CPUFREQ_TRANSITION_NOTIFIER: 1528 ret = srcu_notifier_chain_unregister( 1529 &cpufreq_transition_notifier_list, nb); 1530 break; 1531 case CPUFREQ_POLICY_NOTIFIER: 1532 ret = blocking_notifier_chain_unregister( 1533 &cpufreq_policy_notifier_list, nb); 1534 break; 1535 default: 1536 ret = -EINVAL; 1537 } 1538 1539 return ret; 1540 } 1541 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1542 1543 1544 /********************************************************************* 1545 * GOVERNORS * 1546 *********************************************************************/ 1547 1548 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1549 unsigned int target_freq, 1550 unsigned int relation) 1551 { 1552 int retval = -EINVAL; 1553 unsigned int old_target_freq = target_freq; 1554 1555 if (cpufreq_disabled()) 1556 return -ENODEV; 1557 if (policy->transition_ongoing) 1558 return -EBUSY; 1559 1560 /* Make sure that target_freq is within supported range */ 1561 if (target_freq > policy->max) 1562 target_freq = policy->max; 1563 if (target_freq < policy->min) 1564 target_freq = policy->min; 1565 1566 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1567 policy->cpu, target_freq, relation, old_target_freq); 1568 1569 if (target_freq == policy->cur) 1570 return 0; 1571 1572 if (cpufreq_driver->target) 1573 retval = cpufreq_driver->target(policy, target_freq, relation); 1574 1575 return retval; 1576 } 1577 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1578 1579 int cpufreq_driver_target(struct cpufreq_policy *policy, 1580 unsigned int target_freq, 1581 unsigned int relation) 1582 { 1583 int ret = -EINVAL; 1584 1585 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1586 goto fail; 1587 1588 ret = __cpufreq_driver_target(policy, target_freq, relation); 1589 1590 unlock_policy_rwsem_write(policy->cpu); 1591 1592 fail: 1593 return ret; 1594 } 1595 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1596 1597 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu) 1598 { 1599 if (cpufreq_disabled()) 1600 return 0; 1601 1602 if (!cpufreq_driver->getavg) 1603 return 0; 1604 1605 return cpufreq_driver->getavg(policy, cpu); 1606 } 1607 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1608 1609 /* 1610 * when "event" is CPUFREQ_GOV_LIMITS 1611 */ 1612 1613 static int __cpufreq_governor(struct cpufreq_policy *policy, 1614 unsigned int event) 1615 { 1616 int ret; 1617 1618 /* Only must be defined when default governor is known to have latency 1619 restrictions, like e.g. conservative or ondemand. 1620 That this is the case is already ensured in Kconfig 1621 */ 1622 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1623 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1624 #else 1625 struct cpufreq_governor *gov = NULL; 1626 #endif 1627 1628 if (policy->governor->max_transition_latency && 1629 policy->cpuinfo.transition_latency > 1630 policy->governor->max_transition_latency) { 1631 if (!gov) 1632 return -EINVAL; 1633 else { 1634 printk(KERN_WARNING "%s governor failed, too long" 1635 " transition latency of HW, fallback" 1636 " to %s governor\n", 1637 policy->governor->name, 1638 gov->name); 1639 policy->governor = gov; 1640 } 1641 } 1642 1643 if (!try_module_get(policy->governor->owner)) 1644 return -EINVAL; 1645 1646 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1647 policy->cpu, event); 1648 1649 mutex_lock(&cpufreq_governor_lock); 1650 if ((!policy->governor_enabled && (event == CPUFREQ_GOV_STOP)) || 1651 (policy->governor_enabled && (event == CPUFREQ_GOV_START))) { 1652 mutex_unlock(&cpufreq_governor_lock); 1653 return -EBUSY; 1654 } 1655 1656 if (event == CPUFREQ_GOV_STOP) 1657 policy->governor_enabled = false; 1658 else if (event == CPUFREQ_GOV_START) 1659 policy->governor_enabled = true; 1660 1661 mutex_unlock(&cpufreq_governor_lock); 1662 1663 ret = policy->governor->governor(policy, event); 1664 1665 if (!ret) { 1666 if (event == CPUFREQ_GOV_POLICY_INIT) 1667 policy->governor->initialized++; 1668 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1669 policy->governor->initialized--; 1670 } else { 1671 /* Restore original values */ 1672 mutex_lock(&cpufreq_governor_lock); 1673 if (event == CPUFREQ_GOV_STOP) 1674 policy->governor_enabled = true; 1675 else if (event == CPUFREQ_GOV_START) 1676 policy->governor_enabled = false; 1677 mutex_unlock(&cpufreq_governor_lock); 1678 } 1679 1680 /* we keep one module reference alive for 1681 each CPU governed by this CPU */ 1682 if ((event != CPUFREQ_GOV_START) || ret) 1683 module_put(policy->governor->owner); 1684 if ((event == CPUFREQ_GOV_STOP) && !ret) 1685 module_put(policy->governor->owner); 1686 1687 return ret; 1688 } 1689 1690 int cpufreq_register_governor(struct cpufreq_governor *governor) 1691 { 1692 int err; 1693 1694 if (!governor) 1695 return -EINVAL; 1696 1697 if (cpufreq_disabled()) 1698 return -ENODEV; 1699 1700 mutex_lock(&cpufreq_governor_mutex); 1701 1702 governor->initialized = 0; 1703 err = -EBUSY; 1704 if (__find_governor(governor->name) == NULL) { 1705 err = 0; 1706 list_add(&governor->governor_list, &cpufreq_governor_list); 1707 } 1708 1709 mutex_unlock(&cpufreq_governor_mutex); 1710 return err; 1711 } 1712 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1713 1714 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1715 { 1716 #ifdef CONFIG_HOTPLUG_CPU 1717 int cpu; 1718 #endif 1719 1720 if (!governor) 1721 return; 1722 1723 if (cpufreq_disabled()) 1724 return; 1725 1726 #ifdef CONFIG_HOTPLUG_CPU 1727 for_each_present_cpu(cpu) { 1728 if (cpu_online(cpu)) 1729 continue; 1730 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1731 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1732 } 1733 #endif 1734 1735 mutex_lock(&cpufreq_governor_mutex); 1736 list_del(&governor->governor_list); 1737 mutex_unlock(&cpufreq_governor_mutex); 1738 return; 1739 } 1740 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1741 1742 1743 /********************************************************************* 1744 * POLICY INTERFACE * 1745 *********************************************************************/ 1746 1747 /** 1748 * cpufreq_get_policy - get the current cpufreq_policy 1749 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1750 * is written 1751 * 1752 * Reads the current cpufreq policy. 1753 */ 1754 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1755 { 1756 struct cpufreq_policy *cpu_policy; 1757 if (!policy) 1758 return -EINVAL; 1759 1760 cpu_policy = cpufreq_cpu_get(cpu); 1761 if (!cpu_policy) 1762 return -EINVAL; 1763 1764 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1765 1766 cpufreq_cpu_put(cpu_policy); 1767 return 0; 1768 } 1769 EXPORT_SYMBOL(cpufreq_get_policy); 1770 1771 /* 1772 * data : current policy. 1773 * policy : policy to be set. 1774 */ 1775 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1776 struct cpufreq_policy *policy) 1777 { 1778 int ret = 0, failed = 1; 1779 1780 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1781 policy->min, policy->max); 1782 1783 memcpy(&policy->cpuinfo, &data->cpuinfo, 1784 sizeof(struct cpufreq_cpuinfo)); 1785 1786 if (policy->min > data->max || policy->max < data->min) { 1787 ret = -EINVAL; 1788 goto error_out; 1789 } 1790 1791 /* verify the cpu speed can be set within this limit */ 1792 ret = cpufreq_driver->verify(policy); 1793 if (ret) 1794 goto error_out; 1795 1796 /* adjust if necessary - all reasons */ 1797 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1798 CPUFREQ_ADJUST, policy); 1799 1800 /* adjust if necessary - hardware incompatibility*/ 1801 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1802 CPUFREQ_INCOMPATIBLE, policy); 1803 1804 /* 1805 * verify the cpu speed can be set within this limit, which might be 1806 * different to the first one 1807 */ 1808 ret = cpufreq_driver->verify(policy); 1809 if (ret) 1810 goto error_out; 1811 1812 /* notification of the new policy */ 1813 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1814 CPUFREQ_NOTIFY, policy); 1815 1816 data->min = policy->min; 1817 data->max = policy->max; 1818 1819 pr_debug("new min and max freqs are %u - %u kHz\n", 1820 data->min, data->max); 1821 1822 if (cpufreq_driver->setpolicy) { 1823 data->policy = policy->policy; 1824 pr_debug("setting range\n"); 1825 ret = cpufreq_driver->setpolicy(policy); 1826 } else { 1827 if (policy->governor != data->governor) { 1828 /* save old, working values */ 1829 struct cpufreq_governor *old_gov = data->governor; 1830 1831 pr_debug("governor switch\n"); 1832 1833 /* end old governor */ 1834 if (data->governor) { 1835 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1836 unlock_policy_rwsem_write(policy->cpu); 1837 __cpufreq_governor(data, 1838 CPUFREQ_GOV_POLICY_EXIT); 1839 lock_policy_rwsem_write(policy->cpu); 1840 } 1841 1842 /* start new governor */ 1843 data->governor = policy->governor; 1844 if (!__cpufreq_governor(data, CPUFREQ_GOV_POLICY_INIT)) { 1845 if (!__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1846 failed = 0; 1847 } else { 1848 unlock_policy_rwsem_write(policy->cpu); 1849 __cpufreq_governor(data, 1850 CPUFREQ_GOV_POLICY_EXIT); 1851 lock_policy_rwsem_write(policy->cpu); 1852 } 1853 } 1854 1855 if (failed) { 1856 /* new governor failed, so re-start old one */ 1857 pr_debug("starting governor %s failed\n", 1858 data->governor->name); 1859 if (old_gov) { 1860 data->governor = old_gov; 1861 __cpufreq_governor(data, 1862 CPUFREQ_GOV_POLICY_INIT); 1863 __cpufreq_governor(data, 1864 CPUFREQ_GOV_START); 1865 } 1866 ret = -EINVAL; 1867 goto error_out; 1868 } 1869 /* might be a policy change, too, so fall through */ 1870 } 1871 pr_debug("governor: change or update limits\n"); 1872 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1873 } 1874 1875 error_out: 1876 return ret; 1877 } 1878 1879 /** 1880 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1881 * @cpu: CPU which shall be re-evaluated 1882 * 1883 * Useful for policy notifiers which have different necessities 1884 * at different times. 1885 */ 1886 int cpufreq_update_policy(unsigned int cpu) 1887 { 1888 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1889 struct cpufreq_policy policy; 1890 int ret; 1891 1892 if (!data) { 1893 ret = -ENODEV; 1894 goto no_policy; 1895 } 1896 1897 if (unlikely(lock_policy_rwsem_write(cpu))) { 1898 ret = -EINVAL; 1899 goto fail; 1900 } 1901 1902 pr_debug("updating policy for CPU %u\n", cpu); 1903 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1904 policy.min = data->user_policy.min; 1905 policy.max = data->user_policy.max; 1906 policy.policy = data->user_policy.policy; 1907 policy.governor = data->user_policy.governor; 1908 1909 /* 1910 * BIOS might change freq behind our back 1911 * -> ask driver for current freq and notify governors about a change 1912 */ 1913 if (cpufreq_driver->get) { 1914 policy.cur = cpufreq_driver->get(cpu); 1915 if (!data->cur) { 1916 pr_debug("Driver did not initialize current freq"); 1917 data->cur = policy.cur; 1918 } else { 1919 if (data->cur != policy.cur && cpufreq_driver->target) 1920 cpufreq_out_of_sync(cpu, data->cur, 1921 policy.cur); 1922 } 1923 } 1924 1925 ret = __cpufreq_set_policy(data, &policy); 1926 1927 unlock_policy_rwsem_write(cpu); 1928 1929 fail: 1930 cpufreq_cpu_put(data); 1931 no_policy: 1932 return ret; 1933 } 1934 EXPORT_SYMBOL(cpufreq_update_policy); 1935 1936 static int cpufreq_cpu_callback(struct notifier_block *nfb, 1937 unsigned long action, void *hcpu) 1938 { 1939 unsigned int cpu = (unsigned long)hcpu; 1940 struct device *dev; 1941 1942 dev = get_cpu_device(cpu); 1943 if (dev) { 1944 switch (action) { 1945 case CPU_ONLINE: 1946 case CPU_ONLINE_FROZEN: 1947 cpufreq_add_dev(dev, NULL); 1948 break; 1949 case CPU_DOWN_PREPARE: 1950 case CPU_DOWN_PREPARE_FROZEN: 1951 __cpufreq_remove_dev(dev, NULL); 1952 break; 1953 case CPU_DOWN_FAILED: 1954 case CPU_DOWN_FAILED_FROZEN: 1955 cpufreq_add_dev(dev, NULL); 1956 break; 1957 } 1958 } 1959 return NOTIFY_OK; 1960 } 1961 1962 static struct notifier_block __refdata cpufreq_cpu_notifier = { 1963 .notifier_call = cpufreq_cpu_callback, 1964 }; 1965 1966 /********************************************************************* 1967 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1968 *********************************************************************/ 1969 1970 /** 1971 * cpufreq_register_driver - register a CPU Frequency driver 1972 * @driver_data: A struct cpufreq_driver containing the values# 1973 * submitted by the CPU Frequency driver. 1974 * 1975 * Registers a CPU Frequency driver to this core code. This code 1976 * returns zero on success, -EBUSY when another driver got here first 1977 * (and isn't unregistered in the meantime). 1978 * 1979 */ 1980 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1981 { 1982 unsigned long flags; 1983 int ret; 1984 1985 if (cpufreq_disabled()) 1986 return -ENODEV; 1987 1988 if (!driver_data || !driver_data->verify || !driver_data->init || 1989 ((!driver_data->setpolicy) && (!driver_data->target))) 1990 return -EINVAL; 1991 1992 pr_debug("trying to register driver %s\n", driver_data->name); 1993 1994 if (driver_data->setpolicy) 1995 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1996 1997 write_lock_irqsave(&cpufreq_driver_lock, flags); 1998 if (cpufreq_driver) { 1999 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2000 return -EBUSY; 2001 } 2002 cpufreq_driver = driver_data; 2003 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2004 2005 ret = subsys_interface_register(&cpufreq_interface); 2006 if (ret) 2007 goto err_null_driver; 2008 2009 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2010 int i; 2011 ret = -ENODEV; 2012 2013 /* check for at least one working CPU */ 2014 for (i = 0; i < nr_cpu_ids; i++) 2015 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2016 ret = 0; 2017 break; 2018 } 2019 2020 /* if all ->init() calls failed, unregister */ 2021 if (ret) { 2022 pr_debug("no CPU initialized for driver %s\n", 2023 driver_data->name); 2024 goto err_if_unreg; 2025 } 2026 } 2027 2028 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2029 pr_debug("driver %s up and running\n", driver_data->name); 2030 2031 return 0; 2032 err_if_unreg: 2033 subsys_interface_unregister(&cpufreq_interface); 2034 err_null_driver: 2035 write_lock_irqsave(&cpufreq_driver_lock, flags); 2036 cpufreq_driver = NULL; 2037 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2038 return ret; 2039 } 2040 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2041 2042 /** 2043 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2044 * 2045 * Unregister the current CPUFreq driver. Only call this if you have 2046 * the right to do so, i.e. if you have succeeded in initialising before! 2047 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2048 * currently not initialised. 2049 */ 2050 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2051 { 2052 unsigned long flags; 2053 2054 if (!cpufreq_driver || (driver != cpufreq_driver)) 2055 return -EINVAL; 2056 2057 pr_debug("unregistering driver %s\n", driver->name); 2058 2059 subsys_interface_unregister(&cpufreq_interface); 2060 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2061 2062 write_lock_irqsave(&cpufreq_driver_lock, flags); 2063 cpufreq_driver = NULL; 2064 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2065 2066 return 0; 2067 } 2068 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2069 2070 static int __init cpufreq_core_init(void) 2071 { 2072 int cpu; 2073 2074 if (cpufreq_disabled()) 2075 return -ENODEV; 2076 2077 for_each_possible_cpu(cpu) { 2078 per_cpu(cpufreq_policy_cpu, cpu) = -1; 2079 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 2080 } 2081 2082 cpufreq_global_kobject = kobject_create(); 2083 BUG_ON(!cpufreq_global_kobject); 2084 register_syscore_ops(&cpufreq_syscore_ops); 2085 2086 return 0; 2087 } 2088 core_initcall(cpufreq_core_init); 2089