1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 bool has_target_index(void) 77 { 78 return !!cpufreq_driver->target_index; 79 } 80 81 /* internal prototypes */ 82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 83 static int cpufreq_init_governor(struct cpufreq_policy *policy); 84 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 85 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 86 static int cpufreq_set_policy(struct cpufreq_policy *policy, 87 struct cpufreq_governor *new_gov, 88 unsigned int new_pol); 89 static bool cpufreq_boost_supported(void); 90 91 /* 92 * Two notifier lists: the "policy" list is involved in the 93 * validation process for a new CPU frequency policy; the 94 * "transition" list for kernel code that needs to handle 95 * changes to devices when the CPU clock speed changes. 96 * The mutex locks both lists. 97 */ 98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 100 101 static int off __read_mostly; 102 static int cpufreq_disabled(void) 103 { 104 return off; 105 } 106 void disable_cpufreq(void) 107 { 108 off = 1; 109 } 110 static DEFINE_MUTEX(cpufreq_governor_mutex); 111 112 bool have_governor_per_policy(void) 113 { 114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 115 } 116 EXPORT_SYMBOL_GPL(have_governor_per_policy); 117 118 static struct kobject *cpufreq_global_kobject; 119 120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 121 { 122 if (have_governor_per_policy()) 123 return &policy->kobj; 124 else 125 return cpufreq_global_kobject; 126 } 127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 128 129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 130 { 131 struct kernel_cpustat kcpustat; 132 u64 cur_wall_time; 133 u64 idle_time; 134 u64 busy_time; 135 136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 137 138 kcpustat_cpu_fetch(&kcpustat, cpu); 139 140 busy_time = kcpustat.cpustat[CPUTIME_USER]; 141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 142 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 144 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 145 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 146 147 idle_time = cur_wall_time - busy_time; 148 if (wall) 149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 150 151 return div_u64(idle_time, NSEC_PER_USEC); 152 } 153 154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 155 { 156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 157 158 if (idle_time == -1ULL) 159 return get_cpu_idle_time_jiffy(cpu, wall); 160 else if (!io_busy) 161 idle_time += get_cpu_iowait_time_us(cpu, wall); 162 163 return idle_time; 164 } 165 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 166 167 /* 168 * This is a generic cpufreq init() routine which can be used by cpufreq 169 * drivers of SMP systems. It will do following: 170 * - validate & show freq table passed 171 * - set policies transition latency 172 * - policy->cpus with all possible CPUs 173 */ 174 void cpufreq_generic_init(struct cpufreq_policy *policy, 175 struct cpufreq_frequency_table *table, 176 unsigned int transition_latency) 177 { 178 policy->freq_table = table; 179 policy->cpuinfo.transition_latency = transition_latency; 180 181 /* 182 * The driver only supports the SMP configuration where all processors 183 * share the clock and voltage and clock. 184 */ 185 cpumask_setall(policy->cpus); 186 } 187 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 188 189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 190 { 191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 192 193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 194 } 195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 196 197 unsigned int cpufreq_generic_get(unsigned int cpu) 198 { 199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 200 201 if (!policy || IS_ERR(policy->clk)) { 202 pr_err("%s: No %s associated to cpu: %d\n", 203 __func__, policy ? "clk" : "policy", cpu); 204 return 0; 205 } 206 207 return clk_get_rate(policy->clk) / 1000; 208 } 209 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 210 211 /** 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 213 * @cpu: CPU to find the policy for. 214 * 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 216 * the kobject reference counter of that policy. Return a valid policy on 217 * success or NULL on failure. 218 * 219 * The policy returned by this function has to be released with the help of 220 * cpufreq_cpu_put() to balance its kobject reference counter properly. 221 */ 222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 223 { 224 struct cpufreq_policy *policy = NULL; 225 unsigned long flags; 226 227 if (WARN_ON(cpu >= nr_cpu_ids)) 228 return NULL; 229 230 /* get the cpufreq driver */ 231 read_lock_irqsave(&cpufreq_driver_lock, flags); 232 233 if (cpufreq_driver) { 234 /* get the CPU */ 235 policy = cpufreq_cpu_get_raw(cpu); 236 if (policy) 237 kobject_get(&policy->kobj); 238 } 239 240 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 241 242 return policy; 243 } 244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 245 246 /** 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 248 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 249 */ 250 void cpufreq_cpu_put(struct cpufreq_policy *policy) 251 { 252 kobject_put(&policy->kobj); 253 } 254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 255 256 /** 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 259 */ 260 void cpufreq_cpu_release(struct cpufreq_policy *policy) 261 { 262 if (WARN_ON(!policy)) 263 return; 264 265 lockdep_assert_held(&policy->rwsem); 266 267 up_write(&policy->rwsem); 268 269 cpufreq_cpu_put(policy); 270 } 271 272 /** 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 274 * @cpu: CPU to find the policy for. 275 * 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 277 * if the policy returned by it is not NULL, acquire its rwsem for writing. 278 * Return the policy if it is active or release it and return NULL otherwise. 279 * 280 * The policy returned by this function has to be released with the help of 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 282 * counter properly. 283 */ 284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 285 { 286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 287 288 if (!policy) 289 return NULL; 290 291 down_write(&policy->rwsem); 292 293 if (policy_is_inactive(policy)) { 294 cpufreq_cpu_release(policy); 295 return NULL; 296 } 297 298 return policy; 299 } 300 301 /********************************************************************* 302 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 303 *********************************************************************/ 304 305 /** 306 * adjust_jiffies - Adjust the system "loops_per_jiffy". 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 308 * @ci: Frequency change information. 309 * 310 * This function alters the system "loops_per_jiffy" for the clock 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP 312 * systems as each CPU might be scaled differently. So, use the arch 313 * per-CPU loops_per_jiffy value wherever possible. 314 */ 315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 316 { 317 #ifndef CONFIG_SMP 318 static unsigned long l_p_j_ref; 319 static unsigned int l_p_j_ref_freq; 320 321 if (ci->flags & CPUFREQ_CONST_LOOPS) 322 return; 323 324 if (!l_p_j_ref_freq) { 325 l_p_j_ref = loops_per_jiffy; 326 l_p_j_ref_freq = ci->old; 327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 328 l_p_j_ref, l_p_j_ref_freq); 329 } 330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 332 ci->new); 333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 334 loops_per_jiffy, ci->new); 335 } 336 #endif 337 } 338 339 /** 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 341 * @policy: cpufreq policy to enable fast frequency switching for. 342 * @freqs: contain details of the frequency update. 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 344 * 345 * This function calls the transition notifiers and adjust_jiffies(). 346 * 347 * It is called twice on all CPU frequency changes that have external effects. 348 */ 349 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 350 struct cpufreq_freqs *freqs, 351 unsigned int state) 352 { 353 int cpu; 354 355 BUG_ON(irqs_disabled()); 356 357 if (cpufreq_disabled()) 358 return; 359 360 freqs->policy = policy; 361 freqs->flags = cpufreq_driver->flags; 362 pr_debug("notification %u of frequency transition to %u kHz\n", 363 state, freqs->new); 364 365 switch (state) { 366 case CPUFREQ_PRECHANGE: 367 /* 368 * Detect if the driver reported a value as "old frequency" 369 * which is not equal to what the cpufreq core thinks is 370 * "old frequency". 371 */ 372 if (policy->cur && policy->cur != freqs->old) { 373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 374 freqs->old, policy->cur); 375 freqs->old = policy->cur; 376 } 377 378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 379 CPUFREQ_PRECHANGE, freqs); 380 381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 382 break; 383 384 case CPUFREQ_POSTCHANGE: 385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 387 cpumask_pr_args(policy->cpus)); 388 389 for_each_cpu(cpu, policy->cpus) 390 trace_cpu_frequency(freqs->new, cpu); 391 392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 393 CPUFREQ_POSTCHANGE, freqs); 394 395 cpufreq_stats_record_transition(policy, freqs->new); 396 policy->cur = freqs->new; 397 } 398 } 399 400 /* Do post notifications when there are chances that transition has failed */ 401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 402 struct cpufreq_freqs *freqs, int transition_failed) 403 { 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 if (!transition_failed) 406 return; 407 408 swap(freqs->old, freqs->new); 409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 411 } 412 413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 414 struct cpufreq_freqs *freqs) 415 { 416 417 /* 418 * Catch double invocations of _begin() which lead to self-deadlock. 419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 420 * doesn't invoke _begin() on their behalf, and hence the chances of 421 * double invocations are very low. Moreover, there are scenarios 422 * where these checks can emit false-positive warnings in these 423 * drivers; so we avoid that by skipping them altogether. 424 */ 425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 426 && current == policy->transition_task); 427 428 wait: 429 wait_event(policy->transition_wait, !policy->transition_ongoing); 430 431 spin_lock(&policy->transition_lock); 432 433 if (unlikely(policy->transition_ongoing)) { 434 spin_unlock(&policy->transition_lock); 435 goto wait; 436 } 437 438 policy->transition_ongoing = true; 439 policy->transition_task = current; 440 441 spin_unlock(&policy->transition_lock); 442 443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 444 } 445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 446 447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 448 struct cpufreq_freqs *freqs, int transition_failed) 449 { 450 if (WARN_ON(!policy->transition_ongoing)) 451 return; 452 453 cpufreq_notify_post_transition(policy, freqs, transition_failed); 454 455 arch_set_freq_scale(policy->related_cpus, 456 policy->cur, 457 policy->cpuinfo.max_freq); 458 459 spin_lock(&policy->transition_lock); 460 policy->transition_ongoing = false; 461 policy->transition_task = NULL; 462 spin_unlock(&policy->transition_lock); 463 464 wake_up(&policy->transition_wait); 465 } 466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 467 468 /* 469 * Fast frequency switching status count. Positive means "enabled", negative 470 * means "disabled" and 0 means "not decided yet". 471 */ 472 static int cpufreq_fast_switch_count; 473 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 474 475 static void cpufreq_list_transition_notifiers(void) 476 { 477 struct notifier_block *nb; 478 479 pr_info("Registered transition notifiers:\n"); 480 481 mutex_lock(&cpufreq_transition_notifier_list.mutex); 482 483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 484 pr_info("%pS\n", nb->notifier_call); 485 486 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 487 } 488 489 /** 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 491 * @policy: cpufreq policy to enable fast frequency switching for. 492 * 493 * Try to enable fast frequency switching for @policy. 494 * 495 * The attempt will fail if there is at least one transition notifier registered 496 * at this point, as fast frequency switching is quite fundamentally at odds 497 * with transition notifiers. Thus if successful, it will make registration of 498 * transition notifiers fail going forward. 499 */ 500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 501 { 502 lockdep_assert_held(&policy->rwsem); 503 504 if (!policy->fast_switch_possible) 505 return; 506 507 mutex_lock(&cpufreq_fast_switch_lock); 508 if (cpufreq_fast_switch_count >= 0) { 509 cpufreq_fast_switch_count++; 510 policy->fast_switch_enabled = true; 511 } else { 512 pr_warn("CPU%u: Fast frequency switching not enabled\n", 513 policy->cpu); 514 cpufreq_list_transition_notifiers(); 515 } 516 mutex_unlock(&cpufreq_fast_switch_lock); 517 } 518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 519 520 /** 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 522 * @policy: cpufreq policy to disable fast frequency switching for. 523 */ 524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 525 { 526 mutex_lock(&cpufreq_fast_switch_lock); 527 if (policy->fast_switch_enabled) { 528 policy->fast_switch_enabled = false; 529 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 530 cpufreq_fast_switch_count--; 531 } 532 mutex_unlock(&cpufreq_fast_switch_lock); 533 } 534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 535 536 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 537 unsigned int target_freq, unsigned int relation) 538 { 539 unsigned int idx; 540 541 target_freq = clamp_val(target_freq, policy->min, policy->max); 542 543 if (!policy->freq_table) 544 return target_freq; 545 546 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 547 policy->cached_resolved_idx = idx; 548 policy->cached_target_freq = target_freq; 549 return policy->freq_table[idx].frequency; 550 } 551 552 /** 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 554 * one. 555 * @policy: associated policy to interrogate 556 * @target_freq: target frequency to resolve. 557 * 558 * The target to driver frequency mapping is cached in the policy. 559 * 560 * Return: Lowest driver-supported frequency greater than or equal to the 561 * given target_freq, subject to policy (min/max) and driver limitations. 562 */ 563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 564 unsigned int target_freq) 565 { 566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 567 } 568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 569 570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 571 { 572 unsigned int latency; 573 574 if (policy->transition_delay_us) 575 return policy->transition_delay_us; 576 577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 578 if (latency) { 579 /* 580 * For platforms that can change the frequency very fast (< 10 581 * us), the above formula gives a decent transition delay. But 582 * for platforms where transition_latency is in milliseconds, it 583 * ends up giving unrealistic values. 584 * 585 * Cap the default transition delay to 10 ms, which seems to be 586 * a reasonable amount of time after which we should reevaluate 587 * the frequency. 588 */ 589 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 590 } 591 592 return LATENCY_MULTIPLIER; 593 } 594 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 595 596 /********************************************************************* 597 * SYSFS INTERFACE * 598 *********************************************************************/ 599 static ssize_t show_boost(struct kobject *kobj, 600 struct kobj_attribute *attr, char *buf) 601 { 602 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 603 } 604 605 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 606 const char *buf, size_t count) 607 { 608 int ret, enable; 609 610 ret = sscanf(buf, "%d", &enable); 611 if (ret != 1 || enable < 0 || enable > 1) 612 return -EINVAL; 613 614 if (cpufreq_boost_trigger_state(enable)) { 615 pr_err("%s: Cannot %s BOOST!\n", 616 __func__, enable ? "enable" : "disable"); 617 return -EINVAL; 618 } 619 620 pr_debug("%s: cpufreq BOOST %s\n", 621 __func__, enable ? "enabled" : "disabled"); 622 623 return count; 624 } 625 define_one_global_rw(boost); 626 627 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf) 628 { 629 return sysfs_emit(buf, "%d\n", policy->boost_enabled); 630 } 631 632 static ssize_t store_local_boost(struct cpufreq_policy *policy, 633 const char *buf, size_t count) 634 { 635 int ret, enable; 636 637 ret = kstrtoint(buf, 10, &enable); 638 if (ret || enable < 0 || enable > 1) 639 return -EINVAL; 640 641 if (!cpufreq_driver->boost_enabled) 642 return -EINVAL; 643 644 if (policy->boost_enabled == enable) 645 return count; 646 647 policy->boost_enabled = enable; 648 649 cpus_read_lock(); 650 ret = cpufreq_driver->set_boost(policy, enable); 651 cpus_read_unlock(); 652 653 if (ret) { 654 policy->boost_enabled = !policy->boost_enabled; 655 return ret; 656 } 657 658 return count; 659 } 660 661 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost); 662 663 static struct cpufreq_governor *find_governor(const char *str_governor) 664 { 665 struct cpufreq_governor *t; 666 667 for_each_governor(t) 668 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 669 return t; 670 671 return NULL; 672 } 673 674 static struct cpufreq_governor *get_governor(const char *str_governor) 675 { 676 struct cpufreq_governor *t; 677 678 mutex_lock(&cpufreq_governor_mutex); 679 t = find_governor(str_governor); 680 if (!t) 681 goto unlock; 682 683 if (!try_module_get(t->owner)) 684 t = NULL; 685 686 unlock: 687 mutex_unlock(&cpufreq_governor_mutex); 688 689 return t; 690 } 691 692 static unsigned int cpufreq_parse_policy(char *str_governor) 693 { 694 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 695 return CPUFREQ_POLICY_PERFORMANCE; 696 697 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 698 return CPUFREQ_POLICY_POWERSAVE; 699 700 return CPUFREQ_POLICY_UNKNOWN; 701 } 702 703 /** 704 * cpufreq_parse_governor - parse a governor string only for has_target() 705 * @str_governor: Governor name. 706 */ 707 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 708 { 709 struct cpufreq_governor *t; 710 711 t = get_governor(str_governor); 712 if (t) 713 return t; 714 715 if (request_module("cpufreq_%s", str_governor)) 716 return NULL; 717 718 return get_governor(str_governor); 719 } 720 721 /* 722 * cpufreq_per_cpu_attr_read() / show_##file_name() - 723 * print out cpufreq information 724 * 725 * Write out information from cpufreq_driver->policy[cpu]; object must be 726 * "unsigned int". 727 */ 728 729 #define show_one(file_name, object) \ 730 static ssize_t show_##file_name \ 731 (struct cpufreq_policy *policy, char *buf) \ 732 { \ 733 return sprintf(buf, "%u\n", policy->object); \ 734 } 735 736 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 737 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 738 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 739 show_one(scaling_min_freq, min); 740 show_one(scaling_max_freq, max); 741 742 __weak unsigned int arch_freq_get_on_cpu(int cpu) 743 { 744 return 0; 745 } 746 747 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 748 { 749 ssize_t ret; 750 unsigned int freq; 751 752 freq = arch_freq_get_on_cpu(policy->cpu); 753 if (freq) 754 ret = sprintf(buf, "%u\n", freq); 755 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 756 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 757 else 758 ret = sprintf(buf, "%u\n", policy->cur); 759 return ret; 760 } 761 762 /* 763 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 764 */ 765 #define store_one(file_name, object) \ 766 static ssize_t store_##file_name \ 767 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 768 { \ 769 unsigned long val; \ 770 int ret; \ 771 \ 772 ret = kstrtoul(buf, 0, &val); \ 773 if (ret) \ 774 return ret; \ 775 \ 776 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 777 return ret >= 0 ? count : ret; \ 778 } 779 780 store_one(scaling_min_freq, min); 781 store_one(scaling_max_freq, max); 782 783 /* 784 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 785 */ 786 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 787 char *buf) 788 { 789 unsigned int cur_freq = __cpufreq_get(policy); 790 791 if (cur_freq) 792 return sprintf(buf, "%u\n", cur_freq); 793 794 return sprintf(buf, "<unknown>\n"); 795 } 796 797 /* 798 * show_scaling_governor - show the current policy for the specified CPU 799 */ 800 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 801 { 802 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 803 return sprintf(buf, "powersave\n"); 804 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 805 return sprintf(buf, "performance\n"); 806 else if (policy->governor) 807 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 808 policy->governor->name); 809 return -EINVAL; 810 } 811 812 /* 813 * store_scaling_governor - store policy for the specified CPU 814 */ 815 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 816 const char *buf, size_t count) 817 { 818 char str_governor[16]; 819 int ret; 820 821 ret = sscanf(buf, "%15s", str_governor); 822 if (ret != 1) 823 return -EINVAL; 824 825 if (cpufreq_driver->setpolicy) { 826 unsigned int new_pol; 827 828 new_pol = cpufreq_parse_policy(str_governor); 829 if (!new_pol) 830 return -EINVAL; 831 832 ret = cpufreq_set_policy(policy, NULL, new_pol); 833 } else { 834 struct cpufreq_governor *new_gov; 835 836 new_gov = cpufreq_parse_governor(str_governor); 837 if (!new_gov) 838 return -EINVAL; 839 840 ret = cpufreq_set_policy(policy, new_gov, 841 CPUFREQ_POLICY_UNKNOWN); 842 843 module_put(new_gov->owner); 844 } 845 846 return ret ? ret : count; 847 } 848 849 /* 850 * show_scaling_driver - show the cpufreq driver currently loaded 851 */ 852 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 853 { 854 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 855 } 856 857 /* 858 * show_scaling_available_governors - show the available CPUfreq governors 859 */ 860 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 861 char *buf) 862 { 863 ssize_t i = 0; 864 struct cpufreq_governor *t; 865 866 if (!has_target()) { 867 i += sprintf(buf, "performance powersave"); 868 goto out; 869 } 870 871 mutex_lock(&cpufreq_governor_mutex); 872 for_each_governor(t) { 873 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 874 - (CPUFREQ_NAME_LEN + 2))) 875 break; 876 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 877 } 878 mutex_unlock(&cpufreq_governor_mutex); 879 out: 880 i += sprintf(&buf[i], "\n"); 881 return i; 882 } 883 884 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 885 { 886 ssize_t i = 0; 887 unsigned int cpu; 888 889 for_each_cpu(cpu, mask) { 890 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu); 891 if (i >= (PAGE_SIZE - 5)) 892 break; 893 } 894 895 /* Remove the extra space at the end */ 896 i--; 897 898 i += sprintf(&buf[i], "\n"); 899 return i; 900 } 901 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 902 903 /* 904 * show_related_cpus - show the CPUs affected by each transition even if 905 * hw coordination is in use 906 */ 907 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 908 { 909 return cpufreq_show_cpus(policy->related_cpus, buf); 910 } 911 912 /* 913 * show_affected_cpus - show the CPUs affected by each transition 914 */ 915 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 916 { 917 return cpufreq_show_cpus(policy->cpus, buf); 918 } 919 920 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 921 const char *buf, size_t count) 922 { 923 unsigned int freq = 0; 924 unsigned int ret; 925 926 if (!policy->governor || !policy->governor->store_setspeed) 927 return -EINVAL; 928 929 ret = sscanf(buf, "%u", &freq); 930 if (ret != 1) 931 return -EINVAL; 932 933 policy->governor->store_setspeed(policy, freq); 934 935 return count; 936 } 937 938 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 939 { 940 if (!policy->governor || !policy->governor->show_setspeed) 941 return sprintf(buf, "<unsupported>\n"); 942 943 return policy->governor->show_setspeed(policy, buf); 944 } 945 946 /* 947 * show_bios_limit - show the current cpufreq HW/BIOS limitation 948 */ 949 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 950 { 951 unsigned int limit; 952 int ret; 953 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 954 if (!ret) 955 return sprintf(buf, "%u\n", limit); 956 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 957 } 958 959 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 960 cpufreq_freq_attr_ro(cpuinfo_min_freq); 961 cpufreq_freq_attr_ro(cpuinfo_max_freq); 962 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 963 cpufreq_freq_attr_ro(scaling_available_governors); 964 cpufreq_freq_attr_ro(scaling_driver); 965 cpufreq_freq_attr_ro(scaling_cur_freq); 966 cpufreq_freq_attr_ro(bios_limit); 967 cpufreq_freq_attr_ro(related_cpus); 968 cpufreq_freq_attr_ro(affected_cpus); 969 cpufreq_freq_attr_rw(scaling_min_freq); 970 cpufreq_freq_attr_rw(scaling_max_freq); 971 cpufreq_freq_attr_rw(scaling_governor); 972 cpufreq_freq_attr_rw(scaling_setspeed); 973 974 static struct attribute *cpufreq_attrs[] = { 975 &cpuinfo_min_freq.attr, 976 &cpuinfo_max_freq.attr, 977 &cpuinfo_transition_latency.attr, 978 &scaling_min_freq.attr, 979 &scaling_max_freq.attr, 980 &affected_cpus.attr, 981 &related_cpus.attr, 982 &scaling_governor.attr, 983 &scaling_driver.attr, 984 &scaling_available_governors.attr, 985 &scaling_setspeed.attr, 986 NULL 987 }; 988 ATTRIBUTE_GROUPS(cpufreq); 989 990 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 991 #define to_attr(a) container_of(a, struct freq_attr, attr) 992 993 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 994 { 995 struct cpufreq_policy *policy = to_policy(kobj); 996 struct freq_attr *fattr = to_attr(attr); 997 ssize_t ret = -EBUSY; 998 999 if (!fattr->show) 1000 return -EIO; 1001 1002 down_read(&policy->rwsem); 1003 if (likely(!policy_is_inactive(policy))) 1004 ret = fattr->show(policy, buf); 1005 up_read(&policy->rwsem); 1006 1007 return ret; 1008 } 1009 1010 static ssize_t store(struct kobject *kobj, struct attribute *attr, 1011 const char *buf, size_t count) 1012 { 1013 struct cpufreq_policy *policy = to_policy(kobj); 1014 struct freq_attr *fattr = to_attr(attr); 1015 ssize_t ret = -EBUSY; 1016 1017 if (!fattr->store) 1018 return -EIO; 1019 1020 down_write(&policy->rwsem); 1021 if (likely(!policy_is_inactive(policy))) 1022 ret = fattr->store(policy, buf, count); 1023 up_write(&policy->rwsem); 1024 1025 return ret; 1026 } 1027 1028 static void cpufreq_sysfs_release(struct kobject *kobj) 1029 { 1030 struct cpufreq_policy *policy = to_policy(kobj); 1031 pr_debug("last reference is dropped\n"); 1032 complete(&policy->kobj_unregister); 1033 } 1034 1035 static const struct sysfs_ops sysfs_ops = { 1036 .show = show, 1037 .store = store, 1038 }; 1039 1040 static const struct kobj_type ktype_cpufreq = { 1041 .sysfs_ops = &sysfs_ops, 1042 .default_groups = cpufreq_groups, 1043 .release = cpufreq_sysfs_release, 1044 }; 1045 1046 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1047 struct device *dev) 1048 { 1049 if (unlikely(!dev)) 1050 return; 1051 1052 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1053 return; 1054 1055 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1056 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1057 dev_err(dev, "cpufreq symlink creation failed\n"); 1058 } 1059 1060 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1061 struct device *dev) 1062 { 1063 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1064 sysfs_remove_link(&dev->kobj, "cpufreq"); 1065 cpumask_clear_cpu(cpu, policy->real_cpus); 1066 } 1067 1068 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1069 { 1070 struct freq_attr **drv_attr; 1071 int ret = 0; 1072 1073 /* set up files for this cpu device */ 1074 drv_attr = cpufreq_driver->attr; 1075 while (drv_attr && *drv_attr) { 1076 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1077 if (ret) 1078 return ret; 1079 drv_attr++; 1080 } 1081 if (cpufreq_driver->get) { 1082 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1083 if (ret) 1084 return ret; 1085 } 1086 1087 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1088 if (ret) 1089 return ret; 1090 1091 if (cpufreq_driver->bios_limit) { 1092 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1093 if (ret) 1094 return ret; 1095 } 1096 1097 if (cpufreq_boost_supported()) { 1098 ret = sysfs_create_file(&policy->kobj, &local_boost.attr); 1099 if (ret) 1100 return ret; 1101 } 1102 1103 return 0; 1104 } 1105 1106 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1107 { 1108 struct cpufreq_governor *gov = NULL; 1109 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1110 int ret; 1111 1112 if (has_target()) { 1113 /* Update policy governor to the one used before hotplug. */ 1114 gov = get_governor(policy->last_governor); 1115 if (gov) { 1116 pr_debug("Restoring governor %s for cpu %d\n", 1117 gov->name, policy->cpu); 1118 } else { 1119 gov = get_governor(default_governor); 1120 } 1121 1122 if (!gov) { 1123 gov = cpufreq_default_governor(); 1124 __module_get(gov->owner); 1125 } 1126 1127 } else { 1128 1129 /* Use the default policy if there is no last_policy. */ 1130 if (policy->last_policy) { 1131 pol = policy->last_policy; 1132 } else { 1133 pol = cpufreq_parse_policy(default_governor); 1134 /* 1135 * In case the default governor is neither "performance" 1136 * nor "powersave", fall back to the initial policy 1137 * value set by the driver. 1138 */ 1139 if (pol == CPUFREQ_POLICY_UNKNOWN) 1140 pol = policy->policy; 1141 } 1142 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1143 pol != CPUFREQ_POLICY_POWERSAVE) 1144 return -ENODATA; 1145 } 1146 1147 ret = cpufreq_set_policy(policy, gov, pol); 1148 if (gov) 1149 module_put(gov->owner); 1150 1151 return ret; 1152 } 1153 1154 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1155 { 1156 int ret = 0; 1157 1158 /* Has this CPU been taken care of already? */ 1159 if (cpumask_test_cpu(cpu, policy->cpus)) 1160 return 0; 1161 1162 down_write(&policy->rwsem); 1163 if (has_target()) 1164 cpufreq_stop_governor(policy); 1165 1166 cpumask_set_cpu(cpu, policy->cpus); 1167 1168 if (has_target()) { 1169 ret = cpufreq_start_governor(policy); 1170 if (ret) 1171 pr_err("%s: Failed to start governor\n", __func__); 1172 } 1173 up_write(&policy->rwsem); 1174 return ret; 1175 } 1176 1177 void refresh_frequency_limits(struct cpufreq_policy *policy) 1178 { 1179 if (!policy_is_inactive(policy)) { 1180 pr_debug("updating policy for CPU %u\n", policy->cpu); 1181 1182 cpufreq_set_policy(policy, policy->governor, policy->policy); 1183 } 1184 } 1185 EXPORT_SYMBOL(refresh_frequency_limits); 1186 1187 static void handle_update(struct work_struct *work) 1188 { 1189 struct cpufreq_policy *policy = 1190 container_of(work, struct cpufreq_policy, update); 1191 1192 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1193 down_write(&policy->rwsem); 1194 refresh_frequency_limits(policy); 1195 up_write(&policy->rwsem); 1196 } 1197 1198 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1199 void *data) 1200 { 1201 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1202 1203 schedule_work(&policy->update); 1204 return 0; 1205 } 1206 1207 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1208 void *data) 1209 { 1210 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1211 1212 schedule_work(&policy->update); 1213 return 0; 1214 } 1215 1216 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1217 { 1218 struct kobject *kobj; 1219 struct completion *cmp; 1220 1221 down_write(&policy->rwsem); 1222 cpufreq_stats_free_table(policy); 1223 kobj = &policy->kobj; 1224 cmp = &policy->kobj_unregister; 1225 up_write(&policy->rwsem); 1226 kobject_put(kobj); 1227 1228 /* 1229 * We need to make sure that the underlying kobj is 1230 * actually not referenced anymore by anybody before we 1231 * proceed with unloading. 1232 */ 1233 pr_debug("waiting for dropping of refcount\n"); 1234 wait_for_completion(cmp); 1235 pr_debug("wait complete\n"); 1236 } 1237 1238 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1239 { 1240 struct cpufreq_policy *policy; 1241 struct device *dev = get_cpu_device(cpu); 1242 int ret; 1243 1244 if (!dev) 1245 return NULL; 1246 1247 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1248 if (!policy) 1249 return NULL; 1250 1251 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1252 goto err_free_policy; 1253 1254 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1255 goto err_free_cpumask; 1256 1257 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1258 goto err_free_rcpumask; 1259 1260 init_completion(&policy->kobj_unregister); 1261 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1262 cpufreq_global_kobject, "policy%u", cpu); 1263 if (ret) { 1264 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1265 /* 1266 * The entire policy object will be freed below, but the extra 1267 * memory allocated for the kobject name needs to be freed by 1268 * releasing the kobject. 1269 */ 1270 kobject_put(&policy->kobj); 1271 goto err_free_real_cpus; 1272 } 1273 1274 freq_constraints_init(&policy->constraints); 1275 1276 policy->nb_min.notifier_call = cpufreq_notifier_min; 1277 policy->nb_max.notifier_call = cpufreq_notifier_max; 1278 1279 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1280 &policy->nb_min); 1281 if (ret) { 1282 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n", 1283 ret, cpu); 1284 goto err_kobj_remove; 1285 } 1286 1287 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1288 &policy->nb_max); 1289 if (ret) { 1290 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n", 1291 ret, cpu); 1292 goto err_min_qos_notifier; 1293 } 1294 1295 INIT_LIST_HEAD(&policy->policy_list); 1296 init_rwsem(&policy->rwsem); 1297 spin_lock_init(&policy->transition_lock); 1298 init_waitqueue_head(&policy->transition_wait); 1299 INIT_WORK(&policy->update, handle_update); 1300 1301 policy->cpu = cpu; 1302 return policy; 1303 1304 err_min_qos_notifier: 1305 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1306 &policy->nb_min); 1307 err_kobj_remove: 1308 cpufreq_policy_put_kobj(policy); 1309 err_free_real_cpus: 1310 free_cpumask_var(policy->real_cpus); 1311 err_free_rcpumask: 1312 free_cpumask_var(policy->related_cpus); 1313 err_free_cpumask: 1314 free_cpumask_var(policy->cpus); 1315 err_free_policy: 1316 kfree(policy); 1317 1318 return NULL; 1319 } 1320 1321 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1322 { 1323 unsigned long flags; 1324 int cpu; 1325 1326 /* 1327 * The callers must ensure the policy is inactive by now, to avoid any 1328 * races with show()/store() callbacks. 1329 */ 1330 if (unlikely(!policy_is_inactive(policy))) 1331 pr_warn("%s: Freeing active policy\n", __func__); 1332 1333 /* Remove policy from list */ 1334 write_lock_irqsave(&cpufreq_driver_lock, flags); 1335 list_del(&policy->policy_list); 1336 1337 for_each_cpu(cpu, policy->related_cpus) 1338 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1339 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1340 1341 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1342 &policy->nb_max); 1343 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1344 &policy->nb_min); 1345 1346 /* Cancel any pending policy->update work before freeing the policy. */ 1347 cancel_work_sync(&policy->update); 1348 1349 if (policy->max_freq_req) { 1350 /* 1351 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1352 * notification, since CPUFREQ_CREATE_POLICY notification was 1353 * sent after adding max_freq_req earlier. 1354 */ 1355 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1356 CPUFREQ_REMOVE_POLICY, policy); 1357 freq_qos_remove_request(policy->max_freq_req); 1358 } 1359 1360 freq_qos_remove_request(policy->min_freq_req); 1361 kfree(policy->min_freq_req); 1362 1363 cpufreq_policy_put_kobj(policy); 1364 free_cpumask_var(policy->real_cpus); 1365 free_cpumask_var(policy->related_cpus); 1366 free_cpumask_var(policy->cpus); 1367 kfree(policy); 1368 } 1369 1370 static int cpufreq_online(unsigned int cpu) 1371 { 1372 struct cpufreq_policy *policy; 1373 bool new_policy; 1374 unsigned long flags; 1375 unsigned int j; 1376 int ret; 1377 1378 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1379 1380 /* Check if this CPU already has a policy to manage it */ 1381 policy = per_cpu(cpufreq_cpu_data, cpu); 1382 if (policy) { 1383 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1384 if (!policy_is_inactive(policy)) 1385 return cpufreq_add_policy_cpu(policy, cpu); 1386 1387 /* This is the only online CPU for the policy. Start over. */ 1388 new_policy = false; 1389 down_write(&policy->rwsem); 1390 policy->cpu = cpu; 1391 policy->governor = NULL; 1392 } else { 1393 new_policy = true; 1394 policy = cpufreq_policy_alloc(cpu); 1395 if (!policy) 1396 return -ENOMEM; 1397 down_write(&policy->rwsem); 1398 } 1399 1400 if (!new_policy && cpufreq_driver->online) { 1401 /* Recover policy->cpus using related_cpus */ 1402 cpumask_copy(policy->cpus, policy->related_cpus); 1403 1404 ret = cpufreq_driver->online(policy); 1405 if (ret) { 1406 pr_debug("%s: %d: initialization failed\n", __func__, 1407 __LINE__); 1408 goto out_exit_policy; 1409 } 1410 } else { 1411 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1412 1413 /* 1414 * Call driver. From then on the cpufreq must be able 1415 * to accept all calls to ->verify and ->setpolicy for this CPU. 1416 */ 1417 ret = cpufreq_driver->init(policy); 1418 if (ret) { 1419 pr_debug("%s: %d: initialization failed\n", __func__, 1420 __LINE__); 1421 goto out_free_policy; 1422 } 1423 1424 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */ 1425 if (cpufreq_boost_enabled() && policy_has_boost_freq(policy)) 1426 policy->boost_enabled = true; 1427 1428 /* 1429 * The initialization has succeeded and the policy is online. 1430 * If there is a problem with its frequency table, take it 1431 * offline and drop it. 1432 */ 1433 ret = cpufreq_table_validate_and_sort(policy); 1434 if (ret) 1435 goto out_offline_policy; 1436 1437 /* related_cpus should at least include policy->cpus. */ 1438 cpumask_copy(policy->related_cpus, policy->cpus); 1439 } 1440 1441 /* 1442 * affected cpus must always be the one, which are online. We aren't 1443 * managing offline cpus here. 1444 */ 1445 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1446 1447 if (new_policy) { 1448 for_each_cpu(j, policy->related_cpus) { 1449 per_cpu(cpufreq_cpu_data, j) = policy; 1450 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1451 } 1452 1453 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1454 GFP_KERNEL); 1455 if (!policy->min_freq_req) { 1456 ret = -ENOMEM; 1457 goto out_destroy_policy; 1458 } 1459 1460 ret = freq_qos_add_request(&policy->constraints, 1461 policy->min_freq_req, FREQ_QOS_MIN, 1462 FREQ_QOS_MIN_DEFAULT_VALUE); 1463 if (ret < 0) { 1464 /* 1465 * So we don't call freq_qos_remove_request() for an 1466 * uninitialized request. 1467 */ 1468 kfree(policy->min_freq_req); 1469 policy->min_freq_req = NULL; 1470 goto out_destroy_policy; 1471 } 1472 1473 /* 1474 * This must be initialized right here to avoid calling 1475 * freq_qos_remove_request() on uninitialized request in case 1476 * of errors. 1477 */ 1478 policy->max_freq_req = policy->min_freq_req + 1; 1479 1480 ret = freq_qos_add_request(&policy->constraints, 1481 policy->max_freq_req, FREQ_QOS_MAX, 1482 FREQ_QOS_MAX_DEFAULT_VALUE); 1483 if (ret < 0) { 1484 policy->max_freq_req = NULL; 1485 goto out_destroy_policy; 1486 } 1487 1488 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1489 CPUFREQ_CREATE_POLICY, policy); 1490 } 1491 1492 if (cpufreq_driver->get && has_target()) { 1493 policy->cur = cpufreq_driver->get(policy->cpu); 1494 if (!policy->cur) { 1495 ret = -EIO; 1496 pr_err("%s: ->get() failed\n", __func__); 1497 goto out_destroy_policy; 1498 } 1499 } 1500 1501 /* 1502 * Sometimes boot loaders set CPU frequency to a value outside of 1503 * frequency table present with cpufreq core. In such cases CPU might be 1504 * unstable if it has to run on that frequency for long duration of time 1505 * and so its better to set it to a frequency which is specified in 1506 * freq-table. This also makes cpufreq stats inconsistent as 1507 * cpufreq-stats would fail to register because current frequency of CPU 1508 * isn't found in freq-table. 1509 * 1510 * Because we don't want this change to effect boot process badly, we go 1511 * for the next freq which is >= policy->cur ('cur' must be set by now, 1512 * otherwise we will end up setting freq to lowest of the table as 'cur' 1513 * is initialized to zero). 1514 * 1515 * We are passing target-freq as "policy->cur - 1" otherwise 1516 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1517 * equal to target-freq. 1518 */ 1519 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1520 && has_target()) { 1521 unsigned int old_freq = policy->cur; 1522 1523 /* Are we running at unknown frequency ? */ 1524 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1525 if (ret == -EINVAL) { 1526 ret = __cpufreq_driver_target(policy, old_freq - 1, 1527 CPUFREQ_RELATION_L); 1528 1529 /* 1530 * Reaching here after boot in a few seconds may not 1531 * mean that system will remain stable at "unknown" 1532 * frequency for longer duration. Hence, a BUG_ON(). 1533 */ 1534 BUG_ON(ret); 1535 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1536 __func__, policy->cpu, old_freq, policy->cur); 1537 } 1538 } 1539 1540 if (new_policy) { 1541 ret = cpufreq_add_dev_interface(policy); 1542 if (ret) 1543 goto out_destroy_policy; 1544 1545 cpufreq_stats_create_table(policy); 1546 1547 write_lock_irqsave(&cpufreq_driver_lock, flags); 1548 list_add(&policy->policy_list, &cpufreq_policy_list); 1549 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1550 1551 /* 1552 * Register with the energy model before 1553 * sched_cpufreq_governor_change() is called, which will result 1554 * in rebuilding of the sched domains, which should only be done 1555 * once the energy model is properly initialized for the policy 1556 * first. 1557 * 1558 * Also, this should be called before the policy is registered 1559 * with cooling framework. 1560 */ 1561 if (cpufreq_driver->register_em) 1562 cpufreq_driver->register_em(policy); 1563 } 1564 1565 ret = cpufreq_init_policy(policy); 1566 if (ret) { 1567 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1568 __func__, cpu, ret); 1569 goto out_destroy_policy; 1570 } 1571 1572 up_write(&policy->rwsem); 1573 1574 kobject_uevent(&policy->kobj, KOBJ_ADD); 1575 1576 /* Callback for handling stuff after policy is ready */ 1577 if (cpufreq_driver->ready) 1578 cpufreq_driver->ready(policy); 1579 1580 /* Register cpufreq cooling only for a new policy */ 1581 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver)) 1582 policy->cdev = of_cpufreq_cooling_register(policy); 1583 1584 pr_debug("initialization complete\n"); 1585 1586 return 0; 1587 1588 out_destroy_policy: 1589 for_each_cpu(j, policy->real_cpus) 1590 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1591 1592 out_offline_policy: 1593 if (cpufreq_driver->offline) 1594 cpufreq_driver->offline(policy); 1595 1596 out_exit_policy: 1597 if (cpufreq_driver->exit) 1598 cpufreq_driver->exit(policy); 1599 1600 out_free_policy: 1601 cpumask_clear(policy->cpus); 1602 up_write(&policy->rwsem); 1603 1604 cpufreq_policy_free(policy); 1605 return ret; 1606 } 1607 1608 /** 1609 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1610 * @dev: CPU device. 1611 * @sif: Subsystem interface structure pointer (not used) 1612 */ 1613 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1614 { 1615 struct cpufreq_policy *policy; 1616 unsigned cpu = dev->id; 1617 int ret; 1618 1619 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1620 1621 if (cpu_online(cpu)) { 1622 ret = cpufreq_online(cpu); 1623 if (ret) 1624 return ret; 1625 } 1626 1627 /* Create sysfs link on CPU registration */ 1628 policy = per_cpu(cpufreq_cpu_data, cpu); 1629 if (policy) 1630 add_cpu_dev_symlink(policy, cpu, dev); 1631 1632 return 0; 1633 } 1634 1635 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1636 { 1637 int ret; 1638 1639 if (has_target()) 1640 cpufreq_stop_governor(policy); 1641 1642 cpumask_clear_cpu(cpu, policy->cpus); 1643 1644 if (!policy_is_inactive(policy)) { 1645 /* Nominate a new CPU if necessary. */ 1646 if (cpu == policy->cpu) 1647 policy->cpu = cpumask_any(policy->cpus); 1648 1649 /* Start the governor again for the active policy. */ 1650 if (has_target()) { 1651 ret = cpufreq_start_governor(policy); 1652 if (ret) 1653 pr_err("%s: Failed to start governor\n", __func__); 1654 } 1655 1656 return; 1657 } 1658 1659 if (has_target()) 1660 strncpy(policy->last_governor, policy->governor->name, 1661 CPUFREQ_NAME_LEN); 1662 else 1663 policy->last_policy = policy->policy; 1664 1665 if (has_target()) 1666 cpufreq_exit_governor(policy); 1667 1668 /* 1669 * Perform the ->offline() during light-weight tear-down, as 1670 * that allows fast recovery when the CPU comes back. 1671 */ 1672 if (cpufreq_driver->offline) { 1673 cpufreq_driver->offline(policy); 1674 return; 1675 } 1676 1677 if (cpufreq_driver->exit) 1678 cpufreq_driver->exit(policy); 1679 1680 policy->freq_table = NULL; 1681 } 1682 1683 static int cpufreq_offline(unsigned int cpu) 1684 { 1685 struct cpufreq_policy *policy; 1686 1687 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1688 1689 policy = cpufreq_cpu_get_raw(cpu); 1690 if (!policy) { 1691 pr_debug("%s: No cpu_data found\n", __func__); 1692 return 0; 1693 } 1694 1695 down_write(&policy->rwsem); 1696 1697 __cpufreq_offline(cpu, policy); 1698 1699 up_write(&policy->rwsem); 1700 return 0; 1701 } 1702 1703 /* 1704 * cpufreq_remove_dev - remove a CPU device 1705 * 1706 * Removes the cpufreq interface for a CPU device. 1707 */ 1708 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1709 { 1710 unsigned int cpu = dev->id; 1711 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1712 1713 if (!policy) 1714 return; 1715 1716 down_write(&policy->rwsem); 1717 1718 if (cpu_online(cpu)) 1719 __cpufreq_offline(cpu, policy); 1720 1721 remove_cpu_dev_symlink(policy, cpu, dev); 1722 1723 if (!cpumask_empty(policy->real_cpus)) { 1724 up_write(&policy->rwsem); 1725 return; 1726 } 1727 1728 /* 1729 * Unregister cpufreq cooling once all the CPUs of the policy are 1730 * removed. 1731 */ 1732 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1733 cpufreq_cooling_unregister(policy->cdev); 1734 policy->cdev = NULL; 1735 } 1736 1737 /* We did light-weight exit earlier, do full tear down now */ 1738 if (cpufreq_driver->offline && cpufreq_driver->exit) 1739 cpufreq_driver->exit(policy); 1740 1741 up_write(&policy->rwsem); 1742 1743 cpufreq_policy_free(policy); 1744 } 1745 1746 /** 1747 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1748 * @policy: Policy managing CPUs. 1749 * @new_freq: New CPU frequency. 1750 * 1751 * Adjust to the current frequency first and clean up later by either calling 1752 * cpufreq_update_policy(), or scheduling handle_update(). 1753 */ 1754 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1755 unsigned int new_freq) 1756 { 1757 struct cpufreq_freqs freqs; 1758 1759 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1760 policy->cur, new_freq); 1761 1762 freqs.old = policy->cur; 1763 freqs.new = new_freq; 1764 1765 cpufreq_freq_transition_begin(policy, &freqs); 1766 cpufreq_freq_transition_end(policy, &freqs, 0); 1767 } 1768 1769 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1770 { 1771 unsigned int new_freq; 1772 1773 new_freq = cpufreq_driver->get(policy->cpu); 1774 if (!new_freq) 1775 return 0; 1776 1777 /* 1778 * If fast frequency switching is used with the given policy, the check 1779 * against policy->cur is pointless, so skip it in that case. 1780 */ 1781 if (policy->fast_switch_enabled || !has_target()) 1782 return new_freq; 1783 1784 if (policy->cur != new_freq) { 1785 /* 1786 * For some platforms, the frequency returned by hardware may be 1787 * slightly different from what is provided in the frequency 1788 * table, for example hardware may return 499 MHz instead of 500 1789 * MHz. In such cases it is better to avoid getting into 1790 * unnecessary frequency updates. 1791 */ 1792 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1793 return policy->cur; 1794 1795 cpufreq_out_of_sync(policy, new_freq); 1796 if (update) 1797 schedule_work(&policy->update); 1798 } 1799 1800 return new_freq; 1801 } 1802 1803 /** 1804 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1805 * @cpu: CPU number 1806 * 1807 * This is the last known freq, without actually getting it from the driver. 1808 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1809 */ 1810 unsigned int cpufreq_quick_get(unsigned int cpu) 1811 { 1812 struct cpufreq_policy *policy; 1813 unsigned int ret_freq = 0; 1814 unsigned long flags; 1815 1816 read_lock_irqsave(&cpufreq_driver_lock, flags); 1817 1818 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1819 ret_freq = cpufreq_driver->get(cpu); 1820 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1821 return ret_freq; 1822 } 1823 1824 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1825 1826 policy = cpufreq_cpu_get(cpu); 1827 if (policy) { 1828 ret_freq = policy->cur; 1829 cpufreq_cpu_put(policy); 1830 } 1831 1832 return ret_freq; 1833 } 1834 EXPORT_SYMBOL(cpufreq_quick_get); 1835 1836 /** 1837 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1838 * @cpu: CPU number 1839 * 1840 * Just return the max possible frequency for a given CPU. 1841 */ 1842 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1843 { 1844 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1845 unsigned int ret_freq = 0; 1846 1847 if (policy) { 1848 ret_freq = policy->max; 1849 cpufreq_cpu_put(policy); 1850 } 1851 1852 return ret_freq; 1853 } 1854 EXPORT_SYMBOL(cpufreq_quick_get_max); 1855 1856 /** 1857 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1858 * @cpu: CPU number 1859 * 1860 * The default return value is the max_freq field of cpuinfo. 1861 */ 1862 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1863 { 1864 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1865 unsigned int ret_freq = 0; 1866 1867 if (policy) { 1868 ret_freq = policy->cpuinfo.max_freq; 1869 cpufreq_cpu_put(policy); 1870 } 1871 1872 return ret_freq; 1873 } 1874 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1875 1876 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1877 { 1878 if (unlikely(policy_is_inactive(policy))) 1879 return 0; 1880 1881 return cpufreq_verify_current_freq(policy, true); 1882 } 1883 1884 /** 1885 * cpufreq_get - get the current CPU frequency (in kHz) 1886 * @cpu: CPU number 1887 * 1888 * Get the CPU current (static) CPU frequency 1889 */ 1890 unsigned int cpufreq_get(unsigned int cpu) 1891 { 1892 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1893 unsigned int ret_freq = 0; 1894 1895 if (policy) { 1896 down_read(&policy->rwsem); 1897 if (cpufreq_driver->get) 1898 ret_freq = __cpufreq_get(policy); 1899 up_read(&policy->rwsem); 1900 1901 cpufreq_cpu_put(policy); 1902 } 1903 1904 return ret_freq; 1905 } 1906 EXPORT_SYMBOL(cpufreq_get); 1907 1908 static struct subsys_interface cpufreq_interface = { 1909 .name = "cpufreq", 1910 .subsys = &cpu_subsys, 1911 .add_dev = cpufreq_add_dev, 1912 .remove_dev = cpufreq_remove_dev, 1913 }; 1914 1915 /* 1916 * In case platform wants some specific frequency to be configured 1917 * during suspend.. 1918 */ 1919 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1920 { 1921 int ret; 1922 1923 if (!policy->suspend_freq) { 1924 pr_debug("%s: suspend_freq not defined\n", __func__); 1925 return 0; 1926 } 1927 1928 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1929 policy->suspend_freq); 1930 1931 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1932 CPUFREQ_RELATION_H); 1933 if (ret) 1934 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1935 __func__, policy->suspend_freq, ret); 1936 1937 return ret; 1938 } 1939 EXPORT_SYMBOL(cpufreq_generic_suspend); 1940 1941 /** 1942 * cpufreq_suspend() - Suspend CPUFreq governors. 1943 * 1944 * Called during system wide Suspend/Hibernate cycles for suspending governors 1945 * as some platforms can't change frequency after this point in suspend cycle. 1946 * Because some of the devices (like: i2c, regulators, etc) they use for 1947 * changing frequency are suspended quickly after this point. 1948 */ 1949 void cpufreq_suspend(void) 1950 { 1951 struct cpufreq_policy *policy; 1952 1953 if (!cpufreq_driver) 1954 return; 1955 1956 if (!has_target() && !cpufreq_driver->suspend) 1957 goto suspend; 1958 1959 pr_debug("%s: Suspending Governors\n", __func__); 1960 1961 for_each_active_policy(policy) { 1962 if (has_target()) { 1963 down_write(&policy->rwsem); 1964 cpufreq_stop_governor(policy); 1965 up_write(&policy->rwsem); 1966 } 1967 1968 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1969 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1970 cpufreq_driver->name); 1971 } 1972 1973 suspend: 1974 cpufreq_suspended = true; 1975 } 1976 1977 /** 1978 * cpufreq_resume() - Resume CPUFreq governors. 1979 * 1980 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1981 * are suspended with cpufreq_suspend(). 1982 */ 1983 void cpufreq_resume(void) 1984 { 1985 struct cpufreq_policy *policy; 1986 int ret; 1987 1988 if (!cpufreq_driver) 1989 return; 1990 1991 if (unlikely(!cpufreq_suspended)) 1992 return; 1993 1994 cpufreq_suspended = false; 1995 1996 if (!has_target() && !cpufreq_driver->resume) 1997 return; 1998 1999 pr_debug("%s: Resuming Governors\n", __func__); 2000 2001 for_each_active_policy(policy) { 2002 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 2003 pr_err("%s: Failed to resume driver: %s\n", __func__, 2004 cpufreq_driver->name); 2005 } else if (has_target()) { 2006 down_write(&policy->rwsem); 2007 ret = cpufreq_start_governor(policy); 2008 up_write(&policy->rwsem); 2009 2010 if (ret) 2011 pr_err("%s: Failed to start governor for CPU%u's policy\n", 2012 __func__, policy->cpu); 2013 } 2014 } 2015 } 2016 2017 /** 2018 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 2019 * @flags: Flags to test against the current cpufreq driver's flags. 2020 * 2021 * Assumes that the driver is there, so callers must ensure that this is the 2022 * case. 2023 */ 2024 bool cpufreq_driver_test_flags(u16 flags) 2025 { 2026 return !!(cpufreq_driver->flags & flags); 2027 } 2028 2029 /** 2030 * cpufreq_get_current_driver - Return the current driver's name. 2031 * 2032 * Return the name string of the currently registered cpufreq driver or NULL if 2033 * none. 2034 */ 2035 const char *cpufreq_get_current_driver(void) 2036 { 2037 if (cpufreq_driver) 2038 return cpufreq_driver->name; 2039 2040 return NULL; 2041 } 2042 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 2043 2044 /** 2045 * cpufreq_get_driver_data - Return current driver data. 2046 * 2047 * Return the private data of the currently registered cpufreq driver, or NULL 2048 * if no cpufreq driver has been registered. 2049 */ 2050 void *cpufreq_get_driver_data(void) 2051 { 2052 if (cpufreq_driver) 2053 return cpufreq_driver->driver_data; 2054 2055 return NULL; 2056 } 2057 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2058 2059 /********************************************************************* 2060 * NOTIFIER LISTS INTERFACE * 2061 *********************************************************************/ 2062 2063 /** 2064 * cpufreq_register_notifier - Register a notifier with cpufreq. 2065 * @nb: notifier function to register. 2066 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2067 * 2068 * Add a notifier to one of two lists: either a list of notifiers that run on 2069 * clock rate changes (once before and once after every transition), or a list 2070 * of notifiers that ron on cpufreq policy changes. 2071 * 2072 * This function may sleep and it has the same return values as 2073 * blocking_notifier_chain_register(). 2074 */ 2075 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2076 { 2077 int ret; 2078 2079 if (cpufreq_disabled()) 2080 return -EINVAL; 2081 2082 switch (list) { 2083 case CPUFREQ_TRANSITION_NOTIFIER: 2084 mutex_lock(&cpufreq_fast_switch_lock); 2085 2086 if (cpufreq_fast_switch_count > 0) { 2087 mutex_unlock(&cpufreq_fast_switch_lock); 2088 return -EBUSY; 2089 } 2090 ret = srcu_notifier_chain_register( 2091 &cpufreq_transition_notifier_list, nb); 2092 if (!ret) 2093 cpufreq_fast_switch_count--; 2094 2095 mutex_unlock(&cpufreq_fast_switch_lock); 2096 break; 2097 case CPUFREQ_POLICY_NOTIFIER: 2098 ret = blocking_notifier_chain_register( 2099 &cpufreq_policy_notifier_list, nb); 2100 break; 2101 default: 2102 ret = -EINVAL; 2103 } 2104 2105 return ret; 2106 } 2107 EXPORT_SYMBOL(cpufreq_register_notifier); 2108 2109 /** 2110 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2111 * @nb: notifier block to be unregistered. 2112 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2113 * 2114 * Remove a notifier from one of the cpufreq notifier lists. 2115 * 2116 * This function may sleep and it has the same return values as 2117 * blocking_notifier_chain_unregister(). 2118 */ 2119 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2120 { 2121 int ret; 2122 2123 if (cpufreq_disabled()) 2124 return -EINVAL; 2125 2126 switch (list) { 2127 case CPUFREQ_TRANSITION_NOTIFIER: 2128 mutex_lock(&cpufreq_fast_switch_lock); 2129 2130 ret = srcu_notifier_chain_unregister( 2131 &cpufreq_transition_notifier_list, nb); 2132 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2133 cpufreq_fast_switch_count++; 2134 2135 mutex_unlock(&cpufreq_fast_switch_lock); 2136 break; 2137 case CPUFREQ_POLICY_NOTIFIER: 2138 ret = blocking_notifier_chain_unregister( 2139 &cpufreq_policy_notifier_list, nb); 2140 break; 2141 default: 2142 ret = -EINVAL; 2143 } 2144 2145 return ret; 2146 } 2147 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2148 2149 2150 /********************************************************************* 2151 * GOVERNORS * 2152 *********************************************************************/ 2153 2154 /** 2155 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2156 * @policy: cpufreq policy to switch the frequency for. 2157 * @target_freq: New frequency to set (may be approximate). 2158 * 2159 * Carry out a fast frequency switch without sleeping. 2160 * 2161 * The driver's ->fast_switch() callback invoked by this function must be 2162 * suitable for being called from within RCU-sched read-side critical sections 2163 * and it is expected to select the minimum available frequency greater than or 2164 * equal to @target_freq (CPUFREQ_RELATION_L). 2165 * 2166 * This function must not be called if policy->fast_switch_enabled is unset. 2167 * 2168 * Governors calling this function must guarantee that it will never be invoked 2169 * twice in parallel for the same policy and that it will never be called in 2170 * parallel with either ->target() or ->target_index() for the same policy. 2171 * 2172 * Returns the actual frequency set for the CPU. 2173 * 2174 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2175 * error condition, the hardware configuration must be preserved. 2176 */ 2177 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2178 unsigned int target_freq) 2179 { 2180 unsigned int freq; 2181 int cpu; 2182 2183 target_freq = clamp_val(target_freq, policy->min, policy->max); 2184 freq = cpufreq_driver->fast_switch(policy, target_freq); 2185 2186 if (!freq) 2187 return 0; 2188 2189 policy->cur = freq; 2190 arch_set_freq_scale(policy->related_cpus, freq, 2191 policy->cpuinfo.max_freq); 2192 cpufreq_stats_record_transition(policy, freq); 2193 2194 if (trace_cpu_frequency_enabled()) { 2195 for_each_cpu(cpu, policy->cpus) 2196 trace_cpu_frequency(freq, cpu); 2197 } 2198 2199 return freq; 2200 } 2201 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2202 2203 /** 2204 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2205 * @cpu: Target CPU. 2206 * @min_perf: Minimum (required) performance level (units of @capacity). 2207 * @target_perf: Target (desired) performance level (units of @capacity). 2208 * @capacity: Capacity of the target CPU. 2209 * 2210 * Carry out a fast performance level switch of @cpu without sleeping. 2211 * 2212 * The driver's ->adjust_perf() callback invoked by this function must be 2213 * suitable for being called from within RCU-sched read-side critical sections 2214 * and it is expected to select a suitable performance level equal to or above 2215 * @min_perf and preferably equal to or below @target_perf. 2216 * 2217 * This function must not be called if policy->fast_switch_enabled is unset. 2218 * 2219 * Governors calling this function must guarantee that it will never be invoked 2220 * twice in parallel for the same CPU and that it will never be called in 2221 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2222 * the same CPU. 2223 */ 2224 void cpufreq_driver_adjust_perf(unsigned int cpu, 2225 unsigned long min_perf, 2226 unsigned long target_perf, 2227 unsigned long capacity) 2228 { 2229 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2230 } 2231 2232 /** 2233 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2234 * 2235 * Return 'true' if the ->adjust_perf callback is present for the 2236 * current driver or 'false' otherwise. 2237 */ 2238 bool cpufreq_driver_has_adjust_perf(void) 2239 { 2240 return !!cpufreq_driver->adjust_perf; 2241 } 2242 2243 /* Must set freqs->new to intermediate frequency */ 2244 static int __target_intermediate(struct cpufreq_policy *policy, 2245 struct cpufreq_freqs *freqs, int index) 2246 { 2247 int ret; 2248 2249 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2250 2251 /* We don't need to switch to intermediate freq */ 2252 if (!freqs->new) 2253 return 0; 2254 2255 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2256 __func__, policy->cpu, freqs->old, freqs->new); 2257 2258 cpufreq_freq_transition_begin(policy, freqs); 2259 ret = cpufreq_driver->target_intermediate(policy, index); 2260 cpufreq_freq_transition_end(policy, freqs, ret); 2261 2262 if (ret) 2263 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2264 __func__, ret); 2265 2266 return ret; 2267 } 2268 2269 static int __target_index(struct cpufreq_policy *policy, int index) 2270 { 2271 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2272 unsigned int restore_freq, intermediate_freq = 0; 2273 unsigned int newfreq = policy->freq_table[index].frequency; 2274 int retval = -EINVAL; 2275 bool notify; 2276 2277 if (newfreq == policy->cur) 2278 return 0; 2279 2280 /* Save last value to restore later on errors */ 2281 restore_freq = policy->cur; 2282 2283 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2284 if (notify) { 2285 /* Handle switching to intermediate frequency */ 2286 if (cpufreq_driver->get_intermediate) { 2287 retval = __target_intermediate(policy, &freqs, index); 2288 if (retval) 2289 return retval; 2290 2291 intermediate_freq = freqs.new; 2292 /* Set old freq to intermediate */ 2293 if (intermediate_freq) 2294 freqs.old = freqs.new; 2295 } 2296 2297 freqs.new = newfreq; 2298 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2299 __func__, policy->cpu, freqs.old, freqs.new); 2300 2301 cpufreq_freq_transition_begin(policy, &freqs); 2302 } 2303 2304 retval = cpufreq_driver->target_index(policy, index); 2305 if (retval) 2306 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2307 retval); 2308 2309 if (notify) { 2310 cpufreq_freq_transition_end(policy, &freqs, retval); 2311 2312 /* 2313 * Failed after setting to intermediate freq? Driver should have 2314 * reverted back to initial frequency and so should we. Check 2315 * here for intermediate_freq instead of get_intermediate, in 2316 * case we haven't switched to intermediate freq at all. 2317 */ 2318 if (unlikely(retval && intermediate_freq)) { 2319 freqs.old = intermediate_freq; 2320 freqs.new = restore_freq; 2321 cpufreq_freq_transition_begin(policy, &freqs); 2322 cpufreq_freq_transition_end(policy, &freqs, 0); 2323 } 2324 } 2325 2326 return retval; 2327 } 2328 2329 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2330 unsigned int target_freq, 2331 unsigned int relation) 2332 { 2333 unsigned int old_target_freq = target_freq; 2334 2335 if (cpufreq_disabled()) 2336 return -ENODEV; 2337 2338 target_freq = __resolve_freq(policy, target_freq, relation); 2339 2340 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2341 policy->cpu, target_freq, relation, old_target_freq); 2342 2343 /* 2344 * This might look like a redundant call as we are checking it again 2345 * after finding index. But it is left intentionally for cases where 2346 * exactly same freq is called again and so we can save on few function 2347 * calls. 2348 */ 2349 if (target_freq == policy->cur && 2350 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2351 return 0; 2352 2353 if (cpufreq_driver->target) { 2354 /* 2355 * If the driver hasn't setup a single inefficient frequency, 2356 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2357 */ 2358 if (!policy->efficiencies_available) 2359 relation &= ~CPUFREQ_RELATION_E; 2360 2361 return cpufreq_driver->target(policy, target_freq, relation); 2362 } 2363 2364 if (!cpufreq_driver->target_index) 2365 return -EINVAL; 2366 2367 return __target_index(policy, policy->cached_resolved_idx); 2368 } 2369 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2370 2371 int cpufreq_driver_target(struct cpufreq_policy *policy, 2372 unsigned int target_freq, 2373 unsigned int relation) 2374 { 2375 int ret; 2376 2377 down_write(&policy->rwsem); 2378 2379 ret = __cpufreq_driver_target(policy, target_freq, relation); 2380 2381 up_write(&policy->rwsem); 2382 2383 return ret; 2384 } 2385 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2386 2387 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2388 { 2389 return NULL; 2390 } 2391 2392 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2393 { 2394 int ret; 2395 2396 /* Don't start any governor operations if we are entering suspend */ 2397 if (cpufreq_suspended) 2398 return 0; 2399 /* 2400 * Governor might not be initiated here if ACPI _PPC changed 2401 * notification happened, so check it. 2402 */ 2403 if (!policy->governor) 2404 return -EINVAL; 2405 2406 /* Platform doesn't want dynamic frequency switching ? */ 2407 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2408 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2409 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2410 2411 if (gov) { 2412 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2413 policy->governor->name, gov->name); 2414 policy->governor = gov; 2415 } else { 2416 return -EINVAL; 2417 } 2418 } 2419 2420 if (!try_module_get(policy->governor->owner)) 2421 return -EINVAL; 2422 2423 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2424 2425 if (policy->governor->init) { 2426 ret = policy->governor->init(policy); 2427 if (ret) { 2428 module_put(policy->governor->owner); 2429 return ret; 2430 } 2431 } 2432 2433 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2434 2435 return 0; 2436 } 2437 2438 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2439 { 2440 if (cpufreq_suspended || !policy->governor) 2441 return; 2442 2443 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2444 2445 if (policy->governor->exit) 2446 policy->governor->exit(policy); 2447 2448 module_put(policy->governor->owner); 2449 } 2450 2451 int cpufreq_start_governor(struct cpufreq_policy *policy) 2452 { 2453 int ret; 2454 2455 if (cpufreq_suspended) 2456 return 0; 2457 2458 if (!policy->governor) 2459 return -EINVAL; 2460 2461 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2462 2463 if (cpufreq_driver->get) 2464 cpufreq_verify_current_freq(policy, false); 2465 2466 if (policy->governor->start) { 2467 ret = policy->governor->start(policy); 2468 if (ret) 2469 return ret; 2470 } 2471 2472 if (policy->governor->limits) 2473 policy->governor->limits(policy); 2474 2475 return 0; 2476 } 2477 2478 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2479 { 2480 if (cpufreq_suspended || !policy->governor) 2481 return; 2482 2483 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2484 2485 if (policy->governor->stop) 2486 policy->governor->stop(policy); 2487 } 2488 2489 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2490 { 2491 if (cpufreq_suspended || !policy->governor) 2492 return; 2493 2494 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2495 2496 if (policy->governor->limits) 2497 policy->governor->limits(policy); 2498 } 2499 2500 int cpufreq_register_governor(struct cpufreq_governor *governor) 2501 { 2502 int err; 2503 2504 if (!governor) 2505 return -EINVAL; 2506 2507 if (cpufreq_disabled()) 2508 return -ENODEV; 2509 2510 mutex_lock(&cpufreq_governor_mutex); 2511 2512 err = -EBUSY; 2513 if (!find_governor(governor->name)) { 2514 err = 0; 2515 list_add(&governor->governor_list, &cpufreq_governor_list); 2516 } 2517 2518 mutex_unlock(&cpufreq_governor_mutex); 2519 return err; 2520 } 2521 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2522 2523 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2524 { 2525 struct cpufreq_policy *policy; 2526 unsigned long flags; 2527 2528 if (!governor) 2529 return; 2530 2531 if (cpufreq_disabled()) 2532 return; 2533 2534 /* clear last_governor for all inactive policies */ 2535 read_lock_irqsave(&cpufreq_driver_lock, flags); 2536 for_each_inactive_policy(policy) { 2537 if (!strcmp(policy->last_governor, governor->name)) { 2538 policy->governor = NULL; 2539 strcpy(policy->last_governor, "\0"); 2540 } 2541 } 2542 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2543 2544 mutex_lock(&cpufreq_governor_mutex); 2545 list_del(&governor->governor_list); 2546 mutex_unlock(&cpufreq_governor_mutex); 2547 } 2548 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2549 2550 2551 /********************************************************************* 2552 * POLICY INTERFACE * 2553 *********************************************************************/ 2554 2555 /** 2556 * cpufreq_get_policy - get the current cpufreq_policy 2557 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2558 * is written 2559 * @cpu: CPU to find the policy for 2560 * 2561 * Reads the current cpufreq policy. 2562 */ 2563 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2564 { 2565 struct cpufreq_policy *cpu_policy; 2566 if (!policy) 2567 return -EINVAL; 2568 2569 cpu_policy = cpufreq_cpu_get(cpu); 2570 if (!cpu_policy) 2571 return -EINVAL; 2572 2573 memcpy(policy, cpu_policy, sizeof(*policy)); 2574 2575 cpufreq_cpu_put(cpu_policy); 2576 return 0; 2577 } 2578 EXPORT_SYMBOL(cpufreq_get_policy); 2579 2580 /** 2581 * cpufreq_set_policy - Modify cpufreq policy parameters. 2582 * @policy: Policy object to modify. 2583 * @new_gov: Policy governor pointer. 2584 * @new_pol: Policy value (for drivers with built-in governors). 2585 * 2586 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2587 * limits to be set for the policy, update @policy with the verified limits 2588 * values and either invoke the driver's ->setpolicy() callback (if present) or 2589 * carry out a governor update for @policy. That is, run the current governor's 2590 * ->limits() callback (if @new_gov points to the same object as the one in 2591 * @policy) or replace the governor for @policy with @new_gov. 2592 * 2593 * The cpuinfo part of @policy is not updated by this function. 2594 */ 2595 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2596 struct cpufreq_governor *new_gov, 2597 unsigned int new_pol) 2598 { 2599 struct cpufreq_policy_data new_data; 2600 struct cpufreq_governor *old_gov; 2601 int ret; 2602 2603 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2604 new_data.freq_table = policy->freq_table; 2605 new_data.cpu = policy->cpu; 2606 /* 2607 * PM QoS framework collects all the requests from users and provide us 2608 * the final aggregated value here. 2609 */ 2610 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2611 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2612 2613 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2614 new_data.cpu, new_data.min, new_data.max); 2615 2616 /* 2617 * Verify that the CPU speed can be set within these limits and make sure 2618 * that min <= max. 2619 */ 2620 ret = cpufreq_driver->verify(&new_data); 2621 if (ret) 2622 return ret; 2623 2624 /* 2625 * Resolve policy min/max to available frequencies. It ensures 2626 * no frequency resolution will neither overshoot the requested maximum 2627 * nor undershoot the requested minimum. 2628 */ 2629 policy->min = new_data.min; 2630 policy->max = new_data.max; 2631 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2632 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2633 trace_cpu_frequency_limits(policy); 2634 2635 policy->cached_target_freq = UINT_MAX; 2636 2637 pr_debug("new min and max freqs are %u - %u kHz\n", 2638 policy->min, policy->max); 2639 2640 if (cpufreq_driver->setpolicy) { 2641 policy->policy = new_pol; 2642 pr_debug("setting range\n"); 2643 return cpufreq_driver->setpolicy(policy); 2644 } 2645 2646 if (new_gov == policy->governor) { 2647 pr_debug("governor limits update\n"); 2648 cpufreq_governor_limits(policy); 2649 return 0; 2650 } 2651 2652 pr_debug("governor switch\n"); 2653 2654 /* save old, working values */ 2655 old_gov = policy->governor; 2656 /* end old governor */ 2657 if (old_gov) { 2658 cpufreq_stop_governor(policy); 2659 cpufreq_exit_governor(policy); 2660 } 2661 2662 /* start new governor */ 2663 policy->governor = new_gov; 2664 ret = cpufreq_init_governor(policy); 2665 if (!ret) { 2666 ret = cpufreq_start_governor(policy); 2667 if (!ret) { 2668 pr_debug("governor change\n"); 2669 sched_cpufreq_governor_change(policy, old_gov); 2670 return 0; 2671 } 2672 cpufreq_exit_governor(policy); 2673 } 2674 2675 /* new governor failed, so re-start old one */ 2676 pr_debug("starting governor %s failed\n", policy->governor->name); 2677 if (old_gov) { 2678 policy->governor = old_gov; 2679 if (cpufreq_init_governor(policy)) 2680 policy->governor = NULL; 2681 else 2682 cpufreq_start_governor(policy); 2683 } 2684 2685 return ret; 2686 } 2687 2688 /** 2689 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2690 * @cpu: CPU to re-evaluate the policy for. 2691 * 2692 * Update the current frequency for the cpufreq policy of @cpu and use 2693 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2694 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2695 * for the policy in question, among other things. 2696 */ 2697 void cpufreq_update_policy(unsigned int cpu) 2698 { 2699 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2700 2701 if (!policy) 2702 return; 2703 2704 /* 2705 * BIOS might change freq behind our back 2706 * -> ask driver for current freq and notify governors about a change 2707 */ 2708 if (cpufreq_driver->get && has_target() && 2709 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2710 goto unlock; 2711 2712 refresh_frequency_limits(policy); 2713 2714 unlock: 2715 cpufreq_cpu_release(policy); 2716 } 2717 EXPORT_SYMBOL(cpufreq_update_policy); 2718 2719 /** 2720 * cpufreq_update_limits - Update policy limits for a given CPU. 2721 * @cpu: CPU to update the policy limits for. 2722 * 2723 * Invoke the driver's ->update_limits callback if present or call 2724 * cpufreq_update_policy() for @cpu. 2725 */ 2726 void cpufreq_update_limits(unsigned int cpu) 2727 { 2728 if (cpufreq_driver->update_limits) 2729 cpufreq_driver->update_limits(cpu); 2730 else 2731 cpufreq_update_policy(cpu); 2732 } 2733 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2734 2735 /********************************************************************* 2736 * BOOST * 2737 *********************************************************************/ 2738 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2739 { 2740 int ret; 2741 2742 if (!policy->freq_table) 2743 return -ENXIO; 2744 2745 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2746 if (ret) { 2747 pr_err("%s: Policy frequency update failed\n", __func__); 2748 return ret; 2749 } 2750 2751 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2752 if (ret < 0) 2753 return ret; 2754 2755 return 0; 2756 } 2757 2758 int cpufreq_boost_trigger_state(int state) 2759 { 2760 struct cpufreq_policy *policy; 2761 unsigned long flags; 2762 int ret = 0; 2763 2764 if (cpufreq_driver->boost_enabled == state) 2765 return 0; 2766 2767 write_lock_irqsave(&cpufreq_driver_lock, flags); 2768 cpufreq_driver->boost_enabled = state; 2769 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2770 2771 cpus_read_lock(); 2772 for_each_active_policy(policy) { 2773 policy->boost_enabled = state; 2774 ret = cpufreq_driver->set_boost(policy, state); 2775 if (ret) { 2776 policy->boost_enabled = !policy->boost_enabled; 2777 goto err_reset_state; 2778 } 2779 } 2780 cpus_read_unlock(); 2781 2782 return 0; 2783 2784 err_reset_state: 2785 cpus_read_unlock(); 2786 2787 write_lock_irqsave(&cpufreq_driver_lock, flags); 2788 cpufreq_driver->boost_enabled = !state; 2789 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2790 2791 pr_err("%s: Cannot %s BOOST\n", 2792 __func__, state ? "enable" : "disable"); 2793 2794 return ret; 2795 } 2796 2797 static bool cpufreq_boost_supported(void) 2798 { 2799 return cpufreq_driver->set_boost; 2800 } 2801 2802 static int create_boost_sysfs_file(void) 2803 { 2804 int ret; 2805 2806 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2807 if (ret) 2808 pr_err("%s: cannot register global BOOST sysfs file\n", 2809 __func__); 2810 2811 return ret; 2812 } 2813 2814 static void remove_boost_sysfs_file(void) 2815 { 2816 if (cpufreq_boost_supported()) 2817 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2818 } 2819 2820 int cpufreq_enable_boost_support(void) 2821 { 2822 if (!cpufreq_driver) 2823 return -EINVAL; 2824 2825 if (cpufreq_boost_supported()) 2826 return 0; 2827 2828 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2829 2830 /* This will get removed on driver unregister */ 2831 return create_boost_sysfs_file(); 2832 } 2833 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2834 2835 int cpufreq_boost_enabled(void) 2836 { 2837 return cpufreq_driver->boost_enabled; 2838 } 2839 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2840 2841 /********************************************************************* 2842 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2843 *********************************************************************/ 2844 static enum cpuhp_state hp_online; 2845 2846 static int cpuhp_cpufreq_online(unsigned int cpu) 2847 { 2848 cpufreq_online(cpu); 2849 2850 return 0; 2851 } 2852 2853 static int cpuhp_cpufreq_offline(unsigned int cpu) 2854 { 2855 cpufreq_offline(cpu); 2856 2857 return 0; 2858 } 2859 2860 /** 2861 * cpufreq_register_driver - register a CPU Frequency driver 2862 * @driver_data: A struct cpufreq_driver containing the values# 2863 * submitted by the CPU Frequency driver. 2864 * 2865 * Registers a CPU Frequency driver to this core code. This code 2866 * returns zero on success, -EEXIST when another driver got here first 2867 * (and isn't unregistered in the meantime). 2868 * 2869 */ 2870 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2871 { 2872 unsigned long flags; 2873 int ret; 2874 2875 if (cpufreq_disabled()) 2876 return -ENODEV; 2877 2878 /* 2879 * The cpufreq core depends heavily on the availability of device 2880 * structure, make sure they are available before proceeding further. 2881 */ 2882 if (!get_cpu_device(0)) 2883 return -EPROBE_DEFER; 2884 2885 if (!driver_data || !driver_data->verify || !driver_data->init || 2886 !(driver_data->setpolicy || driver_data->target_index || 2887 driver_data->target) || 2888 (driver_data->setpolicy && (driver_data->target_index || 2889 driver_data->target)) || 2890 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2891 (!driver_data->online != !driver_data->offline) || 2892 (driver_data->adjust_perf && !driver_data->fast_switch)) 2893 return -EINVAL; 2894 2895 pr_debug("trying to register driver %s\n", driver_data->name); 2896 2897 /* Protect against concurrent CPU online/offline. */ 2898 cpus_read_lock(); 2899 2900 write_lock_irqsave(&cpufreq_driver_lock, flags); 2901 if (cpufreq_driver) { 2902 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2903 ret = -EEXIST; 2904 goto out; 2905 } 2906 cpufreq_driver = driver_data; 2907 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2908 2909 /* 2910 * Mark support for the scheduler's frequency invariance engine for 2911 * drivers that implement target(), target_index() or fast_switch(). 2912 */ 2913 if (!cpufreq_driver->setpolicy) { 2914 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2915 pr_debug("supports frequency invariance"); 2916 } 2917 2918 if (driver_data->setpolicy) 2919 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2920 2921 if (cpufreq_boost_supported()) { 2922 ret = create_boost_sysfs_file(); 2923 if (ret) 2924 goto err_null_driver; 2925 } 2926 2927 ret = subsys_interface_register(&cpufreq_interface); 2928 if (ret) 2929 goto err_boost_unreg; 2930 2931 if (unlikely(list_empty(&cpufreq_policy_list))) { 2932 /* if all ->init() calls failed, unregister */ 2933 ret = -ENODEV; 2934 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2935 driver_data->name); 2936 goto err_if_unreg; 2937 } 2938 2939 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2940 "cpufreq:online", 2941 cpuhp_cpufreq_online, 2942 cpuhp_cpufreq_offline); 2943 if (ret < 0) 2944 goto err_if_unreg; 2945 hp_online = ret; 2946 ret = 0; 2947 2948 pr_debug("driver %s up and running\n", driver_data->name); 2949 goto out; 2950 2951 err_if_unreg: 2952 subsys_interface_unregister(&cpufreq_interface); 2953 err_boost_unreg: 2954 remove_boost_sysfs_file(); 2955 err_null_driver: 2956 write_lock_irqsave(&cpufreq_driver_lock, flags); 2957 cpufreq_driver = NULL; 2958 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2959 out: 2960 cpus_read_unlock(); 2961 return ret; 2962 } 2963 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2964 2965 /* 2966 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2967 * 2968 * Unregister the current CPUFreq driver. Only call this if you have 2969 * the right to do so, i.e. if you have succeeded in initialising before! 2970 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2971 * currently not initialised. 2972 */ 2973 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 2974 { 2975 unsigned long flags; 2976 2977 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 2978 return; 2979 2980 pr_debug("unregistering driver %s\n", driver->name); 2981 2982 /* Protect against concurrent cpu hotplug */ 2983 cpus_read_lock(); 2984 subsys_interface_unregister(&cpufreq_interface); 2985 remove_boost_sysfs_file(); 2986 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2987 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2988 2989 write_lock_irqsave(&cpufreq_driver_lock, flags); 2990 2991 cpufreq_driver = NULL; 2992 2993 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2994 cpus_read_unlock(); 2995 } 2996 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2997 2998 static int __init cpufreq_core_init(void) 2999 { 3000 struct cpufreq_governor *gov = cpufreq_default_governor(); 3001 struct device *dev_root; 3002 3003 if (cpufreq_disabled()) 3004 return -ENODEV; 3005 3006 dev_root = bus_get_dev_root(&cpu_subsys); 3007 if (dev_root) { 3008 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 3009 put_device(dev_root); 3010 } 3011 BUG_ON(!cpufreq_global_kobject); 3012 3013 if (!strlen(default_governor)) 3014 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 3015 3016 return 0; 3017 } 3018 module_param(off, int, 0444); 3019 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 3020 core_initcall(cpufreq_core_init); 3021