1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 /* Iterate over governors */ 46 static LIST_HEAD(cpufreq_governor_list); 47 #define for_each_governor(__governor) \ 48 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 49 50 static char default_governor[CPUFREQ_NAME_LEN]; 51 52 /* 53 * The "cpufreq driver" - the arch- or hardware-dependent low 54 * level driver of CPUFreq support, and its spinlock. This lock 55 * also protects the cpufreq_cpu_data array. 56 */ 57 static struct cpufreq_driver *cpufreq_driver; 58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 59 static DEFINE_RWLOCK(cpufreq_driver_lock); 60 61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 62 bool cpufreq_supports_freq_invariance(void) 63 { 64 return static_branch_likely(&cpufreq_freq_invariance); 65 } 66 67 /* Flag to suspend/resume CPUFreq governors */ 68 static bool cpufreq_suspended; 69 70 static inline bool has_target(void) 71 { 72 return cpufreq_driver->target_index || cpufreq_driver->target; 73 } 74 75 /* internal prototypes */ 76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 77 static int cpufreq_init_governor(struct cpufreq_policy *policy); 78 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 79 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 80 static int cpufreq_set_policy(struct cpufreq_policy *policy, 81 struct cpufreq_governor *new_gov, 82 unsigned int new_pol); 83 84 /* 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 93 94 static int off __read_mostly; 95 static int cpufreq_disabled(void) 96 { 97 return off; 98 } 99 void disable_cpufreq(void) 100 { 101 off = 1; 102 } 103 static DEFINE_MUTEX(cpufreq_governor_mutex); 104 105 bool have_governor_per_policy(void) 106 { 107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 108 } 109 EXPORT_SYMBOL_GPL(have_governor_per_policy); 110 111 static struct kobject *cpufreq_global_kobject; 112 113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 114 { 115 if (have_governor_per_policy()) 116 return &policy->kobj; 117 else 118 return cpufreq_global_kobject; 119 } 120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 121 122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 123 { 124 struct kernel_cpustat kcpustat; 125 u64 cur_wall_time; 126 u64 idle_time; 127 u64 busy_time; 128 129 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 130 131 kcpustat_cpu_fetch(&kcpustat, cpu); 132 133 busy_time = kcpustat.cpustat[CPUTIME_USER]; 134 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 135 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 136 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 137 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 138 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 139 140 idle_time = cur_wall_time - busy_time; 141 if (wall) 142 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 143 144 return div_u64(idle_time, NSEC_PER_USEC); 145 } 146 147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 148 { 149 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 150 151 if (idle_time == -1ULL) 152 return get_cpu_idle_time_jiffy(cpu, wall); 153 else if (!io_busy) 154 idle_time += get_cpu_iowait_time_us(cpu, wall); 155 156 return idle_time; 157 } 158 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 159 160 /* 161 * This is a generic cpufreq init() routine which can be used by cpufreq 162 * drivers of SMP systems. It will do following: 163 * - validate & show freq table passed 164 * - set policies transition latency 165 * - policy->cpus with all possible CPUs 166 */ 167 void cpufreq_generic_init(struct cpufreq_policy *policy, 168 struct cpufreq_frequency_table *table, 169 unsigned int transition_latency) 170 { 171 policy->freq_table = table; 172 policy->cpuinfo.transition_latency = transition_latency; 173 174 /* 175 * The driver only supports the SMP configuration where all processors 176 * share the clock and voltage and clock. 177 */ 178 cpumask_setall(policy->cpus); 179 } 180 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 181 182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 183 { 184 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 185 186 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 187 } 188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 189 190 unsigned int cpufreq_generic_get(unsigned int cpu) 191 { 192 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 193 194 if (!policy || IS_ERR(policy->clk)) { 195 pr_err("%s: No %s associated to cpu: %d\n", 196 __func__, policy ? "clk" : "policy", cpu); 197 return 0; 198 } 199 200 return clk_get_rate(policy->clk) / 1000; 201 } 202 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 203 204 /** 205 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 206 * @cpu: CPU to find the policy for. 207 * 208 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 209 * the kobject reference counter of that policy. Return a valid policy on 210 * success or NULL on failure. 211 * 212 * The policy returned by this function has to be released with the help of 213 * cpufreq_cpu_put() to balance its kobject reference counter properly. 214 */ 215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 216 { 217 struct cpufreq_policy *policy = NULL; 218 unsigned long flags; 219 220 if (WARN_ON(cpu >= nr_cpu_ids)) 221 return NULL; 222 223 /* get the cpufreq driver */ 224 read_lock_irqsave(&cpufreq_driver_lock, flags); 225 226 if (cpufreq_driver) { 227 /* get the CPU */ 228 policy = cpufreq_cpu_get_raw(cpu); 229 if (policy) 230 kobject_get(&policy->kobj); 231 } 232 233 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 234 235 return policy; 236 } 237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 238 239 /** 240 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 241 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 242 */ 243 void cpufreq_cpu_put(struct cpufreq_policy *policy) 244 { 245 kobject_put(&policy->kobj); 246 } 247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 248 249 /** 250 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 251 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 252 */ 253 void cpufreq_cpu_release(struct cpufreq_policy *policy) 254 { 255 if (WARN_ON(!policy)) 256 return; 257 258 lockdep_assert_held(&policy->rwsem); 259 260 up_write(&policy->rwsem); 261 262 cpufreq_cpu_put(policy); 263 } 264 265 /** 266 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 267 * @cpu: CPU to find the policy for. 268 * 269 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 270 * if the policy returned by it is not NULL, acquire its rwsem for writing. 271 * Return the policy if it is active or release it and return NULL otherwise. 272 * 273 * The policy returned by this function has to be released with the help of 274 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 275 * counter properly. 276 */ 277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 278 { 279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 280 281 if (!policy) 282 return NULL; 283 284 down_write(&policy->rwsem); 285 286 if (policy_is_inactive(policy)) { 287 cpufreq_cpu_release(policy); 288 return NULL; 289 } 290 291 return policy; 292 } 293 294 /********************************************************************* 295 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 296 *********************************************************************/ 297 298 /** 299 * adjust_jiffies - Adjust the system "loops_per_jiffy". 300 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 301 * @ci: Frequency change information. 302 * 303 * This function alters the system "loops_per_jiffy" for the clock 304 * speed change. Note that loops_per_jiffy cannot be updated on SMP 305 * systems as each CPU might be scaled differently. So, use the arch 306 * per-CPU loops_per_jiffy value wherever possible. 307 */ 308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 309 { 310 #ifndef CONFIG_SMP 311 static unsigned long l_p_j_ref; 312 static unsigned int l_p_j_ref_freq; 313 314 if (ci->flags & CPUFREQ_CONST_LOOPS) 315 return; 316 317 if (!l_p_j_ref_freq) { 318 l_p_j_ref = loops_per_jiffy; 319 l_p_j_ref_freq = ci->old; 320 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 321 l_p_j_ref, l_p_j_ref_freq); 322 } 323 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 324 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 325 ci->new); 326 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 327 loops_per_jiffy, ci->new); 328 } 329 #endif 330 } 331 332 /** 333 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 334 * @policy: cpufreq policy to enable fast frequency switching for. 335 * @freqs: contain details of the frequency update. 336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 337 * 338 * This function calls the transition notifiers and adjust_jiffies(). 339 * 340 * It is called twice on all CPU frequency changes that have external effects. 341 */ 342 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 343 struct cpufreq_freqs *freqs, 344 unsigned int state) 345 { 346 int cpu; 347 348 BUG_ON(irqs_disabled()); 349 350 if (cpufreq_disabled()) 351 return; 352 353 freqs->policy = policy; 354 freqs->flags = cpufreq_driver->flags; 355 pr_debug("notification %u of frequency transition to %u kHz\n", 356 state, freqs->new); 357 358 switch (state) { 359 case CPUFREQ_PRECHANGE: 360 /* 361 * Detect if the driver reported a value as "old frequency" 362 * which is not equal to what the cpufreq core thinks is 363 * "old frequency". 364 */ 365 if (policy->cur && policy->cur != freqs->old) { 366 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 367 freqs->old, policy->cur); 368 freqs->old = policy->cur; 369 } 370 371 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 372 CPUFREQ_PRECHANGE, freqs); 373 374 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 375 break; 376 377 case CPUFREQ_POSTCHANGE: 378 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 379 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 380 cpumask_pr_args(policy->cpus)); 381 382 for_each_cpu(cpu, policy->cpus) 383 trace_cpu_frequency(freqs->new, cpu); 384 385 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 386 CPUFREQ_POSTCHANGE, freqs); 387 388 cpufreq_stats_record_transition(policy, freqs->new); 389 policy->cur = freqs->new; 390 } 391 } 392 393 /* Do post notifications when there are chances that transition has failed */ 394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 395 struct cpufreq_freqs *freqs, int transition_failed) 396 { 397 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 398 if (!transition_failed) 399 return; 400 401 swap(freqs->old, freqs->new); 402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 404 } 405 406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 407 struct cpufreq_freqs *freqs) 408 { 409 410 /* 411 * Catch double invocations of _begin() which lead to self-deadlock. 412 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 413 * doesn't invoke _begin() on their behalf, and hence the chances of 414 * double invocations are very low. Moreover, there are scenarios 415 * where these checks can emit false-positive warnings in these 416 * drivers; so we avoid that by skipping them altogether. 417 */ 418 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 419 && current == policy->transition_task); 420 421 wait: 422 wait_event(policy->transition_wait, !policy->transition_ongoing); 423 424 spin_lock(&policy->transition_lock); 425 426 if (unlikely(policy->transition_ongoing)) { 427 spin_unlock(&policy->transition_lock); 428 goto wait; 429 } 430 431 policy->transition_ongoing = true; 432 policy->transition_task = current; 433 434 spin_unlock(&policy->transition_lock); 435 436 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 437 } 438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 439 440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 441 struct cpufreq_freqs *freqs, int transition_failed) 442 { 443 if (WARN_ON(!policy->transition_ongoing)) 444 return; 445 446 cpufreq_notify_post_transition(policy, freqs, transition_failed); 447 448 arch_set_freq_scale(policy->related_cpus, 449 policy->cur, 450 policy->cpuinfo.max_freq); 451 452 policy->transition_ongoing = false; 453 policy->transition_task = NULL; 454 455 wake_up(&policy->transition_wait); 456 } 457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 458 459 /* 460 * Fast frequency switching status count. Positive means "enabled", negative 461 * means "disabled" and 0 means "not decided yet". 462 */ 463 static int cpufreq_fast_switch_count; 464 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 465 466 static void cpufreq_list_transition_notifiers(void) 467 { 468 struct notifier_block *nb; 469 470 pr_info("Registered transition notifiers:\n"); 471 472 mutex_lock(&cpufreq_transition_notifier_list.mutex); 473 474 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 475 pr_info("%pS\n", nb->notifier_call); 476 477 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 478 } 479 480 /** 481 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 482 * @policy: cpufreq policy to enable fast frequency switching for. 483 * 484 * Try to enable fast frequency switching for @policy. 485 * 486 * The attempt will fail if there is at least one transition notifier registered 487 * at this point, as fast frequency switching is quite fundamentally at odds 488 * with transition notifiers. Thus if successful, it will make registration of 489 * transition notifiers fail going forward. 490 */ 491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 492 { 493 lockdep_assert_held(&policy->rwsem); 494 495 if (!policy->fast_switch_possible) 496 return; 497 498 mutex_lock(&cpufreq_fast_switch_lock); 499 if (cpufreq_fast_switch_count >= 0) { 500 cpufreq_fast_switch_count++; 501 policy->fast_switch_enabled = true; 502 } else { 503 pr_warn("CPU%u: Fast frequency switching not enabled\n", 504 policy->cpu); 505 cpufreq_list_transition_notifiers(); 506 } 507 mutex_unlock(&cpufreq_fast_switch_lock); 508 } 509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 510 511 /** 512 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 513 * @policy: cpufreq policy to disable fast frequency switching for. 514 */ 515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 516 { 517 mutex_lock(&cpufreq_fast_switch_lock); 518 if (policy->fast_switch_enabled) { 519 policy->fast_switch_enabled = false; 520 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 521 cpufreq_fast_switch_count--; 522 } 523 mutex_unlock(&cpufreq_fast_switch_lock); 524 } 525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 526 527 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 528 unsigned int target_freq, unsigned int relation) 529 { 530 unsigned int idx; 531 532 target_freq = clamp_val(target_freq, policy->min, policy->max); 533 534 if (!cpufreq_driver->target_index) 535 return target_freq; 536 537 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 538 policy->cached_resolved_idx = idx; 539 policy->cached_target_freq = target_freq; 540 return policy->freq_table[idx].frequency; 541 } 542 543 /** 544 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 545 * one. 546 * @policy: associated policy to interrogate 547 * @target_freq: target frequency to resolve. 548 * 549 * The target to driver frequency mapping is cached in the policy. 550 * 551 * Return: Lowest driver-supported frequency greater than or equal to the 552 * given target_freq, subject to policy (min/max) and driver limitations. 553 */ 554 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 555 unsigned int target_freq) 556 { 557 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_L); 558 } 559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 560 561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 562 { 563 unsigned int latency; 564 565 if (policy->transition_delay_us) 566 return policy->transition_delay_us; 567 568 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 569 if (latency) { 570 /* 571 * For platforms that can change the frequency very fast (< 10 572 * us), the above formula gives a decent transition delay. But 573 * for platforms where transition_latency is in milliseconds, it 574 * ends up giving unrealistic values. 575 * 576 * Cap the default transition delay to 10 ms, which seems to be 577 * a reasonable amount of time after which we should reevaluate 578 * the frequency. 579 */ 580 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 581 } 582 583 return LATENCY_MULTIPLIER; 584 } 585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 586 587 /********************************************************************* 588 * SYSFS INTERFACE * 589 *********************************************************************/ 590 static ssize_t show_boost(struct kobject *kobj, 591 struct kobj_attribute *attr, char *buf) 592 { 593 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 594 } 595 596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 597 const char *buf, size_t count) 598 { 599 int ret, enable; 600 601 ret = sscanf(buf, "%d", &enable); 602 if (ret != 1 || enable < 0 || enable > 1) 603 return -EINVAL; 604 605 if (cpufreq_boost_trigger_state(enable)) { 606 pr_err("%s: Cannot %s BOOST!\n", 607 __func__, enable ? "enable" : "disable"); 608 return -EINVAL; 609 } 610 611 pr_debug("%s: cpufreq BOOST %s\n", 612 __func__, enable ? "enabled" : "disabled"); 613 614 return count; 615 } 616 define_one_global_rw(boost); 617 618 static struct cpufreq_governor *find_governor(const char *str_governor) 619 { 620 struct cpufreq_governor *t; 621 622 for_each_governor(t) 623 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 624 return t; 625 626 return NULL; 627 } 628 629 static struct cpufreq_governor *get_governor(const char *str_governor) 630 { 631 struct cpufreq_governor *t; 632 633 mutex_lock(&cpufreq_governor_mutex); 634 t = find_governor(str_governor); 635 if (!t) 636 goto unlock; 637 638 if (!try_module_get(t->owner)) 639 t = NULL; 640 641 unlock: 642 mutex_unlock(&cpufreq_governor_mutex); 643 644 return t; 645 } 646 647 static unsigned int cpufreq_parse_policy(char *str_governor) 648 { 649 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 650 return CPUFREQ_POLICY_PERFORMANCE; 651 652 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 653 return CPUFREQ_POLICY_POWERSAVE; 654 655 return CPUFREQ_POLICY_UNKNOWN; 656 } 657 658 /** 659 * cpufreq_parse_governor - parse a governor string only for has_target() 660 * @str_governor: Governor name. 661 */ 662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 663 { 664 struct cpufreq_governor *t; 665 666 t = get_governor(str_governor); 667 if (t) 668 return t; 669 670 if (request_module("cpufreq_%s", str_governor)) 671 return NULL; 672 673 return get_governor(str_governor); 674 } 675 676 /* 677 * cpufreq_per_cpu_attr_read() / show_##file_name() - 678 * print out cpufreq information 679 * 680 * Write out information from cpufreq_driver->policy[cpu]; object must be 681 * "unsigned int". 682 */ 683 684 #define show_one(file_name, object) \ 685 static ssize_t show_##file_name \ 686 (struct cpufreq_policy *policy, char *buf) \ 687 { \ 688 return sprintf(buf, "%u\n", policy->object); \ 689 } 690 691 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 692 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 694 show_one(scaling_min_freq, min); 695 show_one(scaling_max_freq, max); 696 697 __weak unsigned int arch_freq_get_on_cpu(int cpu) 698 { 699 return 0; 700 } 701 702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 703 { 704 ssize_t ret; 705 unsigned int freq; 706 707 freq = arch_freq_get_on_cpu(policy->cpu); 708 if (freq) 709 ret = sprintf(buf, "%u\n", freq); 710 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 711 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 712 else 713 ret = sprintf(buf, "%u\n", policy->cur); 714 return ret; 715 } 716 717 /* 718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 719 */ 720 #define store_one(file_name, object) \ 721 static ssize_t store_##file_name \ 722 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 723 { \ 724 unsigned long val; \ 725 int ret; \ 726 \ 727 ret = sscanf(buf, "%lu", &val); \ 728 if (ret != 1) \ 729 return -EINVAL; \ 730 \ 731 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 732 return ret >= 0 ? count : ret; \ 733 } 734 735 store_one(scaling_min_freq, min); 736 store_one(scaling_max_freq, max); 737 738 /* 739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 740 */ 741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 742 char *buf) 743 { 744 unsigned int cur_freq = __cpufreq_get(policy); 745 746 if (cur_freq) 747 return sprintf(buf, "%u\n", cur_freq); 748 749 return sprintf(buf, "<unknown>\n"); 750 } 751 752 /* 753 * show_scaling_governor - show the current policy for the specified CPU 754 */ 755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 756 { 757 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 758 return sprintf(buf, "powersave\n"); 759 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 760 return sprintf(buf, "performance\n"); 761 else if (policy->governor) 762 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 763 policy->governor->name); 764 return -EINVAL; 765 } 766 767 /* 768 * store_scaling_governor - store policy for the specified CPU 769 */ 770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 771 const char *buf, size_t count) 772 { 773 char str_governor[16]; 774 int ret; 775 776 ret = sscanf(buf, "%15s", str_governor); 777 if (ret != 1) 778 return -EINVAL; 779 780 if (cpufreq_driver->setpolicy) { 781 unsigned int new_pol; 782 783 new_pol = cpufreq_parse_policy(str_governor); 784 if (!new_pol) 785 return -EINVAL; 786 787 ret = cpufreq_set_policy(policy, NULL, new_pol); 788 } else { 789 struct cpufreq_governor *new_gov; 790 791 new_gov = cpufreq_parse_governor(str_governor); 792 if (!new_gov) 793 return -EINVAL; 794 795 ret = cpufreq_set_policy(policy, new_gov, 796 CPUFREQ_POLICY_UNKNOWN); 797 798 module_put(new_gov->owner); 799 } 800 801 return ret ? ret : count; 802 } 803 804 /* 805 * show_scaling_driver - show the cpufreq driver currently loaded 806 */ 807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 808 { 809 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 810 } 811 812 /* 813 * show_scaling_available_governors - show the available CPUfreq governors 814 */ 815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 816 char *buf) 817 { 818 ssize_t i = 0; 819 struct cpufreq_governor *t; 820 821 if (!has_target()) { 822 i += sprintf(buf, "performance powersave"); 823 goto out; 824 } 825 826 mutex_lock(&cpufreq_governor_mutex); 827 for_each_governor(t) { 828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 829 - (CPUFREQ_NAME_LEN + 2))) 830 break; 831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 832 } 833 mutex_unlock(&cpufreq_governor_mutex); 834 out: 835 i += sprintf(&buf[i], "\n"); 836 return i; 837 } 838 839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 840 { 841 ssize_t i = 0; 842 unsigned int cpu; 843 844 for_each_cpu(cpu, mask) { 845 if (i) 846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 848 if (i >= (PAGE_SIZE - 5)) 849 break; 850 } 851 i += sprintf(&buf[i], "\n"); 852 return i; 853 } 854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 855 856 /* 857 * show_related_cpus - show the CPUs affected by each transition even if 858 * hw coordination is in use 859 */ 860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 861 { 862 return cpufreq_show_cpus(policy->related_cpus, buf); 863 } 864 865 /* 866 * show_affected_cpus - show the CPUs affected by each transition 867 */ 868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 869 { 870 return cpufreq_show_cpus(policy->cpus, buf); 871 } 872 873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 874 const char *buf, size_t count) 875 { 876 unsigned int freq = 0; 877 unsigned int ret; 878 879 if (!policy->governor || !policy->governor->store_setspeed) 880 return -EINVAL; 881 882 ret = sscanf(buf, "%u", &freq); 883 if (ret != 1) 884 return -EINVAL; 885 886 policy->governor->store_setspeed(policy, freq); 887 888 return count; 889 } 890 891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 892 { 893 if (!policy->governor || !policy->governor->show_setspeed) 894 return sprintf(buf, "<unsupported>\n"); 895 896 return policy->governor->show_setspeed(policy, buf); 897 } 898 899 /* 900 * show_bios_limit - show the current cpufreq HW/BIOS limitation 901 */ 902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 903 { 904 unsigned int limit; 905 int ret; 906 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 907 if (!ret) 908 return sprintf(buf, "%u\n", limit); 909 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 910 } 911 912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 913 cpufreq_freq_attr_ro(cpuinfo_min_freq); 914 cpufreq_freq_attr_ro(cpuinfo_max_freq); 915 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 916 cpufreq_freq_attr_ro(scaling_available_governors); 917 cpufreq_freq_attr_ro(scaling_driver); 918 cpufreq_freq_attr_ro(scaling_cur_freq); 919 cpufreq_freq_attr_ro(bios_limit); 920 cpufreq_freq_attr_ro(related_cpus); 921 cpufreq_freq_attr_ro(affected_cpus); 922 cpufreq_freq_attr_rw(scaling_min_freq); 923 cpufreq_freq_attr_rw(scaling_max_freq); 924 cpufreq_freq_attr_rw(scaling_governor); 925 cpufreq_freq_attr_rw(scaling_setspeed); 926 927 static struct attribute *default_attrs[] = { 928 &cpuinfo_min_freq.attr, 929 &cpuinfo_max_freq.attr, 930 &cpuinfo_transition_latency.attr, 931 &scaling_min_freq.attr, 932 &scaling_max_freq.attr, 933 &affected_cpus.attr, 934 &related_cpus.attr, 935 &scaling_governor.attr, 936 &scaling_driver.attr, 937 &scaling_available_governors.attr, 938 &scaling_setspeed.attr, 939 NULL 940 }; 941 942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 943 #define to_attr(a) container_of(a, struct freq_attr, attr) 944 945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 946 { 947 struct cpufreq_policy *policy = to_policy(kobj); 948 struct freq_attr *fattr = to_attr(attr); 949 ssize_t ret; 950 951 if (!fattr->show) 952 return -EIO; 953 954 down_read(&policy->rwsem); 955 ret = fattr->show(policy, buf); 956 up_read(&policy->rwsem); 957 958 return ret; 959 } 960 961 static ssize_t store(struct kobject *kobj, struct attribute *attr, 962 const char *buf, size_t count) 963 { 964 struct cpufreq_policy *policy = to_policy(kobj); 965 struct freq_attr *fattr = to_attr(attr); 966 ssize_t ret = -EINVAL; 967 968 if (!fattr->store) 969 return -EIO; 970 971 /* 972 * cpus_read_trylock() is used here to work around a circular lock 973 * dependency problem with respect to the cpufreq_register_driver(). 974 */ 975 if (!cpus_read_trylock()) 976 return -EBUSY; 977 978 if (cpu_online(policy->cpu)) { 979 down_write(&policy->rwsem); 980 ret = fattr->store(policy, buf, count); 981 up_write(&policy->rwsem); 982 } 983 984 cpus_read_unlock(); 985 986 return ret; 987 } 988 989 static void cpufreq_sysfs_release(struct kobject *kobj) 990 { 991 struct cpufreq_policy *policy = to_policy(kobj); 992 pr_debug("last reference is dropped\n"); 993 complete(&policy->kobj_unregister); 994 } 995 996 static const struct sysfs_ops sysfs_ops = { 997 .show = show, 998 .store = store, 999 }; 1000 1001 static struct kobj_type ktype_cpufreq = { 1002 .sysfs_ops = &sysfs_ops, 1003 .default_attrs = default_attrs, 1004 .release = cpufreq_sysfs_release, 1005 }; 1006 1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1008 { 1009 struct device *dev = get_cpu_device(cpu); 1010 1011 if (unlikely(!dev)) 1012 return; 1013 1014 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1015 return; 1016 1017 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1018 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1019 dev_err(dev, "cpufreq symlink creation failed\n"); 1020 } 1021 1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1023 struct device *dev) 1024 { 1025 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1026 sysfs_remove_link(&dev->kobj, "cpufreq"); 1027 } 1028 1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1030 { 1031 struct freq_attr **drv_attr; 1032 int ret = 0; 1033 1034 /* set up files for this cpu device */ 1035 drv_attr = cpufreq_driver->attr; 1036 while (drv_attr && *drv_attr) { 1037 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1038 if (ret) 1039 return ret; 1040 drv_attr++; 1041 } 1042 if (cpufreq_driver->get) { 1043 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1049 if (ret) 1050 return ret; 1051 1052 if (cpufreq_driver->bios_limit) { 1053 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1054 if (ret) 1055 return ret; 1056 } 1057 1058 return 0; 1059 } 1060 1061 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1062 { 1063 struct cpufreq_governor *gov = NULL; 1064 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1065 int ret; 1066 1067 if (has_target()) { 1068 /* Update policy governor to the one used before hotplug. */ 1069 gov = get_governor(policy->last_governor); 1070 if (gov) { 1071 pr_debug("Restoring governor %s for cpu %d\n", 1072 gov->name, policy->cpu); 1073 } else { 1074 gov = get_governor(default_governor); 1075 } 1076 1077 if (!gov) { 1078 gov = cpufreq_default_governor(); 1079 __module_get(gov->owner); 1080 } 1081 1082 } else { 1083 1084 /* Use the default policy if there is no last_policy. */ 1085 if (policy->last_policy) { 1086 pol = policy->last_policy; 1087 } else { 1088 pol = cpufreq_parse_policy(default_governor); 1089 /* 1090 * In case the default governor is neither "performance" 1091 * nor "powersave", fall back to the initial policy 1092 * value set by the driver. 1093 */ 1094 if (pol == CPUFREQ_POLICY_UNKNOWN) 1095 pol = policy->policy; 1096 } 1097 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1098 pol != CPUFREQ_POLICY_POWERSAVE) 1099 return -ENODATA; 1100 } 1101 1102 ret = cpufreq_set_policy(policy, gov, pol); 1103 if (gov) 1104 module_put(gov->owner); 1105 1106 return ret; 1107 } 1108 1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1110 { 1111 int ret = 0; 1112 1113 /* Has this CPU been taken care of already? */ 1114 if (cpumask_test_cpu(cpu, policy->cpus)) 1115 return 0; 1116 1117 down_write(&policy->rwsem); 1118 if (has_target()) 1119 cpufreq_stop_governor(policy); 1120 1121 cpumask_set_cpu(cpu, policy->cpus); 1122 1123 if (has_target()) { 1124 ret = cpufreq_start_governor(policy); 1125 if (ret) 1126 pr_err("%s: Failed to start governor\n", __func__); 1127 } 1128 up_write(&policy->rwsem); 1129 return ret; 1130 } 1131 1132 void refresh_frequency_limits(struct cpufreq_policy *policy) 1133 { 1134 if (!policy_is_inactive(policy)) { 1135 pr_debug("updating policy for CPU %u\n", policy->cpu); 1136 1137 cpufreq_set_policy(policy, policy->governor, policy->policy); 1138 } 1139 } 1140 EXPORT_SYMBOL(refresh_frequency_limits); 1141 1142 static void handle_update(struct work_struct *work) 1143 { 1144 struct cpufreq_policy *policy = 1145 container_of(work, struct cpufreq_policy, update); 1146 1147 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1148 down_write(&policy->rwsem); 1149 refresh_frequency_limits(policy); 1150 up_write(&policy->rwsem); 1151 } 1152 1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1154 void *data) 1155 { 1156 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1157 1158 schedule_work(&policy->update); 1159 return 0; 1160 } 1161 1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1163 void *data) 1164 { 1165 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1166 1167 schedule_work(&policy->update); 1168 return 0; 1169 } 1170 1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1172 { 1173 struct kobject *kobj; 1174 struct completion *cmp; 1175 1176 down_write(&policy->rwsem); 1177 cpufreq_stats_free_table(policy); 1178 kobj = &policy->kobj; 1179 cmp = &policy->kobj_unregister; 1180 up_write(&policy->rwsem); 1181 kobject_put(kobj); 1182 1183 /* 1184 * We need to make sure that the underlying kobj is 1185 * actually not referenced anymore by anybody before we 1186 * proceed with unloading. 1187 */ 1188 pr_debug("waiting for dropping of refcount\n"); 1189 wait_for_completion(cmp); 1190 pr_debug("wait complete\n"); 1191 } 1192 1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1194 { 1195 struct cpufreq_policy *policy; 1196 struct device *dev = get_cpu_device(cpu); 1197 int ret; 1198 1199 if (!dev) 1200 return NULL; 1201 1202 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1203 if (!policy) 1204 return NULL; 1205 1206 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1207 goto err_free_policy; 1208 1209 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1210 goto err_free_cpumask; 1211 1212 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1213 goto err_free_rcpumask; 1214 1215 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1216 cpufreq_global_kobject, "policy%u", cpu); 1217 if (ret) { 1218 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1219 /* 1220 * The entire policy object will be freed below, but the extra 1221 * memory allocated for the kobject name needs to be freed by 1222 * releasing the kobject. 1223 */ 1224 kobject_put(&policy->kobj); 1225 goto err_free_real_cpus; 1226 } 1227 1228 freq_constraints_init(&policy->constraints); 1229 1230 policy->nb_min.notifier_call = cpufreq_notifier_min; 1231 policy->nb_max.notifier_call = cpufreq_notifier_max; 1232 1233 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1234 &policy->nb_min); 1235 if (ret) { 1236 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1237 ret, cpumask_pr_args(policy->cpus)); 1238 goto err_kobj_remove; 1239 } 1240 1241 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1242 &policy->nb_max); 1243 if (ret) { 1244 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1245 ret, cpumask_pr_args(policy->cpus)); 1246 goto err_min_qos_notifier; 1247 } 1248 1249 INIT_LIST_HEAD(&policy->policy_list); 1250 init_rwsem(&policy->rwsem); 1251 spin_lock_init(&policy->transition_lock); 1252 init_waitqueue_head(&policy->transition_wait); 1253 init_completion(&policy->kobj_unregister); 1254 INIT_WORK(&policy->update, handle_update); 1255 1256 policy->cpu = cpu; 1257 return policy; 1258 1259 err_min_qos_notifier: 1260 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1261 &policy->nb_min); 1262 err_kobj_remove: 1263 cpufreq_policy_put_kobj(policy); 1264 err_free_real_cpus: 1265 free_cpumask_var(policy->real_cpus); 1266 err_free_rcpumask: 1267 free_cpumask_var(policy->related_cpus); 1268 err_free_cpumask: 1269 free_cpumask_var(policy->cpus); 1270 err_free_policy: 1271 kfree(policy); 1272 1273 return NULL; 1274 } 1275 1276 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1277 { 1278 unsigned long flags; 1279 int cpu; 1280 1281 /* Remove policy from list */ 1282 write_lock_irqsave(&cpufreq_driver_lock, flags); 1283 list_del(&policy->policy_list); 1284 1285 for_each_cpu(cpu, policy->related_cpus) 1286 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1287 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1288 1289 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1290 &policy->nb_max); 1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1292 &policy->nb_min); 1293 1294 /* Cancel any pending policy->update work before freeing the policy. */ 1295 cancel_work_sync(&policy->update); 1296 1297 if (policy->max_freq_req) { 1298 /* 1299 * CPUFREQ_CREATE_POLICY notification is sent only after 1300 * successfully adding max_freq_req request. 1301 */ 1302 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1303 CPUFREQ_REMOVE_POLICY, policy); 1304 freq_qos_remove_request(policy->max_freq_req); 1305 } 1306 1307 freq_qos_remove_request(policy->min_freq_req); 1308 kfree(policy->min_freq_req); 1309 1310 cpufreq_policy_put_kobj(policy); 1311 free_cpumask_var(policy->real_cpus); 1312 free_cpumask_var(policy->related_cpus); 1313 free_cpumask_var(policy->cpus); 1314 kfree(policy); 1315 } 1316 1317 static int cpufreq_online(unsigned int cpu) 1318 { 1319 struct cpufreq_policy *policy; 1320 bool new_policy; 1321 unsigned long flags; 1322 unsigned int j; 1323 int ret; 1324 1325 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1326 1327 /* Check if this CPU already has a policy to manage it */ 1328 policy = per_cpu(cpufreq_cpu_data, cpu); 1329 if (policy) { 1330 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1331 if (!policy_is_inactive(policy)) 1332 return cpufreq_add_policy_cpu(policy, cpu); 1333 1334 /* This is the only online CPU for the policy. Start over. */ 1335 new_policy = false; 1336 down_write(&policy->rwsem); 1337 policy->cpu = cpu; 1338 policy->governor = NULL; 1339 up_write(&policy->rwsem); 1340 } else { 1341 new_policy = true; 1342 policy = cpufreq_policy_alloc(cpu); 1343 if (!policy) 1344 return -ENOMEM; 1345 } 1346 1347 if (!new_policy && cpufreq_driver->online) { 1348 ret = cpufreq_driver->online(policy); 1349 if (ret) { 1350 pr_debug("%s: %d: initialization failed\n", __func__, 1351 __LINE__); 1352 goto out_exit_policy; 1353 } 1354 1355 /* Recover policy->cpus using related_cpus */ 1356 cpumask_copy(policy->cpus, policy->related_cpus); 1357 } else { 1358 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1359 1360 /* 1361 * Call driver. From then on the cpufreq must be able 1362 * to accept all calls to ->verify and ->setpolicy for this CPU. 1363 */ 1364 ret = cpufreq_driver->init(policy); 1365 if (ret) { 1366 pr_debug("%s: %d: initialization failed\n", __func__, 1367 __LINE__); 1368 goto out_free_policy; 1369 } 1370 1371 /* 1372 * The initialization has succeeded and the policy is online. 1373 * If there is a problem with its frequency table, take it 1374 * offline and drop it. 1375 */ 1376 ret = cpufreq_table_validate_and_sort(policy); 1377 if (ret) 1378 goto out_offline_policy; 1379 1380 /* related_cpus should at least include policy->cpus. */ 1381 cpumask_copy(policy->related_cpus, policy->cpus); 1382 } 1383 1384 down_write(&policy->rwsem); 1385 /* 1386 * affected cpus must always be the one, which are online. We aren't 1387 * managing offline cpus here. 1388 */ 1389 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1390 1391 if (new_policy) { 1392 for_each_cpu(j, policy->related_cpus) { 1393 per_cpu(cpufreq_cpu_data, j) = policy; 1394 add_cpu_dev_symlink(policy, j); 1395 } 1396 1397 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1398 GFP_KERNEL); 1399 if (!policy->min_freq_req) { 1400 ret = -ENOMEM; 1401 goto out_destroy_policy; 1402 } 1403 1404 ret = freq_qos_add_request(&policy->constraints, 1405 policy->min_freq_req, FREQ_QOS_MIN, 1406 policy->min); 1407 if (ret < 0) { 1408 /* 1409 * So we don't call freq_qos_remove_request() for an 1410 * uninitialized request. 1411 */ 1412 kfree(policy->min_freq_req); 1413 policy->min_freq_req = NULL; 1414 goto out_destroy_policy; 1415 } 1416 1417 /* 1418 * This must be initialized right here to avoid calling 1419 * freq_qos_remove_request() on uninitialized request in case 1420 * of errors. 1421 */ 1422 policy->max_freq_req = policy->min_freq_req + 1; 1423 1424 ret = freq_qos_add_request(&policy->constraints, 1425 policy->max_freq_req, FREQ_QOS_MAX, 1426 policy->max); 1427 if (ret < 0) { 1428 policy->max_freq_req = NULL; 1429 goto out_destroy_policy; 1430 } 1431 1432 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1433 CPUFREQ_CREATE_POLICY, policy); 1434 } 1435 1436 if (cpufreq_driver->get && has_target()) { 1437 policy->cur = cpufreq_driver->get(policy->cpu); 1438 if (!policy->cur) { 1439 ret = -EIO; 1440 pr_err("%s: ->get() failed\n", __func__); 1441 goto out_destroy_policy; 1442 } 1443 } 1444 1445 /* 1446 * Sometimes boot loaders set CPU frequency to a value outside of 1447 * frequency table present with cpufreq core. In such cases CPU might be 1448 * unstable if it has to run on that frequency for long duration of time 1449 * and so its better to set it to a frequency which is specified in 1450 * freq-table. This also makes cpufreq stats inconsistent as 1451 * cpufreq-stats would fail to register because current frequency of CPU 1452 * isn't found in freq-table. 1453 * 1454 * Because we don't want this change to effect boot process badly, we go 1455 * for the next freq which is >= policy->cur ('cur' must be set by now, 1456 * otherwise we will end up setting freq to lowest of the table as 'cur' 1457 * is initialized to zero). 1458 * 1459 * We are passing target-freq as "policy->cur - 1" otherwise 1460 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1461 * equal to target-freq. 1462 */ 1463 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1464 && has_target()) { 1465 unsigned int old_freq = policy->cur; 1466 1467 /* Are we running at unknown frequency ? */ 1468 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1469 if (ret == -EINVAL) { 1470 ret = __cpufreq_driver_target(policy, old_freq - 1, 1471 CPUFREQ_RELATION_L); 1472 1473 /* 1474 * Reaching here after boot in a few seconds may not 1475 * mean that system will remain stable at "unknown" 1476 * frequency for longer duration. Hence, a BUG_ON(). 1477 */ 1478 BUG_ON(ret); 1479 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1480 __func__, policy->cpu, old_freq, policy->cur); 1481 } 1482 } 1483 1484 if (new_policy) { 1485 ret = cpufreq_add_dev_interface(policy); 1486 if (ret) 1487 goto out_destroy_policy; 1488 1489 cpufreq_stats_create_table(policy); 1490 1491 write_lock_irqsave(&cpufreq_driver_lock, flags); 1492 list_add(&policy->policy_list, &cpufreq_policy_list); 1493 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1494 } 1495 1496 ret = cpufreq_init_policy(policy); 1497 if (ret) { 1498 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1499 __func__, cpu, ret); 1500 goto out_destroy_policy; 1501 } 1502 1503 up_write(&policy->rwsem); 1504 1505 kobject_uevent(&policy->kobj, KOBJ_ADD); 1506 1507 /* Callback for handling stuff after policy is ready */ 1508 if (cpufreq_driver->ready) 1509 cpufreq_driver->ready(policy); 1510 1511 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1512 policy->cdev = of_cpufreq_cooling_register(policy); 1513 1514 pr_debug("initialization complete\n"); 1515 1516 return 0; 1517 1518 out_destroy_policy: 1519 for_each_cpu(j, policy->real_cpus) 1520 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1521 1522 up_write(&policy->rwsem); 1523 1524 out_offline_policy: 1525 if (cpufreq_driver->offline) 1526 cpufreq_driver->offline(policy); 1527 1528 out_exit_policy: 1529 if (cpufreq_driver->exit) 1530 cpufreq_driver->exit(policy); 1531 1532 out_free_policy: 1533 cpufreq_policy_free(policy); 1534 return ret; 1535 } 1536 1537 /** 1538 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1539 * @dev: CPU device. 1540 * @sif: Subsystem interface structure pointer (not used) 1541 */ 1542 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1543 { 1544 struct cpufreq_policy *policy; 1545 unsigned cpu = dev->id; 1546 int ret; 1547 1548 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1549 1550 if (cpu_online(cpu)) { 1551 ret = cpufreq_online(cpu); 1552 if (ret) 1553 return ret; 1554 } 1555 1556 /* Create sysfs link on CPU registration */ 1557 policy = per_cpu(cpufreq_cpu_data, cpu); 1558 if (policy) 1559 add_cpu_dev_symlink(policy, cpu); 1560 1561 return 0; 1562 } 1563 1564 static int cpufreq_offline(unsigned int cpu) 1565 { 1566 struct cpufreq_policy *policy; 1567 int ret; 1568 1569 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1570 1571 policy = cpufreq_cpu_get_raw(cpu); 1572 if (!policy) { 1573 pr_debug("%s: No cpu_data found\n", __func__); 1574 return 0; 1575 } 1576 1577 down_write(&policy->rwsem); 1578 if (has_target()) 1579 cpufreq_stop_governor(policy); 1580 1581 cpumask_clear_cpu(cpu, policy->cpus); 1582 1583 if (policy_is_inactive(policy)) { 1584 if (has_target()) 1585 strncpy(policy->last_governor, policy->governor->name, 1586 CPUFREQ_NAME_LEN); 1587 else 1588 policy->last_policy = policy->policy; 1589 } else if (cpu == policy->cpu) { 1590 /* Nominate new CPU */ 1591 policy->cpu = cpumask_any(policy->cpus); 1592 } 1593 1594 /* Start governor again for active policy */ 1595 if (!policy_is_inactive(policy)) { 1596 if (has_target()) { 1597 ret = cpufreq_start_governor(policy); 1598 if (ret) 1599 pr_err("%s: Failed to start governor\n", __func__); 1600 } 1601 1602 goto unlock; 1603 } 1604 1605 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1606 cpufreq_cooling_unregister(policy->cdev); 1607 policy->cdev = NULL; 1608 } 1609 1610 if (has_target()) 1611 cpufreq_exit_governor(policy); 1612 1613 /* 1614 * Perform the ->offline() during light-weight tear-down, as 1615 * that allows fast recovery when the CPU comes back. 1616 */ 1617 if (cpufreq_driver->offline) { 1618 cpufreq_driver->offline(policy); 1619 } else if (cpufreq_driver->exit) { 1620 cpufreq_driver->exit(policy); 1621 policy->freq_table = NULL; 1622 } 1623 1624 unlock: 1625 up_write(&policy->rwsem); 1626 return 0; 1627 } 1628 1629 /* 1630 * cpufreq_remove_dev - remove a CPU device 1631 * 1632 * Removes the cpufreq interface for a CPU device. 1633 */ 1634 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1635 { 1636 unsigned int cpu = dev->id; 1637 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1638 1639 if (!policy) 1640 return; 1641 1642 if (cpu_online(cpu)) 1643 cpufreq_offline(cpu); 1644 1645 cpumask_clear_cpu(cpu, policy->real_cpus); 1646 remove_cpu_dev_symlink(policy, dev); 1647 1648 if (cpumask_empty(policy->real_cpus)) { 1649 /* We did light-weight exit earlier, do full tear down now */ 1650 if (cpufreq_driver->offline) 1651 cpufreq_driver->exit(policy); 1652 1653 cpufreq_policy_free(policy); 1654 } 1655 } 1656 1657 /** 1658 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1659 * @policy: Policy managing CPUs. 1660 * @new_freq: New CPU frequency. 1661 * 1662 * Adjust to the current frequency first and clean up later by either calling 1663 * cpufreq_update_policy(), or scheduling handle_update(). 1664 */ 1665 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1666 unsigned int new_freq) 1667 { 1668 struct cpufreq_freqs freqs; 1669 1670 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1671 policy->cur, new_freq); 1672 1673 freqs.old = policy->cur; 1674 freqs.new = new_freq; 1675 1676 cpufreq_freq_transition_begin(policy, &freqs); 1677 cpufreq_freq_transition_end(policy, &freqs, 0); 1678 } 1679 1680 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1681 { 1682 unsigned int new_freq; 1683 1684 new_freq = cpufreq_driver->get(policy->cpu); 1685 if (!new_freq) 1686 return 0; 1687 1688 /* 1689 * If fast frequency switching is used with the given policy, the check 1690 * against policy->cur is pointless, so skip it in that case. 1691 */ 1692 if (policy->fast_switch_enabled || !has_target()) 1693 return new_freq; 1694 1695 if (policy->cur != new_freq) { 1696 cpufreq_out_of_sync(policy, new_freq); 1697 if (update) 1698 schedule_work(&policy->update); 1699 } 1700 1701 return new_freq; 1702 } 1703 1704 /** 1705 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1706 * @cpu: CPU number 1707 * 1708 * This is the last known freq, without actually getting it from the driver. 1709 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1710 */ 1711 unsigned int cpufreq_quick_get(unsigned int cpu) 1712 { 1713 struct cpufreq_policy *policy; 1714 unsigned int ret_freq = 0; 1715 unsigned long flags; 1716 1717 read_lock_irqsave(&cpufreq_driver_lock, flags); 1718 1719 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1720 ret_freq = cpufreq_driver->get(cpu); 1721 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1722 return ret_freq; 1723 } 1724 1725 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1726 1727 policy = cpufreq_cpu_get(cpu); 1728 if (policy) { 1729 ret_freq = policy->cur; 1730 cpufreq_cpu_put(policy); 1731 } 1732 1733 return ret_freq; 1734 } 1735 EXPORT_SYMBOL(cpufreq_quick_get); 1736 1737 /** 1738 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1739 * @cpu: CPU number 1740 * 1741 * Just return the max possible frequency for a given CPU. 1742 */ 1743 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1744 { 1745 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1746 unsigned int ret_freq = 0; 1747 1748 if (policy) { 1749 ret_freq = policy->max; 1750 cpufreq_cpu_put(policy); 1751 } 1752 1753 return ret_freq; 1754 } 1755 EXPORT_SYMBOL(cpufreq_quick_get_max); 1756 1757 /** 1758 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1759 * @cpu: CPU number 1760 * 1761 * The default return value is the max_freq field of cpuinfo. 1762 */ 1763 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1764 { 1765 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1766 unsigned int ret_freq = 0; 1767 1768 if (policy) { 1769 ret_freq = policy->cpuinfo.max_freq; 1770 cpufreq_cpu_put(policy); 1771 } 1772 1773 return ret_freq; 1774 } 1775 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1776 1777 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1778 { 1779 if (unlikely(policy_is_inactive(policy))) 1780 return 0; 1781 1782 return cpufreq_verify_current_freq(policy, true); 1783 } 1784 1785 /** 1786 * cpufreq_get - get the current CPU frequency (in kHz) 1787 * @cpu: CPU number 1788 * 1789 * Get the CPU current (static) CPU frequency 1790 */ 1791 unsigned int cpufreq_get(unsigned int cpu) 1792 { 1793 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1794 unsigned int ret_freq = 0; 1795 1796 if (policy) { 1797 down_read(&policy->rwsem); 1798 if (cpufreq_driver->get) 1799 ret_freq = __cpufreq_get(policy); 1800 up_read(&policy->rwsem); 1801 1802 cpufreq_cpu_put(policy); 1803 } 1804 1805 return ret_freq; 1806 } 1807 EXPORT_SYMBOL(cpufreq_get); 1808 1809 static struct subsys_interface cpufreq_interface = { 1810 .name = "cpufreq", 1811 .subsys = &cpu_subsys, 1812 .add_dev = cpufreq_add_dev, 1813 .remove_dev = cpufreq_remove_dev, 1814 }; 1815 1816 /* 1817 * In case platform wants some specific frequency to be configured 1818 * during suspend.. 1819 */ 1820 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1821 { 1822 int ret; 1823 1824 if (!policy->suspend_freq) { 1825 pr_debug("%s: suspend_freq not defined\n", __func__); 1826 return 0; 1827 } 1828 1829 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1830 policy->suspend_freq); 1831 1832 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1833 CPUFREQ_RELATION_H); 1834 if (ret) 1835 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1836 __func__, policy->suspend_freq, ret); 1837 1838 return ret; 1839 } 1840 EXPORT_SYMBOL(cpufreq_generic_suspend); 1841 1842 /** 1843 * cpufreq_suspend() - Suspend CPUFreq governors. 1844 * 1845 * Called during system wide Suspend/Hibernate cycles for suspending governors 1846 * as some platforms can't change frequency after this point in suspend cycle. 1847 * Because some of the devices (like: i2c, regulators, etc) they use for 1848 * changing frequency are suspended quickly after this point. 1849 */ 1850 void cpufreq_suspend(void) 1851 { 1852 struct cpufreq_policy *policy; 1853 1854 if (!cpufreq_driver) 1855 return; 1856 1857 if (!has_target() && !cpufreq_driver->suspend) 1858 goto suspend; 1859 1860 pr_debug("%s: Suspending Governors\n", __func__); 1861 1862 for_each_active_policy(policy) { 1863 if (has_target()) { 1864 down_write(&policy->rwsem); 1865 cpufreq_stop_governor(policy); 1866 up_write(&policy->rwsem); 1867 } 1868 1869 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1870 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1871 cpufreq_driver->name); 1872 } 1873 1874 suspend: 1875 cpufreq_suspended = true; 1876 } 1877 1878 /** 1879 * cpufreq_resume() - Resume CPUFreq governors. 1880 * 1881 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1882 * are suspended with cpufreq_suspend(). 1883 */ 1884 void cpufreq_resume(void) 1885 { 1886 struct cpufreq_policy *policy; 1887 int ret; 1888 1889 if (!cpufreq_driver) 1890 return; 1891 1892 if (unlikely(!cpufreq_suspended)) 1893 return; 1894 1895 cpufreq_suspended = false; 1896 1897 if (!has_target() && !cpufreq_driver->resume) 1898 return; 1899 1900 pr_debug("%s: Resuming Governors\n", __func__); 1901 1902 for_each_active_policy(policy) { 1903 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1904 pr_err("%s: Failed to resume driver: %p\n", __func__, 1905 policy); 1906 } else if (has_target()) { 1907 down_write(&policy->rwsem); 1908 ret = cpufreq_start_governor(policy); 1909 up_write(&policy->rwsem); 1910 1911 if (ret) 1912 pr_err("%s: Failed to start governor for policy: %p\n", 1913 __func__, policy); 1914 } 1915 } 1916 } 1917 1918 /** 1919 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1920 * @flags: Flags to test against the current cpufreq driver's flags. 1921 * 1922 * Assumes that the driver is there, so callers must ensure that this is the 1923 * case. 1924 */ 1925 bool cpufreq_driver_test_flags(u16 flags) 1926 { 1927 return !!(cpufreq_driver->flags & flags); 1928 } 1929 1930 /** 1931 * cpufreq_get_current_driver - Return the current driver's name. 1932 * 1933 * Return the name string of the currently registered cpufreq driver or NULL if 1934 * none. 1935 */ 1936 const char *cpufreq_get_current_driver(void) 1937 { 1938 if (cpufreq_driver) 1939 return cpufreq_driver->name; 1940 1941 return NULL; 1942 } 1943 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1944 1945 /** 1946 * cpufreq_get_driver_data - Return current driver data. 1947 * 1948 * Return the private data of the currently registered cpufreq driver, or NULL 1949 * if no cpufreq driver has been registered. 1950 */ 1951 void *cpufreq_get_driver_data(void) 1952 { 1953 if (cpufreq_driver) 1954 return cpufreq_driver->driver_data; 1955 1956 return NULL; 1957 } 1958 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1959 1960 /********************************************************************* 1961 * NOTIFIER LISTS INTERFACE * 1962 *********************************************************************/ 1963 1964 /** 1965 * cpufreq_register_notifier - Register a notifier with cpufreq. 1966 * @nb: notifier function to register. 1967 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 1968 * 1969 * Add a notifier to one of two lists: either a list of notifiers that run on 1970 * clock rate changes (once before and once after every transition), or a list 1971 * of notifiers that ron on cpufreq policy changes. 1972 * 1973 * This function may sleep and it has the same return values as 1974 * blocking_notifier_chain_register(). 1975 */ 1976 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1977 { 1978 int ret; 1979 1980 if (cpufreq_disabled()) 1981 return -EINVAL; 1982 1983 switch (list) { 1984 case CPUFREQ_TRANSITION_NOTIFIER: 1985 mutex_lock(&cpufreq_fast_switch_lock); 1986 1987 if (cpufreq_fast_switch_count > 0) { 1988 mutex_unlock(&cpufreq_fast_switch_lock); 1989 return -EBUSY; 1990 } 1991 ret = srcu_notifier_chain_register( 1992 &cpufreq_transition_notifier_list, nb); 1993 if (!ret) 1994 cpufreq_fast_switch_count--; 1995 1996 mutex_unlock(&cpufreq_fast_switch_lock); 1997 break; 1998 case CPUFREQ_POLICY_NOTIFIER: 1999 ret = blocking_notifier_chain_register( 2000 &cpufreq_policy_notifier_list, nb); 2001 break; 2002 default: 2003 ret = -EINVAL; 2004 } 2005 2006 return ret; 2007 } 2008 EXPORT_SYMBOL(cpufreq_register_notifier); 2009 2010 /** 2011 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2012 * @nb: notifier block to be unregistered. 2013 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2014 * 2015 * Remove a notifier from one of the cpufreq notifier lists. 2016 * 2017 * This function may sleep and it has the same return values as 2018 * blocking_notifier_chain_unregister(). 2019 */ 2020 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2021 { 2022 int ret; 2023 2024 if (cpufreq_disabled()) 2025 return -EINVAL; 2026 2027 switch (list) { 2028 case CPUFREQ_TRANSITION_NOTIFIER: 2029 mutex_lock(&cpufreq_fast_switch_lock); 2030 2031 ret = srcu_notifier_chain_unregister( 2032 &cpufreq_transition_notifier_list, nb); 2033 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2034 cpufreq_fast_switch_count++; 2035 2036 mutex_unlock(&cpufreq_fast_switch_lock); 2037 break; 2038 case CPUFREQ_POLICY_NOTIFIER: 2039 ret = blocking_notifier_chain_unregister( 2040 &cpufreq_policy_notifier_list, nb); 2041 break; 2042 default: 2043 ret = -EINVAL; 2044 } 2045 2046 return ret; 2047 } 2048 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2049 2050 2051 /********************************************************************* 2052 * GOVERNORS * 2053 *********************************************************************/ 2054 2055 /** 2056 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2057 * @policy: cpufreq policy to switch the frequency for. 2058 * @target_freq: New frequency to set (may be approximate). 2059 * 2060 * Carry out a fast frequency switch without sleeping. 2061 * 2062 * The driver's ->fast_switch() callback invoked by this function must be 2063 * suitable for being called from within RCU-sched read-side critical sections 2064 * and it is expected to select the minimum available frequency greater than or 2065 * equal to @target_freq (CPUFREQ_RELATION_L). 2066 * 2067 * This function must not be called if policy->fast_switch_enabled is unset. 2068 * 2069 * Governors calling this function must guarantee that it will never be invoked 2070 * twice in parallel for the same policy and that it will never be called in 2071 * parallel with either ->target() or ->target_index() for the same policy. 2072 * 2073 * Returns the actual frequency set for the CPU. 2074 * 2075 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2076 * error condition, the hardware configuration must be preserved. 2077 */ 2078 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2079 unsigned int target_freq) 2080 { 2081 unsigned int freq; 2082 int cpu; 2083 2084 target_freq = clamp_val(target_freq, policy->min, policy->max); 2085 freq = cpufreq_driver->fast_switch(policy, target_freq); 2086 2087 if (!freq) 2088 return 0; 2089 2090 policy->cur = freq; 2091 arch_set_freq_scale(policy->related_cpus, freq, 2092 policy->cpuinfo.max_freq); 2093 cpufreq_stats_record_transition(policy, freq); 2094 2095 if (trace_cpu_frequency_enabled()) { 2096 for_each_cpu(cpu, policy->cpus) 2097 trace_cpu_frequency(freq, cpu); 2098 } 2099 2100 return freq; 2101 } 2102 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2103 2104 /** 2105 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2106 * @cpu: Target CPU. 2107 * @min_perf: Minimum (required) performance level (units of @capacity). 2108 * @target_perf: Target (desired) performance level (units of @capacity). 2109 * @capacity: Capacity of the target CPU. 2110 * 2111 * Carry out a fast performance level switch of @cpu without sleeping. 2112 * 2113 * The driver's ->adjust_perf() callback invoked by this function must be 2114 * suitable for being called from within RCU-sched read-side critical sections 2115 * and it is expected to select a suitable performance level equal to or above 2116 * @min_perf and preferably equal to or below @target_perf. 2117 * 2118 * This function must not be called if policy->fast_switch_enabled is unset. 2119 * 2120 * Governors calling this function must guarantee that it will never be invoked 2121 * twice in parallel for the same CPU and that it will never be called in 2122 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2123 * the same CPU. 2124 */ 2125 void cpufreq_driver_adjust_perf(unsigned int cpu, 2126 unsigned long min_perf, 2127 unsigned long target_perf, 2128 unsigned long capacity) 2129 { 2130 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2131 } 2132 2133 /** 2134 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2135 * 2136 * Return 'true' if the ->adjust_perf callback is present for the 2137 * current driver or 'false' otherwise. 2138 */ 2139 bool cpufreq_driver_has_adjust_perf(void) 2140 { 2141 return !!cpufreq_driver->adjust_perf; 2142 } 2143 2144 /* Must set freqs->new to intermediate frequency */ 2145 static int __target_intermediate(struct cpufreq_policy *policy, 2146 struct cpufreq_freqs *freqs, int index) 2147 { 2148 int ret; 2149 2150 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2151 2152 /* We don't need to switch to intermediate freq */ 2153 if (!freqs->new) 2154 return 0; 2155 2156 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2157 __func__, policy->cpu, freqs->old, freqs->new); 2158 2159 cpufreq_freq_transition_begin(policy, freqs); 2160 ret = cpufreq_driver->target_intermediate(policy, index); 2161 cpufreq_freq_transition_end(policy, freqs, ret); 2162 2163 if (ret) 2164 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2165 __func__, ret); 2166 2167 return ret; 2168 } 2169 2170 static int __target_index(struct cpufreq_policy *policy, int index) 2171 { 2172 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2173 unsigned int restore_freq, intermediate_freq = 0; 2174 unsigned int newfreq = policy->freq_table[index].frequency; 2175 int retval = -EINVAL; 2176 bool notify; 2177 2178 if (newfreq == policy->cur) 2179 return 0; 2180 2181 /* Save last value to restore later on errors */ 2182 restore_freq = policy->cur; 2183 2184 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2185 if (notify) { 2186 /* Handle switching to intermediate frequency */ 2187 if (cpufreq_driver->get_intermediate) { 2188 retval = __target_intermediate(policy, &freqs, index); 2189 if (retval) 2190 return retval; 2191 2192 intermediate_freq = freqs.new; 2193 /* Set old freq to intermediate */ 2194 if (intermediate_freq) 2195 freqs.old = freqs.new; 2196 } 2197 2198 freqs.new = newfreq; 2199 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2200 __func__, policy->cpu, freqs.old, freqs.new); 2201 2202 cpufreq_freq_transition_begin(policy, &freqs); 2203 } 2204 2205 retval = cpufreq_driver->target_index(policy, index); 2206 if (retval) 2207 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2208 retval); 2209 2210 if (notify) { 2211 cpufreq_freq_transition_end(policy, &freqs, retval); 2212 2213 /* 2214 * Failed after setting to intermediate freq? Driver should have 2215 * reverted back to initial frequency and so should we. Check 2216 * here for intermediate_freq instead of get_intermediate, in 2217 * case we haven't switched to intermediate freq at all. 2218 */ 2219 if (unlikely(retval && intermediate_freq)) { 2220 freqs.old = intermediate_freq; 2221 freqs.new = restore_freq; 2222 cpufreq_freq_transition_begin(policy, &freqs); 2223 cpufreq_freq_transition_end(policy, &freqs, 0); 2224 } 2225 } 2226 2227 return retval; 2228 } 2229 2230 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2231 unsigned int target_freq, 2232 unsigned int relation) 2233 { 2234 unsigned int old_target_freq = target_freq; 2235 2236 if (cpufreq_disabled()) 2237 return -ENODEV; 2238 2239 target_freq = __resolve_freq(policy, target_freq, relation); 2240 2241 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2242 policy->cpu, target_freq, relation, old_target_freq); 2243 2244 /* 2245 * This might look like a redundant call as we are checking it again 2246 * after finding index. But it is left intentionally for cases where 2247 * exactly same freq is called again and so we can save on few function 2248 * calls. 2249 */ 2250 if (target_freq == policy->cur && 2251 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2252 return 0; 2253 2254 if (cpufreq_driver->target) 2255 return cpufreq_driver->target(policy, target_freq, relation); 2256 2257 if (!cpufreq_driver->target_index) 2258 return -EINVAL; 2259 2260 return __target_index(policy, policy->cached_resolved_idx); 2261 } 2262 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2263 2264 int cpufreq_driver_target(struct cpufreq_policy *policy, 2265 unsigned int target_freq, 2266 unsigned int relation) 2267 { 2268 int ret; 2269 2270 down_write(&policy->rwsem); 2271 2272 ret = __cpufreq_driver_target(policy, target_freq, relation); 2273 2274 up_write(&policy->rwsem); 2275 2276 return ret; 2277 } 2278 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2279 2280 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2281 { 2282 return NULL; 2283 } 2284 2285 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2286 { 2287 int ret; 2288 2289 /* Don't start any governor operations if we are entering suspend */ 2290 if (cpufreq_suspended) 2291 return 0; 2292 /* 2293 * Governor might not be initiated here if ACPI _PPC changed 2294 * notification happened, so check it. 2295 */ 2296 if (!policy->governor) 2297 return -EINVAL; 2298 2299 /* Platform doesn't want dynamic frequency switching ? */ 2300 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2301 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2302 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2303 2304 if (gov) { 2305 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2306 policy->governor->name, gov->name); 2307 policy->governor = gov; 2308 } else { 2309 return -EINVAL; 2310 } 2311 } 2312 2313 if (!try_module_get(policy->governor->owner)) 2314 return -EINVAL; 2315 2316 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2317 2318 if (policy->governor->init) { 2319 ret = policy->governor->init(policy); 2320 if (ret) { 2321 module_put(policy->governor->owner); 2322 return ret; 2323 } 2324 } 2325 2326 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2327 2328 return 0; 2329 } 2330 2331 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2332 { 2333 if (cpufreq_suspended || !policy->governor) 2334 return; 2335 2336 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2337 2338 if (policy->governor->exit) 2339 policy->governor->exit(policy); 2340 2341 module_put(policy->governor->owner); 2342 } 2343 2344 int cpufreq_start_governor(struct cpufreq_policy *policy) 2345 { 2346 int ret; 2347 2348 if (cpufreq_suspended) 2349 return 0; 2350 2351 if (!policy->governor) 2352 return -EINVAL; 2353 2354 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2355 2356 if (cpufreq_driver->get) 2357 cpufreq_verify_current_freq(policy, false); 2358 2359 if (policy->governor->start) { 2360 ret = policy->governor->start(policy); 2361 if (ret) 2362 return ret; 2363 } 2364 2365 if (policy->governor->limits) 2366 policy->governor->limits(policy); 2367 2368 return 0; 2369 } 2370 2371 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2372 { 2373 if (cpufreq_suspended || !policy->governor) 2374 return; 2375 2376 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2377 2378 if (policy->governor->stop) 2379 policy->governor->stop(policy); 2380 } 2381 2382 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2383 { 2384 if (cpufreq_suspended || !policy->governor) 2385 return; 2386 2387 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2388 2389 if (policy->governor->limits) 2390 policy->governor->limits(policy); 2391 } 2392 2393 int cpufreq_register_governor(struct cpufreq_governor *governor) 2394 { 2395 int err; 2396 2397 if (!governor) 2398 return -EINVAL; 2399 2400 if (cpufreq_disabled()) 2401 return -ENODEV; 2402 2403 mutex_lock(&cpufreq_governor_mutex); 2404 2405 err = -EBUSY; 2406 if (!find_governor(governor->name)) { 2407 err = 0; 2408 list_add(&governor->governor_list, &cpufreq_governor_list); 2409 } 2410 2411 mutex_unlock(&cpufreq_governor_mutex); 2412 return err; 2413 } 2414 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2415 2416 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2417 { 2418 struct cpufreq_policy *policy; 2419 unsigned long flags; 2420 2421 if (!governor) 2422 return; 2423 2424 if (cpufreq_disabled()) 2425 return; 2426 2427 /* clear last_governor for all inactive policies */ 2428 read_lock_irqsave(&cpufreq_driver_lock, flags); 2429 for_each_inactive_policy(policy) { 2430 if (!strcmp(policy->last_governor, governor->name)) { 2431 policy->governor = NULL; 2432 strcpy(policy->last_governor, "\0"); 2433 } 2434 } 2435 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2436 2437 mutex_lock(&cpufreq_governor_mutex); 2438 list_del(&governor->governor_list); 2439 mutex_unlock(&cpufreq_governor_mutex); 2440 } 2441 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2442 2443 2444 /********************************************************************* 2445 * POLICY INTERFACE * 2446 *********************************************************************/ 2447 2448 /** 2449 * cpufreq_get_policy - get the current cpufreq_policy 2450 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2451 * is written 2452 * @cpu: CPU to find the policy for 2453 * 2454 * Reads the current cpufreq policy. 2455 */ 2456 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2457 { 2458 struct cpufreq_policy *cpu_policy; 2459 if (!policy) 2460 return -EINVAL; 2461 2462 cpu_policy = cpufreq_cpu_get(cpu); 2463 if (!cpu_policy) 2464 return -EINVAL; 2465 2466 memcpy(policy, cpu_policy, sizeof(*policy)); 2467 2468 cpufreq_cpu_put(cpu_policy); 2469 return 0; 2470 } 2471 EXPORT_SYMBOL(cpufreq_get_policy); 2472 2473 /** 2474 * cpufreq_set_policy - Modify cpufreq policy parameters. 2475 * @policy: Policy object to modify. 2476 * @new_gov: Policy governor pointer. 2477 * @new_pol: Policy value (for drivers with built-in governors). 2478 * 2479 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2480 * limits to be set for the policy, update @policy with the verified limits 2481 * values and either invoke the driver's ->setpolicy() callback (if present) or 2482 * carry out a governor update for @policy. That is, run the current governor's 2483 * ->limits() callback (if @new_gov points to the same object as the one in 2484 * @policy) or replace the governor for @policy with @new_gov. 2485 * 2486 * The cpuinfo part of @policy is not updated by this function. 2487 */ 2488 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2489 struct cpufreq_governor *new_gov, 2490 unsigned int new_pol) 2491 { 2492 struct cpufreq_policy_data new_data; 2493 struct cpufreq_governor *old_gov; 2494 int ret; 2495 2496 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2497 new_data.freq_table = policy->freq_table; 2498 new_data.cpu = policy->cpu; 2499 /* 2500 * PM QoS framework collects all the requests from users and provide us 2501 * the final aggregated value here. 2502 */ 2503 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2504 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2505 2506 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2507 new_data.cpu, new_data.min, new_data.max); 2508 2509 /* 2510 * Verify that the CPU speed can be set within these limits and make sure 2511 * that min <= max. 2512 */ 2513 ret = cpufreq_driver->verify(&new_data); 2514 if (ret) 2515 return ret; 2516 2517 policy->min = new_data.min; 2518 policy->max = new_data.max; 2519 trace_cpu_frequency_limits(policy); 2520 2521 policy->cached_target_freq = UINT_MAX; 2522 2523 pr_debug("new min and max freqs are %u - %u kHz\n", 2524 policy->min, policy->max); 2525 2526 if (cpufreq_driver->setpolicy) { 2527 policy->policy = new_pol; 2528 pr_debug("setting range\n"); 2529 return cpufreq_driver->setpolicy(policy); 2530 } 2531 2532 if (new_gov == policy->governor) { 2533 pr_debug("governor limits update\n"); 2534 cpufreq_governor_limits(policy); 2535 return 0; 2536 } 2537 2538 pr_debug("governor switch\n"); 2539 2540 /* save old, working values */ 2541 old_gov = policy->governor; 2542 /* end old governor */ 2543 if (old_gov) { 2544 cpufreq_stop_governor(policy); 2545 cpufreq_exit_governor(policy); 2546 } 2547 2548 /* start new governor */ 2549 policy->governor = new_gov; 2550 ret = cpufreq_init_governor(policy); 2551 if (!ret) { 2552 ret = cpufreq_start_governor(policy); 2553 if (!ret) { 2554 pr_debug("governor change\n"); 2555 sched_cpufreq_governor_change(policy, old_gov); 2556 return 0; 2557 } 2558 cpufreq_exit_governor(policy); 2559 } 2560 2561 /* new governor failed, so re-start old one */ 2562 pr_debug("starting governor %s failed\n", policy->governor->name); 2563 if (old_gov) { 2564 policy->governor = old_gov; 2565 if (cpufreq_init_governor(policy)) 2566 policy->governor = NULL; 2567 else 2568 cpufreq_start_governor(policy); 2569 } 2570 2571 return ret; 2572 } 2573 2574 /** 2575 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2576 * @cpu: CPU to re-evaluate the policy for. 2577 * 2578 * Update the current frequency for the cpufreq policy of @cpu and use 2579 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2580 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2581 * for the policy in question, among other things. 2582 */ 2583 void cpufreq_update_policy(unsigned int cpu) 2584 { 2585 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2586 2587 if (!policy) 2588 return; 2589 2590 /* 2591 * BIOS might change freq behind our back 2592 * -> ask driver for current freq and notify governors about a change 2593 */ 2594 if (cpufreq_driver->get && has_target() && 2595 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2596 goto unlock; 2597 2598 refresh_frequency_limits(policy); 2599 2600 unlock: 2601 cpufreq_cpu_release(policy); 2602 } 2603 EXPORT_SYMBOL(cpufreq_update_policy); 2604 2605 /** 2606 * cpufreq_update_limits - Update policy limits for a given CPU. 2607 * @cpu: CPU to update the policy limits for. 2608 * 2609 * Invoke the driver's ->update_limits callback if present or call 2610 * cpufreq_update_policy() for @cpu. 2611 */ 2612 void cpufreq_update_limits(unsigned int cpu) 2613 { 2614 if (cpufreq_driver->update_limits) 2615 cpufreq_driver->update_limits(cpu); 2616 else 2617 cpufreq_update_policy(cpu); 2618 } 2619 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2620 2621 /********************************************************************* 2622 * BOOST * 2623 *********************************************************************/ 2624 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2625 { 2626 int ret; 2627 2628 if (!policy->freq_table) 2629 return -ENXIO; 2630 2631 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2632 if (ret) { 2633 pr_err("%s: Policy frequency update failed\n", __func__); 2634 return ret; 2635 } 2636 2637 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2638 if (ret < 0) 2639 return ret; 2640 2641 return 0; 2642 } 2643 2644 int cpufreq_boost_trigger_state(int state) 2645 { 2646 struct cpufreq_policy *policy; 2647 unsigned long flags; 2648 int ret = 0; 2649 2650 if (cpufreq_driver->boost_enabled == state) 2651 return 0; 2652 2653 write_lock_irqsave(&cpufreq_driver_lock, flags); 2654 cpufreq_driver->boost_enabled = state; 2655 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2656 2657 get_online_cpus(); 2658 for_each_active_policy(policy) { 2659 ret = cpufreq_driver->set_boost(policy, state); 2660 if (ret) 2661 goto err_reset_state; 2662 } 2663 put_online_cpus(); 2664 2665 return 0; 2666 2667 err_reset_state: 2668 put_online_cpus(); 2669 2670 write_lock_irqsave(&cpufreq_driver_lock, flags); 2671 cpufreq_driver->boost_enabled = !state; 2672 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2673 2674 pr_err("%s: Cannot %s BOOST\n", 2675 __func__, state ? "enable" : "disable"); 2676 2677 return ret; 2678 } 2679 2680 static bool cpufreq_boost_supported(void) 2681 { 2682 return cpufreq_driver->set_boost; 2683 } 2684 2685 static int create_boost_sysfs_file(void) 2686 { 2687 int ret; 2688 2689 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2690 if (ret) 2691 pr_err("%s: cannot register global BOOST sysfs file\n", 2692 __func__); 2693 2694 return ret; 2695 } 2696 2697 static void remove_boost_sysfs_file(void) 2698 { 2699 if (cpufreq_boost_supported()) 2700 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2701 } 2702 2703 int cpufreq_enable_boost_support(void) 2704 { 2705 if (!cpufreq_driver) 2706 return -EINVAL; 2707 2708 if (cpufreq_boost_supported()) 2709 return 0; 2710 2711 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2712 2713 /* This will get removed on driver unregister */ 2714 return create_boost_sysfs_file(); 2715 } 2716 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2717 2718 int cpufreq_boost_enabled(void) 2719 { 2720 return cpufreq_driver->boost_enabled; 2721 } 2722 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2723 2724 /********************************************************************* 2725 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2726 *********************************************************************/ 2727 static enum cpuhp_state hp_online; 2728 2729 static int cpuhp_cpufreq_online(unsigned int cpu) 2730 { 2731 cpufreq_online(cpu); 2732 2733 return 0; 2734 } 2735 2736 static int cpuhp_cpufreq_offline(unsigned int cpu) 2737 { 2738 cpufreq_offline(cpu); 2739 2740 return 0; 2741 } 2742 2743 /** 2744 * cpufreq_register_driver - register a CPU Frequency driver 2745 * @driver_data: A struct cpufreq_driver containing the values# 2746 * submitted by the CPU Frequency driver. 2747 * 2748 * Registers a CPU Frequency driver to this core code. This code 2749 * returns zero on success, -EEXIST when another driver got here first 2750 * (and isn't unregistered in the meantime). 2751 * 2752 */ 2753 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2754 { 2755 unsigned long flags; 2756 int ret; 2757 2758 if (cpufreq_disabled()) 2759 return -ENODEV; 2760 2761 /* 2762 * The cpufreq core depends heavily on the availability of device 2763 * structure, make sure they are available before proceeding further. 2764 */ 2765 if (!get_cpu_device(0)) 2766 return -EPROBE_DEFER; 2767 2768 if (!driver_data || !driver_data->verify || !driver_data->init || 2769 !(driver_data->setpolicy || driver_data->target_index || 2770 driver_data->target) || 2771 (driver_data->setpolicy && (driver_data->target_index || 2772 driver_data->target)) || 2773 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2774 (!driver_data->online != !driver_data->offline)) 2775 return -EINVAL; 2776 2777 pr_debug("trying to register driver %s\n", driver_data->name); 2778 2779 /* Protect against concurrent CPU online/offline. */ 2780 cpus_read_lock(); 2781 2782 write_lock_irqsave(&cpufreq_driver_lock, flags); 2783 if (cpufreq_driver) { 2784 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2785 ret = -EEXIST; 2786 goto out; 2787 } 2788 cpufreq_driver = driver_data; 2789 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2790 2791 /* 2792 * Mark support for the scheduler's frequency invariance engine for 2793 * drivers that implement target(), target_index() or fast_switch(). 2794 */ 2795 if (!cpufreq_driver->setpolicy) { 2796 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2797 pr_debug("supports frequency invariance"); 2798 } 2799 2800 if (driver_data->setpolicy) 2801 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2802 2803 if (cpufreq_boost_supported()) { 2804 ret = create_boost_sysfs_file(); 2805 if (ret) 2806 goto err_null_driver; 2807 } 2808 2809 ret = subsys_interface_register(&cpufreq_interface); 2810 if (ret) 2811 goto err_boost_unreg; 2812 2813 if (unlikely(list_empty(&cpufreq_policy_list))) { 2814 /* if all ->init() calls failed, unregister */ 2815 ret = -ENODEV; 2816 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2817 driver_data->name); 2818 goto err_if_unreg; 2819 } 2820 2821 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2822 "cpufreq:online", 2823 cpuhp_cpufreq_online, 2824 cpuhp_cpufreq_offline); 2825 if (ret < 0) 2826 goto err_if_unreg; 2827 hp_online = ret; 2828 ret = 0; 2829 2830 pr_debug("driver %s up and running\n", driver_data->name); 2831 goto out; 2832 2833 err_if_unreg: 2834 subsys_interface_unregister(&cpufreq_interface); 2835 err_boost_unreg: 2836 remove_boost_sysfs_file(); 2837 err_null_driver: 2838 write_lock_irqsave(&cpufreq_driver_lock, flags); 2839 cpufreq_driver = NULL; 2840 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2841 out: 2842 cpus_read_unlock(); 2843 return ret; 2844 } 2845 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2846 2847 /* 2848 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2849 * 2850 * Unregister the current CPUFreq driver. Only call this if you have 2851 * the right to do so, i.e. if you have succeeded in initialising before! 2852 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2853 * currently not initialised. 2854 */ 2855 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2856 { 2857 unsigned long flags; 2858 2859 if (!cpufreq_driver || (driver != cpufreq_driver)) 2860 return -EINVAL; 2861 2862 pr_debug("unregistering driver %s\n", driver->name); 2863 2864 /* Protect against concurrent cpu hotplug */ 2865 cpus_read_lock(); 2866 subsys_interface_unregister(&cpufreq_interface); 2867 remove_boost_sysfs_file(); 2868 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2869 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2870 2871 write_lock_irqsave(&cpufreq_driver_lock, flags); 2872 2873 cpufreq_driver = NULL; 2874 2875 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2876 cpus_read_unlock(); 2877 2878 return 0; 2879 } 2880 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2881 2882 static int __init cpufreq_core_init(void) 2883 { 2884 struct cpufreq_governor *gov = cpufreq_default_governor(); 2885 2886 if (cpufreq_disabled()) 2887 return -ENODEV; 2888 2889 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2890 BUG_ON(!cpufreq_global_kobject); 2891 2892 if (!strlen(default_governor)) 2893 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2894 2895 return 0; 2896 } 2897 module_param(off, int, 0444); 2898 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2899 core_initcall(cpufreq_core_init); 2900